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Various approaches are reviewed that use scaled particle theories to describe dumbbell fluids made of tan-
gent or overlapped hard spheres. Expressions encountered in the literature are written in a form similar to
that presented in the thermodynamic perturbation theory introduced by Wertheim for chains and developed in
statistical associating fluid theory (SAFT). Analogies and differences observed in these two types of theoretical
descriptions allow one to propose alternative theoretical expressions to describe dumbbell fluids with overlap-
ping spheres.
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1. Introduction

The description of thermodynamic properties of media containing non-spherical objects is still
important in many fields of fundamental or applied science. It still presents difficulties, in particular in
the description of phase transitions and the various types of phases generated according to the geometry
of the objects. Convex objects were described previously using extensions of scaled particle theory
(SPT), which was initially introduced for spheres [1]. These extensions, sometimes found using virial
developments, have given rise to various conformal theories [2–5]. They have led in particular to free
volume theories [6] used to describe phase transitions, as well as to some approaches of inhomogeneous
fluids [7].

Furthermore, the chains of spheres linked together could also be described within the thermodynamic
perturbation theory (TPT) proposed by Wertheim [8, 9], which led to the statistical associated fluid
theory (SAFT) [10] and its extensions currently used to describe polymer fluids. This approach separates
the thermodynamic quantities considered (free energy or pressure) into a reference contribution, related
to the subunits in absence of connection, and into a contribution induced by the connectivity between
these subunits necessary to form the chains. In addition, the spheres constituting the chains are most often
constrained to be tangent because the description of spheres with overlap proved to be more difficult.
However, in the extensions of the TPT used to describe polymers, it is often useful to be able to describe
various subunits within chains as groups of spheres with overlap. Better consideration of such subunits
with the scaled particle theory could be useful to improve the application of TPT to polymers.

On the other hand, chains of spheres cannot in principle be described with scaled particle theory or its
variants because these objects are non-convex. However, the theoretical SPT models of spherocylinders
have been adapted to describe linear chains. In particular, this has provided a good description of dumbbell
fluids formed of two overlapping spheres. This is probably due to the similarity in shape between these
dumbbells and slightly elongated spherocylinders. Another conformal theory, called scaled field particle
(SFP) theory and having similarities with SPT, has also been used to describe dimer fluids. Then, in this
work, these two versions of conformal theories were reviewed and applied to describe thermodynamics
of dimer fluids. This paper is dedicated to Yu. V. Kalyuzhnyi, who has made significant contributions in
many different research areas related to statistical mechanics, especially in integral equation theories.
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The reference contribution in TPT is that of dissociated hard spheres. Then, in the next section,
the description of hard spheres and its use in TPT theory is presented. A theoretical expression of
the dimer pressure obtained using integral equations is also given to later highlight links with the other
approaches presented. In the following section, various conformal or free volume theories inspired by SPT
are presented. Conformal theories describe the thermodynamic quantities of fluids by using geometric
parameters characteristic of the bodies considered, such as their volumes, surface areas and mean radii.
The two types of conformal theories studied do not use exactly the same set of parameters. In addition,
for each type of conformal theory, from the original result a corrective term has been added to obtain
an improved version. The corrective term depends also on the set of geometric parameters. Since the
two types of conformal theories do not use exactly the same geometric parameters, the corrective term is
different. So, for each theory we have presented both the original version and the improved version to be
able to better study the influence of the corrective term.

At small separation between the spheres constituting the dimer, when the larger sphere tends to
completely overlap the smaller one, it is known that the two types of conformal theories tend towards
the same result. The difference between the results given by the two approaches increases with the
elongation between the components of the dimer. Then, in the next section, in order to highlight the
differences between the two conformal approaches, these theories were first applied to dimers made of
tangent spheres. For this particular configuration, all of the above-mentioned geometric parameters can be
expressed from the diameters of the hard spheres. Then, the thermodynamic quantities coming from the
various conformal theories, were rewritten as a function of the diameters of the hard spheres instead of the
aforementioned geometric parameters. In particular, when the hard spheres have all the same diameter,
the pressure of the dimer fluid is described simply as a function of the volume fraction. Moreover, these
expressions were split into two part according to the same dividing found in the TPT, namely a reference
term of dissociated hard spheres and a connectivity term due to the links between spheres. This made it
possible to better analyze the reference term and the connectivity term in each of the theories. This made
it possible to explain the differences observed in the description of the thermodynamics deduced from
simulations.

After this analysis of previous works, in the following section alternative relationships have been
established to describe first dumbbellsmade of tangent spheres, and then thosewith overlap.A comparison
was given with the results of simulations. In a last part we conclude this work and present the prospects
that it suggests.

2. From integral equations to perturbation theory for hard spheres and

tangent hard sphere dimers

2.1. Integral equation for dissociated hard spheres fluid

A proper account of the excluded volume of various species is essential to describe thermodynamic
properties such as the pressure P of liquids and concentrated solutions [11–14]. Since the sphere is
the simplest object taking into account the repulsion at short distances, all the constituents were first
considered as hard spheres. In addition, molecules of complex shape can be represented using collections
of spheres linked together. Therefore, it seems essential to first properly describe the properties of these
subunits constituting these assemblies. Numerical simulations make it possible to precisely determine
the structural and thermodynamic properties of model systems. However, their implementation is cum-
bersome and does not lead to explicit expressions of the studied quantities. As an alternative, studies
of the structural and thermodynamic properties of hard spheres were undertaken using the Ornstein-
Zernike (OZ) integral equations [15]. Among various closure relations useful in solving these integral
equations, the Percus Yevick (PY) approximation [16] has proven particularly suitable to describe hard
spheres. In addition, it provides analytical expressions of some structural and thermodynamic quantities.
Notably, the PY approximation allows one to access the radial distribution functions gi j(r) between all
pairs of components i and j present in the liquid [17–19]. Various thermodynamic quantities can be
calculated from the radial distribution functions gi j(r) [20]. In particular, from the relation defining the
compressibility as a function of these gi j(r), an analytic expression of the pressure has been deduced by
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integration [21–23]

βPc
py =

6
π

[
ζ0

1 − ζ3
+

3 ζ1ζ2
(1 − ζ3)2

+
3 ζ3

2

(1 − ζ3)3

]
, (2.1)

where β is equal to 1/kBT with kB the Boltzmann constant and T the temperature. The terms ζn are given
by

ζn =
π

6

∑
k

ρkσ
n
k , (2.2)

where ρk and σk are the number density and the diameter of component k, respectively. Subscript
“PY”, under the symbol P, means that the pressure was obtained in the PY approximation, and the
superscript “c” has been added to remind that this expression comes from the compressibility relation.
The virial relation also provides an analytical expression of the pressure Pv

py, which is however less precise
in comparison with the results deduced from numerical simulations. An alternative expression of the
pressure somewhat more accurate than that given by equation (2.1), has been deduced by a combinaison
of the pressure deduced from the virial and the compressibility relations, first in the case of a single
component [24] and then for mixtures of several constituents [25, 26] :

βPbm =
6
π

[
ζ0

1 − ζ3
+

3 ζ1ζ2
(1 − ζ3)2

+
3 ζ3

2 − ζ
3
2 ζ3

(1 − ζ3)3

]
. (2.3)

The subscript “BM” means Boublík-Mansoori, to recall the initials of the two first authors of the articles
in which were established the corresponding expression for mixtures of several constituents [25, 26].
The “BMCSL” subscript (or superscript) is often used to denote this equation, to recall the initials of
all the authors who established it for mixture of components [25, 26]. Here, we limited the number of
letters in subscript to alleviate the notation. Expressions giving an even better description of the pressure
obtained by simulation were proposed later. However, in this article we limit ourselves to this level
of refinement, compared to the expression (2.1) determined using the PY approximation. Indeed, the
passage of equation (2.1) to (2.3) is simple enough to be used later in the context of expressions describing
non-spherical objects. Moreover, equation (2.3) is commonly used both in perturbation theories and in
applications to describe experimental systems. Thereafter, from these expressions of the pressure, other
quantities, such as the free energy A or the chemical potentials µj of various j constituents, can be
deduced by integration or differentiation. They will also be useful when applying perturbation theories
which take the fluid of dissociated hard spheres as a reference.

2.2. Integral equations for dimers made of tangent hard spheres

Model molecules, made of assemblies of hard spheres were considered. Dimers made of hard tangent
spheres are the simplest of these aggregates. In order to describe dimers with integral equations, attractive
sites were added on their surfaces. These sites induce the formation of bonds between the spheres. If there
is only one site per sphere, only dimers can be formed. Since the sites occupying a very small fraction of
the surface of the spheres, the attractive interactions are highly directional. Dimers are formed only when
two contacting spheres have their sites oriented towards each other. In the other configurations, particles
interact only with the purely radial potential (hard spheres potential). The consideration of these highly
directional potentials permits using various integral equations to describe the structure and interactions of
these hard sphere assemblies [8, 9, 27–33]. In particular, Wertheim’s OZ equations (WOZ) [8, 9, 29–32]
were applied to the description of dimers formed by tangent spheres [31, 34–36]. As an extension of
the PY relation, a polymer Percus Yevick (PPY) closure relation was used. Moreover, the density ρi
of various i species, is decomposed into the density of free i species ρ0

i , and dimers ρd. Considering,
for simplicity only, two species 1 and 2 which can link together to form dimers, we have the mass
conservation relations, for i = 1 or 2,

ρi = ρ
0
i + ρd, (2.4)

with
ρd = ρ

0
1 ρ

0
2 K0 g00

12(σ12), (2.5)
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where K0 is an association constant (which can be expressed as an integral dependent on the attractive
potential [31]), and g00

12(σ12) is the pair distribution between unassociated species 1 and 2 at a contact
distance σ12 = (σ1 + σ2)/2. The solution of the WOZ equations allows one to accurately describe
the interactions between these constituents. As in the case of the dissociated hard spheres, analytic
expressions of the pressure, deduced from the virial and compressibility relations, were obtained. Here
again, the expression deduced from the compressibility is the most efficient [31, 36].

βPc
PPY = βPc

PY − ρ
0
1ρ

0
2 K0

[
g00

12(σ12)
]2

(2.6a)

= βPc
PY − ρd g

00
12(σ12). (2.6b)

The definition of ρd, given by the equation (2.5), has been used to go from equation (2.6a) to (2.6b).
Furthermore, in the PPY approximation, it was found that g00

12(σ12) is equal to gPY
12(σ12) [31, 35], which

is the corresponding pair distribution function at contact, obtained in the PY approximation for hard
spheres without attractive sites. Moreover, gPY

12(σ12) is given by [19]

gPY
12(σ12) =

1
1 − ζ3

+
3 ζ2
(1 − ζ3)2

σ1σ2
σ1 + σ2

. (2.7)

Equation (2.6b) was also established within various integral equations devoted to the description of
properties of chain fluids [37–40]. As a generalisation in equation (2.6b), for chains of density ρc
containing m subunits, ρd is replaced by (m − 1) ρc . In the next section, when comparing the various
approaches, we come back to the explicit expression (2.6b) derived from the compressibility relation
within the PPY approximation.

2.3. Thermodynamic perturbation theory for dimers made of tangent hard spheres

As an alternative, a thermodynamic perturbation theory (TPT) was also developed to take into
account the effect of the bonds formed between the particles on the thermodynamic properties of the
fluid [8, 9, 29–32]. The generalization and application of this theoretical path in the SAFT led to one of the
most accurate equations of state for tangent hard sphere chains [10, 41–43]. These approaches describe
the thermodynamics in terms of the reference fluid distribution functions regardless of the amount of
bonding. The residual Helmholtz free energy A can be separated into two terms as follows:

βATPT

V
=
βAref

V
+
βAbond

V
, (2.8)

where Aref is the reference Helmholtz free energy contribution from the dissociated free monomers, and
Abond is a contribution related to the formation of bonds. In the 1st order perturbation theory, the term
Abond can also be evaluated from the properties of the reference system without association.

βATPT

V
=
βAref

V
− (m − 1) ρc ln gref(σ12). (2.9)

In the second term of equation (2.9), related to the connectivity within the chains, m is the number of
monomers, ρc the number density of the chain and gref(σ12) the pair distribution function between two
monomers at a distance of contact σ12 in the reference fluid without association. For simplicity, it is
assumed here that all the monomers are separated by the same contact distance in the chains. If the
reference fluid consists of hard spheres, the reference free energy can be described using either the PY
expression,

βAc
py

V
=

6
π

[
−ζ0 ln (1 − ζ3) +

3 ζ1ζ2
1 − ζ3

+
3 ζ3

2

2 (1 − ζ3)2

]
, (2.10)
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corresponding to the expression of the pressure given by equation (2.1) or the improved expression
associated with the pressure given by (2.3),

βAbm

V
=

6
π

[(
ζ3
2

ζ2
3
− ζ0

)
ln (1 − ζ3) +

3 ζ1ζ2
1 − ζ3

+
ζ3
2

ζ3 (1 − ζ3)2

]
. (2.11)

This latter expression is the one generally used because it leads to the results closest to those given by
the simulations, in comparison with those given by equation (2.10). However, we have also presented
expression (2.10), deduced from the PY theory, because it can also be recovered using other theories
presented below in this article. This property will be used later to develop new improved expressions. In
the second term of equation (2.9), the pair distribution function at contact can be described either using
an expression deduced from the OZ equations, or using an expression corresponding to the improved
expression of pressure (2.3). The pressure PTPT = Pref + Pbond can be deduced from equation (2.9) by
differentiation

βPTPT = βPref − (m − 1) ρc

[
1 +

∑
k

ρk
∂ ln gref(σ12)

∂ρk

]
. (2.12)

In the same way, when the reference fluid consists of hard spheres, the reference pressure Pref can be
described either using the PY expression (2.1), or the improved expression (2.3). It is recalled that in the
case where only dimers are formed, m = 2, the concentration of chains ρc denotes the concentration of
dimers ρd. Then, in equations (2.9) and (2.12), (m − 1)ρc can be simply replaced by ρd.

Attempts have been made to extend TPT to fluids of fused sphere chains [44–47]. In equations (2.9)
and (2.12), the distribution function gref(σ12) is replaced by a cavity correlation function y(l) where
l 6 σ12, is the distance between the spheres linked together. Moreover, an effective number of tangent
monomers was used by requiring that the second virial coefficient of the chain of tangent spheres should
be equal to that of the chain of fused spheres. In the case of fused spheres, this second virial coefficient
can be expressed in terms of parameters of non-sphericity which account for the molecular shape of the
chain. This approach is based on the contribution of various conformal theories describing the properties
of objects of various shapes.

3. Conformal or free volume theories

One of the goals of conformal or free volume theories is to attempt to describe individual chemical
potentials and an equation of state of convex body in terms of a relevant set of parameters such as the
volume, surface area and themean radius of curvature which characterize the shape of all the components.
This approach was first performed in the scaled particle theory (SPT).

3.1. Scaled particle theory

The SPT was first developed to describe the hard sphere fluids [1, 48]. Analytical expressions of
the radial distribution functions at contact and of thermodynamic quantities were obtained. It is noted,
that the resulting expression of the pressure is identical to that given in equation (2.1), derived from the
compressibility relation and the PY approximation. The SPT was extended to the description of convex
objects other than hard spheres, such as ellipsoids and spherocylinders. In particular, the studies of prolate
spherocylinders led to an analytical description of the pressure [49–51]

βPSPT =
ρ

1 − v
+

rs

(1 − v)2
+

qs2

3 (1 − v)3
, (3.1)

where:
ρ =

∑
i

ρi, v =
∑
i

ρiVi, s =
∑
i

ρiSi, r =
∑
i

ρiRi and q =
∑
i

ρiR2
i .

This result for P, is no longer only a function of the diameters of the spheres, but is also expressed as
a function of the volume Vi , of the surface area Si and of the mean curvature Ri of each i object. This
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formula is a generalization of that obtained within SPT for mixtures of hard spheres. In this case, the
geometric parameters are related to the diameters σi: Ri = σi/2, Si = πσ2

i and Vi = (π/6)σ3
i . Using

these relations in equation (3.1), leds to the relation (2.1), previously deduced from the compressibility
in the PY approximation.

An improved scale particle theory (ISPT) was developed as a generalization of equation (2.3), and a
more accurate expression of the pressure was obtained [2]

βPISPT =
ρ

1 − v
+

rs

(1 − v)2
+

qs2 (3 − v)
9 (1 − v)3

. (3.2)

Here also, when all the constituents are spherical, this formula becomes identical to that given by
equation (2.3). In principle, SPT is only applicable to convex objects. Dumbbells resemble prolate
spherocylinders but are not convex and the result of the SPT should not be used for thesemodel molecules.
Nevertheless, the previous equation (3.2) was applied to fused dimers [52] and the results agree well with
the simulation data [53]. Otherwise, equation (3.1) leads to an exact second virial coefficient and to an
approximate third coefficient. On the other hand, equation (3.2) provides a third virial coefficient closer
to the exact value. It is noted that the different values found for the third coefficient seems to be related to
the difference observed between the third terms to the right of the equality in each of these two equations.
Moreover, there are other theoretical developments attempting to jointly describe the thermodynamics
and the structure of fluids of convex objects.

3.2. Scaled field particle theory

Scaled field particle (SFP) theory provides an explicit expression of direct correlation functions
in addition to the quantities also determined by SPT [4]. The expressions of various thermodynamic
quantities are very close to those deduced within the SPT. In particular, the pressure is written with an
expression very close to equation (3.1), derived under the SPT:

βPSFP =
ρ

1 − v
+

rs

(1 − v)2
+

1
12π

s3

(1 − v)3
. (3.3)

This formula differs only in the last term, where qs2 is replaced by s3/(4π).
In the same way, an improved scale field relation (ISFP) was proposed as a generalization of that

leading to equation (2.3). This relation can be easily deduced from equation (3.2), by replacing, in the
third term to the right of the equality, qs2 by s3/(4π).

βPISFP =
ρ

1 − v
+

rs

(1 − v)2
+

s3 (3 − v)
36π (1 − v)3

. (3.4)

From the SPT and the SFP, we have introduced four possible expressions to account for the pressure
variations observed in a fluid of convex objects. In the following sections, a comparison between these
various relationships is presented, when used to describe a fluid of tangent or fused hard dimers. New
expressions are also established based on the mathematical form of the TPT equations (2.9) and (2.12).

4. Application of conformal theories to dumbbells

A comparison of the results obtained using various conformal theories introduced in the previous
section may be done, when the fluid is made of dumbbells. Dumbbells made of two spheres, denoted by
indices 1 and 2, of diameters σ1 and σ2, separated by a distance: l 6 σ12 ≡ (σ1 + σ2)/2, are considered.
The characteristic quantities V12, S12 and R12 of these objects are [4, 46, 47]

V12 =
π

12

[
σ3

1 + σ
3
2 +

3
2

(
σ2

1 + σ
2
2

)
l +

3
16

(
σ2

1 − σ
2
2
)2

l
− l3

]
, (4.1)
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S12 =
π

2

[
σ2

1 + σ
2
2 + (σ1 + σ2)

(
l +
(σ1 − σ2)

2

4 l

)]
, (4.2)

R12 =
1
4

[
σ1 + σ2 + l +

(σ1 − σ2)
2

4 l

]
. (4.3)

Assuming that σ1 is greater than σ2, one can first determine the values taken by these quantities when
l 6 (σ1−σ2)/2. In this case, sphere 2 is completely included in sphere 1 and various geometric quantities
defined above take the values corresponding to sphere 1 alone. Once these quantities are known, when
only dumbbells are present (with ρ1 = ρ2), the pressure can be determined. It is found that the expressions
of PSPT and PSFP are identical to Pc

py, given by equation (2.1), with ζn = (π/6)ρ1σ
n
1 and n = 0, 1, 2 and

3. In the same way, the expressions of PISPT and PISFP are identical to Pbm, given by equation (2.3). Then,
when l 6 (σ1−σ2)/2, SPT and SFP expressions of the pressure merge to the PY compressibility relation
for hard spheres, and ISPT and ISFP expressions merge to the improved BMCSL for hard spheres.

The limit where l = σ12 is also very important. Again, in this case the various geometric quantities can
be explained in terms of the diameters of the spheres only. The thermodynamics deduced from conformal
theories leads to relations similar to those obtained with TPT. These relationships are presented in the
following subsections.

4.1. Pressure for dimers made of tangent hard spheres

When the two spheres are in contact: l = σ12, then V12 = (π/6)(σ3
1 + σ

3
2 ) and S12 = π(σ

2
1 + σ

2
2 ), are

the sum of the volumes and surface areas of the two spheres, respectively. However, the quantity R12 is
different from the sum of the two separate radii, namely R12 = (σ1 + σ2)/2 − σ1σ2/[2(σ1 + σ2)].

Now, in the case of a dimer formation equilibrium, let us denote by ρ0
1 and ρ0

2, the densities of fully
dissociated particles 1 and 2, which can form dumbbells D, of number density ρd, with the equilibrium

(1) + (2)
 (D). (4.4)

With this chemical equilibrium, it is observed that the concentrations that naturally occur are ρ0
1, ρ

0
2

and ρd and not directly ρ1 and ρ2, the total concentrations (free or bound) of particles 1 and 2. Then,
from the SPT equations, the pressure PSPT can be evaluated by considering the fluid as a mixture of two
kinds of hard spheres components, of densities ρ0

1 and ρ0
2, and dimers, of density ρd. The geometric

parameters, Ri , Si , Vi , of these two kinds of an object can be determined thanks to the equations (4.1)–
(4.3). The introduction of equilibrium makes it possible to link the chemical potentials of free and linked
species. In addition, the quantities of the three species involved in equilibrium are related by the mass
conservation relations (2.4). It has been noted previously [54, 55] that the thermodynamic relationships
for systems with association can be described equivalently, either with the densities of the various species
in equilibrium or with the total densities of species 1 and 2, considering ρd the density of pairs as a
function of total densities. In the case of dumbbells made of tangent spheres, the integral equations within
the PPY approximation and the perturbation theory lead to expressions which are functions of the total
densities and of the density of dimers. Then, from the conformal expressions (3.1)–(3.3), equations are
established which are also expressed as a function of the total and dimer densities.

Thus, in the SPT equation (3.1) with three constituents, one can first replace the densities ρ0
1 and ρ0

2
by ρ1 − ρd and ρ2 − ρd, respectively, in the quantities ρ, r, s, q and v. One then obtains, when l = σ12

βPSPT = βPc
py − ρd

[
gpy

12(σ12) −
3ζ2

2

(1 − ζ3)3
σ2

1σ
2
2

(σ1 + σ2)
2

]
, (4.5)

where gpy
12(σ12) is given by equation (2.7). In the equation (4.5), the terms ζn (n = 0, . . . , 3), appearing

in βPc
py and in the second part of the equation, are calculated by considering the total concentrations ρ1

and ρ2 of the two constituents :
ζn =

π

6
(
ρ1σ

n
1 + ρ2σ

n
2
)
. (4.6)
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D

Figure 1. (Colour online) Equation of state for tangent hard sphere dumbbells. Lines from top to bottom
represent, respectively, − · · − SPT equation (4.5), · · · · SFP equation (4.8), — ISPT equation (4.7),
- - - ISFP equation (4.9). Diamonds are simulation results (from [53]).

In the same way, for the improved SPT, equation (3.2) led to

βPISPT = βPbm − ρd

[
gpy

12(σ12) −
ζ2
2 (3 − ζ3)

(1 − ζ3)3
σ2

1σ
2
2

(σ1 + σ2)
2

]
. (4.7)

The same procedure can be applied to expressions deduced from the SFP theories. When l = σ12,
equation (3.3) led to

βPSFP = βPc
py − ρd g

py
12(σ12). (4.8)

Similarly, from the equation for the improved SFP theory, one gets

βPISFP = βPbm − ρd g
py
12(σ12). (4.9)

Note that the four equations (4.5), (4.7), (4.8), (4.9) have a mathematical form similar to that of the
TPT equation given by (2.12). Indeed, they are all composed of a first term, related to the dissociated
hard spheres, and a second term due to the connectivity between the spheres. By analogy with the
equation (2.12), the first pressure term can be regarded as βPref , the reference pressure, and the second
term as βPbond, the contribution due to the formation of bonds. Apart from the proportionality to ρD,
the connectivity term only depends on the total densities of the hard spheres. In addition, the reference
pressure is given by the PY expression in the original SPT and SFP theories. As expected, in the equations
deduced from the improved theories, the reference pressure is given by the BM expression. We notice that
in SPT theories the term of connectivity is different between the original version and the improved one.
On the contrary, the connectivity term is the same in the original SFP theory and in the improved one.
Moreover, the expression (4.8), deduced from the original SFP theory, is identical to that given by (2.6b),
which was established using integral equations. Equation (4.9) was also proposed as an alternative to
equation (4.8) within the framework of chain theory [37].

The results of the calculations carried out with these various formulae, for tangent homonuclear
dimers (i.e., with a distance between its constituents: l = σ12), are shown in figure 1. As it has already
been said before, the curve deduced from the improved theory ISPT with equation (3.2) is closest to the
simulation results. Then, by comparing the initial expressions (3.1) and (3.3) obtained with SPT and SFP
respectively, it is seen that they give values that are too high but that the latter is closer to the simulated
values. Finally, the improved version ISFP gives values that are too low.
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4.2. Connection with TPT deduced from free energy

In the previous subsection, it was shown how, from the conformal equations (3.1)–(3.3), applied to
dumbbells formed by tangent spheres, the pressure can be split into a term of hard spheres repulsion
and a term of connectivity between these spheres. This separation is similar to that encountered in the
expression (2.12) of pressure in the TPT theory. Now, to further the analogy between the two kinds of
description, we study the equations describing the free energy in conformal theories. The excess free
energy can be deduced from the pressure by integrating the densities in each of the approximations
presented above. Thereby, starting from equation (3.1) for PSPT, we find within the SPT

β
ASPT

V
= −ρ ln (1 − v) +

rs
1 − v

+
qs2

6 (1 − v)2
. (4.10)

In the same way, the free energy associated with the PISPT pressure is given by:

β
AISPT

V
=

(
qs2

9v2 − ρ

)
ln (1 − v) +

rs
1 − v

+
qs2

9v (1 − v)2
. (4.11)

As previously, the free energies ASFP, related to the pressure PSFP, and AISFP, related to the pressure PISFP,
can be deduced from the two preceding equations by replacing everywhere qs2 by s3/(4π).

Now, the explicit relations of free energy, devoted to dimers formed of tangent spheres are presented.
The mixture of dimers of density ρd and of the two dissociated monomers of density ρ0

1 and ρ0
2 is

consider again. As previously, using mass conservation, ρ0
1 and ρ

0
2 are expressed as a function of the total

concentrations ρ1 and ρ2 and of the dimer concentration, namely, ρ0
1 = ρ1 − ρd and ρ0

2 = ρ2 − ρd.
Equations (4.10) and (4.11) of the SPT theory are considered first. From the original relation (4.10),

when l = σ12, the application of the mass conservation leads to

β
ASPT(l = σ12)

V
= β

Ac
py

V
− ρd lnGSPT(σ12), (4.12)

where Ac
py is given by the equation (2.10) and

lnGSPT(σ12) = − ln (1 − ζ3) +
3 ζ2

1 − ζ3
σ1σ2
σ1 + σ2

−
3 ζ2

2

2 (1 − ζ3)2
σ2

1σ
2
2

(σ1 + σ2)
2 . (4.13)

As previously, in the expression of Ac
PY and lnGSPT(σ12), appearing in equations (4.12) and (4.13), the

terms ζn (with n = 0, . . . , 3) are calculatedwith equation (4.6) by considering only the total concentrations
ρ1 and ρ2 of the two constituents. A similarity can be seen between the form of equation (4.12) and
that of equation (2.9), describing ATPT, the TPT excess free energy. The first term, to the right of the
equality in the equation (4.12), corresponds to the reference free energy Aref in the equation (2.9), when
the PY approximation is chosen as the reference. Then, the second term in equation (4.12), corresponds
to the contribution due to the connectivity between the hard spheres. We recall that in the TPT equation,
the second term, proportional to the density of dimers ρd, otherwise, depends only on the densities of
dissociated spheres. We observe that the second term of the equation presents the same characteristics.
If the analogy with the TPT equation is relevant, then the second term depends on ln gref(σ12). We
considered that the second term of the equation (4.12) had this meaning. That is why we gave it the
name in relation lnG(σ12). Furthermore, within the framework of the SPT approximation applied to hard
spheres, an explicit expression of the pair distribution function at contact, that we named gSPT

12 (σ12), was
deduced previously [21].

gSPT
12 (σ12) =

1
1 − ζ3

+
3 ζ2
(1 − ζ3)2

σ1σ2
σ1 + σ2

+
3 ζ2

2

(1 − ζ3)3
σ2

1σ
2
2

(σ1 + σ2)
2 . (4.14)

Then, the logarithm of gSPT
12 (σ12) can be written as

ln
[
gSPT

12 (σ12)
]
= − ln (1 − ζ3) + ln

[
1 +

3 ζ2
(1 − ζ3)

σ1σ2
σ1 + σ2

+
3 ζ2

2

(1 − ζ3)2
σ2

1σ
2
2

(σ1 + σ2)
2

]
. (4.15)
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It was found that equation (4.13) for lnGSPT(σ12) can be recovered by taking a limited development to the
second order in ζ2 of this expression.
Next, by applying the same process to the free energy AISPT of the improved SPT, when l = σ12, it was
found

β
AISPT(l = σ12)

V
= β

Abm

V
− ρd lnGISPT(σ12) (4.16)

with

lnGISPT(σ12) = − ln (1 − ζ3) +
3 ζ2

1 − ζ3
σ1σ2
σ1 + σ2

−

(
ln (1 − ζ3) +

ζ3

(1 − ζ3)2

)
ζ2
2

ζ2
3

σ2
1σ

2
2

(σ1 + σ2)
2 . (4.17)

The first term, to the right of the equality in the equation (4.16), corresponds to the reference free
energy Aref in the equation (2.9), when the BM approximation is chosen as the reference.

As an alternative, the same process can be applied to the free energy expressions of the SFP theory.
From the original expression (4.10), by replacing qs2 by s3/(4π), when l = σ12, one gets

β
ASFP(l = σ12)

V
= β

Ac
py

V
− ρD lnGSFP(σ12), (4.18)

where lnGSFP(σ12) is given by

lnGSFP(σ12) = − ln (1 − ζ3) +
3 ζ2

1 − ζ3
σ1σ2
σ1 + σ2

. (4.19)

Now, the same type of comparison can also be made between the original SFP and the improved SFP
equation. By following again the same process, starting from equation (4.16) [but replacing qs2 by
s3/(4π)], when l = σ12, it was found

β
AISFP(l = σ12)

V
= β

Abm

V
− ρD lnGSFP(σ12). (4.20)

As in the case of the SPT theory, during the transition from the original SFP expression to the improved
one, it is seen that, in the first term, the free energy Ac

PY coming from the PY approximation is replaced
by the improved ABM equation. On the other hand, contrary to what had been found in the SPT theory,
the second term remains unchanged during the transition from the original SFP relation to the improved
one. In view of the numerical results presented in figure 1, the expressions (4.16) of the free energy
lead by differentiation to a value of the pressure PISPT that is much better than the one deduced from
equation (4.20) in the ISFP theory. Since the first term ABM due to the dissociated hard spheres is the
same, in equations (4.16) and (4.20), there is a reason to believe that the difference observed in the
resulting pressures comes from the connectivity terms lnG(σ12). A comparison between these various
expressions of lnG(σ12) as a function of the volume fraction is presented in table 1. It is observed that
equations (4.13) and (4.17) give results of the same order of magnitude for the term lnG(σ12), unlike the
SFP equation (4.19). In addition, equations (4.13) and (4.17), for lnGSPT(σ12) and lnGISPT(σ12), respec-
tively, give the values very close to those for ln gSPT

12 (σ12), deduced from equation (4.14). Equation (4.17)
gives the closest values. Then, by comparing the improved ISPT expression to the original SPT equation,
taking into account the fact that the term lnG(σ) related to connectivity is of the same order of magnitude
in the both cases, we deduce that the main correction incorporated in equation (4.16), with respect to
equation (4.12), is made to the reference term of dissociated hard spheres.

5. Alternative relations

The results represented in the previous table suggest the possibility of developing new expressions,
allowing us to describe first dumbbells made of tangent spheres, and then those with overlap. So far,
relationships between conformal and TPT theories have been presented. On the other hand, the contact
pair distribution function is known to be better described by the expression deduced from the SPT than by
that obtained with the Ornstein Zernike equation and the PY approximation. Then, it was first looked for
possible alternative relationships between the expression of the pressure deduced from the WOZ integral
equations and the expression of the contact pair distribution function deduced from the SPT.
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Table 1. Comparison between various expressions of lnG(σ), given by equations (4.13), (4.17) and (4.19),
with ln gSPT

12 (σ12) deduced from (4.14), as a function of the volume fraction ζ3, when σ1 = σ2.

ζ3 lnGSPT(σ) lnGISPT(σ) ln gSPT
12 (σ) lnGSFP(σ)

0.05 0.1292 0.1292 0.1292 0.1302
0.1 0.2674 0.2675 0.2674 0.2720
0.15 0.4155 0.4160 0.4157 0.4272
0.2 0.5747 0.5758 0.5751 0.5981
0.25 0.7460 0.7485 0.7472 0.7877
0.3 0.9307 0.9356 0.9336 0.9995
0.35 1.1297 1.1391 1.1364 1.2385
0.4 1.3442 1.3608 1.3581 1.5108
0.45 1.5741 1.6027 1.6019 1.8251
0.5 1.8181 1.8664 1.8718 2.1931

5.1. Equations deduced from integral equations

In this framework, it was observed the equality of equation (4.8) of the SFP theory with expres-
sion (2.6b) obtained independently with the WOZ integral equations. Then, it seems also interesting to
find possible relations between the equations of the TPT and those deduced from integral equations.
The getting of the expression (2.6b) from the equation (2.6a), has been reconsidered, in order to obtain
an alternative expression, by assuming that the contact pair distribution function is given by the SPT
equation. Previously, from equation (2.6a) the relation (2.5) defining the pair concentration ρd was used
to arrive at equation (2.6b). The equality between g00

12(σ12) and gpy
12(σ12)was also used. Now, it is assumed

that g00
12(σ12) is equal to gSPT

12 (σ12) in the equation (2.5) defining ρd the concentration of pairs:

ρd = ρ
0
1 ρ

0
2 K0 gSPT

12 (σ12). (5.1)

This definition is an improvement because the expression of the pair distribution function at the contact
given by SPT is known to be better than that given by the PY approximation. On the other hand, the
equality between g00

12(σ12) and gpy
12(σ12) is kept in equation (2.6a), because g00

12(σ12) is effectively found
to be given by the right-hand part of the equation (2.7) in the framework of the WOZ equations. The
use of the new definition of the concentration of pair ρd, then leads, starting from equation (2.6a), by
expressing ρ0

1ρ
0
2K0 as a function of ρd, to the alternative expression

βP = βPc
py − ρd

[
gpy

12(σ12)
]2

gSPT
12 (σ12)

. (5.2)

Otherwise, inspired by equation (7.19) seen in [4], the following relation between
[
gpy

12(σ12)
]2, gSPT

12 (σ12)
and its derivatives was found

gSPT
12 (σ12) +

∑
k

ρk
∂gSPT

12 (σ12)

∂ρk
=

[
gPY

12(σ12)
]2
. (5.3)

Therefore, by multiplying by ρ0
1 ρ

0
2 K0 on both sides, the following equality is obtained

ρd

[
gpy

12(σ12)
]2

gSPT
12 (σ12)

= ρd

[
1 +

∑
k

ρk
∂ ln

[
gSPT

12 (σ12)
]

∂ρk

]
, (5.4)
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with ρd given by (5.1). The left part of the previous equation appears in equation (5.2) and, in view of
equations (2.12), the right part is the relation used in the TPT to calculate the connectivity part of the
pressure when gref(σ12), the reference pair distribution function, is given by gSPT

12 (σ12). Therefore, the
relation (5.2), deduced from the WOZ integral equations, can be obtained independently within TPT.
Since the SPT expression of the contact pair distribution function is better than that given by the PY
approximation, the equation (5.2) is probably an improvement over (2.6b). However, the expression of
the reference pair distribution at contact with gSPT

12 (σ12) is known to be slightly poorer than that given by
the corresponding BM equation. Accordingly, the equation (5.2) is probably somewhat less efficient than
the corresponding TPT equation obtained using the BM approximation.

5.2. Equations deduced from conformal theories

It has been seen in table 1, that, when l = σ12, the connectivity term given in the expression of the
improved free energy ISPT is numerically close to the one found for the initial free energy SPT. The
improvement present in the ISPT equations is provided by the first term describing the dissociated hard
spheres. The effect of connectivity is taken into account using a simpler equation in the initial SPT theory.

In view of these observations, an alternative expression, providing a correction to the SPT expression
of the free energy (4.12), when l = σ12, was deduced. A modification can be made to the SPT expression
by only changing the term of dissociated hard spheres. Then, when l = σ12, a new equation for the free
energy can be obtained:

β
ANew(l = σ12)

V
= β

Abm

V
− ρd lnGSPT(σ12). (5.5)

Compared with equation (4.12), the first term Ac
py is replaced by a more accurate term Abm, and the second

term remains unchanged because it leads to numerical values close to that given by the corresponding
term of the equation (4.16). The corresponding expression of the pressure is obtained by differentiation
of the free energy:

βPNew = βPbm − ρd

[
gpy

12(σ12) −
3ζ2

2

(1 − ζ3)3
σ2

1σ
2
2

(σ1 + σ2)
2

]
for: l = σ12. (5.6)

This relation allows us to correctly describe the thermodynamics of dumbbells made of tangent spheres.
As such, it is of little use insofar as many expressions are already available. Nevertheless, from this
equation a more general relation can be established to describe dimers with overlapping spheres. Indeed,
equations (5.5) and (5.6) are linear combinations of various relations previously introduced

βANew = βAISFP + β
[
ASPT − ASFP

]
, (5.7a)

βPNew = βPISFP + β
[
PSPT − PSFP

]
. (5.7b)

These new relationships add corrective terms to the previous ISFP equations. Moreover, these latter
expressions can also be used for dimers with overlapping of the spheres by using the more general
equations introduced previously to describe them. Therefore, using equations (3.4), (3.1) and (3.3), the
equation (5.7b) has been evaluated for a dumbbell fluid where the distance l between sphere is less than
or equal to 1. The term in square brackets, [PSPT − PSFP] in the previous equation, can be simplified, giving

βPNew = βPISFP +
s2

3 (1 − v)3
(
q −

s
4π

)
, (5.8)

where the difference q − s/(4π), starting from equations (4.2) and (4.3), can be evaluated according to(
q −

s
4π

)
=
ρd
16

[
l −
(σ1 − σ2)

2

4l

]2

. (5.9)

The results of the calculations performed with equation (5.8) are presented in figure 2, for homonuclear
dimers, for various separations of the constituents. A comparison is also given with the results deduced
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Figure 2. (Colour online) Equation of state for overlapping hard sphere dumbbells. From top to bottom,
lines represent theoretical results for different overlap distances: ··· ·New equation (5.8),— ISPT equation
(3.2). Symbols are the simulation results [53]. Diamonds and black lines: l = 1; Circles and red lines:
l = 0.8; Triangles and blue lines: l = 0.6, Squares and pink lines: l = 0.2.

from the ISPT equation (3.2). It is observed that the new theoretical expression describes well the values
obtained by simulation. It provides values numerically very close to those given by the ISPT equation.
The new equation can be seen also as an improvement of the improved SFP equation (3.4). The corrective
term for PISFP, presented in equation (5.8), seems to correspond numerically to the contribution required
to recover the results obtained with the expression of PISPT.

6. Conclusion

In the previous sections, it has been shown how, from the conformal theories applied to dumbbells
made of tangent hard spheres, the pressure and the free energy can be split into a term of repulsion of hard
spheres and a term of connectivity between these spheres. This separation is similar to that encountered
in the expression of pressure in the TPT theory. The analysis presented in this work highlights the relative
influence of these two contributions in the different expressions presented in various conformal theories
studied. It has been found that for each class of conformal theory the reference term is, for the original
version that given by the PY theory, and for the improved version that given by the BMCSL expression.
Then, when the scaled particle and the scaled field theory are compared, it was noted that the terms of
reference are the same, both for the original approach and for the improved expressions. On the other
hand, for each of the two classes of conformal theory considered, the term of connectivity changes little
when one goes from the original expression to the improved one. In addition, the term of connectivity
is different between the scaled field and the scaled particle theory. Connections and similarities have
also been seen between the expressions describing these two contributions and those found with the TPT
for dimers made of tangent spheres. Similarities were also found with some relationships given in the
context of integral equations. This work allows one to explain differences found in the description of
thermodynamic properties deduced from simulations.

Furthermore, this analysis has allowed one to provide alternative expressions of the connectivity terms,
in particular for dimers with overlap. It could be extended to fluids containing chains of a greater number
of constituents. It could also be useful to better represent subunits belonging to polymers according to
the group contribution formalism [56]. On the other hand, the analysis of thermodynamic quantities such
as free energy and pressure could be extended to the activity coefficients of various species present in the
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fluids of dimers [57]. Then, the study of the chemical equilibrium between the hard spheres forming the
overlapping dimers could be reviewed. Thus, this will allow one to describe the background correlation
in continuation of previous studies on this subject [58–60].
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Взаємозв’язок мiж термодинамiчними збуреннями та

теорiями масштабованої частинки для конденсованих

рiдких димерiв

О. Бернар
Лабораторiя PHENIX, CNRS, Унiверситет Сорбонни (Кампус П’єра та Марiї Кюрi), 4 Плас Жюссiє, F-75005
Париж, Францiя
У роботi зроблено огляд рiзних пiдходiв для побудови теорiї масштабованої частинки з метою опису пли-
нiв гантелеподiбних частинок, утворених з твердих сфер,що перекриваються або торкаються одна одної.
Надано iнше представлення вiдомим з лiтератури виразам у математичнiй формi, подiбнiй до тiєї, яка вi-
дома з термодинамiчної теорiї збурень, отриманої Вертгаймом для ланцюжкiв i узагальненої у статисти-
чнiй теорiї асоцiативних рiдин. Аналогiї та вiдмiнностi мiж цими двома теоретичними пiдходами дозво-
лили запропонувати альтернативнi вирази для опису плинiв гантелеподiбних частинок зi сферами, що
перекриваються.
Ключовi слова: плини гантелеподiбних частинок з твердими серцевинами, теорiя масштабованої

частинки, термодинамiчна теорiя збурень
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