
HAL Id: hal-03971666
https://hal.science/hal-03971666

Submitted on 4 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Skillful decadal prediction of unforced southern
European summer temperature variations

L Borchert, V Koul, Matthew B Menary, D Befort, Didier Swingedouw, G
Sgubin, Juliette Mignot

To cite this version:
L Borchert, V Koul, Matthew B Menary, D Befort, Didier Swingedouw, et al.. Skillful decadal
prediction of unforced southern European summer temperature variations. Environmental Research
Letters, 2021, 16 (10), pp.104017. �10.1088/1748-9326/ac20f5�. �hal-03971666�

https://hal.science/hal-03971666
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


LETTER • OPEN ACCESS

Skillful decadal prediction of unforced southern
European summer temperature variations
To cite this article: L F Borchert et al 2021 Environ. Res. Lett. 16 104017

 

View the article online for updates and enhancements.

You may also like
Early-onset trend in European summer
caused by Greenland topographic effect
Jun-Hyeok Son, Nam-Hoon Kim, Go-Un
Kim et al.

-

Internal variability in European summer
temperatures at 1.5 °C and 2 °C of global
warming
Laura Suarez-Gutierrez, Chao Li,
Wolfgang A Müller et al.

-

Ocean and atmosphere influence on the
2015 European heatwave
J V Mecking, S S Drijfhout, J J-M Hirschi
et al.

-

This content was downloaded from IP address 88.127.95.218 on 04/02/2023 at 06:56

https://doi.org/10.1088/1748-9326/ac20f5
/article/10.1088/1748-9326/ac94e7
/article/10.1088/1748-9326/ac94e7
/article/10.1088/1748-9326/aaba58
/article/10.1088/1748-9326/aaba58
/article/10.1088/1748-9326/aaba58
/article/10.1088/1748-9326/ab4d33
/article/10.1088/1748-9326/ab4d33
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssTeeC1xrRKVvQOCVNvR6G4QMqvWPJ38-mktu0L8RfDv8zDG3UYzdac7Mw92FE28pb9MgN0jB2mImcA7ftS2MoG-sJ2szfaFoZoyD9NOxJRWoWdoKA_tNtp-cYpziY8McNCVFvMmnvfXcvT9jlZ24IfrwVX1Sows2Vvng42TcnnSjIVY4Hd2Pgroqn7pS97aBUvnG_sRy_MIDgI_kUYH2AOmHzMr3qD8cqSCZXtqlbqCqWHvNtvthZo-amJnP-kl10aVoTNXh0-z2TDLpblN2tClhQIWr7q1IfthHgGun6fjA&sai=AMfl-YTjUK14PfscsLcSzHHjYykvDHYiEXEYh-GN-ga3lUM_BEWKr9iE_umaOEjWg6MBJSpBXeDTPFXZjMpcpz4&sig=Cg0ArKJSzB0ovu3tipSy&fbs_aeid=[gw_fbsaeid]&adurl=https://www.owlstonemedical.com/products/breath-bio%25C3%25A5psy-omni/%3Futm_source%3Djbr%26utm_medium%3Dad-lg%26utm_campaign%3Dproducts-jbr-coversheet-2023-omni%26utm_term%3Djbr


Environ. Res. Lett. 16 (2021) 104017 https://doi.org/10.1088/1748-9326/ac20f5

OPEN ACCESS

RECEIVED

22 June 2021

REVISED

16 August 2021

ACCEPTED FOR PUBLICATION

25 August 2021

PUBLISHED

23 September 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Skillful decadal prediction of unforced southern European
summer temperature variations
L F Borchert1,2,∗, V Koul3,4, M BMenary1,2, D J Befort5, D Swingedouw6, G Sgubin6 and J Mignot1

1 Sorbonne Universités (SU/CNRS/IRD/MNHN), IPSL Laboratory, Institut Pierre Simon Laplace (IPSL), Paris, France
2 Laboratoire de Météorologie Dynamique (LMD), École Normale Supérieure (ENS), Paris, France
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Abstract
We assess the capability of decadal prediction simulations from the Coupled Model
Intercomparison Project phase 6 (CMIP6) archive to predict European summer temperature
during the period 1970–2014. Using a multi-model ensemble average, we show that Southern
European (SEU) summer temperatures are highly predictable for up to ten years in CMIP6. Much
of this predictive skill, is related to the externally forced response: historical simulations explain
about 90% of observed SEU summer temperature variance. Prediction skill for the unforced signal
of SEU summer temperature is low: initialized model simulations explain less than 10% of
observed variance after removing the externally forced response. An observed link between
unforced SEU summer temperature and preceding spring Eastern North Atlantic—Mediterranean
sea surface temperature (SST) motivates the application of a dynamical-statistical model to
overcome the low summer temperature skill over Europe. This dynamical-statistical model uses
dynamical spring SST predictions to predict European summer temperature, and significantly
increases decadal prediction skill of unforced European summer temperature variations, showing
significant prediction skill for unforced Southern European summer temperature 2–9 years ahead.
As a result, dynamical-statistical models can benefit the decadal prediction of variables with
initially limited skill beyond the forcing, such as summer temperature over Europe.

1. Introduction

Prediction of climate up to ten years into the future,
so-called decadal climate prediction, has received
considerable scientific attention due to its potentially
high impact on society (Yeager and Robson 2017,
Solaraju-Murali et al 2019, Merryfield et al 2020,
Meehl et al 2021). On this time scale, the influence of
chaotic internal climate variability and the response
to external forcing strongly overlap (Lehner et al
2020). While the response to external forcing from
greenhouse gas concentration is slowly varying and
therefore well-predictable, internal variability poses
a challenge to predictions (Doblas-Reyes et al 2013,

Marotzke et al 2016). However, due to its relatively
slow characteristic time scales, internal variations of
the ocean can be predicted in some places like the
North Atlantic (Yeager and Robson 2017, Borchert
et al 2021). Such predictable internal ocean variations
could yield skillful prediction of unforced European
summer temperature. Here, we examine whether
ocean variations influence the skill of decadal-scale
summer temperature predictions over Europe and, if
so, whether this influence can be invoked to improve
such predictions.

Most previous attempts to predict European tem-
perature analyzed models from the 5th phase of the
Coupled Model Intercomparison Project (CMIP).

© 2021 The Author(s). Published by IOP Publishing Ltd
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Meanwhile, the decadal prediction simulations from
the CMIP6 archive’s Decadal Climate Prediction Pro-
ject (DCPP) (Boer et al 2016) have been shown
to have improved in predicting North Atlantic SST
(Borchert et al 2021), both due to an improved
response to volcanic forcing and improved capability
to simulate internal climate variations. DCPP simula-
tions have also contributed to studies showing accur-
ate reproduction of observed extremely warm sum-
mer frequencies over Europe (Borchert et al 2019),
winter North Atlantic Oscillation (Smith et al 2020),
jet stream position (Ruggieri et al 2021), and atmo-
spheric blocking (Athanasiadis et al 2020). These
findings inspire hope that CMIP6 decadal prediction
simulations also show skillful prediction of European
summer temperature variability.

However, previous studies generally found low-
to-insignificant decadal temperature prediction skill
over Europe beyond the forced response (Hanlon et al
2013, Liu et al 2019, Wu et al 2019). At the same time,
some studies did demonstrate skillful temperature
predictions beyond the linear trend in parts of Europe
(Müller et al 2012, Arthun et al 2017, Feldmann et al
2019, Sgubin et al 2021). European summer tem-
perature was shown to be relatively well-predictable
compared to other seasons (Müller et al 2012), not-
withstanding relatively low skill beyond the linear
trend for this metric (Wu et al 2019). Any skill over
Europe is commonly attributed to variability of cli-
maticmodes in the climate system (Doblas-Reyes et al
2013), many of which are in turn related to the relat-
ively slowly varying ocean (Yeager and Robson 2017).
As a result, numerous studies demonstrated skillful
decadal predictions of ocean temperature (Robson
et al 2012, Yeager et al 2012, Mignot et al 2016),
which is commonly highest in the North Atlantic
region (Matei et al 2012, Reintges et al 2020), due
to ocean circulation (Robson et al 2012, Yeager et al
2012, Swingedouw et al 2013). However, models have
been shown to be deficient in simulating observed
atmospheric teleconnection mechanisms that trans-
port that information from oceans to land (Qasmi
et al 2017, Borchert et al 2018), which limit predic-
tion skill over Europe. Any accounts of skillful predic-
tion over Europe are often limited to relatively small
regions and/or time scales, and draw on the memory
of the ocean (Arthun et al 2017).

A few studies presented evidence that coupling a
statistical model to dynamical and skillful SST predic-
tions can yield skillful decadal prediction of European
summer air temperature based on average North
Atlantic SST (Wu et al 2019), European late summer
precipitation (Simpson et al 2019), and the Indian
summer monsoon (Sahastrabuddhe and Ghosh
2021). Such hybrid dynamical-statistical (hence-
forth dyn-stat) predictions rely on observed links
between SST (the predictor) and European climate
(the predictand) to translate predicted SST into pre-
dictions of continental climate, thus circumventing

the deficiencies of climate prediction models con-
cerning potential teleconnections. Crucially, such
models require that predictions of the predictor
are skillful, and that the connection between pre-
dictor and predictand is robust (Simpson et al
2018).

Here, we provide a first stocktake of the capab-
ility of CMIP6 decadal prediction systems to predict
European summer temperature. We also develop and
apply a simple dynamical-statistical model based on
NorthAtlantic SST prediction to investigate its poten-
tial to predict the unforced component of European
summer climate. By comparing dyn-stat model and
the decadal predictions, we examine the added value
of a dyn-stat model for predicting unforced mod-
ulations of European summer temperature using
CMIP6, which identifies the potential that exists for
decadal temperature predictions over Europe in these
simulations.

2. Models andmethods

2.1. CMIP6models
Our analysis is based on an ensemble of eight ini-
tialized model systems, with ten ensemble members
each, from the DCPP (table S1 available online at
stacks.iop.org/ERL/16/104017/mmedia). The simu-
lations provided using these systems are called re-
forecast or hindcasts (HC). DCPP simulations are
initialized with observations every year after 1960
and run out for ten years (or lead years). We here
analyze the period 1970–2015, which is the longest
possible period that contains simulations from all
ten lead years, since the last starting year for some
models is 2014. For example, year 1970 is repres-
ented in lead year 10 of hindcasts started in 1960,
lead year 9 of the 1961 hindcast, lead year 8 of the
1962 hindcast, and so on. Additionally, ensembles of
historical simulations (HIST) with 28 CMIP6 mod-
els are analyzed (see table S1 for details). In total,
we analyze a large multi-model ensemble (MME)
of 192 historical members, subject to common for-
cing with observed atmospheric greenhouse gas con-
centrations, anthropogenic aerosols, solar variations
and volcanic eruptions (Eyring et al 2016). These
historical simulations are otherwise run freely to
simulate diverse internal climate variability around
the common forced response. Forming an ensemble
mean across these members thus approximates cli-
mate variations that arise in response to external for-
cing (Maher et al 2020). In contrast, the 80 hindcast
members have external forcing as well as the initial-
ised observed climatic state at the start of their integ-
ration in common. This improves the ability of these
systems to predict decadal internal climate variabil-
ity (Keenlyside et al 2008, Doblas-Reyes et al 2013,
Marotzke et al 2016). Forming an ensemble mean
across these members thus aims at approximating the
full climate evolution of a given period.
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All model output is remapped to a latitude-
longitude 1× 1◦ grid prior to analysis. We analyze
the MME mean as the mean of the single-model
ensemble means (i.e. a one-model-one-vote hier-
archy). In decadal hindcasts, we analyze averages
across lead year ranges 2–5, 6–9 and 2–9. We subtract
the individual ensemble member mean for each lead
year individually over the period 1970–2014 from
the respective member prior to all analysis. As this
is done for individual lead years, equating to a lead-
time dependent mean bias correction (Boer et al
2016).

2.2. Observations
For observational reference, we consider the grid-
ded observational temperature data sets from the
Hadley Center, namely HadCRUTv5 (Morice et al
2021) for surface air temperature (SAT), and interpol-
ated HadISST (Rayner et al 2003) for SST. Sea level
pressure (SLP) is obtained from the ERA5 reanalysis
(Hersbach et al 2020). Our results are robust to the
use of ERA5 instead of HadCRU/ISST for temper-
ature over both Europe and the North Atlantic (not
shown). In all cases, we remap the information to
a regular 1× 1◦ grid, and analyze the period 1970–
2015.

2.3. Methods
We analyze spring (March–April–May, hereafter
MAM) mean SST as well as summer (June-July-
August, hereafter JJA) mean SAT. We evaluate the
skill of HC and HIST against observations using
the anomaly correlation coefficient (ACC), and the
explained observed variance for different types of
model simulations as ACC2 (Goddard et al 2013).
Significance is tested at the 5% level using a Monte
Carlo bootstrapping method, where the underly-
ing data is resampled 1000 times with replacement
(Smith et al 2020). In addition to the bootstrapping,
we benchmark the predictions against persistence
forecast, which is calculated as the correlation of the
observational time series with itself at different time
lags. Finally, we evaluate the sensitivity of residual
skill estimates to the exclusion of individual years in
the analysis, using a leave-one-out cross validation
analysis.

We test two different approaches of extracting
the forced response. As a first approximation of the
forcing trend, we extract the long-term linear trend
from simulations and observations. This technique
has, however, been shown to potentially introduce
spurious variability (Trenberth and Shea 2006, Mann
et al 2014, Tandon andKushner 2015).We also extract
the forced component using the residuals approach
(Smith et al 2019). This technique uses the histor-
ical MME mean to estimate the forced component,
which is linearly regressed onHC or observed climate
variability, and then subtracted from each. We use
residuals to assess unforced (i.e. internally generated)

decadal prediction skill as well as study unforced
physical interactions in the climate system.

3. Decadal predictions of European
summer temperature in CMIP6

Decadal prediction skill in terms of ACC for summer
temperature throughout Europe is highly significant
at lead years 2–9 in the HC MME (figure 1(a)). Skill
inferred from HIST simulations that represent the
forced response is similarly high (figure 1(b)), indic-
ating that much of the signal in decadal European
summer temperature variations that can be predicted
in initialized prediction systems arises from extern-
ally forced variations. The high skill in HIST simula-
tions is also found when using the same eight models
as used in HC instead of the full 28 model ensemble
(not shown). We use the full ensemble in this study
for robustness.

An attempt to characterize unforced skill is shown
in figures 1(c) and (d), using linear detrending. This
approach, however, appears ill-fit to extract the forced
response: as HIST approximates the forced response
of the system, skill should be close to 0 after lin-
ear detrending if linear detrending was appropri-
ate to extract the forced response (Branstator and
Teng 2012, Gastineau and Frankignoul 2015, Wu et al
2019). Skill of HC and HIST after linearly detrending
is non-zero and significant in large parts of Europe,
particularly in central-to-eastern as well as northern
and southeastern Europe. Amore elaborate technique
thus needs to be used when aiming to assess unforced
variability and predictability of climate (Tandon and
Kushner 2015).

One such approach of estimating the unforced
variability based on historical simulations is the resid-
ual (Smith et al 2019, see Methods). Applying this
methodology on a grid point basis in our skill cal-
culation (figure 1(e)) shows that there is little sum-
mer temperature ACC skill in the HC simulations
beyond the forced response: residual ACC is insigni-
ficant across much of Europe, with a small band of
significant residual ACC across western Iberia, and
a tendency of higher residual ACC towards southern
Europe.

4. Using decadal predictions of seasonal
SST to predict unforced European summer
temperature

Given the overall low skill for unforced summer tem-
perature variability over Europe (cf figure 1), we now
develop a simple dynamical-statistical model to over-
come this issue. Here, a connection between SST and
SAT over land is identified, explored and exploited
in such a way where skillful dynamical decadal pre-
dictions of residual SST are invoked to predict the
residual of JJA SAT. Because of the—modestly—high
residual ACC for summer temperature in southern

3
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Figure 1. ACC of CMIP6 hindcast multi-model mean for European summer (JJA) surface air temperature at lead years 2–9 as
evaluated by ACC against HadCRU5 for the period 1970–2014. Shown is skill in (a) initialized hindcasts, (b) historical
simulations, smoothed with a eight year running mean. (c) as (a) and (d) as (b), but after subtracting the linear trend. (e) as (a),
but for residuals, where the forced response is estimated on a grid-point basis. Stippling indicates significant skill at the 5% level,
estimated from 1000 bootstrap samples. The Southern European (SEU) region used in this study is outlined in black in (e).

Europe (cf figure 1(e)), we construct a dyn-stat
model aimed at predictions of SEU (10◦ W–30◦ E,
35◦–50◦ N; black outlines) summer temperature over
land, masking out ocean regions.

4.1. Observed SST impact on European summer
temperature
To avoid overlap between the training and validation
period of our dyn-stat model, we here explore the
impact of unforced spring SST variations on summer
SAT over southern Europe for the period 1900–1969,
and MAM SST prediction skill during 1970–2014
(figure 2). Unforced (i.e. residual) spring SST shows
high correlation to SEU summer SAT in the subpolar
and eastern North Atlantic, as well as the Mediter-
ranean in the observations (figure 2(a)). Much of this
pattern is significant. The season lag between the two
signals suggests that spring SST influences summer
SAT.

The predictor needs to be predictable to be a
useful predictor for SEU summer temperature in
the dyn-stat framework. Significant residual skill for
spring SST in the HC ensemble during 1970–2014
(figure 2(b)) is confined to the northeast sub-
polar as well as the eastern North Atlantic and the

Mediterrranean Sea. The eastern part of the North
Atlantic off the coast of Portugal and the western
Mediterranean (the ENAMED region 25◦ W–15◦ E,
35◦–45◦ N; blue lines in figures 2(a) and (b)) appears
particularly suitable to construct the dyn-stat model,
where unforced spring SST is both connected to sum-
mer SEU SAT and significantly predictable.

Spring SST in the ENAMED region is correlated
with summer SAT over much of southern Europe,
confirming the selected SST region to have an impact
there (figure 2(c)). Spring-summer sea level pressure
patterns suggest that this connection is accomplished
by a combination of dynamic transport of atmo-
spheric heat of oceanic origin around a high pressure
system centered over the Mediterranean (figures 2(d)
and (e)) and the persistence of heat in the Mediter-
ranean region itself.

Findings presented here are robust to the use of
different seasonal lead times between SST and sum-
mer SAT (e.g. using SST in preceding winter or sim-
ultaneous summer; not shown), illustrating the broad
influence of ENAMED SST on SEU summer SAT.
Heat persistence in the ocean is therefore the likely
carrier of the spring SST signal to summer. Spring
does, however, show larger residual SST prediction

4



Environ. Res. Lett. 16 (2021) 104017 L F Borchert et al

Figure 2. (a) observed (HadISST/HadCRU) correlation of residual spring (MAM) SST to residual summer (JJA) SAT in the SEU
region (outlined in black in (c)–(e)), applying a eight year running mean on the period 1900–1969. (b) Residual ACC for
spring SST at lead years 2–9, estimated from the MME for 1970–2014. Also shown is the correlation of spring Eastern North
Atlantic—Mediterranean (ENAMED) SST (outlined in blue in (a) and (b) to observed (c) residual summer SAT and (d) residual
spring-summer (MAMJJA) sea level pressure for 1900–1969. (e) as (d), but using SEU SAT instead of ENAMED SST. Stippling
indicates significant skill at the 5% level, estimated from 1000 bootstrap samples.

skill compared to the other seasons (summer SST is
particularly unpredictable; not shown), which is why
we here concentrate on spring SST as predictor of
European summer temperature.

The local SST and SAT correlation patterns shown
for the period 1900–1969 in figures 2(a) and (c) are
also found during the period 1970–2014 (figure S1).
A tripole structure observed in the recent period in
the residual spring SST correlation pattern to SEU
summer SAT, characterized by negative correlations
in the subpolar and tropical North Atlantic and a
band of positive correlations in between, inhibits
the use of the high subpolar ACC for spring SST
(figure 2(b)). Nonetheless, these findings highlight
that the ENAMED-based statistical model trained on
1900–1969 is also applicable during the 1970–2014
period.

The correlation of the ENAMED-MAM and the
SEU-JJA indices is also exemplified in their time series
(figure 3). During the period 1900–1969, the forced
response is characterised by a cold-warm-cold pat-
tern (figure 3(a)). Both residuals show pronounced
multidecadal variation, ending at a warm state at
the end of the 1960s (figure 3(b)). After 1970, the
forced response causes both indices to rise over time,
and both residuals show a cold-warm-cold pattern
in time (figure 3(b)). Summer SEU SAT thus fol-
lows the low-frequency behavior of spring ENAMED
SST reasonably well and robustly throughout time.
As the residual potentially explains about half of the
forced response—standard deviations for observed
JJA SEU SAT are: full signal 0.52; forced component
0.47; residual 0.23—predicting both forced response
and unforced variability accurately is important to
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Figure 3. Time series of HadISST/HadCRU observed (a) full and (b) residual observed surface temperature in SEU during
summer (JJA) and the Eastern North Atlantic (ENAMED) during spring (MAM). In (a), solid lines show the full signal, whereas
dashed lines show the forced component (FC), estimated from the historical multi-model mean.

achieve decadal prediction of the full summer tem-
perature signal in southern Europe.

4.2. Dynamical-statistical predictions of European
summer temperature
The dyn-stat model developed here is inspired by
more complex models (Simpson et al 2019, Wu et al
2019). The underlying idea is that potential deficien-
cies in the atmospheric component of climate mod-
els that hamper prediction skill over land (Meehl et al
2021) can be overcome with statistical models, after a
physical link between a predictor and a predictand has
been identified. Our dynamical-statistical model of
JJA SEU SAT rescales the predicted MAM ENAMED
SST with the ratio of standard deviations between the
two indices observed during 1900–1969. The dyn-stat
model thus requires skillful prediction of MAM SST
and as such highlights the importance of initialization
to achieve skillful decadal climate prediction.

There is reasonable area overlap between the area
of observed positive correlation between ENAMED
SST and SEU SAT (figure 2(c)) and skill in the dyn-
stat model (figure 4(a)), indicating that the skill of
the dyn-stat predictions arises from the observed link
between ENAMED SST and SEU SAT. Dyn-stat resid-
ual ACC is significant over most of the SEU region
south of 45◦ N, extending from the Iberian Penin-
sula and southern France to the coasts of the Black
Sea (figure 4(a)). However, significant skill improve-
ments compared to dynamical predictions are signi-
ficant only over Italy and part of the Balkans, as well as

the Mediterranean itself (figure 4(b)). Beyond these
regions, we find positive but generally insignificant
improvement of residual ACC for European summer
temperature in the dyn-stat model compared to the
fully dynamical prediction.

The value of the dyn-stat model over purely
dynamical predictions can further be illustrated in
area mean skill for SEU summer temperature over
land, explicitly masking out skill improvements over
the Mediterranean Sea (figure 5). For the full SEU
summer SAT signal, both dyn-stat and the HC
ensemble are highly skillful across all examined lead
time ranges, beating persistence forecast (figure 5(a)).
The dynamical hindcast MMEs explain between 82%
and 92% (dyn), and between 85% and 92% (dyn-
stat), of observed SEU SAT variance, depending on
lead time, the historical MMEs explain between 85%
and 90%. This highlights the importance of the forced
response for prediction skill, and is related to strong
trends in both indices (figure 5(c)).

We find insignificant residual skill in both the
dyn-stat and dynamical model for individual lead
years (not shown) as well as four year lead time aver-
ages (figure 5(b)). Only at eight year lead time aver-
ages does significant residual ACC emerge in the dyn-
stat model. Such relatively high skill at long temporal
averages relates to filtering of noise through smooth-
ing of the time series (Hegerl et al 2021). Dyn-stat skill
at lead years 2–9 is also the instance where we find
significant residual skill that is robust to a leave-one
year-out cross validation. This analysis highlights the

6
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Figure 4. (a) Residual ACC for summer (JJA) temperature, based on dynamical-statistical predictions using spring (MAM)
ENAMED SST. (b) Difference of this dyn-stat residual ACC to the dynamical residual ACC shown in figure 1(e). Stippling
indicates significance at the 5% level, based on 1000 bootstraps. Outlines indicate the SEU region.

Figure 5. ACC (y-axis) for (a) the full and (b) the residual summer (JJA) SEU temperature signal across lead time averages
(x-axis). The dynamical model is shown in blue and the dyn-stat model based on spring (MAM) ENAMED SST predictions in
cyan. Skill of the historical models (vertical line) and the historical MME mean (dots) is shown. The dashed line in (a) shows
persistence skill as a benchmark, as do the short dashes in (b). Long dashes in (b) indicate the 5% significance threshold,
estimated based on bootstrapping a dummy time series with similar characteristics as the observations 1000 times with
replacement. Colored dashes in (b) denote maximum and minimum skill of a leave-one-out cross validation skill analysis, where
each individual year was left out of the skill calculation once to highlight the importance of individual years for the diagnosed
skill. (c) and (d) show the time series corresponding to lead years 2–9 in (a) and (b), respectively. The solid black line shows
residual SEU observations, the dashed line in (d) shows the observed residual ENAMED index, and the dashed line in
(c) indicates the forced component of SEU summer temperature based on the multi-model mean of the historical simulations.

value of the dyn-stat model developed here as well as
low-pass filtering to achieve robustly significant skill
2–9 years into the future.

The underlying time series of these analyses
(figures 5(c) and (d)) illustrate the nuances that yield
the skill improvement described above. On the full
time series, the dyn-stat and dynamically predicted
SEU summer temperature variations are very similar,
explaining their similar full ACC (figure 5(c)). A com-
parable impression arises for the predicted residuals
(figure 5(d)), due to the relationship between the two

indices in their unforced variability described above.
The dyn-stat model reproduces the observed low-
frequency cold-warm-cold variations of unforced
SEU summer SAT better than the dynamical pre-
diction does, explaining the elevated skill in dyn-
stat. This confirms our hypothesis from the observed
time series (cf figure 3) that the ENAMED SST
index mainly captures low-frequency changes in
unforced summer SEU SAT while the teleconnec-
tions are not well reproduced in the dynamical
hindcasts.
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5. Discussion and conclusions

Analyzing a MME of DCPP simulations, we have
shown that these simulations show high skill for pre-
dicting European summer temperature. Much of this
can be attributed to skillful historical simulations rep-
resenting the forced response. As a result, DCPP sim-
ulations show low skill at predicting decadal unforced
(residual) European summer temperature variations.
In other words, the role of forcing for predictability of
decadal variations of European summer temperature
appears to be slightly larger than previously thought
(Smith et al 2019). Based on observed teleconnections
between spring ENAMEDSST and summer SEU SAT,
we present a dynamical-statistical approach to over-
come the issue of limited residual skill over Europe.
The dyn-stat model beats the HC ensemble as well
as persistence at predicting decadal variations of SEU
summer temperature.

In CMIP6, the skill of both initialised (HC) and
non-initialised (HIST) decadal predictions of sum-
mer SAT are comparable, and improved compared to
CMIP5 (e.g. Smith et al 2019). However, the strength
of the external forcing appears to mitigate the poten-
tial for additional skill to arise from initialisation
more strongly in CMIP6 than it used to be the case in
CMIP5 (Smith et al 2019). This is probably related to
improved model response to forcing in CMIP6 com-
pared to CMIP5 (Borchert et al 2021). Based on our
dyn-stat model results, limited residual summer tem-
perature ACCmay be caused by underestimated tele-
connection between ENAMED SST and SEU SAT in
models, either due to structural deficiencies inmodels
or due to shock from the initialization procedure. The
problem of underestimation of atmospheric signals
is exemplified by the amount of summer SAT vari-
ance that is explained by spring SST: at lead years 2–9,
the unforced ENAMED index explains 28% of vari-
ance of the SEU index (based on ACC2) in HC sim-
ulations, while the same calculation in observations
yields a value 50%. This, as well as the low amplitude
in predicted indices presented in this study, is likely
related to the general underestimation of decadal cli-
matic signals in climate models, known as the signal-
to-noise problem (Smith et al 2020). As such, improv-
ing the response of atmospheric models to oceanic
variability is crucial to improved skill in dynamical
predictions at least to the level demonstrated by our
dyn-stat model.

In this study we have used the residuals
approach (Smith et al 2019) to remove the forced
signal from observed and predicted time series.
Recently, an alternative method was also presen-
ted (Sospedra-Alfonso and Boer 2020). Both of
these methods utilize the historical MME to estim-
ate the forced response and, for large enough
ensembles, should yield similar mean-skill values.
While the residuals (Smith et al 2019) are relatively

straight-forward to calculate and thus interpret,
the alternative method (Sospedra-Alfonso and Boer
2020) provides additional estimates of unpredictable
noise based on the ensemble spread. Here, given our
focus on multi-model means, both methods should
give similar results, so we use the more established
residual method for its simplicity complementing
it with additional bootstrap analyses to estimate
uncertainties.

In previous studies, it was demonstrated that
SST impact on European summer temperature was
accomplished via a Rossby wave train (Borchert et al
2019, Wu et al 2019). This mechanism is partly
different from what we describe here. In our case,
ENAMED SST during spring and summer influences
summer SEU SAT through a combination of advect-
ive transport of local heat anomalies and dynamic
transport of heat from the North Atlantic around a
high-pressure system over the Mediterranean. This
difference in physical mechanisms might originate
from either the consideration of the SEU region spe-
cifically, or from the use of residuals instead of the lin-
early detrended indices considered in the other stud-
ies.When using linear detrending instead of residuals,
we found the Rossbywave train atmospheric response
(not shown). As we show linear detrending to be defi-
cient to extract the forced response, the Rossby wave
train discussed in earlier work results at least partly
from a response to forcing.

The timeseries of residual SEU summer temper-
ature after 1970 (cf figure 3(b)) is reminiscent of
the winter NAO low-frequency time series (Smith
et al 2020, their figure 2), which might be related
to the SST pattern that characterizes the Atlantic
Multidecadal Variability (AMV) (Sutton and Hod-
son 2005, Klavans et al 2019). There is evidence that
these two indices are not independent, and indeed
that a AMV-like SST pattern is forced by fluctuations
of the winter NAO (Klavans et al 2019, Oelsmann
et al 2020), so there might be a potential role of the
NAO in driving recent unforced summer temperat-
ure variations in the SEU region (Sutton and Hod-
son 2005). The ENAMED SST index representing the
low-frequency part of SEU variations (cf figure 3(b))
fits this narrative. It is thus possible that NAO plays a
role in modulating the ENAMED SST that is related
to SEU summer temperature as described here, prob-
ably through an impact on SST that persists into later
seasons.

The dyn-stat model used here is kept very simple
for the sake of easy interpretability. There are more
complex options, such as EOF-basedmodels (Wu et al
2019) or multivariate regression models (Simpson
et al 2019). Considering more complex processes or
SST dipoles thus holds the potential to increase the
skill found in the dyn-stat model here even further;
the skill estimates shown in this study are a lower
bound on expectable skill in that sense.
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A general shortcoming of the residual approach is
that it includes the impact of volcanic eruptions in the
forced response, although eruptions would probably
benefit the skill of initialized predictions in a forecast
setting. The HIST simulations used in residual cal-
culation include the effect of volcanic forcing, which
would not be known in forecasts of the future. Vol-
canoes, however, appear to be particularly important
for decadal climate predictions in the North Atlantic
region (Hermanson et al 2020, Borchert et al 2021).
For amore nuanced assessment of the value of initial-
ization, only greenhouse gas and anthropogenic aero-
sol forcings—as used in climate projections—should
therefore be used to calculate residuals in hindcast
studies. We do not do this here because the current
protocol for hindcast initialization is also unfit for a
hindcast assessment fully consistent with forecasts, in
that the information of volcanic eruptions is included
in hindcast forcing terms at the exact time of the erup-
tion and not (as would be the case for a forecast) at the
next initialization time after the eruption.

Our work highlights the importance of external
forcing for the capability of decadal prediction sys-
tems to predict European summer temperature.
Invoking links to predictable unforced SST, however,
the resulting limited skill for internal summer tem-
perature variations can be overcome to some extent,
emphasizing the importance of skillful initialization
of SST prediction to predict climate over land. Our
results thus provide hope for skillful predictions of
European summer temperature variations in future
modeling systemswhen the representation of telecon-
nections is improved.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
esgf-node.ipsl.upmc.fr/.

Acknowledgments

The authors acknowledge the World Climate
Research Programme, which, through its Working
Group on Coupled Modelling, coordinated and pro-
moted CMIP6. The authors thank the climate mod-
eling groups (listed in table S1) for producing and
making available their model output, the Earth Sys-
tem Grid Federation (ESGF) for archiving the data
and providing access, and the multiple funding agen-
cies who support CMIP6 and ESGF. L F B, D J B, D
S, G S and J M were supported by the EUCP pro-
ject funded by the European Union’s Horizon2020
programme, Grant Agreement Number 776613. J M
and D S were also supported by the H2020 Blue-
Action project, Grant Agreement Number 727852.
M B M was supported by the H2020 EPICE pro-
ject, Grant Agreement Number 789445. L F B and

M B M received additional support from the ANR-
TREMPLIN ERC Project HARMONY, Grant Agree-
ment Number ANR-20-ERC9-0001. L F B especially
thanks Johanna Baehr for the warm welcome to her
group in the difficult times of COVID-19. HadISST
and HadCRU data were obtained from www.
metoffice.gov.uk/hadobs and are © Brit-
ish Crown Copyright, Met Office, 2021,
provided under a Non-Commercial Government
Licence www.nationalarchives.gov.uk/doc/non -
commercial-government-licence/version/2/.

The authors thank anonymous reviewers for their
valuable help in improving the manuscript.

ORCID iDs

L F Borchert https://orcid.org/0000-0002-3232-
7409
M B Menary https://orcid.org/0000-0002-9627-
2056
D J Befort https://orcid.org/0000-0002-2851-0470

References

Årthun M, Eldevik T, Viste E, Drange H, Furevik T, Johnson H L
and Keenlyside N S 2017 Skillful prediction of northern
climate provided by the ocean Nat. Commun. 8 15875

Athanasiadis P J, Yeager S, Kwon Y O, Bellucci A, Smith DW and
Tibaldi S 2020 Decadal predictability of North Atlantic
blocking and the NAO npj Clim. Atmos. Sci. 3 1–10

Boer G J et al 2016 The decadal climate prediction project (DCPP)
contribution to CMIP6 Geosci. Model Dev. 9 3751–77

Borchert L F, Menary M B, Swingedouw D, Sgubin G,
Hermanson L and Mignot J 2021 Improved decadal
predictions of North Atlantic subpolar gyre SST in CMIP6
Geophys. Res. Lett. 48 e2020GL091307

Borchert L F, Müller W A and Baehr J 2018 Atlantic ocean heat
transport influences interannual-to-decadal surface
temperature predictability in the North Atlantic region J.
Clim. 31 6763–82

Borchert L F, Pohlmann H, Baehr J, Neddermann N C,
Suarez-Gutierrez L and Müller W A 2019 Decadal
predictions of the probability of occurrence for warm
summer temperature extremes Geophys. Res. Lett.
46 14042–51

Branstator G and Teng H 2012 Potential impact of initialization
on decadal predictions as assessed for CMIP5 models
Geophys. Res. Lett. 39 L12703

Doblas-Reyes F J, Andreu-Burillo I, Chikamoto Y,
García-Serrano J, Guemas V, Kimoto M, Mochizuki T,
Rodrigues L R L and Oldenborgh G J V 2013 Initialized
near-term regional climate change prediction Nat. Commun.
4 1715

Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J
and Taylor K E 2016 Overview of the coupled model
intercomparison project phase 6 (CMIP6) experimental
design and organization Geosci. Model Dev. 9 1937–58

Feldmann H, Pinto J G, Laube N, Uhlig M, Moemken J,
Pasternack A, Früh B, Pohlmann H and Kottmeier C 2019
Skill and added value of the MiKlip regional decadal
prediction system for temperature over Europe Tellus A
71 1618678

Gastineau G and Frankignoul C 2015 Influence of the North
Atlantic SST variability on the atmospheric circulation
during the twentieth century J. Clim. 28 1396–416

Goddard L et al 2013 A verification framework for
interannual-to-decadal predictions experiments Clim. Dyn.
40 245–72

9

https://esgf-node.ipsl.upmc.fr/
https://esgf-node.ipsl.upmc.fr/
http://www.metoffice.gov.uk/hadobs
http://www.metoffice.gov.uk/hadobs
http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/
http://www.nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/
https://orcid.org/0000-0002-3232-7409
https://orcid.org/0000-0002-3232-7409
https://orcid.org/0000-0002-3232-7409
https://orcid.org/0000-0002-9627-2056
https://orcid.org/0000-0002-9627-2056
https://orcid.org/0000-0002-9627-2056
https://orcid.org/0000-0002-2851-0470
https://orcid.org/0000-0002-2851-0470
https://doi.org/10.1038/ncomms15875
https://doi.org/10.1038/ncomms15875
https://doi.org/10.1038/s41612-020-0120-6
https://doi.org/10.1038/s41612-020-0120-6
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.1029/2020GL091307
https://doi.org/10.1029/2020GL091307
https://doi.org/10.1175/JCLI-D-17-0734.1
https://doi.org/10.1175/JCLI-D-17-0734.1
https://doi.org/10.1029/2019GL085385
https://doi.org/10.1029/2019GL085385
https://doi.org/10.1029/2012GL051974
https://doi.org/10.1029/2012GL051974
https://doi.org/10.1038/ncomms2704
https://doi.org/10.1038/ncomms2704
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1080/16000870.2019.1618678
https://doi.org/10.1080/16000870.2019.1618678
https://doi.org/10.1175/JCLI-D-14-00424.1
https://doi.org/10.1175/JCLI-D-14-00424.1
https://doi.org/10.1007/s00382-012-1481-2
https://doi.org/10.1007/s00382-012-1481-2


Environ. Res. Lett. 16 (2021) 104017 L F Borchert et al

Hanlon H M, Hegerl G C, Tett S F B and Smith D M 2013 Can a
decadal forecasting system predict temperature extreme
indices? J. Clim. 26 3728–44

Hegerl G C et al 2021 Towards consistent observational
constraints in climate predictions and projections Front.
Clim. 3 4343

Hermanson L et al 2020 Robust multiyear climate impacts of
volcanic eruptions in decadal prediction systems J. Geophys.
Res.: Atmos. 125 e2019JD031739

Hersbach H et al 2020 The ERA5 global reanalysis Q. J. R.
Meteorol. Soc. 146 1999–2049

Keenlyside N S, Latif M, Jungclaus J, Kornblueh L and Roeckner E
2008 Advancing decadal-scale climate prediction in the
North Atlantic sector Nature 453 84–88

Klavans J M, Clement A C and Cane M A 2019 Variable external
forcing obscures the weak relationship between the NAO
and North Atlantic multidecadal SST variability J. Clim.
32 3847–64

Lehner F, Deser C, Maher N, Marotzke J, Fischer E M, Brunner L,
Knutti R and Hawkins E 2020 Partitioning climate
projection uncertainty with multiple large ensembles and
CMIP5/6 Earth Syst. Dyn. 11 491–508

Liu Y, Donat M G, Rust H W, Alexander L V and England M H
2019 Decadal predictability of temperature and
precipitation means and extremes in a perfect-model
experiment Clim. Dyn. 53 3711–29

Maher N, Lehner F and Marotzke J 2020 Quantifying the role of
internal variability in the temperature we expect to
observe in the coming decades Environ. Res. Lett.
15 054014

Mann M E, Steinman B A and Miller S K 2014 On forced
temperature changes, internal variability and the AMO
Geophys. Res. Lett. 41 3211–19

Marotzke J et al 2016 MiKlip: a national research project on
decadal climate prediction Bull. Am. Meteorol. Soc.
97 2379–94

Matei D, Pohlmann H, Jungclaus J, Müller W, Haak H and
Marotzke J 2012 Two tales of initializing decadal climate
prediction experiments with the ECHAM5/MPI-OMmodel
J. Clim. 25 8502–23

Meehl G A et al 2021 Initialized earth system prediction from
subseasonal to decadal timescales Nat. Rev. Earth Environ.
2 1–18

Merryfield W J et al 2020 Current and emerging developments in
subseasonal to decadal prediction Bull. Am. Meteorol. Soc.
101 E869–96

Mignot J, García-Serrano J, Swingedouw D, Germe A,
Nguyen S, Ortega P, Guilyardi E and Ray S 2016 Decadal
prediction skill in the ocean with surface nudging
in the IPSL-CM5A-LR climate model Clim. Dyn.
47 1225–46

Morice C P et al 2021 An updated assessment of near-surface
temperature change from 1850: the HadCRUT5 data set J.
Geophys. Res.: Atmos. 126 e2019JD032361

Müller W A et al 2012 Forecast skill of multi-year seasonal means
in the decadal prediction system of the Max Planck Institute
for Meteorology Geophys. Res. Lett. 39 L22707

Oelsmann J, Borchert L, Hand R, Baehr J and Jungclaus J H 2020
Linking ocean forcing and atmospheric interactions to
atlantic multidecadal variability in MPI-ESM1.2 Geophys.
Res. Lett. 47 e2020GL087259

Qasmi S, Cassou C and Boé J 2017 Teleconnection between
atlantic multidecadal variability and european temperature:
diversity and evaluation of the coupled model
intercomparison project phase 5 models Geophys. Res. Lett.
44 11140–9

Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V,
Rowell D P, Kent E C and Kaplan A 2003 Global analyses of
sea surface temperature, sea ice and night marine air
temperature since the late nineteenth century J. Geophys.
Res.: Atmos. 108 4407

Reintges A, Latif M, Bordbar M H and Park W 2020 Wind
stress-induced multiyear predictability of annual
extratropical North Atlantic sea surface temperature
anomalies Geophys. Res. Lett. 47 e2020GL087031

Robson J I, Sutton R T and Smith D M 2012 Initialized decadal
predictions of the rapid warming of the North Atlantic
Ocean in the mid 1990s Geophys. Res. Lett. 39 L19713

Ruggieri P et al 2021 Atlantic multidecadal variability and North
Atlantic jet: a multimodel view from the decadal climate
prediction project J. Clim. 34 347–60

Sahastrabuddhe R and Ghosh S 2021 Does statistical model
perform at par with computationally expensive general
circulation model for decadal prediction? Environ. Res. Lett.
16 064028

Sgubin G, Swingedouw D, Borchert L F, Menary M B, Noel T,
Loukos H and Mignot J 2021 Systematic investigation of the
skill opportunities in decadal temperature prediction over
Europe and potential implications for integrated
applications Clim. Dyn. (https://doi.org/10.1007/
s00382-021-05863-0)

Simpson I R, Deser C, McKinnon K A and Barnes E A 2018
Modeled and observed multidecadal variability in the North
Atlantic jet stream and its connection to sea surface
temperatures J. Clim. 31 8313–38

Simpson I R, Yeager S G, McKinnon K A and Deser C 2019
Decadal predictability of late winter precipitation in western
Europe through an ocean–jet stream connection Nat. Geosci.
12 613–19

Smith D M et al 2019 Robust skill of decadal climate predictions
npj Clim. Atmos. Sci. 2 1–10

Smith D M et al 2020 North Atlantic climate far more predictable
than models imply Nature 583 796–800

Solaraju-Murali B, Caron L P, Gonzalez-Reviriego N and
Doblas-Reyes F J 2019 Multi-year prediction of European
summer drought conditions for the agricultural sector
Environ. Res. Lett. 14 124014

Sospedra-Alfonso R and Boer G J 2020 Assessing the impact of
initialization on decadal prediction skill Geophys. Res. Lett.
47 e2019GL086361

Sutton R T and Hodson D L R 2005 Atlantic Ocean forcing of
North American and European summer climate Science
309 115–18

Swingedouw D, Rodehacke C B, Behrens E, Menary M,
Olsen S M, Gao Y, Mikolajewicz U, Mignot J and Biastoch A
2013 Decadal fingerprints of freshwater discharge around
Greenland in a multi-model ensemble Clim. Dyn.
41 695–720

Tandon N F and Kushner P J 2015 Does external forcing interfere
with the AMOC’s influence on North Atlantic sea surface
temperature? J. Clim. 28 6309–23

Trenberth K E and Shea D J 2006 Atlantic hurricanes and natural
variability in 2005 Geophys. Res. Lett. 33 L12704

Wu B, Zhou T, Li C, Müller W A and Lin J 2019 Improved decadal
prediction of northern-hemisphere summer land
temperature Clim. Dyn. 53 1357–69

Yeager S G and Robson J I 2017 Recent progress in understanding
and predicting atlantic decadal climate variability Curr.
Clim. Change Rep. 3 112–27

Yeager S, Karspeck A, Danabasoglu G, Tribbia J and Teng H 2012
A decadal prediction case study: late twentieth-century
North Atlantic Ocean heat content J. Clim. 25 5173–89

10

https://doi.org/10.1175/JCLI-D-12-00512.1
https://doi.org/10.1175/JCLI-D-12-00512.1
https://doi.org/10.3389/fclim.2021.678109
https://doi.org/10.3389/fclim.2021.678109
https://doi.org/10.3389/fclim.2021.678109
https://doi.org/10.1029/2019JD031739
https://doi.org/10.1029/2019JD031739
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1038/nature06921
https://doi.org/10.1038/nature06921
https://doi.org/10.1175/JCLI-D-18-0409.1
https://doi.org/10.1175/JCLI-D-18-0409.1
https://doi.org/10.5194/esd-11-491-2020
https://doi.org/10.5194/esd-11-491-2020
https://doi.org/10.1007/s00382-019-04734-z
https://doi.org/10.1007/s00382-019-04734-z
https://doi.org/10.1088/1748-9326/ab7d02
https://doi.org/10.1088/1748-9326/ab7d02
https://doi.org/10.1002/2014GL059233
https://doi.org/10.1002/2014GL059233
https://doi.org/10.1175/BAMS-D-15-00184.1
https://doi.org/10.1175/BAMS-D-15-00184.1
https://doi.org/10.1175/JCLI-D-11-00633.1
https://doi.org/10.1175/JCLI-D-11-00633.1
https://doi.org/10.1038/s43017-021-00155-x
https://doi.org/10.1038/s43017-021-00155-x
https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.1007/s00382-015-2898-1
https://doi.org/10.1007/s00382-015-2898-1
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1029/2019JD032361
https://doi.org/10.1029/2012GL053326
https://doi.org/10.1029/2012GL053326
https://doi.org/10.1029/2020GL087259
https://doi.org/10.1029/2020GL087259
https://doi.org/10.1002/2017GL074886
https://doi.org/10.1002/2017GL074886
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/2020GL087031
https://doi.org/10.1029/2020GL087031
https://doi.org/10.1029/2012GL053370
https://doi.org/10.1029/2012GL053370
https://doi.org/10.1175/JCLI-D-19-0981.1
https://doi.org/10.1175/JCLI-D-19-0981.1
https://doi.org/10.1088/1748-9326/abfeed
https://doi.org/10.1088/1748-9326/abfeed
https://doi.org/10.1007/s00382-021-05863-0
https://doi.org/10.1007/s00382-021-05863-0
https://doi.org/10.1175/JCLI-D-18-0168.1
https://doi.org/10.1175/JCLI-D-18-0168.1
https://doi.org/10.1038/s41561-019-0391-x
https://doi.org/10.1038/s41561-019-0391-x
https://doi.org/10.1038/s41612-019-0071-y
https://doi.org/10.1038/s41612-019-0071-y
https://doi.org/10.1038/s41586-020-2525-0
https://doi.org/10.1038/s41586-020-2525-0
https://doi.org/10.1088/1748-9326/ab5043
https://doi.org/10.1088/1748-9326/ab5043
https://doi.org/10.1029/2019GL086361
https://doi.org/10.1029/2019GL086361
https://doi.org/10.1126/science.1109496
https://doi.org/10.1126/science.1109496
https://doi.org/10.1007/s00382-012-1479-9
https://doi.org/10.1007/s00382-012-1479-9
https://doi.org/10.1175/JCLI-D-14-00664.1
https://doi.org/10.1175/JCLI-D-14-00664.1
https://doi.org/10.1029/2006GL026894
https://doi.org/10.1029/2006GL026894
https://doi.org/10.1007/s00382-019-04658-8
https://doi.org/10.1007/s00382-019-04658-8
https://doi.org/10.1007/s40641-017-0064-z
https://doi.org/10.1007/s40641-017-0064-z
https://doi.org/10.1175/JCLI-D-11-00595.1
https://doi.org/10.1175/JCLI-D-11-00595.1

	Skillful decadal prediction of unforced southern European summer temperature variations
	1. Introduction
	2. Models and methods
	2.1. CMIP6 models
	2.2. Observations
	2.3. Methods

	3. Decadal predictions of European summer temperature in CMIP6
	4. Using decadal predictions of seasonal SST to predict unforced European summer temperature
	4.1. Observed SST impact on European summer temperature
	4.2. Dynamical-statistical predictions of European summer temperature

	5. Discussion and conclusions
	Acknowledgments
	References


