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Abstract: Hyperspectral reflectance imaging in the short-wave infrared range (SWIR, “extended
NIR”, ca. 1000 to 2500 nm) has proven to provide enhanced characterization of paint materials.
However, the interpretation of the results remains challenging due to the intrinsic complexity of the
SWIR spectra, presenting both broad and narrow absorption features with possible overlaps. To cope
with the high dimensionality and spectral complexity of such datasets acquired in the SWIR domain,
one data treatment approach is tested, inspired by innovative development in the cultural heritage
field: the use of a pigment spectral database (extracted from model and historical samples) combined
with a deep neural network (DNN). This approach allows for multi-label pigment classification
within each pixel of the data cube. Conventional Spectral Angle Mapping and DNN results obtained
on both pigment reference samples and a Buddhist painting (thangka) are discussed.

Keywords: reflectance imaging spectroscopy; hyperspectral imaging in the short-wave infrared
range; deep neural network; pigment mapping; thangkas

1. Introduction

Works of art are created using a wide variety of materials, or mixtures of materials,
and often exhibit heterogeneities at multiple length scales. Historical paintings in particular
consist of a superposition of paint layers, each prepared by grinding and mixing specific
hybrid formulations (with various mineral pigments and organic binders) [1]. Their
study thus requires the use of complementary analytical imaging techniques to probe and
image the intrinsic complexity of such objects. Given the value and the uniqueness of
cultural heritage artifacts, researchers favor analytical methodologies that can be used non-
invasively and in situ (within cultural institutions, archaeological fields, etc.) [2]. As such,
the last few years saw a tremendous rise in hyperspectral reflectance imaging spectroscopy
in the cultural heritage domain [3,4]. This success may be attributed to the merits of the
technique: it is non-invasive, portable, and allows for the wide field imaging of an artwork
in under a few minutes. Hyperspectral imaging in the visible range (400-900 nm) is now a
well-established technique to map the distribution of colorants across a painted surface. In
the short-wave infrared range (SWIR, “extended NIR”, ca. 1000 to 2500 nm, i.e., 10,000 to
4000 cm™1), increased applications are being published in the field, as the SWIR region is
of peculiar interest for the identification of pigments [5-8] but also organic binders and
resins [9-11], with harmonics and combinations of the absorption bands observed in the
mid-infrared range as well as absorption bands due to electronic transitions [12,13]. Most
notably, pigments strongly absorbing in the near-infrared range present characteristic OH
combination bands (i.e., hydrate minerals) or low-energy electronic transitions (i.e., Co-
and Fe-based compounds), which allows for additional and complementary information
on the pigment palette used by an artist. The main challenge remains to extract information
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from the large datasets created (millions of recorded spectra) in this energy domain, where
the observed spectral outline typically emerges from multiple overlapping contributions
especially in the case of complex mixtures and overlays of paint materials. While innovative
data reduction and classification approaches in the visible range are growing to determine
and map significant endmembers within hyperspectral dataset, a few works are dedicated
to similar applications in the SWIR domain. Principal component analysis (PCA) and
fully constrained least-squares (FCLS) spectral unmixing algorithms recently extended
the use of multivariate analysis for automatic pigment and binder classification in this
energy range [14-16]. However, the mapping of determined pigments/binders of interest
still results in a challenging task as it necessitates performing nonlinear unmixing on
large and complex datasets [17,18]. In this context, deep neural networks (DNNs) have
recently proven to provide new opportunities in determining the nonlinear mappings
between an input and the corresponding output automatically [19,20]. Remote sensing and
hyperspectral imaging have more particularly benefitted from many DNN applications
such as feature extraction, classification, and unmixing. The recent use of a DNN in cultural
heritage for pigment identification in the visible range has paved the way to solve similar
problems with an unprecedented processing time and accuracy rate [21,22]. In this paper,
we thus propose to explore the use of DNN models for automatic pigment identification in
SWIR hyperspectral datasets.

In order to improve the robustness of the model, an extended training dataset was built.
Whereas in previous papers the dataset was constructed from regions of well-characterized
paintings [21] or from pigment libraries [20], here we explore the combined use of various
input data, selected from pure pigment pellets, paint mockups, and historical samples. It
allows for the training library to incorporate the inherent variability of the dataset, a crucial
step to improve the DNN prediction.

Paintings from one mockup and one historical thangka are used to test the robustness
of the model. Thangkas are sacred paintings depicting a Buddhist deity; their main
constituent materials are quite well known and described in the literature (thanks to
literary sources [23,24], oral testimonies of modern-day painters but also previous analytical
results [25,26]) as cotton cloth or silk, natural glue sizing and a coating traditionally
composed of chalk or kaolinite, and several colored layer(s) made of mineral pigments and
organic dyes.

The obtained DNN results are assessed in two ways. First, the accuracy of the model
is calculated on a test dataset to evaluate the performance of the model. Second, the
results are compared to those obtained via spectral classification followed by labeling of
the pigments present based on complementary information from visible hyperspectral
imaging (VIS-RIS) and single-point X-ray fluorescence (XRF).

2. Materials and Methods
2.1. Short-Wave Infrared Hyperspectral Imaging (SWIR)

SWIR hyperspectral imaging was carried out by a camera (Specim Corp, Oulu, Fin-
land) SWIR 3 equipped with an OLES 30 lens (focal length: 56 mm) and mounted on a
motorized translation to ensure the analysis of the painted surface with a working distance
of 1.0 m. The camera is a push-broom imaging device coupled with a cryogenically cooled
MCT detector (384 (spatial) x 288 (spectral) pixels), operating in the 1000-2500 nm range
with a 12 nm spectral resolution, and a 5.6 nm spectral sampling. Diffuse illumination was
provided by two 20 W halogen lamps, half a meter away from the painting. The dataset
was calibrated to apparent reflectance by subtracting a dark image from the collected
reflectance data in digital counts, and dividing it by the illumination irradiance (acquired
on a 99% reflectance white reference, Spectralon, LabSphere Inc., North Sutton, NH, USA).
The reflectance spectra were used as input data to the DNN model.
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2.2. Visible Near-Infrared Hyperspectral Imaging (VIS-RIS)

VIS-RIS hyperspectral camera (Specim Corp, Oulu, Finland) mounted on a motorized
translation, was used with a spectral sampling of 2.8 nm over the 400-1000 nm spectral
range. [llumination was provided by two 20 W halogen lamps 1 m away. Spectral Angle
Mapper results were obtained using the dedicated ENVI software (Harris Corporation,
Melbourne, FL, USA).

2.3. Single Point X-ray Fluorescence (XRF)

XRF was performed using an in-house instrument, equipped with a Pd anode trans-
mission tube (Moxtek MAGNUM, Orem, Utah) operated at 30kV and 0.1 mA (3 W) and
a Silicon Drift Detector (active area of 25 mm?, X-123FAST SDD, Amptek, Bedford, MA,
USA). The beam size was approximately 1.2 mm for a typical working distance of 1 cm. The
system operated with acquisition time of 300 s. For the evaluation of the raw full spectral
XREF data, the dedicated PyMCA software [27] was used.

2.4. Samples

A set of eight pigments (Kremer Pigmente, Aichstetten, Germany), traditionally used
in thangkas, were prepared as single pigment pellets: malachite (10300) Cu,CO3(OH),,
azurite Cup(CO3)2(OH); (10200), vermilion HgS (42000), orpiment As;S3 (10700), minium
Pb304 (42500), indigo (36000), red aluminum lake of carminic acid (42100—extracted from
cochineal), calcite CaCO3 (58720), and kaolinite Al;SiOs5(OH)4 (58200). X-ray diffraction
was preliminarily carried out to confirm the composition of crystalline compounds.

A model thangka was prepared using the same set of reference pigments (Figure la
and Figure S1). For the support, Indian cotton cloth was prepared using the following
procedure: Shika Nikawa glue was applied first (Uematsu, fine art material shop, Tokyo,
Japan), once dry (24 h) the surface was sanded, then a mixture of glue with kaolinite, chalk,
and earth pigments was applied [24]. The Kremer reference pigments were then weighted
and mixed with two drops of glue before application on the prepared canvas. The layer
was thickly applied to obtain visible coverage of the support; however, no measurement of
the layer thicknesses was performed. In total, the system presents 8 single-pigment paint
systems and a ground layer (namely carmine (1), vermilion (2), orpiment (3), minium (4),
malachite (5), azurite (6), indigo (7), kaolinite (8), and ground layer (9)), and 14 mixtures
using two pigment types (the mixtures can be split in four groups: (i) 7 mixtures of two
colors composed of kaolinite white pigment and a non-white pigment with a 1:2 wt%, (ii)
4 mixtures of two non-white pigments with a 1:2 wt%, (iii) 1 mixture of three non-white
pigments with a 1:3 wt%, and (iv) 2 overlays of two single pigment layers).

One historical Tibetan thangka (Figure 2a, size: 70 x 120 cm?) dated from the be-
ginning of the 19 th century was analyzed, which belongs to a French private collection.
It represents Chenrezig, the Tibetan incarnation of Avalokitesvara, the bodhisattva of
compassion.

2.5. DNN Model
2.5.1. Overall DNN Workflow

A classical workflow to create the model using a neural network trained and tested
on an appropriate dataset is established. The pipeline of the approach to produce labeled
qualitative pigment maps follows three main steps. First, a large spectral training dataset
is prepared, and each input spectrum is labeled with the related pigment class(es) and
relative mass ratio(s). Second, the neural network is trained on 80% of the original dataset
to predict the pigments present in the input RIS spectra. The remaining 20% of the original
dataset is split into two—a validation and a test set. The validation set is used to determine
the optimal neural network architecture and for hyperparameter tuning. The test set is
used to estimate the overall classification accuracy of the neural network (predictions of
pigments present).
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Lastly, the neural network prediction of pigments is evaluated on two case painting
studies: the entire model system and one historical thangka. The output of the model
consists of 11 labels and coefficient maps, one for each of the classes in the training dataset,
i.e., azurite, malachite, minium, kaolinite, vermilion, orpiment, carmine, indigo, calcite,
Indian cotton support, and unidentified white paint historical layer. For the label maps,
each pixel value of the composite pigment class map is set to 0 or 1, which corresponds to
the absence or presence of a class in a determined pixel, respectively. The presence of a
pigment in a given pixel is obtained using a threshold of 0.5 or greater over the probability
value determined by the DNN model of a match between the SWIR spectrum and the
pigment class. The threshold is chosen to reduce the number of false-positive identifications
while providing a higher accuracy value. The output coefficient maps provide a qualitative
mapping of the abundance of the pigment classes.

2.5.2. DNN Input Dataset

In this paper, we combine three different types of input data to train and test the
DNN model. Data are extracted from (i) single-pigment pellets, (ii) single pigment, 2-
and 3-pigment mixture paint layers, (iii) the canvas and prepared canvas of the mockup
sample, and finally (iv) specific areas of the historical tangka preliminarily characterized
by single-point XRF and VIS-RIS. In total, the input dataset represents 12,000 spectra with
a number of evenly distributed samples per class.

2.5.3. DNN Architecture

Pigment identification is modeled as a multi-label classification problem, where each
reflectance spectrum can have multiple labels due to the presence of multiple pigments.
For semi-quantitative mapping, the spectral unmixing task is solved in parallel to the multi-
label classification, using a different input—namely the respective K/S values extracted
from the reflectance spectra using the Kubelka-Munk theory [28].

The deep learning model used in this work was taken from [20]. It consists of two
identical deep feed-forward networks, which are simultaneously trained. The two DNNs
consist of four fully connected hidden layers with 256, 128, 64, and 32 hidden nodes and an
output layer with 11 nodes with ReLU/Sigmoid activation functions (see Figure S2).

In the case of the pigment identification DNN, the units in the output layer correspond
to different pigment classes. In the case of pigment unmixing, a second output layer of 11
units is added. It is obtained by multiplying the output layers of the two parallel DNNs
for pigment identification and unmixing, and applying a softmax activation function. This
output layer corresponds to the estimated coefficient vector « of pigment weight concentra-
tions for the given spectrum. To train the networks proposed for pigment classification and
pigment unmixing, we use the binary cross-entropy and the Kullback-Leibler Divergence
(KLD) [29] loss functions, respectively. The Adam optimizer with default configuration
parameter values, e.g., a learning rate of 0.001, is used to optimize the objective loss
functions.

Python utilizing the Keras library [30] with Tensorflow [31] as the backend is used to
define and train the model. The number of epochs and the batch size are set to 200 and 64,
respectively. To avoid overfitting, an Early Stopping callback is used and the number of
patience is set to 10.

The training of the DNN model takes 71 s on a single Intel(R)-Core(TM) it-5600U
(CPU @ 2.60 GHz). Subsequently, obtaining the pigment map of the historical tangka takes
about 20 s on the same hardware architecture.

2.6. Spectral Angle Mapping Algorithm (SAM)

SAM measures the spectral similarity between spectra. The algorithm determines the
angle between two spectra, a reference (or endmember) and an experimental spectrum
considered as vectors in a space with n-dimensions equal to the number of spectral sam-
pling. For a 3D data cube, SAM compares a matrix of reference spectrum vectors to each
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pixel vector in the spectral sampling space. As such, for each pixel, a smaller angle value

represents a closer match to a reference spectrum [32].

The spectra used as references in this study are defined as the average per class of
the NN input mockup pure pigment layers (Figure 1b). The spectral angles are computed
for each class within all pixels using Spectral Python (SPy) [33]. The class presenting the
smallest spectral angle between its reference spectrum and the pixel spectrum is set to
1, and the remaining classes are set to 0. Thus, the output of SAM consists of 11 binary

label maps.

3. Results

3.1. Comparison of DNN versus SAM for Pigment Classification and Mapping Tasks

The efficiency of the SAM and DNN approaches to classify the different pixels of the

mockup sample dataset are compared in Figure 1c and 1d, respectively.
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Figure 1. (a) Schematic view of a set of mockup paintings composed of: 8 single-pigment paint systems and a ground layer

(namely carmine (1), vermilion (2), orpiment (3), minium (4), malachite (5), azurite (6), indigo (7), kaolinite (8), and ground

layer (9)), and 14 mixtures using two pigment types (the mixtures can be split into four groups: (i) 7 mixtures of two colors

composed of kaolinite white pigment and a non-white pigment with a 1:2 wt%, (ii) 4 mixtures of two non-white pigments

with a 1:2 wt%, (iii) 1 mixture of three non-white pigments with a 1:3 wt%, and (iv) 2 overlays of two single pigment layers);

(b) average reflectance spectra of all single-pigment paint layers applied on the prepared canvas; (c) pigment classification
maps obtained using SAM; (d) pigment coefficient maps obtained using DNN model.

The efficiency of the SAM approach for data classification is first determined on a
selection of labeled pure pigment layers (pure thick layer on the left side of the model
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sample, Figure 1b) from which the SAM reference spectra were extracted. The approach
provides classification with an accuracy of 93%. SAM is then applied for the classification
of the entire mockup dataset composed of pure pigments and mixtures. Several limitations
of the approach are observed (Figure 1c). The pure orpiment layers and large portions of
the prepared canvas are classified together, and labeled as orpiment. Whereas the add-in
of kaolinite pigment results in absorptions at ca. 1390, 1410, 1910, and 2200 nm [26], most
pigment mixtures with kaolinite are mislabeled, and are assigned to the carmine class.
Similarly, for two- and three-pigment mixtures, azurite is the only pigment properly labeled;
moreover, in the specific case of azurite and malachite mixtures, pixels are systematically
labeled as azurite, malachite being rarely identified in the mixture. The SAM classification
also fails at classifying pure pigment layers from which the reference spectra were not
extracted (layers on the right side of the mockup), as such, the pure layer of azurite is
labeled as indigo, and the pure layer of malachite is labeled as azurite.

Based on these results, SAM provides good accuracy on the area where the endmem-
bers were defined. However, the pigments present in mixtures and other single-pigment
layer areas are not properly classified. Thus, the approach requires good a priori knowledge
of the expected endmember prior to the classification, and class mapping should present
very restrictive threshold values to prevent false-positive classification results.

When the DNN model is used to process the full dataset, more representative and
accurate classification is obtained (Figure 1d and Figure S3). The classification accuracy of
the DNN model is estimated to be 98.1% for the testing dataset containing pure pigments
and pigment mixtures. The results provide efficient mapping of pigments of interest, e.g.,
azurite and malachite, but also semi-conductor pigments such as minium and orpiment.
Tints of colored pigments mixed with kaolinite, pigment mixtures, and paint layer overlays
are labeled accordingly to their expected classes. Thus, the DNN classification provides a
straightforward and qualitative mapping of the pigment and pigment mixture signatures
present within the data cube.

In the region from 1000 to 2500 nm, the approach was expected to provide efficient
mapping of pigments that present overtones and combination bands associated with vibra-
tional transitions of molecular bonds involving mainly hydrogen, carbon, nitrogen, oxygen,
and related functional groups. As an example, with characteristic absorption maximum
in the NIR region, corresponding to a [v, (OH)] overtone at 1497 nm, a superposition
band of stretching and bending modes [(v + §) OH] at 2289 nm and a stretching overtone
at [v, (OH)] at 2352 nm, azurite is accurately mapped for both pure and mixed systems.
However, for semi-conductor type pigments ruled by electronic transitions with selective
absorption in the visible region, the DNN approach also provided efficient labeling and
mapping of both pure pigments and pigment mixtures. As such, the reflectance spectra
of the chemical compound present characteristic spectral variation apprehended by the
model. As an example, the appropriate classification of the pixels containing minium
could be explained by a variation of its absorption coefficient in the SWIR domain. For
spectra acquired on pellet and mockup samples, a broad decrease in reflectance intensity
was observed from 1330 to 1800 nm. Further work should be specifically carried out to
determine the origin of such intensity variations and identify the spectral behavior of
semi-conductor pigments in mixtures and superimpositions.

3.2. The Use of Deep NN for Classification Task in Historical Tangkas

Following the results on mockup samples, the mapping of several pigment classes is
obtained using the DNN model on a historical Buddhist painting (Figure 2a), previously
studied by single-point XRF and VIS-RIS. Here, we combine the results of the multiple spec-
troscopic techniques for a deeper understanding of the materiality of historical thangkas.
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Figure 2. (a) RGB image reconstructed from VIS-RIS dataset (red channel is assigned to 639.1 nm, green to 550.6 nm, and

blue to 460.6 nm) of the historical tangka analyzed (size: 70 x 120 cm?). Three blue and green areas are located that refer to:

(b) macro-photographs of three locations highlighting intrinsic mixture of blue and green particles, and surface degradation;

(c) short-wave infrared imaging data at 1650 nm that reveals (d) the underlying preparatory drawing and contour of a floral

shape, located using dashed rectangle in (c).

The blue and green areas of the painting present visible signs of degradation at the
surface of the object. As already discussed in [26], a strong darkening of azurite is very
commonly observed on thangkas, although not chemically characterized yet. However,
the observation of lacunas in degraded areas reveals the presence of undegraded paint
material underneath the top layer (a few microns thick) with an intricate mixture of
blue and green particles (Figure 2b). As a consequence of the degradation state of the
thangka, the obtained VIS-RIS spectra do not allow the accurate identification of the
original pigments, though Cu is identified in large amounts by p-XRE. The SWIR data
show the presence of overtones and combinations of stretching and bending modes of
O-H groups and carbonate ions, characteristics of the Cu-based pigments used in the paint
layers (no characteristic absorption of Cu-based degradation products was identified in
the data analyzed) [8,17,34]. More specifically, the deep blue color of the sky as well as the
body and aura of some divinities are painted using the azurite (Cuy(CO3)2(OH),) pigment,
characterized by the presence of absorption bands at 1491, 2285, and 2352 nm (Figure 3c).
The green pigment mainly used to paint the background, the leaves, and auras of divinities
is identified as malachite (CupCO3(OH),), with characteristic absorption features at 2274
and 2352 nm (Figure 3c). The results of the DNN model allow for the identification of
both compounds, and provide more subtle information about their spatial distribution
and mixtures (Figure 3a,b,e). First, azurite is mainly found pure in the blue areas. Second,
the decorative leaves surrounding the top central divinity, not identified by VIS-RIS, are
correctly mapped and labeled as malachite-rich paint layers. Third, whereas the green
background and the central aureole of the main deity present a higher content of malachite
(confirmed by the lowest absorption in the 2320-2380 nm range), green leaves as well as
the main deity’s clothes present various contents of both malachite and azurite pigments,
which confirms their combined use in several areas of the painting.
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Figure 3. (a) Visible picture of the historical tangka analyzed; (b) SAM classification of VIS-RIS dataset (red: minium, blue:
azurite, light green: vermilion, dark green: malachite, pink: indigo, brown: organic lake—tolerance angle 0.15 rad) with
analyzed sites and corresponding reflectance spectra presented in (c,f); DNN model results for (d) minium, vermilion,
orpiment (in red, green and blue, respectively) and (e) azurite and malachite (in blue and green, respectively).

For the red areas, two different pigments are identified thanks to p-XRF and VIS-RIS
data, namely minium (XRF: Pb—VIS inflection point: 564 nm) and vermilion (XRF: Hg,
S—VIS inflection point: 590 nm). The DNN-based mapping is consistent with the location
proposed in the visible range (Figure 3b,d). Minium (Pb3Oj,) is properly identified as the
main pigment in the aureole of the central divinity, some clothing parts of the smaller
divinities, and in the red decoration surrounding the bottom-right figure. As described
previously, a decrease in the reflectance spectrum is observed from 1330 to 1800 nm, and
this feature is redundant and characteristic of red areas painted using minium pigment
(Figure 3f, spectrum R2). Vermilion presents a constant absorption coefficient over the
SWIR domain. The absence of absorption features, with constant reflection intensity, results
in a good mapping of the vermilion-rich paint layers in the halos of two divinities as well
as in specific parts of the decoration surrounding the bottom-right divinity (Figure 3f,
spectrum R1).

For the yellow area, the presence of As confirmed by p-XRF and the presence of an
inflection point located at 500 nm in the VIS-RIS spectra indicate the use of an orpiment
pigment. The DNN model allows the mapping of the As-based compound, in accordance
with VIS-RIS and p-XRF results (Figure 3b,c), in the ribbons at the level of the feet and belly
of the central deity, as well as in the light brown background. The model properly predicts
all orpiment-based areas. In the case of the orpiment, a relatively high reflectance factor in
the 1500-1900 nm range compared to the 2000-2400 nm energy domain is observed for both
the mockup material and historical dataset, and could explain the appropriate labeling of
the pigments (Figure 3f, spectrum Y1). Here, again, more work on the absorption coefficient
of the pigment in mixtures and layered systems should be performed.

The SWIR signals in the white and pink areas are similar and present absorption bands
at 2275, 2105, and 1930 nm, and a very broad band centered at ca. 1490 nm (Figure 3c,
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spectrum W1). Their positions are characteristic of cellulose fibers (such as cotton, most
probable in the case of Tibetan artworks) [26]. Vibrational features from the (C = O), N-H,
and CHj groups of the animal skin glue, which include features near 2041 nm and 2176 nm,
can be differentiated [11]. Other characteristic peaks at 1720 and 2170 nm are observed
in this spectrum, which could be attributed to the presence of gypsum; however, the
absorption bands are relatively weak. It was not possible to more precisely identify the
white pigment, whose spectrum probably results from the overlay of a cellulose-based
material, with a layer of kaolinite-type clay and gypsum mixed with animal glue.

Interestingly, two areas below the top corner figures, clouds with parts painted in blue
and identified as a thin layer of indigo in the visible range (with an apparent absorbance
maximum at 660 nm), are labeled as carmine-rich paint material (Figure S4). The two areas
overlap with an underlying floral composition (visible in SWIR at 1650 nm—Figure 2¢,d).
This can suggest the use of a red dye-based paint, being the original color of this area. This
will initiate new research to more specifically look for underlying composition in similar
works of art.

4. Conclusions

The DNN approach proposed in this study offers new possibilities in the SWIR range
to identify and map pigments in complex materials either for unknown mixtures or multi-
layered systems. Applied to both mockup and historical paintings, the DNN model has
been proven to outperform the most common classification technique in the field known
as SAM. DNN allows a more representative mapping of the pigments of interest, which
results from the multi-labeling proposed by the approach (i.e., a single pixel can contain
several classes) and the multiple inputs from mockup and historical paintings used as a
training dataset.

This study confirms the potential of SWIR for pigments with characteristic absorption
features such as malachite and azurite, even when they are mixed and in degraded systems.
In the case of semi-conductor-type pigments, more research is needed to understand the
overall spectral shape/intensity in the SWIR domain, but it is definitely to be considered
as it allows efficient mapping of such pigments and brings complementary information to
the VIS-RIS spectra, in particular when multi-layered systems are investigated.

As recently outlined in numerous studies, combined access to VIS and SWIR imaging
modalities improves pigment classification in historical datasets; it is thus expected that
neural network models trained on combined datasets will solve more challenging tasks in
the near future.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/s21186150/s1, Figure S1: Comparison of (a) the visible picture, and (b) schematic view of
the laboratory-prepared thangka composed of: 8 single-pigment paint systems and a ground layer
(namely carmine (1), vermilion (2), orpiment (3), minium (4), malachite (5), azurite (6), indigo (7),
kaolinite (8), and ground layer (9)), and 14 mixtures using two pigment types (the mixtures can
be split into four groups: (i) 7 mixtures of two colors composed of kaolinite white pigment and
a non-white pigment with a 1:2 wt%, (ii) 4 mixtures of two non-white pigments with a 1:2 wt%,
(iii) 1 mixture of three non-white pigments with a 1:3 wt%, and (iv) the remaining 2 mixtures are
overlays of single pigment layers), Figure S2: Deep neural network architecture of the model used for
simultaneously solving the pigment identification and unmixing tasks (see DNN model part for more
details), Figure S3: Confusion matrix of the pure pigments in the test set, Figure S4: Confusion matrix
of the pigment mixtures in the test set. Figure S5: Pigment coefficient maps obtained using DNN
model for the historical thangka SWIR dataset, for azurite, malachite, minium, kaolinite, vermilion,
orpiment, carmine, and the white paint layer. Table S1: Precision and recall values for the pure
pigments in the test set, Table S2: Precision and recall values for the pigment mixtures in the test set.
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