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Multi‑omics analysis to decipher 
the molecular link between chronic 
exposure to pollution and human 
skin dysfunction
Namita Misra1*, Cécile Clavaud1, Florent Guinot1, Nasrine Bourokba1, Stephanie Nouveau1, 
Sakina Mezzache1, Paul Palazzi2, Brice M. R. Appenzeller2, Arthur Tenenhaus3,4, 
Marcus H. Y. Leung5, Patrick K. H. Lee5, Philippe Bastien1, Luc Aguilar1 & Nükhet Cavusoglu1

Environmental pollution is composed of several factors, namely particulate matter (PM2.5, PM10), 
ozone and Ultra Violet (UV) rays among others and first and the most exposed tissue to these 
substances is the skin epidermis. It has been established that several skin disorders such as eczema, 
acne, lentigines and wrinkles are aggravated by exposure to atmospheric pollution. While pollutants 
can interact with skin surface, contamination of deep skin by ultrafine particles or Polycyclic aromatic 
hydrocarbons (PAH) might be explained by their presence in blood and hair cortex. Molecular 
mechanisms leading to skin dysfunction due to pollution exposure have been poorly explored in 
humans. In addition to various host skin components, cutaneous microbiome is another target of 
these environment aggressors and can actively contribute to visible clinical manifestation such 
as wrinkles and aging. The present study aimed to investigate the association between pollution 
exposure, skin microbiota, metabolites and skin clinical signs in women from two cities with different 
pollution levels. Untargeted metabolomics and targeted proteins were analyzed from D-Squame 
samples from healthy women (n = 67 per city), aged 25–45 years and living for at least 15 years in 
the Chinese cities of Baoding (used as a model of polluted area) and Dalian (control area with lower 
level of pollution). Additional samples by swabs were collected from the cheeks from the same 
population and microbiome was analysed using bacterial 16S rRNA as well as fungal ITS1 amplicon 
sequencing and metagenomics analysis. The level of exposure to pollution was assessed individually 
by the analysis of polycyclic aromatic hydrocarbons (PAH) and their metabolites in hair samples 
collected from each participant. All the participants of the study were assessed for the skin clinical 
parameters (acne, wrinkles, pigmented spots etc.). Women from the two cities (polluted and less 
polluted) showed distinct metabolic profiles and alterations in skin microbiome. Profiling data from 
350 identified metabolites, 143 microbes and 39 PAH served to characterize biochemical events that 
correlate with pollution exposure. Finally, using multiblock data analysis methods, we obtained a 
potential molecular map consisting of multi-omics signatures that correlated with the presence of skin 
pigmentation dysfunction in individuals living in a polluted environment. Overall, these signatures 
point towards macromolecular alterations by pollution that could manifest as clinical sign of early skin 
pigmentation and/or other imperfections.

Pollution remains the world’s largest environmental threat to human health, responsible in 2017 for 15% of 
all deaths globally, and 275 million Disability-Adjusted Life Years, reported by The Lancet Commission on Pol-
lution and Health, 2017 and ambient air pollution kills more people around the globe than any other form of 
pollution (https://​gahp.​net/​pollu​tion-​and-​health-​metri​cs/). Epidemiological and clinical studies have shown 
that short- and long-term exposure to particulate matter (PM2.5: Particle matter with aerodynamic diameter 
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less than 2.5 microns, and PM10: Particle matter with aerodynamic diameter less than 10 microns) and ozone 
increase respiratory and cardiovascular morbidity and lead to the development of certain cancers1–3. Among all 
organs, skin is the most visible and there is accumulating scientific evidence that air pollution plays an important 
role in extrinsic aging4,5. Skin is a multi-layered tissue composed of a top layer, the stratum corneum, which is 
in direct contact with atmospheric pollutants, while the deeper layers, such as dermis, are exposed to diverse 
xenobiotics through systemic route. A major mechanism by which PM exert their detrimental effects is through 
the generation of oxidative stress6,7 which is an important contributor to extrinsic skin aging8,9. PM2.5 is often 
associated with toxic chemicals such as heavy metals or polycyclic aromatic hydrocarbons (PAHs), and some 
photo-reactive PAHs can induce strong oxidative stress under UVA exposure10. Clinical studies performed in 
China and elsewhere indicate towards premature skin aging phenotype such as pigmented spots and wrinkles11,12. 
In a previous study using in-vitro skin models and untargeted proteomics, we have shown that exposure to PAH 
(s) leads to disruption of several cellular processes6. However, the molecular mechanisms that link exposure and 
its impact on clinical manifestations remain to be deciphered.

The present work is part of a multi-parametric study, in which non-invasive facial skin samples (D-Squame) 
were collected from hundred and thirty-four healthy women living in two Chinese cities with different lev-
els of exposure to pollution13. Exposure was determined by quantifying 39 parent PAHs and their mono-
hydroxy metabolites in hair samples collected from the same individuals, according to a validated method 
providing information on the average internal dose of chemicals13. Each individual was also evaluated for a set 
of dermatological skin parameters. Microbiome profiling from all the subjects from both cities gave us the first 
insight into microbiome alteration resulting from pollution exposure14. To explore the mechanistic link between 
pollution exposure and its clinical manifestation, we considered several molecular characterizations. We first 
applied an untargeted metabolomic analysis on skin samples to characterize pollution-dependent biochemical 
events followed by a targeted proteomic analysis to complement the biochemical profiles generated through 
metabolomics. Finally, we complemented the multi-omics data by 16S and ITS amplicon sequencing. PAH 
quantification along with clinical evaluation of the same individuals completed this global characterization. 
These datasets were computed in a block structured multivariate analysis to propose a molecular map of human 
skin that links pollution exposure to skin dysfunction.

Results and discussion
Facial skin pigmentary disorders.  To assess the effect of chronic exposure to pollution on exposed area 
of skin, we performed dermatological clinical assessment across 35 facial parameters on 67 women living in 
the city of Baoding (the most polluted area) and 67 women living in the city of Dalian (less polluted area), in 
China. The women had been living in respective cities for at least 15 years and were aged between 25 to 45 years. 
The clinical parameters analyzed on these women are presented in Suppl. Table 1. Briefly, each individual was 
evaluated for 10 major facial clinical themes/clusters that included 35 sub-conditions. Pigmentary disorders and 
wrinkles are the two clinical themes that were most significantly increased on facial skin of individuals from the 
polluted area. Shiny and dull skin were also modulated in a second instance (Suppl. Table 1). Previously, we have 
reported that individuals from the two cities differ significantly in PAH levels measured in hair shafts, suggesting 
different level of exposure to outdoor pollution13. These initial clinical evaluations were done on a larger popula-
tion of 204 women and this difference remained significant for the study sub-population of 134 (Suppl_Fig. 1). 
Therefore, we calculated a PAH score (described in “Materials and methods” section) as a complementary factor 
to be analyzed together with the other datasets (clinical, metabolites, microbiome etc.) presented in this paper. 
As shown in Table 1, spread macules on forehead and cheeks and are significantly more prevalent (25.4% vs 6% 
and 56.7% vs 35.8% respectively) in women from the most polluted city of Baoding versus Dalian. A similar pat-
tern is observed in the prevalence of spread macules on forehead and cheeks for women with PAH score higher 
than the median of the study population with regard to women with PAH score lower than the median (22.4% 
vs 9% and 53.7% vs 38.8% respectively). Previous studies have shown that the occurrence of some disorders of 
facial hyperpigmentation such as melasma, spots and lentigines are highest in individuals of skin type III-IV 
living in India and Southeast Asia15, these are also the geographical regions reporting heavy environmental PAH 
burden (https://​gahp.​net/​pollu​tion-​and-​health-​metri​cs/). Results from our study show a similar trend. Spread 
macule (SP), a facial pigmentary condition is less known and has been described previously in South Asian 
population16 living in large metropolitan cities in India that are often the most polluted ones.

Skin metabolite profile.  Untargeted metabolomic analysis on facial skin tape strips allowed the identi-
fication of a total of 350 metabolites. We first conducted a pathway enrichment analysis to explore if chronic 
exposure to pollution induced accumulation or perturbations in specific metabolic pathways. At a higher level, 
increased enrichment was observed in samples from Baoding that included amino acid and fatty acid metabo-
lism (Fig. 1A and Suppl_Table 2). Xenobiotics of dietary origin appeared to be decreased compared to Dalian. 
Further analysis revealed elevated levels of N-acetyl amino-acids (Fig.  1B), gamma-glutamyl amino-acids 
(Fig. 1C), and urea cycle intermediates. N-acetyl amino acids are derived from proteins that have undergone 
post-translational acetylation or from free amino acids reacting with acetyl groups. Gamma-glutamyl trans-
ferase (GGT) is an enzyme that transfers the gamma-glutamyl moiety of glutathione to an acceptor that may 
be an amino acid or peptide17. The GGT system thus plays an important role in transporting amino acids and 
dipeptides into the cells as well as regulating the exchange of intra- and extracellular glutathione. Higher levels 
of gamma-glutamyl amino acids in the polluted group suggest an upregulated GGT system, perhaps to provide 
cells pyrrolidone carboxylic acid (PCA or 5-oxoproline), a natural moisturizing factor (NMF) released from 
GGCT enzyme following GGT activation18. NMF are the amino acids or their derivatives (PCA and urocanic 
acid, together with lactic acid, urea, citrate and sugars) that are produced due to filaggrin proteolysis and are 
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found exclusively in stratum corneum (SC). Free amino acids (Fig. 2A), 5-oxoproline and lactic acid levels were 
elevated in Baoding versus Dalian (Fig. 2B) suggesting an upregulation of the filaggrin proteolysis pathway. To 
further explore the latter, we performed targeted protein analysis on proteins involved in skin barrier function. 
Surprisingly we observed decreased levels of CASP14, PADI1, TGM3 and GGCT. Latter, the gamma-glutamyl 
transferase enzyme is implicated in the last step of PCA synthesis, and since PCA levels were increased, this 
observation would suggest another mechanism that could be responsible for PCA increase. Interestingly, KLK7 
a major enzyme in desquamation was decreased by 2 folds, suggesting a slow-down in surface renewal that could 
as a consequence lead to PCA and other amino acids accumulation. KLK5, another desquamation activating 
enzyme could be considered unchanged with a 1.2-fold increase. To further support this accumulation hypoth-
esis, Filaggrin and Filaggrin2 which are the principal NMF providers, remained unaltered in skin samples from 
Baoding (Suppl_Fig. 2). Taken together, protein and metabolite analysis show a perturbation of molecular enti-
ties that contribute towards the skin barrier functioning and an enhanced repair/compensation in skin samples 
from Baoding. It appears that chronic exposure to pollution induces skin to be in a dynamic state to manage 
damage and repair simultaneously. Pollution induced effects on the skin barrier function have been reported by 
us previously using in-vitro models and untargeted proteomics19.

As a next step and in order to quantify the differences between the metabolomics profile between two cities 
more precisely and irrespective of classification into sub or super pathway, the log2-Fold change of all metabo-
lites with Baoding as the reference population were calculated and represented as a cumulative distribution in 
Suppl_Fig. 3. Furthermore, to test the significance of the fold change, we performed a t-test for each of them 
with a volcano plot visualized in Fig. 3A.

To further investigate the relationship between the metabolite profiles and the city membership, we also 
conducted a multivariate analysis using a random forest classification model (see “Methods” section for more 
details). The variable importance values are shown in Suppl_Fig. 4A and further details on the RF model are 
given in Suppl_Fig. 4B,C.

When re-grouped by pathway (Fig. 3B), we find the most significant members of the different class of metabo-
lites presented above and therefore allows for a deeper insight into the mechanisms that are most significantly 
associated with pollution exposure. Among lipids group, oleamide, oleoyl and linoleoyl ethanolamides are the 
fatty acid amides and are bioactive lipid signaling molecules. These are reported to be involved in a wide range of 
physiological responses in various tissues including skin conditions such as atopic and contact dermatitis20. Par-
ticulate matter leads to secretion of proinflammatory cytokines, e.g., tumor necrosis factor (TNF)-α, IL-1α, IL-8, 
and upregulation of matrix metalloproteinases 1, 2, and 921,22, it is likely that bioactive fatty acids is the response 
against pollution induced inflammatory stress. Among other metabolites, 4-imidazole acetate, N-acetyl arginine 
and unknown X-13737 are significantly upregulated while p-cresol sulfate is downregulated (Fig. 3B). Detec-
tion of elevated levels of 4 imidazole-acetate indicates perturbation of Histidine metabolism and is discussed in 
the next section. Elevated levels of kynurenate indicates perturbation of Tryptophan metabolism and a focused 

Table 1.   Clinical facial signs for pigmentary disorders, their evaluation across Cities and PAH levels. PAH 
median corresponds to the median of the PAH score, the first component of a principal components analysis 
(PCA) on log-normalized PAH measurements. p values were calculated using either unpaired two-samples 
Wilcoxon or chi2 tests depending on whether the clinical scores were ordinal or binary. The table was created 
using SAS version 9.4, SAS Institute Inc., Cary, NC, USA.

Clinical signs Intensity Dalian Baoding p value PAH < MED PAH > MED p value

Pigmentary disorders

Spread macules on forehead

No 94.03 74.63 91.04 77.61

Weak 2.99 17.91 7.46 13.43

Moderate 2.99 2.99 0.0029 1.49 4.48 0.0292

Severe 4.48 4.48

Spread macules on cheeks

No 64.18 43.28 61.19 46.27

Weak 32.84 32.84 34.33 31.34

Moderate 2.99 19.40 0.0024 2.99 19.40 0.0212

Severe 4.48 1.49 2.99

Hyperpigmented spots on forehead

No 26.87 20.90 25.37 22.39

Weak 73.13 76.12 74.63 74.63

Moderate 2.99 0.2844 2.99 0.4938

Simplex lentigo on cheek
No 25.37 13.43 0.0805 25.37 13.43 0.0805

Yes 74.63 86.57 74.63 86.57

Actinic lentigines on cheek
No 77.61 76.12 0.8377 82.09 71.64 0.1516

Yes 22.39 23.88 17.91 28.36

Melasma or melasma like on forehead
No 97.01 91.04 0.1447 97.01 91.04 0.1447

Yes 2.99 8.96 2.99 8.96

Melasma or melasma like on cheek
No 80.60 85.07 0.4919 80.60 85.07 0.4919

Yes 19.40 14.93 19.40 14.93
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analysis showed reduced indoxyl-3-sulfate in individuals in Baoding (Suppl_Fig. 5). The kynurenine pathway 
(KP) of tryptophan metabolism accounts for most of the tryptophan that is not involved in protein synthesis 
and includes compounds active in the nervous and immune systems. Kynurenine acts on the aryl hydrocarbon 
receptor (AhR), affecting metabolism of xenobiotics and affecting carcinogenesis. Limited studies have focused 
on the effects of acute ultraviolet exposure and the induction of the KP in human skin derived fibroblasts and 
keratinocytes. UV exposure is known to elicit an inflammatory component in skin cells, it is probable that the 
KP may be induced in these cells in response to UV exposure and this KP metabolites could be the mediators of 
inflammatory and anti-inflammatory responses23. We observed reduced indoxyl-3-sulfate in individuals living 
in the most polluted area. Several studies have identified tryptophan metabolite indole as a major extracellular 
metabolite produced by gut bacteria such as E. coli and interestingly, indoxy-3-sulfate has been characterized 
as AhR agonist24. P-cresol sulfate was found to be reduced in skin samples from Baoding (Fig. 2A). P-cresol has 
been previously reported as a biomarker for healthy aging25.

Another top marker in the volcano plot is the unknown metabolite “X-13737” (Fig. 3A,B). Upon further inves-
tigation, it was determined that the MS/MS spectrum for “X-13737” actually contained a mixture of ions from 
two metabolites, one being (S)-a-amino-omega-caprolactam and the other being a still unidentified molecule 

Figure 1.   Metabolite pathways that are differentially modulated in skin samples of individuals from polluted 
city of Baoding. (A) Heatmap of log2 of Fold Change between Baoding (More Polluted) and Dalian (Less 
Polluted), positive values indicate a higher amount in Baoding and negative values a higher amount in Dalian. 
(B) Focus on N-acetyle amino acids with boxplots of log normalized values, colored by site. (C) Focus on 
gamma-glutamyl amino acids with boxplots of log normalized values, colored by site. A red star indicates, for 
a given metabolite, that the difference in mean between the 2 cities is significant (q-value < 0.05, t-test with 
correction for multiple testing using Benjamini–Hochberg method). Figures were created using the R software: 
R Core Team (2017), R Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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(Suppl_Fig. 6). Although the precise identity and contribution of this additional co-eluting unknown to the 
“X-13737” signal has not been fully verified, data suggest that it is one of the major actors that differentiates 
metabolomics profile of individuals living in one city from the other (Suppl_Fig. 4). The novelty of this finding 

Figure 2.   (A) Boxplots of log-transformed values of free amino acids (B) Boxplots of log-transformed values 
of NMF. A red star indicates, for a given metabolite, that the difference in mean between the 2 cities, Baoding 
(More Polluted) and Dalian (Less Polluted), is significant (q-value < 0.05, t-test with correction for multiple 
testing using Benjamini–Hochberg method). Figures were created using the R software: R Core Team (2017), R 
Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/


6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18302  | https://doi.org/10.1038/s41598-021-97572-1

www.nature.com/scientificreports/

Figure 3.   (A) Volcano plot representing the log2(FC) in x-axis and -log10(q − value) in y-axis. A threshold of 
0.6 for the log2(FC) is added as a dotted vertical black line and a threshold of − log10(0.05) as a dotted horizontal 
black line for the q-value. For representation purpose, the y-axis scale has been squashed by a factor of 5 
between 5 and 12. A metabolite is considered significantly modulated if its |log2(FC)|> 0.6 and q-value < 0.05 
(in red and labelled on the figure). (B) Boxplots of significantly modulated metabolites, gathered by pathway, 
Baoding (More Polluted) and Dalian (Less Polluted). Figures were created using the R software: R Core Team 
(2017), R Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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is that caprolactam itself is a moderately toxic irritant, which has previously been regarded as a hazardous air 
pollutant. Although it is not known how (S)-a-amino-omega-caprolactam can be formed from caprolactam (or 
if it can be at all), the fact that caprolactam is a known air pollutant, it is noteworthy that the metabolomic data 
yielded an increase in signal for a spectrum which contains (S)-α-amino-omega-caprolactam in the skin of the 
women with higher exposure to pollutants as compared to the other ones.

Skin metabolites and PAH exposure.  From the analysis presented above, we saw significant differences 
in metabolomic profiles of skin from individuals living in polluted and non-polluted environments. To go one 
step further and to make a direct correlation between exposure and its molecular impact on skin, we carried out 
an analysis between PAHs concentrations, measured in individual hair samples, and skin SC metabolites using 
a sparse Canonical Correlation Analysis (sCCA) to identify sets of PAHs and metabolites that are correlated 
together. Hair analysis is increasingly used for the assessment of exposure, and several studies demonstrated that 
pollutant concentration in hair is representative of the body burden26–28. Hair analysis provides integrated infor-
mation on chronic exposure covering up to several months (considering an average growth of one centimeter 
per month) and allows for the detection of both parent pollutants and their metabolites contrary to biological 
fluids26. Among the different correlations observed between PAH and skin metabolites, a positive correlation 
with N-acetyl amino acids was interesting (Fig. 4A). Acetylation is post-translational protein modifications that 
has multiple effects on cellular proteins and metabolites. Acetyl-coenzyme A donates acetyl group that can be 
post translationally attached to either the alpha amino group of N-terminus of proteins or to epsilon amino group 
of lysine residue. The reaction is catalyzed by N-acetyltransferase (NATs) and they are involved in a multitude 
of signaling pathways impacting diverse cellular functions29. The correlation between N-acetyl aa and PAH is 
intriguing. Previous studies have shown a link between exposure to particulate matter and histone acetylation30. 
Other studies show an association of NAT and cotinine levels from exposure to secondhand smoke31. Interest-
ingly, we observed strong correlations of skin metabolites with 2OH Naphthalene, a PAH metabolite associated 
with smoking32. In conclusion, association between N-acetyl amino acids and PAH needs further investigation. 
Another pathway of interest was histidine metabolism since a correlation was observed between Cis-urocanate 
and 4 imidazole-acetate and PAH (Fig. 4A). Previous studies have shown that Benzo[a]pyrene perturbs histi-
dine metabolism in human lung epithelial cells33. We observed elevated levels of Cis-urocanate in individuals 
from the polluted city (Fig. 4B). Trans-urocanate levels remained unchanged between the two cities resulting in 
elevated Cis/trans ratio in polluted city of Baoding (Fig. 4B). Histidine is deaminated by histidase to form trans-
urocanate. While trans-urocanate acts as photo-protectant, cis-urocanate is implicated to suppress the immune 
response, leading to UV-induced immunosuppression.

Impact of skin microbiome on metabolites and vice‑versa.  On the skin surface, there is a complex 
interplay between the host metabolism and its microbiota. It cannot be ruled out that a subset of metabolites 
presented above are either directly produced or are altered by the skin microflora. Indeed, skin microbiome plays 
an important role in maintaining cutaneous health and the skin microflora is constantly adapting in response 
to intrinsic and extrinsic factors. Environment and therefore pollution exposure has the potential to influence 
the skin microflora and bacterial isolated from the human skin have been shown to degrade PAHs and related 
xenobiotic compounds33.

In a previous study based on the same cohort, we have shown that an increase in Shannon diversity was 
correlated to PAH levels score. This observation was further supported by identification of pathways that point 
towards host-microbe interaction and degradation of aromatic compounds in a metagenomics analysis on a 
limited number of individuals (n = 32) who presented with very high and very low levels of PAH in their hair 
samples14. Here, to explore the influence of microbiome on skin metabolites and vice-versa, we used PLS pre-
diction model and Pearson’s correlations between metabolites and microbiome on all the 134 individuals. In 
previous studies performed on gut, fecal metabolome has been reported to account for 68% of the variance in 
inter individual gut microbiome composition34, such comparisons are largely unexplored for skin. There has 
been a focus on persistence of the metabolites derived from skin care products35 or chemicals associated with 
urbanization36 or a higher level 3D modeling of the skin surface components37. In our study, for the first time, 
we have simultaneously analyzed endogenous metabolites and microbial diversity.

Using the prediction model, metabolome of the skin samples from the two cities accounted for 35% of the 
variance of bacterial diversity. Using the prediction model, metabolome of the skin samples accounted for only 
14% of the variance of fungal skin diversity suggesting a higher contribution of the bacterial diversity to skin 
metabolites composition compared to fungi. Pearson’s correlations highlighted 42 metabolites significantly cor-
related to bacterial diversity, mainly amino acids (n = 19; including kynurenate), peptides (n = 10; including 
gamma-glutamylglutamate) and lipids (n = 11; including maleate and oleamide) (Suppl_Table 3). Two acetylated 
amino acids, N6-acetyllysine and N-delta-acetylornithine, were identified as the strongest correlated metabolites 
with a decrease in bacterial Shannon diversity. For fungal diversity, Pearson’s correlations were very weak (< 0.25), 
except for three metabolites: trans-4-hydroxyproline; linoleate (18:2n6) and nicotine (Suppl_Table 3). Our obser-
vations indicate a higher contribution of the bacterial diversity to metabolite composition compared to fungi.

To dig deeper into this analysis, we conducted sparse CCA (“Methods” section). As shown in Fig. 5A, mainly 
commensal bacterial taxa (Propionibacterium B1, B19 and B8535; Staphylococcus B107 and B4; Corynebacterium 
B21) were retrieved by sCCA with an exception of Paenibacillus B52, an environmental bacterium. A positive 
correlation was observed mainly with lipid metabolites (6/11 metabolites); laurate and myristoleate being the 
strongest correlated metabolites with Staphylococcus B107. Presence of free fatty acids could mirror triglyceride 
hydrolysis by microbial lipases as reported earlier37,38. A second group of metabolites was positively correlated 
with OTUs, gathering three acyl-carnitine (C18:1; C14:1; C16:1), that are not synthetized by bacteria but can 
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Figure 4.   (A) Heatmap of cross-correlation between metabolites and PAHs selected by sparse Canonical 
Correlation Analysis (sCCA). The values in the heatmap correspond to Pearson’s correlation coefficient. (B) 
Focus on cis-and trans-urocanate metabolites with boxplots of the log-normalized values. We also represent the 
cis/trans urocanate ratio. A red star indicates that the difference in mean between the 2 cities, Baoding (More 
Polluted) and Dalian (Less Polluted), is significant (q-value < 0.05, t-test withcorrection for multiple testing using 
Benjamini–Hochberg method). Figures were created using the R software: R Core Team (2017), R Foundation 
for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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Figure 5.   Heatmaps of the cross-correlation between OTU abundance and metabolites selected by sparse 
Canonical Correlation Analysis (sCCA), adjusted for city confounder. The values in the heatmap correspond to 
Pearson’s correlation coefficient. (A) bacterial OTU. (B) fungal OTU. Figures were created using the R software: 
R Core Team (2017), R Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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be a source of carnitine, a known nutrient and osmoprotectant, for bacteria39, suggesting that these acylcar-
nitine/carnitine favor skin commensals on the skin. This results contrasts with the gut metabolome40, where 
acylcarnitines were enriched in the case of gut dysbiosis. Only two amino acids were positively correlated with 
Propionibacterium and Staphylococcus OTUs that corresponded to the same metabolites associated to bacterial 
diversity: N6-acetyllysine and the arginine metabolite N-delta-acetylornithine. Although skin bacteria such 
as Staphylococcus have the capacity to produce these amino acids, to our knowledge there are no existing data 
supporting their contribution to the skin metabolome content, nor link with skin dysbiosis. Furthermore, two 
metabolites were positively correlated with bacterial taxa: histamine and phenyllactate30. Histamine is a well-
known mediator of the allergic reaction41. Histamine is not only synthesized in mast cells but is also produced 
by commensal microorganisms in the gut under physiological conditions42,43. We can postulate a similar case 
on the skin, since Propionibacterium and Staphylococcus have the capacity to secrete histamine too44. PLA is a 
biopreservative produced by propionic acid bacteria such as Propionibacterium, lactic acid bacteria (LAB)45, and 
Paenibacillus. Given the symbiotic association of Paenibacillus with a stingless bee, associated with antimicrobial 
activity of PLA, our observation raise the possibility that PLA produced by skin commensals protect the skin 
from external pathogens46. Skin metabolome analysis presented in previous sections showed tryptophan path-
way to be modulated in individuals living in polluted city of Baoding (Suppl_Fig. 5). Specifically, we observed 
reduced indoxyl-3-sulfate, an aryl hydrocarbon receptor (AhR) agonist, in individuals living in more polluted 
city and is reported to be significantly lower in the skin of AD patients47. The present analysis did not show 
significant correlation between indoxyl-3-sulfate and bacterial taxa. Additional analysis at the functional level 
using metagenomics is underway to investigate the link between tryptophan metabolism and the microbiome.

The majority of fungal taxa selected with sCCA corresponded to Malassezia OTU (Fig. 5B). They have 
distinct correlations profiles compared to bacteria with either amino acids/peptides (arginine, alanine, gamma-
glutamylhistidne), the long-chain sphingoid bases phytosphingosine, sphinganine and sphingosine and unknown 
metabolites. Phytosphingosine, sphingosine and sphinganine are main constituents of the stratum corneum 
ceramides. In addition to their role in barrier function, these molecules are reported to favor the growth of 
Malassezia sp. while inhibiting the growth of opportunistic pathogens such as Candida albicans48; which could 
explain the correlation observed in the present study.

Comparing skin microbiota and skin metabolome highlighted a strong link between sebum degradation 
and bacterial taxa (Propionibacterium and Staphylococcus), this also revealed a potential link between these taxa 
and the presence of carnitine, histamine and PLA on skin, which could represent new factors involved in the 
commensal—host homeostasis. As the correlation between bacterial diversity and metabolites was stronger, we 
decided to focus on bacterial taxa for further analysis.

Multi‑omics signature of pollution exposure induced clinical signs.  The results presented so far 
allowed us to characterize individual parameters such as clinical, metabolites, microbiome and their correla-
tion to pollution exposure. This analysis revealed certain mechanisms linked to barrier function as illustrated 
by metabolites and proteins and/or sebum degradation from microbiome analysis. To investigate the possible 
link between these diverse biological parameters, exposure and a visible perceptible clinical skin dysfunction, 
we conducted a multiblock data analysis (see “Methods” section for details) that concerns the analysis of several 
sets of variables (blocs) observed on same individual. The need to analyze conjointly the different data sets to 
discover their main sources of covariation requires the use of very specific computational methods like the one 
recently proposed by Tenenhaus et al.49 in the framework of generalized canonical correlation analysis. This 
approach makes it possible to obtain a unique representation of individuals and descriptors in a consensus space, 
an essential step in the search for specific profiles/clusters based on classification49,50.

By following the methodology described in the method section, the entire population was partitioned into 4 
distinct clusters as shown in Fig. 6. Cluster 1 and Cluster 3 are the largest and consist of 93.4% (n = 46) of Baod-
ing and 92.8% (n = 42) of Dalian population respectively. Cluster 3 (n = 15) and Cluster 4 (n = 29) are smaller 
and have a mixed population. Each cluster has its unique molecular profile that consists of a list of metabolites, 
microbes and PAH and their derivatives. Each of these clusters was characterized by the variables differentially 
expressed in the clusters with regard to the whole study population, using a v-test (see “Methods” section for 
more details). We then obtained a subset of meaningful/relevant clinical parameter(s) for each of the clusters. 
It was interesting to note that among the 46 individuals of Cluster 1, 26 (57%) and 11 (25%) of them presented 
with spread macules on cheek and forehead respectively and that this cluster also had the highest scores for the 
severity for this pigmentary disorder (Fig. 7).

Cluster 2, 3 and 4, on the other hand, did not show spread macule as a dominant condition. In fact, these 
clusters showed mixed clinical characters (data not shown) and therefore, it was not possible to classify them into 
a precise clinical parameter category. Figure 8 represents the v-test values of the variables which are significantly 
modulated (under- or over-expressed) in the Cluster 1 and consists of 30 metabolites, 14 bacteria and 9 PAH 
and their derivative. We observed a good overlap of metabolites that were described earlier in this manuscript 
and were the most significantly modulated between polluted and less polluted cities. These include metabolites 
of tryptophan and histidine pathways (kynurenate, cis-urocanate and 4-imidazoleacetate), peptide (gamma-
glutamyl glycine) and fatty acids (oleamide). Cluster 1 was characterized by a negative association with com-
mensal bacteria taxa (Propionibacterium B1; Staphylococcus B4 and Corynebacterium B2 and B21) and positive 
associations were observed with two genera previously observed on aged skin (Neisseria B119; Rothia B39)51 and 
two genera linked to PAH (Brevibacterium B3714 and Paracoccus B5252). This analysis has allowed us to come up 
with a potential molecular ID or a road-map to investigate the association between chronic exposure to pollution 
and appearance of the pigmentary disorders. It is too early to speculate on the mechanisms and role of different 
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Figure 6.   (A) Cluster dendrogram of the hierarchial clustering performed on the consensus space constructed 
by MAXVAR-A model from the PAH, metabolites and Bacteria OTUs selected by sCCA. Individuals are colored 
by cities. Based on the height of the gap between 2 consecutive level of the dendrogram, we chose to construct 4 
clusters of individuals. (B) Representation of hierarchical clustering on the MAXVAR-A consensus space, with 
colored convex hull around cluster. The two first component of the consensus space represent 45.9% of the total 
variability. The table in the upper-right of the figure represents the repartition of individuals between the 2 cities, 
Baoding (More Polluted) and Dalian (Less Polluted), for each cluster. Figures were created using the R software: 
R Core Team (2017), R Foundation for Statistical Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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Figure 7.   (A) Relative proportion of Spread Macules severity score in the consensus clusters. A score of 1 
correspond to “no spread macules”, a score of 2 to “weak spread macules”, a score of 3 to “moderate spread 
macules” and a score of 4 to “severe spread macules”. (B) Characterization of consensus clusters by Spread 
Macules severity score using v-test statistic. In row we represent the consensus clusters and in column the 
location of the spread macule score on the face (cheek or forehead). A positive v-test value (in green) indicates 
that the severity score is in higher proportion in the cluster compare to the global population. A negative 
v-test value (in red) indicates that the severity score is in higher proportion in the cluster compare to the 
global population. The v-test value is considered significant if it reaches a threshold of 2 (black dotted vertical 
line on the plot). Figures were created using the R software: R Core Team (2017), R Foundation for Statistical 
Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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Figure 8.   Focus on the characterization of the consensus cluster 1 by PAHs, metabolites and bacteria OTUs 
using v-test statistic. A positive v-test value (in green) indicates that the variable has mean value in the cluster 
higher than the global population. A negative v-test value (in red indicates that the variable has an average 
lower in the cluster higher than the global population. Only the variables with a significant v-test value are 
represented. The y-axis text is colored by type of variable (blue for metabolites, green for PAHs and yellow for 
bacterial OTUs). Figures were created using the R software: R Core Team (2017), R Foundation for Statistical 
Computing, Vienna, Austria. URL https://​www.R-​proje​ct.​org/.

https://www.R-project.org/
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entities (metabolites, Microbiome and PAH) that lead to this clinical condition. These are some of the questions 
that we are asking in our follow up studies through extensive metagenomics analysis and other clinical studies.

In conclusion, our study gives first insight into potential molecular perturbations and phenotype changes of 
skin due to chronic exposure to PAH, it also provides a roadmap of biological and clinical measurements and 
computational tools that could be applied to other similar studies including larger cohorts.

Materials and methods
Subject recruitment and sample collection.  This multi-parametric clinical study was performed by 
the Sino-German Cosmetics Institute (Beijing) in agreement with the recommendations of the Declaration of 
Helsinki and was approved by the local ethics committee (Study n° 2015-033-DY-024, CAIQ Cosmetics Tech 
Center, Beijing, China, 19.08.2015). Informed written consent was obtained from all participants prior to any 
study-related procedure. Details of subject recruitment were described extensively elsewhere13,14,28. Briefly, study 
volunteers lived in two Chinese cities selected for being similar as regards UV exposure, geographical location 
and population lifestyle, but having different pollution levels, measured by monitoring stations as Air Quality 
Index (Suppl_Fig. 9). The selection was based on the data collected by the Chinese national air reporting system 
over several months, that showed different air pollution profiles of the two cities but that are located on com-
parable latitude and elevation and also have similar climate conditions53. Sixty-seven women were recruited in 
Dalian, the less polluted city, and 67 women in the more polluted city of Baoding. Age of subjects was limited 
to 25–45 years, to avoid major effects of hormonal variations during either puberty or menopause. Exclusion 
criteria included pregnancy, use of medications (e.g. antibiotics or antifungals), skin pathologies and current 
smoking. All participants provided information regarding health status, medical history, and daily habits. Each 
subject filled a self-administered questionnaire on skin care habits and time spent outdoors. Information on 
demographics and life-style of individuals is presented in Suppl_Table 4. Participants also underwent a clinical 
assessment by dermatologists with skin measurements, including scoring of skin signs and phenotypes. For 
microbiome analysis, cheek skin sampling was performed in a climate-controlled room at 22 °C and 60% humid-
ity, as described previously14. Sterile cotton-tipped dry swabs were rubbed firmly on the cheek for 60 s to cover 
a surface area of 2 cm2. Cotton swabs were then placed into coded microfuge tubes, immediately flash frozen 
in liquid nitrogen, and stored at − 80 °C prior to further analyses. For metabolomics and proteomics D-Squame 
samples were collected from the cheek area as per manufacturer’s instructions. D-SQUAME is the registered 
name of a circular strip tape used to sample stratum corneum, Produced by CuDerm Corporation (Dallas, TX, 
U.S.A). For PAH analysis, a sample of hair was cut with stainless scissors from the occipital region of each sub-
ject, as described in13,28. Each sample comprised only the first 12 cm of hair starting from scalp, corresponding 
to around a year of hair growth before sampling. Hair samples were transferred into aluminium-foil paper and 
kept at room temperature until analysis.

Metabolomic analysis of skin samples.  The untargeted metabolomic analysis was performed at Metab-
olon, Inc (Morrisville, NC). Method of sample preparation and analysis described in this section was performed 
at Metabolon, Inc (Morrisville, NC) and has been described elsewhere before54. All samples were stored at − 80 °C 
until processed. Sample Preparation: Samples were prepared using the automated MicroLab STAR system from 
Hamilton Company. Several recovery standards were added prior to the first step in the extraction process for 
QC purposes. To remove protein, dissociate small molecules bound to protein or trapped in the precipitated 
protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with methanol under 
vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by centrifugation. The resulting extract 
was divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods 
with positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion 
mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved 
for backup. All methods utilized a Waters ACQUITY (UPLC) and a Thermo Scientific Q-Exactive high resolu-
tion/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap 
mass analyser operated at 35,000 mass resolution. The MS analysis alternated between MS and data-dependent 
MS scans using dynamic exclusion. The scan range varied slightly between methods but covered 70–1000 m/z. 
Compounds were identified by comparison to library entries of purified standards or recurrent unknown enti-
ties based on retention time, molecular weight, preferred adducts and in-source fragments, as well as associ-
ated MS spectra and curated by visual inspection for quality control using software developed by Metabolon. 
Proteomic analysis by targeted MRM/SRM: Protein extraction, digestion, and mass spectrometry analyses were 
performed by the proteomics platform of the CHU de Quebec research center, Quebec, Qc, Canada. The samples 
(one D-Squame per subject) were resuspended in 550ul of extraction buffer (50 mM ammonium bicarbonate 
(ABC), 0.5% sodium deoxycholate, 50 mM DTT, protease inhibitor cocktail and 1uM pepstatin). After succes-
sive filtration and centrifugation, pellets were solubilized in 50µL of a 50 mM ABC/1% DOC solution for protein 
quantification by Bradford protein assay.

Tryptic digestion: Approximatively 10ug of each sample was heated at 95 °C for 5 min and proteins were 
reduced with 0.2 mM DTT at 37 °C 30 min and alkylated with 0.8 mM IAA (iodoacetamide) for 30 min at RT 
in the dark. The proteins were then digested with trypsin (1 ug) and incubated at 37 °C overnight.

SRM optmisation: Three peptides/protein of interest were selected by the three most intense transitions with 
an optimal collision energy. Selected peptides for SRM assay were synthesized with a heavy isotope on the C-ter 
amino acid ([13C6]-Lys and [13C6]-Arg) by ThermoFisher Scientific (Germany). Just before injection, 2.8 µL 
of sample are mixed with 2.8 µL of the stock heavy labeled synthetic peptide standard solution.

1 µg of each sample were analyzed on an Eksigent NanoLC 400 chromatography system (Sciex, Concord, 
Ontario) coupled online to a 6500QTRAPTM (ABSciex, Concord, Ontario) mass spectrometer with a nanospray 
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ion source. The peptides were eluted with a linear gradient from 5 to 40% solvent B (A: 0.1% FA, B: ACN, 0.1% 
FA) in 30 min then 40 to 95% B in 10 min at 300 nL/min. Samples were injected randomly. Raw files were 
imported in Skyline v3.6 software for peak integration.

Results from Skyline were treated with excel, briefly the two more intense transitions for two peptides of each 
protein were used for quantification. The peak areas were normalized based on the heavey-labeled synthetic 
peptides. A normalisation factor was calculated and applied to the endogenous peptides. For each group, the 
mean of the sum of the normalized areas were calculated for each condition, then a ratio and a t-test were applied.

Analysis of PAH and their metabolites in hair samples.  Details on the methodology used for the 
analysis of hair PAH and metabolites have been previously reported13, here we describe briefly only the main 
steps. First, hair samples were washed and decontaminated, to remove any compounds on the hair surface 
without removing those incorporated in the bulk matrix via biological mechanisms and representative of the 
dose present in body. Then, hair samples were pulverized, hydrolyzed, extracted and analyzed according to 
well-established methods based on gas and liquid chromatography coupled with tandem mass spectrometry 
(GC–MS/MS and LC–MS/MS). PAH, PAH metabolites and nicotine/cotinine were analyzed separately, and 
quantified against table isotope labeled analogue. The method allowed for the analysis of 15 parent PAH (based 
on US-EPA priority list), 56 PAH monohydroxy-metabolites (all the commercially available standard), nicotine 
and cotinine. Limits of detection were also assessed.

Analysis of skin microbiota.  Detailed methodology for the analysis of skin microbiome has been 
reported earlier14. Briefly, gDNA was extracted from skin samples using the PowerSoil DNA isolation kit (MO 
BIO Laboratories, Carlsbad, CA, USA) following the manufacturer’s instruction with modifications as described 
previously, and each gDNA sample underwent triplicate PCR by primers targeting the bacterial 16S rRNA gene 
V1-3 region and the fungal ITS1 region. Following amplicon purification and indexing -PCR the library was 
prepared, and bacterial and fungal paired –end sequencing was performed on Illumina Miseq platform by Seq-
Matic LLC (Fremeont, CA, USA). 16S rRNA gene and ITS sequences underwent processing and bioinformat-
ics analysis using USEARCH (v9.2.64) and QIIME (v1.9). Bacterial OTUs was obtained for the representative 
sequences after clustering at 97% sequence identity using the USARSE algorithm within USEARCH, against 
the SILVA database (128 release) and fungal OUT were interrogated against previously curated fungal database 
designed for skin microbiome analysis55. Following quality controls and after removing undesirable reads, a 
total of 9,656,916 and 14,649,172 bacterial and fungal reads were retained, respectively. Within-sample Shan-
non diversity (or alpha diversity) was estimated using the breakaway (v4.0) package in R v3.5.1 as reported 
earlier14. Correlations between metabolites and bacterial and fungal taxa were subsequently identified using a 
sCCA approach.

Statistical methods.  The article is structured into several parts, each with specific statistical approaches 
which are described below.

Association of clinical signs with city and PAH: Descriptive statistics for clinical signs have been tabulated by 
city and PAH groups. Clinical scores between cities or PHA groups were compared using a Wilcoxon test. The 
PAH score is the best univariate summary of all 39 PAHs measurements. It is the first principal component of a 
principal component analysis (PCA) based on the log-normalized PAH measurements.

The study being observational, p values must be interpreted more in an exploratory than confirmatory way, 
associations being potentially associated with confounding factors.

Metabolites and City: A pathway enrichment analysis has been performed. Metabolite pathways that are dif-
ferentially modulated in skin samples of individuals from polluted versus less polluted cities are displayed using 
both heatmap of -log10 q-values (correction of p values using Benjamini–Hochberg multiple testing adjustment 
method) and boxplots by city of selected log normalized descriptors.

In order to evaluate the differences between the metabolomics profile between the two cities, irrespective of 
classification into sub or super pathway, a cumulative distribution of Log2-Fold change was calculated with the 
most polluted city, Baoding, as the reference population (Suppl_Fig. 3). The Fold changes have been calculated 
after removing the outliers having a value superior or equal to 3 times the interquartile range. Significance of 
these fold changes was tested using a t-test and the results are represented using a volcano plot which repre-
sents log2(FC) in x-axis and − log10(q-value) in y-axis. This bivariate representation allows to highlight the most 
relevant metabolites, i.e. those having a q-value < 0.05 and a |log2(FC)|> 0.6.

A complementary multivariate approach using a random Forest classification model was also used to confirm 
the robustness of the previous results (Suppl_Fig. 4A). The random forest allows to model the city membership 
as a non-linear multivariate function of the metabolites and to extract variable importance, i.e. the metabolites 
which contribute the most to the predictive accuracy of the model. We use the rfsrc function from the Random 
Forest SRC R package to perform the random forest classification model, more details on the model are given 
in Suppl_Fig. 4B. We also evaluate the predictive performance of the model on the Out-Of-Bag (OOB) samples, 
the accuracy results are given in Suppl_Fig. 4C. To compute the variable importance (VIMP) values we use a 
prediction error approach involving “noising-up” each variable in turn. VIMP for a variable Xj is the difference 
between prediction error when Xj is noised up by randomly permuting its values, compared to prediction error 
under the observed values21. Since VIMP is the difference between OOB prediction error before and after per-
mutation, a large VIMP value indicates that misspecification detracts from the variable predictive accuracy in 
the forest. VIMP close to zero indicates the variable contributes nothing to predictive accuracy, and negative 
values indicate the predictive accuracy improves when the variable is mispecified. For the sake of clarity, we only 
represent the 20 metabolites with highest VIMP values in Suppl_Fig. 4A.
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Metabolites and PAH: To make a direct comparison between exposure and its molecular impact on skin, a 
sparse Canonical Correlation Analysis (sCCA) has been carried out to identify sets of PAHs and metabolites 
that covary together. sCCA is a regularized version of canonical correlation analysis (CCA) used to study the 
relationship between two datasets while selecting only significant correlations17. If we have two datasets X and Y 
of random variables, and there are correlations among the variables, then the sCCA will find sparse linear combi-
nations (components with null weights for non-relevant variable) of X and Y which have maximum correlation 
with each other. The sparsity parameters of sCCA were estimated using a permutation scheme (nperms = 500) 
with the MultiCCA.permute function from the PMA R package17,]18. The permutation procedure gave a p value 
of 0.004 associated with a correlation coefficient of 0.539 between the 1st sparse components of the two datasets. 
The 1st sparse components have 20 and 7 variables with non-null weights for metabolomics and PAH dataset 
respectively. The cross-correlation between the selected metabolites and PAHs was visualized using a heatmap 
representation.

Metabolites and skin microbiome: Correlation between the Shannon index of alpha bacterial or fungi diversity 
and the metabolites were estimated using Pearson correlation coefficient and ranked according to significance.

Prediction of Shannon index for bacterial or fungi diversity using the metabolites as independent variables 
was performed using a partial least squares regression with SIMCA software version 16.0, Umetrics, Umea, 
Sweden. sCCA was then performed to explore global associations between relative abundances of bacterial and 
fungal OTUs and metabolites (Fig. 5A,B). The sparsity parameters of sCCA were estimated using a permuta-
tion scheme (nperms = 500) with the MultiCCA.permute function from the PMA R package. The permutation 
procedure of the sCCA between the bacterial OTUs and the metabolites gave a p value < 0.001 associated with a 
correlation coefficient of 0.618 between the 1st sparse components of the two datasets. The 1st sparse components 
have 16 and 7 variables with non-null weights for the metabolomics and bacterial OTU datasets respectively. 
The permutation procedure of the sCCA between the fungal OTUs and the metabolites gave a p value of 0.206 
associated with a correlation coefficient of 0.436 between the 1st sparse components of the two datasets. The 
1st sparse components have 25 and 5 variables with non-null weights for the metabolomics and fungal OTU 
datasets respectively. The cross-correlation between the selected metabolites and OTUs was visualized using a 
heatmap representation.

Multiblock analysis: The need to analyze conjointly the different data sets to discover their main sources of 
covariation requires to generalize the sCCA approach to more than two groups. In that context, we use a sparse 
version of Regularized Generalized Canonical Correlation Analysis [ref] called Sparse Generalized Canonical 
Correlation Analyis (SGCCA) [ref]. S/RGCCA is a general component-based framework for a component-based 
framework for the integrative exploration of multimodal and high-dimensional data sets. S/RGCCA subsumes 
as special cases many multiblock component methods as special cases including MAXVAR-A (see Tenenhaus 
et al.49 for details). MAXVAR-A allows visualizing in a single space (the so-called consensus space), the relation-
ships between variables belonging to the different blocks. We thus combine the metabolomics, PAH and bacte-
rial OTU datasets using MAXVAR-A. Based on the 2 first components of the consensus space, we performed 
a hierarchical clustering to segment the population into 4 clusters (see Fig. 6A,B). The choice of 4 clusters was 
based on the visual evaluation of the dendrogram in Fig. 6A, more specifically by looking at the height of the gap 
between 2 consecutive level of the hierarchy. Each cluster was then characterized by clinical signs, metabolites, 
PAHs and bacterial OTUs using a v-test20, a procedure available from the catdes function of the Factominer R 
package. The v-test values allow determining if a variable is significantly over-represented or under-represented 
in the subgroup compared to the total population. For a continuous variable we test if the mean in a particular 
subgroup is different for the mean of the total population. For discrete/qualitative variables, we test if the propor-
tion of a modality in a particular subgroup is over-expressed or under-expressed in the subgroup compared to 
the whole population. The results of v-test are shown in Fig. 7B for the spread macules clinical sign and in Fig. 8 
for metabolites, PAHs and bacterial OTUs which are significantly modulated in cluster 1.
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