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In various diseases, the STAT family display various cellular
controls over various challenges faced by the immune system
and cell death programs. In this study, we investigate how an
intracellular signalling network (STAT1, STAT3, Bcl-2 and
BAX) regulates important cellular states, either anti-apoptosis
or apoptosis of cancer cells. We adapt a mathematical
framework to illustrate how the signalling network can
generate a bi-stability condition so that it will induce either
apoptosis or anti-apoptosis status of tumour cells. Then, we
use this model to develop several anti-tumour strategies
including IFN-β infusion. The roles of JAK-STATs signalling
in regulation of the cell death program in cancer cells and
tumour growth are poorly understood. The mathematical
model unveils the structure and functions of the intracellular
signalling and cellular outcomes of the anti-tumour drugs in
the presence of IFN-β and JAK stimuli. We identify the best
injection order of IFN-β and DDP among many possible
combinations, which may suggest better infusion strategies of
multiple anti-cancer agents at clinics. We finally use an
optimal control theory in order to maximize anti-tumour
efficacy and minimize administrative costs. In particular,
we minimize tumour volume and maximize the apoptotic
potential by minimizing the Bcl-2 concentration and
maximizing the BAX level while minimizing total injection
amount of both IFN-β and JAK2 inhibitors (DDP).
1. Introduction
Cancer, including lung cancer, is the most fatal killer in the world
[1,2]. Comprehensive understanding of signalling networks of
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proposed roles of STAT-Bcl2-BAX in the regulation of apoptosis
and anti-apoptosis in response to fluctuating IFN-b and JAK2

(a) low STAT1, high STAT3, r13 � 1

(b) high STAT1, low STAT3, r13 � 1 *r13 =
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Figure 1. A schematic diagram for a proposed network of apoptosis signalling in the presence of IFN-β/JAK2. (a) Low IFN-β and
high JAK2 levels increase STAT3 and Bcl-2 and suppress STAT1 and BAX, maintaining anti-apoptosis status. (b) High IFN-β and
decreased JAK2 initiate phenotypical transition from anti-apoptosis to apoptosis of cancer through reversed regulation of each
module.
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oncogene and tumour suppressors [3–6] in cancer cells can play a significant role in developing anti-
cancer drugs [7–9]. Various types of transcription factors function in a coordinated fashion to regulate
cell growth, cell division, cell death and cell migration [10–12]. In this work, we focus on the STAT
family which was shown to suppress or promote tumour growth [13,14]. There are various subtypes
of STAT family including STAT1, -2,-3,-4,-5 (STAT5A and STAT5B) and -6 [15]. Lack of STAT1 indicates
a selective signalling defect in response to interferons (IFN). While STAT1 (tumour suppressor)
suppresses the aggressive invasion and cellular growth of tumour cells [15–18], STAT3 (oncogene)
regulates multiple biological functions such as suppression of apoptosis, cell growth and invasion
[15,16,19]. Relative balance between STAT1 and STAT3 levels in cancer cells determines two different
dichotomous states: (i) an apoptosis progression and (ii) an anti-apoptosis state (inactivation of cell
death program). See figure 1. Various cytokines and growth factor receptors may initiate the JAK/
STAT network to target genes. Bcl-2 is a well-recognized gate-keeper, preventing the cellular death of
cancer cells by inhibiting BAX [20]. BAX, widely known as a pro-apoptotic factor, represents an
opposing function at the last signal step of the programmed cell death mechanism, i.e. apoptosis
[21,22]. The apoptotic process is mediated by the suppression of Bcl-2 as well as the activation of BAX
[21,23]. Reduced DNA binding ability of STAT3 causes dynamic changes in the expression of anti-
apoptotic Bcl-2 (decreased Bcl-2) and pro-apoptotic BAX proteins (increased BAX), leading to
induction of apoptosis [24]. Type I interferons and receptors mediate the downstream signals via
TYK2, JAK1 and JAK2, and through the phosphorylated STATs. Inhibitors of interferon signals, such
as suppressors of the cytokine signal protein family, can control the activity of STAT1 and STAT3
primarily by engaging in the adjustment of the negative feedback of JAK2-mediated signal network
[25]. Despite previous studies of apoptotic signalling, fundamental mechanism of the JAK-IFN-β-
mediated apoptosis processes is poorly understood. However, translational studies with experimental
data [26] support the considerable benefits of apoptosis-based therapy [27]. Qualitative analysis may
contribute to fundamental understanding of this complex system. In particular, a new approach may
identify the key functions and regulation of both JAK and IFN-β-mediated STATs in the apoptosis
pathways within cancer cells.

Mathematical modelling is a useful tool in revealing the fundamental mechanism in various cancers
[5,28–31], interactions with other cells [9,32–34] including immune cells [7,35,36], cellular invasion [37],
chemotherapy of cancer [35,38,39], apoptosis mechanism [6,35,40,41], and specific signalling pathways
[8] such as JAK-STAT [42,43], MYC-p53 [4] and microRNAs [3]. For example, mathematical models of
Bcl-2 signalling networks illustrated the importance of molecular play including intrinsic Bcl-2
apoptosis pathway [44–48], bistability in apoptosis [49], interaction between p53 and Bcl-2 [50], VEGF-
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Bcl-2 in angiogenesis [51,52] and MOMP regulation in pattern recognition [53]. See reviews in [54–57]
for systems-based approaches of Bcl-2 and cell-death program. In particular, optimal control
approaches are used to identify the optimal schedule of anti-cancer drugs targeting stromal/immune
cells and various signalling pathways [58–61]. The fundamental mechanism of the JAK-STAT-
mediated cancer cell killing is still poorly understood. To our knowledge, no mathematical study has
investigated the underlying mechanisms of JAK-STAT mediation of apoptosis in cancer cells. We have
developed a mathematical model of JAK-STAT-mediated apoptosis pathways in regulation of tumour
growth and cancer cell killing. We investigate the optimal dose schedule of anti-cancer drugs by an
optimal control theory.

Figure 1 shows a schematic diagram for a proposed network of apoptosis signalling in the presence of
IFN-β/JAK2. The network consists of a system of ordinary differential equations (ODEs) involving eight
variables: concentrations of STAT1, STAT3, Bcl-2, BAX, IFN-β, JAK2 and DDP and tumour volume. In this
work, we investigate (i) unexplored structure of the STAT-JAK2-Bcl-2-BAX signalling pathways, (ii) how
changes in IFN-β, STATs and JAK2 affect cancer progression, (iii) development of optimized treatment
scheme in a polymedicine approach (IFN-bþ JAK2 inhibitor). We found that JAK2 and mutual
antagonism between STAT1 and STAT3 play a major role in regulation of the apoptosis and anti-
apoptotic status in cancer cells, thus tumour growth dynamics, and obtained the optimal injection
strategies of both JAK2 inhibitors and IFN-β by minimizing costs and maximizing anti-tumour
efficacy through an optimal control theory.
:210594
2. Methodology
2.1. Mathematical model
Intracellular module (STAT1, STAT3, Bcl-2 and BAX): to consider the key pathways of apoptotic cell death
in a mathematical approach, we simplified the complex network to a key network shown in figure 2a.
Conventionally, the kinetic notations of hammerheads and solid arrows in a signalling network
represent inhibition and induction, respectively. Let the variables �S1, �S3, �B and �X be concentrations of
STAT1, STAT3, Bcl-2 and BAX at time �t, respectively.

The scheme includes autocatalytic activities, nonlinear activation or inhibition, mutual inhibition
between STAT1 and STAT3, and clearance/decay. In this work, we ignore any spatial effects
on dynamics of a given system. In general, the mass balance of given intracellular variable yi = yi(t),
(i = 1,…, N ) is used to derive the governing equation

dyi
dt

¼ fiðyÞ þ giðyÞ � hiðyÞ, ð2:1Þ

where y = (y1, y2,…, yN), the function fi(y) represents the source, gi(y) represents inhibition, and hi(y)
represents outflux due to natural decay, i.e. hi(y) = μi yi, where μi is the decay rate. The source function
fi(y) can be described below based on biological observations. A fractional form for the inhibition
term in equation (2.1) was chosen as the qualitative representation of negative feedbacks in this work.
Specifically, we use the form

giðyÞ ¼ z1z
n
2

zn2 þ aiFðyjÞ ð2:2Þ

for autocatalytic activity with the inhibition process of the intracellular variable yi by another
intracellular variable yj (i≠ j), where ζ1, ζ2 are constants, the parameter αi represents the inhibition
strength along with the amount of the variable yj via a function F(yj) (mi, z1, z2, ai [ Rþ, n [ Zþ). In
the absence of source, this inhibition term with the decay term, −μi yi provides the baseline
concentration y�i � z1=mi of the given molecule yi at a steady state when the inhibition strength F(yj) is
small or zero. (When fi(y)≠ 0, the baseline becomes y�i � ð fi þ z1Þ=mi.) The relative balance between
the source term and inhibition strength from yj essentially determines the concentration of the
molecule yi. Thus, by comparing the simulated yi level with experimental data in the presence and
absence of the inhibitory molecule yj in the system, one can build a mathematical model in equation
(2.1) with the consistent, up- or downregulated yi. Several studies [3,5,35,62] have shown that this
fractional form for the negative feedbacks may reproduce the analytic structure of genetic networks
(positive and negative feedbacks) and qualitative dynamics such as bi-stability with experimental
validation. Other forms of negative feedbacks (e.g. one based on chemical reactions) have been used
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Figure 2. A schematic diagram of the apoptosis signalling network in figure 1. (a) Key signalling network of apoptosis involving
STAT1, STAT3, Bcl-2 and BAX in response to IFN-β and JAK2. (b) The corresponding mathematical model: levels of STAT1 and STAT3,
and activity of their target Bcl2, and BAX were represented by ‘S1’, ‘S3’, ‘B’ and ‘X’, respectively.
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in the literature [32,63]. Then, the mass balance of the concentrations of STAT1 ( �S1), STAT3 ( �S3), Bcl-2 (�B)
and BAX (�X) gives us

d �S1
d�t

¼ f1ðsÞ|ffl{zffl}
source

þ a1a22
a22 þ a3F1ð �S3Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�S3s�S1

�mS1
�S1|fflffl{zfflffl}

decay

, ð2:3Þ

d �S3
d�t

¼ f2ðs, jÞ|fflfflffl{zfflfflffl}
source

þ a4a25
a25 þ a6F2ð �S1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�S1s�S3

�mS3
�S3|fflffl{zfflffl}

decay

, ð2:4Þ

d�B
d�t

¼ f3|{z}
source

þ a7a28
a28 þ a9F3ð �S1Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�S1s�B

þ lSTAT3 �S3|fflfflfflfflffl{zfflfflfflfflffl}
�S3!�B

�mBcl2
�B|fflffl{zfflffl}

decay

ð2:5Þ

and
d�X
d�t

¼ f4|{z}
source

þ a10a211
a211 þ a12F4ð�BÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

�Bs�X

�mBAX
�X|fflfflffl{zfflfflffl}

decay

, ð2:6Þ

where s, j are concentrations of IFN-β and JAK2, respectively. The rate of changes in STAT1 involves the
signal source from IFN-β via a function f1(s), autocatalytic activity with inhibition from STAT3 (�S3 s �S1)
and natural decay at a rate mS1 . In particular, the general form in equation (2.2) is used for the
autocatalytic activity/inhibition in the second term on the right-hand side (RHS) of equation (2.3) with
the autocatalytic activity parameter a1, the Hill-type inhibition saturation constants a2, and inhibition
strength a3. Consistent forms and parameter notations were used for autocatalytic activity with inhibition
of STAT3 (a4, a5, a6), Bcl-2 (a7, a8, a9) and BAX (a10, a11, a12) in the second terms in equations (2.4)–(2.6). In
a similar fashion, STAT3 in equation (2.4) undergoes the signalling from both JAK and IFN-β via a
function f2(s, j), autocatalytic activity with inhibition from STAT1 (�S1 s �S3) and natural decay at a rate
mS3 . On the other hand, Bcl-2 in equation (2.5) is regulated by the signal source at a fixed rate f3,
autocatalytic activity with inhibition from STAT1 (�S1 s �B), upregulation from STAT3 (�S3 ! �B) at a rate
λSTAT3, and natural decay at a rate μBcl2. Finally, BAX in equation (2.6) is regulated by the signal source at
a fixed rate f4, autocatalytic activity with inhibition from STAT1 (�B s �X), and natural decay at a rate μBAX.
We set mS1 ¼ mS3 due to the same half-life of STAT1 and STAT3 (electronic supplementary material, File).

In equation (2.3), the high concentration of IFN-β (s) upregulates the STAT1 level through the positive
function f1(s), while the high concentration of STAT3 inhibits the STAT1 level through the positive
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function F1ð �S3Þ. In other words, we have mathematical conditions: @f1=@s . 0, 8s � 0 and
@F1=@ �S3 . 0, 8 �S3 � 0. In a similar fashion, the function f2(s, j ) in equation (2.4) indicates the
upregulation of the STAT3 level through JAK as well as suppression of the STAT3 level by the IFN-β.
STAT1-mediated suppression of STAT3 is expressed by the function F2ð �S1Þ. On the contrary, STAT3
activity is partially induced by the signal j. One must also have ∂f2/∂s < 0, ∂f2/∂j > 0, @F2=@ �S1 . 0,
@F3=@ �S1 . 0, @F4=@�B . 0 for all non-negative s, j, �S1, �B. Based on biological assumptions (figure 2a),
we assume that

f1ðsÞ ¼ lIFNbs, f2ðs, jÞ ¼ K2 þ lJAKj
K1 þ lIFNb2s

,

F1ð �S3Þ ¼ �S3
2, F2ð �S1Þ ¼ �S1

2, F3ð �S1Þ ¼ �S1
2, F4ð�BÞ ¼ �B2,

ð2:7Þ

where λIFNβ is the source of STAT1 from IFN-β, λIFNβ2 is a source from IFN-β, and λJAK is a source from
JAK2. We use a non-dimensionalization formula as follows:

t ¼ mS1
�t, S1 ¼

�S1
S�1

, S3 ¼
�S3
S�3

, B ¼
�B
B� , X ¼

�X
X� , mB ¼ mBcl2

mS1
, mX ¼ mBAX

mS1
,

k1 ¼ a1
mS1S

�
1
, k2 ¼ a2, a ¼ a3ðS�3Þ2, k3 ¼ a4

mS1S
�
3
, k4 ¼ a5, b ¼ a6ðS�1Þ2,

l1 ¼ f3
mS1B

� , k5 ¼ a7
mS1B

� , k6 ¼ a8, g ¼ a9ðS�1Þ2, l3 ¼ lSTAT3S�3
mS1B

� ,

l2 ¼ f4
mS1X

� , k7 ¼ a10
mS1X

� , k8 ¼ a11, d ¼ a12ðX�Þ2, lS1 ¼
lIFNbS�

mS1S
�
1
, S ¼ s

S�

and lk ¼ K2

mS1S
�
3
, lJ ¼ lJAKJ�

mS1S
�
3
, J ¼ j

J�
, K ¼ K1, lS2 ¼ lIFNb2S�:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2:8Þ

Then, we have dimensionless governing equations

dS1
dt

¼ lS1S|ffl{zffl}
source

þ k1k22
k22 þ aS23|fflfflfflfflffl{zfflfflfflfflffl}

S3sS1

� S1|{z}
decay

, ð2:9Þ

dS3
dt

¼ lk þ lJ J
K þ lS2S|fflfflfflfflffl{zfflfflfflfflffl}

source

þ k3k24
k24 þ bS21|fflfflfflfflffl{zfflfflfflfflffl}

S1sS3

� S3|{z}
decay

, ð2:10Þ

dB
dt

¼ l1|{z}
source

þ k5k26
k26 þ gS21|fflfflfflfflffl{zfflfflfflfflffl}

S1sB

þ l3S3|ffl{zffl}
S3!B

� mBB|{z}
decay

ð2:11Þ

and
dX
dt

¼ l2|{z}
source

þ k7k28
k28 þ dB2|fflfflfflfflffl{zfflfflfflfflffl}

BsX

� mXX|ffl{zffl}
decay

: ð2:12Þ

The mathematical representation of the kinetic network in a dimensionless form is shown in figure 2b.
Note that the programmed cell death of cancer cells (i.e. apoptosis) occurs when BAX is upregulated
and the anti-apoptotic agent, i.e. the gate keeper Bcl-2, is downregulated. Therefore, in our modelling
framework, the apoptosis process is turned on when the level of Bcl-2 is smaller than a threshold
(thB) and BAX activity is larger than another one (thX); in other words, when the condition {(B, X ) :
B < thB, X > thX} is satisfied, as suggested in experiments and modelling works [6,49,64–68]. The
threshold values were set based on biological observation [49,64–68] and dynamical system of
equations (2.9)–(2.12).

Tumour volume (T(t)): Bcl-2 and BAX are crucial in the mutual antagonism of cell death programs
through IFN-β and JAK2 in a tumour microenvironment (TME). STAT1 is shown to suppress cancer
growth [15–18]. We assume that tumour cell killing is regulated by relative balance between Bcl-2 and
BAX, and tumour growth is suppressed by STAT1. Various types of mathematical models for tumour
growth were suggested: logistic growth [69], Gompertz growth [70] and other nonlinear models [71].
Especially, logistic growth with/without growth factors was observed in the experiments [7,34,72–74].
Mathematical models (either ODEs, PDEs or multi-scale types) were designed for comparison with
experiments [5–7,33–36,62,72–79].
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We have the following assumptions: (i) growth of tumour cells follows the logistic growth with a
carrying capacity T0 and STAT1-mediated saturation and (ii) the tumour cells are killed by apoptosis
at a rate μT. In particular, inhibition of tumour growth by STAT1 in TME [17] is modelled by a Hill
type function, 1� ðk9S21=ðk210 þ S21ÞÞIfB,thB , X.thXg, where k9 is inhibition strength by STAT1 (k9≤ 1), k10
is a Hill coefficient, and IfB,thB , X.thXg is an indicator function, giving 1 when the apoptosis condition
(B < thB, X > thX) is satisfied with threshold values of Bcl-2 (thB) and BAX (thB), and 0 otherwise. Thus,
the governing equation for the tumour volume (T) is

dT
dt

¼ r
�
1� k9S21

k210 þ S21
IfB,thB, X.thXg

�
T
�
1� T

T0

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

growth

�mTTIfB,thB , X.thXg|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
apoptosis

: ð2:13Þ

Here, the first term on RHS of equation (2.13) represents the STAT1-controlled growth of tumour cells. We
note that the inhibition part in the middle of the first term ð1� ðk9S21=ðk210 þ S21ÞÞIfB,thB , X.thXgÞ � 0, 8S1,
due to our assumption k9≤ 1. In particular, we set k9 = 1. On the other hand, the second term
represents the programmed cell death of tumour cells when the intracellular signalling induces the
apoptosis in response to external stimuli such as IFN-β.

IFN-β (S(t)): Experimental studies [80] on a combination (IFN-β + another drug) therapy illustrated the
effectiveness of the therapy on inhibiting cancer progression [81–84] as well as promoting the immune
reactions [85]. For example, the population and immune activities of T cells were notably enhanced after
IFN-β injection [86]. IFN-β-based drugs, such as Avonex, Reif and CinnoVex, are well-known anticancer
drugs that are administered by intramuscular injection. In our model, type I interferons (IFN− α, -β) are
injected at a rate uS for tumour cell killing. Thus, the governing equation for IFN-β (S) is

dS
dt

¼ uSðtÞ|ffl{zffl}
injection

� mSS|{z}
decay

: ð2:14Þ

The first and second terms on RHS of equation (2.14) represent the injection of IFN-β via a function uS(t) and
decay process at a rate μS, respectively. Here, uS = uS(t) can be a constant or function of time. In this work,we
consider three methods of injection: (i) constant injection, (ii) alternating injection and (iii) optimally
controlled injection by optimal control theory.

JAK2 (J(t)) and DDP (D(t)): since the JAK family stimulates upregulation of STAT3, which then
promotes anti-apoptosis pathways. We introduce the JAK2 inhibitor drug called cisplatin (DDP). DDP
is an anti-cancer drug that was developed for effective chemotherapy and widely adapted as a first-
choice medicine for cancer [87,88]. The governing equations for JAK2 (J ) and DDP (D) are

dJ
dt

¼ Js|{z}
source

� gDDJ|fflffl{zfflffl}
degradation

� mJ J|{z}
decay

, ð2:15Þ

and

dD
dt

¼ uDðtÞ|fflffl{zfflffl}
injection

� mDD|ffl{zffl}
decay

: ð2:16Þ

JAK2 in equation (2.15) undergoes production at a rate Js, the DDP-mediated degradation of JAK by DDP
(γD), and decay process at a rate μJ in the first, second and third terms on RHS, respectively. The first and
second terms on RHS in equation (2.16) represent the time-dependent injection of DDP via a function
uD(t) and decay process at a rate μD, respectively.

A dimensional version of equations of tumour volume, IFN-β, JAK2 and DDP corresponding to
equations (2.13)–(2.16) was introduced and non-dimensionalization was performed in the electronic
supplementary material. Matlab (Mathworks) software was used for computational results of the
mathematical model and optimal control problems. See table 1 for parameter values in equations
(2.9)–(2.16) in a dimensionless form. Parameter values in the dimensional form are listed in table S1 in
the electronic supplementary material. Since our mathematical model contains many known and
unknown parameter values, we provided parameter estimation in the electronic supplementary
material, which is a necessary step toward fundamental and deep understanding of the dynamical
process of the mathematical model. Parameter values are calculated based on empirical data such as
half-life or estimated by fitting to experimental observation based on the mathematical structure of
our model.



Table 1. Parameters of the mathematical model.

parameter description value refs

intracellular modules

S IFN-β signalling 0–1.0 [89], Est

k1 autocatalytic production rate (STAT1 module) 4.0 Est

k2 Hill-type coefficient (STAT1 module) 1.0 Est

α inhibition strength of STAT1 by STAT3 1.5 Est

λk signalling source of STAT3 1.0 Est

λJ induction rate of STAT3 by JAK2 4.0 Est

J JAK2 signalling level 0–1.0 Est

K inhibition parameter 5.0 Est

k3 autocatalytic production rate (STAT3 module) 4.0 Est

k4 Hill-type coefficient (STAT3 module) 1.0 Est

β inhibition strength of STAT3 by STAT1 1.0 Est

μ3 relative decay rate of STAT3 1.0 [90,91]

λ1 signalling source of Bcl-2 0.2 Est

k5 autocatalytic production rate (Bcl-2 module) 1.0 Est

k6 Hill-type coefficient (Bcl-2 module) 1.0 Est

γ inhibition strength of Bcl-2 by STAT1 1.0 Est

λ3 signalling from STAT3 1.2 Est

μB relative decay rate of Bcl-2 1.2 [92,93]

λ2 signalling source of BAX 0.2 Est

k7 autocatalytic production rate (BAX module) 4.0 Est

k8 Hill-type coefficient (BAX module) 1.0 Est

δ inhibition strength of BAX by Bcl-2 1.0 Est

μX relative decay rate of BAX 5.0 [94,95]

threshold

Sth1 threshold of STAT1 1.8 Est

Sth3 threshold of STAT3 1.3 Est

Bth threshold of Bcl-2 1.44 Est

Xth threshold of BAX 0.3 Est

tumour module

r growth rate of tumour cells 0.12 [80]

k9 inhibition parameter of STAT1 growth 1.0 [80]

k10 inhibition parameter of STAT1 growth 10 [80]

T0 carrying capacity of a tumour 100 [80]

μT killing rate of tumour cells by apoptosis 0.1 [80]

therapeutics

μS decay rate of IFN-β 4.8 [35,96]

Js source of JAK2 1.3 [97]

μJ decay rate of JAK2 1.3 [97]

γD degradation rate of JAK2 by DDP 1.0 Est

μD decay rate of DDP 10 [98,99]

(Continued.)
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Table 1. (Continued.)

parameter description value refs

reference value

S�1 STAT1 concentration 2.43 μg ml−1 [100]

S�3 STAT3 concentration 1.38 μg ml−1 [100]

B� Bcl-2 concentration 10 nM [101]

X� BAX concentration 351 μM [102]

S� IFN-β concentration 10 ng ml−1 [89]

J� JAK2 concentration 2.8 n M [103]

D� DDP concentration 10 μg ml−1 [104]

T� tumour volume 100 mm3 [80]
�Est = estimated.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210594
8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
1 
2.2. Optimal control strategies
The optimal control theory was used to find an optimal injection profile of drugs that minimizes the
tumour volume by controlling the cell-death program, while the amount of the drugs is minimized.
Two control variables, uS(t) in equation (2.14) and uD(t) in equation (2.16), are the sources of IFN-β
and cisplatin (DDP), respectively. An objective is to find the optimal dose and sum of the two drugs
over time for the minimal tumour size. Thus, this strategy leads to an objective function as follows
[58,105,106]:

J ðuS, uDÞ ¼ min
uS,uD

ðte
ts
A1(TðtÞ � �T)2 þ A2B2 � A3X2

þ C1uSðtÞ þ C2uDðtÞ þ C3uSðtÞ2 þ C4uDðtÞ2 dt:
ð2:17Þ

Here, T(t) and ð�TÞ denote the concentration and desired concentration of tumour, respectively.
Parameters A1, A2 and A3 are weight constants for the concentration of tumour, Bcl-2 and BAX,
respectively. We used quadratic forms to simplify analysis with the convexity properties which are
common in control problems in biological models [106]. For the controls in the integrand, we added
linear terms to regularize the amount of drug used. In general, linear controls are more meaningful
biologically than quadratic forms, but it is more difficult to analyse the system mathematically.
Weight for each control is provided by parameters C1, C2, C3, C4. Linear (uS(t)) and quadratic (uS(t)

2)
forms in equation (2.17) represent the costs. Note that in the optimal control problem not
only is tumour concentration reduced to a certain level but also Bcl-2 (BAX) is minimized
(maximized) to induce apoptosis, thus to suppress tumour growth. In most numerical simulations, we
set the desired tumour volume to be 50% of the control case that both controls are not used [105,106].
For comparison, we set two control injection schedules: alternating injection and constant injection.
The injection rate of IFN-β and DDP in alternating strategy is 5.2344 and 53.4109, respectively. The
injection rate of IFN-β and DDP in the constant strategy is 4.1875 and 24.9251, respectively. Note that
in all cases, we fixed the total amount of IFN-β and DDP. To obtain the numerical solutions of the
control problems, we used the forward–backward sweep method which is based on shooting methods
to solve boundary value problems [105].
3. Results and discussion
3.1. Characterization of apoptosis and anti-apoptosis state
We investigate dynamical properties of given intracellular module, equations (2.9)–(2.12), in the
absence of JAK2 (i.e. J = 0 in equation (2.10)). Figure 3 shows various cell fates of cancer cells in
distinct IFN-β conditions (low (A), transitional (B), high (C)). The equilibrium point (steady state (SS))
is marked as a circle. The steady state of STAT1 in the system (2.9)–(2.12) can be expressed in terms of the
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the S1− S3 set when S = 0 (a), 0.4 (b) and 1.0 (c). Filled circle ¼ stable equilibrium, empty circle ¼ unstable equilibrium. Blue
region = upregulation of STAT1 + downregulation of STAT3, pink region = downregulation of STAT1 + upregulation of STAT3.
(d ) Bifurcation curve of STAT1. Y− axis = equilibrium. WS = [Sm, SM] = a window of bi−stabilty.
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IFN-β level (S) as shown in figure 3d (S1 = S1(S) as a hysteresis). Figure 4a–c shows the corresponding
bifurcation curves of STAT3 (S3 = S3(S)), Bcl-2 (B = B(S)) and BAX (X =X(S)), respectively, implying
the stable lower/upper SS curves as well as the unstable mid-curve in figure 4d. By taking the thresholds
(Sth1 , S

th
3 , B

th, Xth) of the level of STAT1, STAT3, Bcl-2 and BAX, the anti-apoptotic (Pt) and apoptotic (Pa)
status can be defined as

Pt ¼ fðB, XÞ [ R2 :B . Bth; X , Xthg ð3:1Þ

and

Pa ¼ fðB, XÞ [ R2 :B , Bth; X . Xthg: ð3:2Þ

Figure 4d illustrates the anti-apoptotic (lowBAX, high Bcl-2) and apoptotic (high BAX, lowBcl-2)modes in a
B−X phase. A small IFN-β amount (S=0) causes unique stable equilibrium where activities of STAT1 and
BAX are suppressed while activities of STAT3 and Bcl-2 are enhanced (figure 3a). This leads to the anti-
apoptosis status (Pt; figure 4d ). This Pt system is maintained to the critical position of the bifurcation
branch near S=0.53 as S increases. Passing the mentioned critical position, STAT1 activity creeps up to
the stable upper arm, leading to the apoptosis phase (Pa; figure 4d) where activities of STAT1 and BAX
are upregulated while activities of STAT3 and Bcl-2 are downregulated (figure 3c).

In the middle interval of IFN-β (WS = [Sm, SM] = [0.3, 0.53]; bi-stable), the dynamics adapts
multiple (3) equilibria: unique unstable steady states (empty circle in the centre) and stable equilibria
(2 filled circles), inducing either Pa- or Pt-state (figure 3b). |WS| and existence of WS are dependent
of the combination of other parameters. In this case, the cancer cell may take either anti-apoptosis or
apoptosis based on the early intracellular states. In a reverse direction, starting from Pa-status, the
system maintains the IFN-β-mediated apoptosis up to the critical bifurcation position where the STAT1
level is pulled down to the low arm with Pt-mode as S is decreased. This analysis illustrates that
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IFN-β can be a key bifurcation parameter of the cellular response and the IFN-β-mediated cancer cell
killing can be quite effective but in a nonlinear fashion.

Figure 5 shows the graphs S1 = S1(S), S3 = S3(S), B = B(S) and X =X(S) in the presence of JAK2 (J = 1).
The levels of STAT1 and BAX stay below the threshold values (Sth1 , X

th, respectively) regardless of IFN-β
stimuli while STAT3 and Bcl-2 levels are upregulated regardless of IFN-β signal strength. This results in
uniform ðPtÞ-state in the cancer cells although the level of IFN-β is high. Therefore, in the presence of
JAK2, the intracellular module transits from the IFN-β-dependent apoptosis system to IFN-β-
independent Pt-state, implying the necessity of adjuvant therapy such as JAK2 inhibitor (DDP) in
addition to the conventional IFN-β treatment.

In order to see how sensitive the concentrations of main variables (STAT1, STAT3, Bcl-2, BAX, IFN-β,
JAK2, DDP and tumour) are to 26 parameters in the model (equations (2.9)–(2.16)) at various time points,
we have performed sensitivity analysis. A partial rank correlation coefficient determines whether an
increase (or decrease) in the parameter value will either decrease or increase the tumour volume and
concentrations of main variables at a given time. See electronic supplementary material for more details.

3.2. Therapeutic approaches: apoptotic cell death by IFN-β and DDP
We study the therapeutic effect of IFN-β and DDP on slowing down the tumour. It is assumed that the
tumour is treated with IFN-β and DDP on [ti, ti + hs], i = 1,…, NS with τs ( = ti+1− ti), i = 1,…, NS − 1 and
[tj, tj + hd], j = 1,…, ND with τd ( = tj+1− tj), j = 1,…, ND − 1, respectively. Here, NS, ND are the total number
of infusion of IFN-β and DDP, respectively. In order to take into account the time-dependent injection of
IFN-β and DDP as in clinic, we use the following ODEs of IFN-β and DDP concentrations

dS
dt

¼
XNS

i¼1

uSI½ti ,tiþhs� � mSS, ð3:3Þ

dD
dt

¼
XND

j¼1

uDI½tj ,tjþhd � � mDD, ð3:4Þ
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where

IðtÞ ¼ 1 if t [ ½ti, ti þ hs�,
0 otherwise.

�
ð3:5Þ

Time evolutions of activities of STAT1 (S1), STAT3 (S3), Bcl-2 (B) and BAX (X) with IFN-β infusion at t = 1,
3, 5, 7, 9 [80] are shown in figure 6a. Here, we set uS = 15. Blue dashed curves in figure 6b,c show the
corresponding trajectories of the solution (S1(t), S3(t)) in the S1− S3 plane and (B(t), X(t)) in a B−X
domain, respectively. Beginning from a position in the Pt-mode (black arrows in figure 6b,c), cancer
cells rapidly show a periodic response to the IFN-β and the initial Pt-state slowly transits to the
Pa-state (blue box in figure 6b,c) by downregulated STAT3/Bcl-2 and over-expressed STAT1/BAX,
maintaining the cell killing state up to about t = 20. Note, however, that the system converges back to
the Pt-state after t = 20 since the anti-cancer effect of IFN-β is creased at a later time due to early
injection of IFN-β. Note also that the system stays in the Pt-state without any transition to Pa-mode
when uS = 0 (red solid curves in figures 6b,c). The corresponding changes in tumour volume (mm3)
when uS = 0 and uS = 15 are shown figure 6d. It shows the effective anti-tumour efficacy of IFN-β even
though the system returned back to the Pt-phase after the massive tumour cell killing. Theoretical
predictions well reproduce empirical data in control (circular marks; figure 6d ) and IFN-β-treated
cases (triangles; figure 6d ) [80]. The dose response pattern at t = 25 (figure 6e) implies that the tumour
volume is significantly decreased when the IFN-β dose is about 15, and marginally decreased beyond
this dose level. Therefore, given periodic injection schedule, the model can predict the minimum dose
of IFN-β for suppression of tumour growth. Figure 6f shows expression values of all intracellular
variables at t = 25 for various IFN-β amounts (0 (PBS), 10,15,100). This illustrates a significant increase
in the apoptotic agents (STAT1, BAX in figure 6f ) and dramatic decrease in activities of anti-apoptotic
gate keepers (STAT3, Bcl-2) as the IFN-β level increases.

We now consider a periodic infusion of both IFN-β and DDP over the time interval [0, 30] with NS = 3,
~ND = 3 and various schedules. IFN-β and DDP are marked with ‘S’ and ‘D’, respectively, in figure 7. For
example, ‘SSSDDD’ indicates three consecutive injections of IFN-β followed by another three
consecutive injections of DDP. In figure 7a, the relative tumour size at t =30 is shown for various
schedules with continuous infusion strategy with uS = 8.2, uD = 46. Figure 7b,c shows the time courses
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of levels of STAT1 (S1), STAT3 (S3), Bcl-2 (B) and BAX (X ) in response to (SSSDDD) and (DSDDSS),
respectively, among various cases in figure 7a. The (SSSDDD) strategy leads to the best outcome in
reducing tumor volume (red solid curve in figure 7d) by successfully suppressing Bcl-2 for a long time
despite increasing activities of the anti-apoptotic Bcl-2 at the last (figure 7b). On the other hand, the
(DSDDSS) schedule results in the worst outcome (blue dashed curve in figure 7d) due to frequent
uprising of Bcl-2 regulator (figure 7c). For further analysis, we divided all cases in figure 7a into two
groups: schedules with initial injection of IFN-β (left panel in figure 7e) and schedules with initial
injection of DDP (right panel in figure 7e). For example, `SSSDDD0, `SSDSDD0,…, `SDDDSS’ belong to
the first group. The levels of these variables in each case are marked with a black star. We then
calculated the average levels of STAT1, STAT3, Bcl-2, BAX and tumour volume in all cases figure 7a from
each group. Differences in expression in Bcl-2 and BAX, two key players in the cell-death program, affect
differences in tumour volume. For instance, the tumour size of the first tier is smaller than that of the
second schedule due to relatively lower value of Bcl-2, anti-apoptosis factor. This result implies that the
IFN-β-first strategy relative to initial DDP injection can be more effective in reducing tumor size through
effective induction of apoptosis. For the second analysis in figure 7f, we divided all cases in figure 7a into
two groups: schedules with weighted injection of IFN-β in the first half (left panel), and schedules with
weighted injection of IFN-β in the second half (right panel). For example, ‘SSDSDD’, ‘DSSDDS’ belong
to the first group while ‘DDSSDS’, ‘DDSSSD’ belong to the second group. When IFN-β is distributed
with more frequency in the first half, Bcl-2 expression (3rd yellow bar on the left panel, figure 7f ) is
lower compared to the case in the second half (3rd yellow bar on the right panel, figure 7f ), leading to
the smaller tumor size (5th green bar, figure 7f ). Therefore, the model suggests that frequent IFN-β
injections early on can result in better overall anti-tumour efficacy.

In figure 7, the IFN-β dose rate (uS) is fixed for all cases. In figure 8a, we investigate how much IFN-β is
needed for reduction in the tumour size by 50% compared to the case without IFN-β. Here, injection
schedule (hs = 5) is fixed as in figure 7. This implies that injection costs of IFN-β would be very different
under various injection orders. We get the best results in the case of ‘SSSDDD’ with the minimum
injection rate (uS = 5.2), leading to the relatively smaller total dose (TD = 26) over one injection period. On
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the contrary, we get theworst case, ‘DSDDSS’, with uS = 8.2, resulting in the higher total dose (TD = 41) over
the same period. As a result, one would need at least 1.5-fold drugs in the worst case compared to the best
scenario. In figure 8b, we calculate maximum resting-time of IFN-β in the permutation sequences of the two
drugs, for the same degree of tumour size reduction (50%) compared to the control while uS is fixed. In the
best case (SSSDDD), themaximum resting-time is 4.5 (i.e. hs = 0.5). On the contrary, IFN-β has to be injected
constantly without resting-time in the worst cases (DSDSDS,DSDDSS). Therefore, we can set a treatment
schedule that provides maximum resting-time with relatively low IFN-β dose.

Figure 9 shows the tumour size in response to the combination therapy (IFN-β+DDP) with various
duration of IFN-β injection (hs = 2, 1, 0.5, 0.1). Here, the total amount of IFN-β and DDP was fixed:Ð te
ts
uS dt ¼ 123 and

Ð te
ts
uD dt ¼ 690, respectively; ts = 0, te = 30. The tumour size was normalized relative

to the tumour volume in the case without IFN-β treatment. As hs is decreased (A→ B→C→D), the
tumour size is increased overall. However, the combination therapy in some cases with low hs’s
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(figure 9d ) was not effective in reducing the tumour size. For example, the tumour size at final time was
same as the case without IFN-β treatment in the cases like (DSSSDD, DSSDSD, DDDSSS).

These results essentially suggest the optimally controlled treatment option for avoiding side effects
and minimizing administrative costs at clinics.
3.3. Optimal control approach
Here, we consider two weight parameter sets of an objective function in an optimal control formulation.
The equation of objective function, equation (2.17), has eight parameters (A1, A2, A3, C1, C2, C3, C4, �T).
From now on, the following two strategies are considered: (i) Strategy I: control for the entire
schedule (upto t = 30). (i) Strategy II: control for the order of injection of IFN-β and DDP [58].

Strategy I:
In figure 10, we test the anti-tumour efficacy for three different infusion cases: alternating, constant,

optimal infusion methods of IFN-β (solid curve) and DDP (dashed curve). In the alternating method,
IFN-β is administered with uS = 5.2344 and τs = 4 while DDP is administered with uD = 53.4109 and τd = 2
(figure 10a). On the other hand, we set uS = 4.1875 and uD = 24.9251 in the constant injection method
(figure 10b). Figure 10c shows the control profiles of IFN-β (green, solid) and DDP (pink, dashed)
from the optimal scheme. Here, the shaded area indicates the corresponding control amount. We set
the parameter to ðA1, A2, A3, C1, C2, C3, C4, �TÞ ¼ ð1, 0, 0, 4� 10�5, 1� 10�5, 4� 10�5, 1� 10�5, 0Þ. Note
that in all three cases, the total amount of both IFN-β and DDP was fixed for comparison. See
figure 10g for the temporal profile of cumulative injection amount for three cases. Figure 10d,e shows the
corresponding time courses of IFN-β and DDP levels, respectively, in three (alternating, constant,
optimal) cases. The tumour size in response to the constant injection (blue; figure 10h) is much smaller
than one in alternating injection strategy (black; figure 10h) due to high levels of apoptosis within the
cancer cells (high BAX & low Bcl-2 in figure 10f ). However, the optimally controlled injection schedule
provides the best results, maintaining the lowest tumour volume (red; figure 10h) due to effective control
of tumour volume early on.
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We study how the half-life of IFN-β affects control of the tumour volume by changing the parameter
mSð¼5:5, 4:8, and 3:2Þ. The baseline value of the IFN-β’s half-life is 5 h corresponding to the decay rate
value μS = 4.8. As the half-life is increased (i.e. when μS is decreased), the final tumour size is decreased
in all three cases (figure 11). The tumour volume at final time is very sensitive to the changes in μS in
both alternative (blue bar) and constant (yellow bar) injection strategies. In the optimal control case,
while the tumour volume is still decreased as μS is decreased, the overall sensitivity is much lower (red
bar). Therefore, this result suggest that the optimal control strategy can be very effective relative
to the other two strategies in reducing the tumour size regardless of fluctuations in IFN-β supply.

Strategy II:
We now analyse the dynamical changes when either duration or amount of IFN-β is fixed. Here, we

consider optimal control strategies of determining the optimal duration and amount in two
different alternating schemes of IFN-β and DDP in figure 12. We set the parameters to
ðA1, A2, A3, C1, C2, C3, C4, �TÞ ¼ ð12, 1, 4, 2� 10�2, 0, 2� 10�2, 0, 1:7634Þ. We first consider the best
scenario (SSSDDD) in figure 8 and apply the optimal control frame. Optimally controlled multiple
injection of IFN-β early on (figure 12a; blue solid curve in figure 12c) can effectively initiate the cell-
death program in tumour cells (figure 12d ), leading to the well controlled tumour volume (blue solid;
figure 12f ). On the other hand, the temporal profile of IFN-β in the optimal control framework in the
worst schedule (‘DSDDSS’) in figure 8 is shown in figure 12b. In this case, more dynamical changes
in the intracellular variables are observed (figure 12e) and temporal profile of tumour volume
reduction (%) (figure 12e) is very different from the (SSSDDD) scheme. Note that the infusion
patterns of IFN-β, uS, in the ‘SSSDDD’ and ‘DSDDSS’ schemes are different (figure 12a,b). In the
‘SSSDDD’ case (figure 12a), the JAK2 level is high (J≈ 1) due to lack of DDP infusion in the first
sequence and higher initial doses of IFN-β is required to induce the apoptotic state of cancer cells
(figure 5). On the contrary, in the ‘DSDDSS’ case (figure 12b), a high dose of IFN-β is not necessary
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due to low JAK2 level (J≈ 0) from DDP infusion in the beginning. In other words, until the moment the
JAK2 level lowered by the DDP is raised again, a relatively low dose of IFN-β is enough to induce the
apoptotic status of cancer cells (figure 4). The minimum amount of IFN-β for 50% reduction in
tumour volume is 78 in ‘SSSDDD’ and 123 in ‘DSDDSS’ without the optimal control (figure 8).
While the accumulated amount of IFN-β with the optimal control scheme (79.01 in ‘SSSDDD’ and
119.2 in ‘DSDDSS’ (figure 12c)) is similar to the original scheme in figure 8, the tumour volume was
decreased by 60.6% and 62.8% relative to the control case in the ‘SSSDDD’ and ‘DSDDSS’,
respectively (figure 12f ). Overall, this illustrates that the optimal control scheme can be effective in
reducing the tumour size as well as costs.
4. Conclusion
In this work, we adapted mathematical modelling to investigate the role of regulatory cytokines (IFN-β,
JAK2) on tumour growth through the corresponding intracellular signalling networks and mutual
inhibition mechanism between STAT1 and STAT3. Careful examination of the model revealed the
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critical, dynamical transition between apoptotic and anti-apoptotic status of cancer cells in response to
fluctuating IFN-β (figure 3). Bi-stable regulation of the STAT1 and STAT3 can induce a phenotypic
onset that promotes or suppresses cancer progression (figures 4 and 5). While IFNs have been
proposed as the only treatment option available for prevention of recurrence and overall survival
[107], careful consideration of high dose IFNs administration in the IIb/III stage is needed [108].
Therefore, despite extensive clinical application, it is essential to design the optimally controlled
schedule of IFNs including doses and infusion periods [108]. In this study, we seek to find the
optimal infusion scheme of a combined therapy (IFN-β+DDP) by optimal control theory.

There are various factors that may induce apoptosis in lung cancer [29–31,35]. In this study, we
focused on the apoptosis process using the JAK-STAT signalling pathway. Due to a positive
correlation between STAT3 and the survival of tumour cells in response to cisplatin, JAK-STAT
signalling, which induces apoptosis through IFNs and cisplatin, is an important pathway for cancer
cell killing [109]. We first investigated the effect of the combination (IFN-β+DDP) therapy with
various alternating sequences on tumour growth by monitoring the anti-apoptotic or apoptotic status
of cancer cells (figures 7–9). We found that these various injection sequences can generate very
different clinical outcomes and that the IFN-β injection cycle in each combination panel induces a
greater effect on suppressing tumour growth (figures 7 and 12). Initial IFN-β dose can be determined
based on whether DDP was injected or not just before IFN-β (figures 4, 5, 12), suggesting the
importance of infusion sequence. Thus, we developed the optimal injection strategies of IFN-β and
DDP when the total dose is fixed (figures 10 and 11). The goal of the optimal strategies is to
maximize the anti-tumour efficacy with minimal side effects [110–112] by control infusion protocols of
both IFN-β and DDP (figure 10). In this study, the model predicted that the optimally controlled
schedule of those two drugs may provide better anti-tumour efficacy with minimal costs. The
mathematical model in this study may provide a comprehensive understanding of the IFN-β/JAK-
induced STAT signalling network and the associated optimal control method may suggest an optimal
infusion strategy of anti-cancer drugs in clinical setting.

Conventional anti-cancer agents target an apoptosis pathway in cancer cells. However, a combination
treatment may result in unexpected results in signalling network. For example, while bortezomib,
an anti-cancer agent, induces tumour cell killing by apoptotic pathway, the bortezomib treatment
combined with oncolytic viruses can induce a more critical death program called necroptosis in cancer
cells, causing synergistic anti-tumour effect [6,7,113]. Anti-tumour efficacy can be even better when an
adjuvant therapy by NK cells is added to a combination therapy or when NK cells are completely
removed from tumour microenvironment [7]. Therefore, a combination of two anti-cancer drugs may
not always result in better results due to the complexity of the biological system [7]. Therefore,
optimal control of drug infusions in a combination therapy [58] would be useful in assessing injection
schedules of various anti-cancer drugs while minimizing several costs.

Our study has three main limitations:

(i) Delivery of anti-cancer drugs is a complex process including transport of the anti-cancer agent
through tissue. In this work, we did not take into account spatial movement of these agents.
Therefore, a more general framework such as partial differential equations (PDEs) instead of
the ODE model in this work may better describe the spatial transport of drugs. However,
development of an optimal control scheme in the PDE model for a larger multi-scale system
including blood vessels is still a challenge and we plan to investigate the spatial aspect of drug
transport.

(ii) Our optimal control problems have not considered a linear form of control which may be more
realistic than a quadratic form. In particular,

Ð te
ts
uSðtÞdt and

Ð te
ts
uDðtÞdt represent the total

amount of IFN-β and DDP, respectively. Therefore, this type of control forms in a minimization
problem can be clearly interpreted as drug toxicity or cost by introducing weights
[105,106,114]. We plan to develop a linear form of controls in a feasible setting of tumour
models in future work.

(iii) Tumour microenvironment and signalling networks play a major role in cancer progression and
invasion. We did not take into account various microenvironmental factors including immune
cells (macrophages, neutrophils, T cells, Th cells, T regs and NK cells), cytokines/chemokines,
and inter- and intra-cellular molecules. We plan to study these critical factors in future work.

Our mathematical formulation in this work can contribute to development of a new theoretical approach
for other cell killing mechanisms such as necroptosis [115–117] and autophagy [118] in cancer by the
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optimal control of key regulators in an ODE/PDE [6–8,58,119] or multi-scale hybrid model
[5,9,28,32,120–123] where key cellular death programs within the cancer cells can be taken into
account at individual cell level in the multi-scale system.
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