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Abstract
Motivation: Multiplexed immunofluorescence bioimaging of single-cells and their spatial organization 
in tissue holds great promise to the development of future precision diagnostics and therapeutics. 
Current multiplexing pipelines typically involve multiple rounds of immunofluorescence staining 
across multiple tissue slides. This introduces experimental batch effects that can hide underlying 
biological signal. It is important to have robust algorithms that can correct for the batch effects while 
not introducing biases into the data. Performance of data normalization methods can vary among 
different assay pipelines. To evaluate differences, it is critical to have a ground truth dataset that is 
representative of the assay. 
Results: A new immunoFLuorescence Image NOrmalization (FLINO) method is presented and 
evaluated against alternative methods and workflows. Multi-round immunofluorescence staining of 
the same tissue with the nuclear dye DAPI was used to represent virtual slides and a ground truth.  
DAPI was re-stained on a given tissue slide producing multiple images of the same underlying 
structure but undergoing multiple representative tissue handling steps. This ground truth dataset was 
used to evaluate and compare multiple normalization methods including median, quantile, smooth 
quantile, median ratio normalization (MRN) and trimmed mean of the M-values (TMM). These 
methods were applied in both an unbiased grid object and segmented cell object workflow to 24 
multiplexed biomarkers. An upper quartile normalization of grid objects in log space was found to 
obtain almost equivalent performance to directly normalizing segmented cell objects by the middle 
quantile. The developed grid-based technique was then applied with on-slide controls for evaluation. 
Using five or fewer controls per slide can introduce biases into the data. Ten or more on-slide controls 
were able to robustly correct for batch effects. 
Contact: graf@ge.com; ginty@research.ge.com
Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction 
Revealing true biology from experimental error and noise has always 
been a challenge. It is especially challenging for high content data 
generated from microarrays (Johnson 2007, Leek 2012, Zhang 2018), 
RNA-sequencing, and more recently, multiplexed immunofluorescence 
(MxIF) bioimaging, where tissue sections are repeatedly stained and/or 
imaged, followed by single cell segmentation and generation of millions 
of data-points for spatial cell biomarker analysis (Kennedy-Darling et al 
2021, Gerdes et al 2014). Evolving standards in RNA sequencing now 
allow robust batch correction and comparison across studies (Mortazavi 
2008, Birmingham 2009, Anders 2010, Robinson and Oshlack 2010, 
Maza 2016, Evans 2018, Espin-Perez 2018). Such standards do not yet 
exist for MxIF bioimaging and the field is quickly evolving with novel 
methods being proposed (Andrews 2016, Van Eycke 2017, Chang 2020), 
but there are limited comparisons of methods (Ahmed Raza 2016, 
Caicedo 2017) and evaluation in context of a biological ground truth.

Generating MxIF bioimages is a complex multiple step process. 
Experimental variability, can arise from the tissue slide preparation, 
including initial histological processing and antigen retrieval. 
Furthermore, multi-round immunofluorescence staining and imaging of 
tissue slides can introduce additional biases including tissue loss, 
deformation, tissue autofluorescence, non-specific staining and sample 
degradation over time due to handling. Pre-analytical conditions such as 
storage temperature, decalcification, and time to formalin fixation can 
result in protein, RNA, and DNA degradation (Bass et al, 2014). 
Depending on sample dimensions, the duration of sample fixation in 
formalin can lead to under- or over-fixation, which can affect protein 
integrity and result in reduced sensitivity (Forest 2019, Magaki 2019, 
van Seijen 2019). Engel and Moore (2011) identified 15 pre-analytic 
variables (fixation delay, fixative type, fixative concentration, pH and 
buffer, time in fixative, reagents and conditions of dehydration, clearing 
reagent and temperature, paraffin-embedding temperature and duration, 
and condition of slide drying and storage) that can impact an 
immunohistochemistry test.  Particularly in the last 10 years, there is an 
increasing amount of control over these pre-analytical factors in the 
clinical and research setting (Engel et al 2014), but older samples (>10-
20 years), important where long-term outcome of patients is desirable, 
may have been processed under more variable conditions, as well as 
undergoing aging and oxidation over time. 

Typically tissue analysis is conducted as single sections on slides, or 
multiple patient cores (~50-250) spread across one or more tissue 
microarrays. To avoid signal bias, an ideal study design includes random 
distribution of patient samples in batches (if working with a large 
number of single sections), or randomly distributed patient cores across 
multiple slides. Control tissue sections or cell lines are also highly 
desirable to ensure technical robustness and potentially improve 
quantitation but are often not used. Methods have been developed that 
attempt to identify negative control cells from within a sample for each 
marker and use their intensity levels to determine the background signal 
to be used to remove intra image variation (Chang et al. 2020).

One requirement when comparing normalization methods and 
workflows is the need for a ground truth dataset. One approach is to 
generate and use simulated data images with a known ground truth to 
judge and compare methods and workflows (Svoboda 2009; Ulman 
2016; Watabe 2015; Wiesmann 2013, 2017; Wiesner 2019). A drawback 
of the simulated data approaches is the reliance on a theoretical error 
model. Selecting an error model that represents the batch and processing 

errors of the sample preparation and bioimaging pipeline is not trivial. 
Some experimental errors are systematic while others are random. 
Therefore, one must select and tune a theoretical error model to properly 
model both systematic and random error contributions observed in the 
actual assay.

A multi-year retrospective study on biomarkers of recurrence in stage 
II and III colorectal cancer using tissue samples from multiple sites 
provided the impetus to evaluate both historical and new methods of 
normalization. In previous studies we have routinely applied a median 
normalization method to correct MxIF bioimages. The method is robust, 
fast, and simple to implement, but had not previously been benchmarked 
against other methods. In this paper, we performed a benchmarking 
analysis that compared it to alternative normalization methods and 
workflows. We first assembled a list of normalization methods from the 
literature (Hicks 2018, Bullard 2010, Maza 2013, Robinson and Oshlack 
2010, Tarazona 2011, 2015). Next, we devised an approach that allowed 
us to test and evaluate each normalization method against the same 
ground truth for a fair apple-to-apple comparison. Finally, we performed 
testing of the methods and workflows across different scenarios 
including 24 biomarkers that were multiplexed across three tissue 
microarray slides, and including slides with and without control samples. 
Our findings show the performance of each and suggest the power of a 
new grid-based object workflow (FLINO) to reliably normalize MxIF 
bioimages.

2 Methods

Overview of bioimage normalization workflows

Translating raw immunofluorescent bioimages into quantitative 
biological features is a multistep process that typically involves a 
normalization step to correct for systematic errors (i.e. batch effect) and 
offsets between images between and of the same slide. Figure 1 presents 
the bioimaging workflow steps including the preprocessing of raw 
images, aggregating pixels from the images into objects, filtering objects 
on quality metrics, normalizing objects across slides, correcting the 
images, and finally segmenting the corrected images into biological 
relevant features for downstream analysis. Raw image preprocessing 
includes field of view (FOV) illumination correction, distortion 
correction, image registration across multiple rounds of staining and 
imaging, and autofluorescence removal. Each of these preprocessing 

steps can introduce systematic errors into the slide images above those 
that originate from the tissue slide preparation, staining and microscope 
imaging process steps.
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FLINO – A new method for immunofluorescent bioimage normalization

Figure 1. Overview of the workflows for normalizing bioimages and 
intensities of biological features across virtual slides.

Two normalization workflows are illustrated in Figure 1 that are 
conducted after the raw MxIF images have undergone preprocessing: a 
segmented object workflow and a grid-based object workflow. Both 
workflows begin by aggregating individual pixels into objects. The 
intensity value for an object is defined as the mean of the pixel 
intensities contained within the object. The segmented object 
normalization workflow uses one or more image channels (e.g. nuclear 
staining intensity such as DAPI) to delineate objects and consequentially 
classify pixels as either belonging to a specific object or external to all 
objects (i.e. background). The grid-based approach aggregates all image 
pixels into grid objects defined by a regularly spaced grid. The grid size 
can range from the size of one pixel up to aggregating all pixels of the 
entire image into one grid.

The grid-based object workflow is unbiased and does not exclude 
bioimage regions unlike the segmented object workflow. 
Immunofluorescence staining of antigen targets are distributed according 
to actual protein expression and not necessarily limited to segmented 
objects. Another major difference is that the step of normalizing the 
bioimages across the staining channels occurs prior to segmenting pixels 
into cell objects for the grid-based object workflow. A third difference 
between the two workflows is that the number of segmented objects per 
bioimage may vary due to tissue and cell density variations while the 
grid-based object workflow will have a constant number of objects 
across all bioimages.

An evaluation step is conducted at the end of the two normalization 
workflows (right side in Figure 1). This step is the primary objective of 
our benchmarking effort in evaluating and comparing multiple 
normalization methods. We developed an approach for this evaluation 
step that utilized virtual slides based on real DAPI staining and imaging 
data along with a metric to quantify the error. This allowed us to judge 
each method and normalization workflow against an empirical ground 
truth vs a theoretically derived one. DAPI was selected as the marker to 
evaluate the normalization workflows because DAPI staining of a tissue 
slide is repeatedly refreshed and reimaged in each round of the MxIF 
workflow. DAPI is a very useful marker and is used for image 
registration and to access if the same underlying nuclear structures are 
present throughout all rounds of staining and imaging. The nuclear 
structures that DAPI stains becomes the empirical ground truth and each 
round of DAPI staining and imaging becomes a virtual slide.

Tissue samples and generation of bioimages

Full details on the tissue samples and generation of bioimages including 
each round of staining and imaging within the MxIF workflow 
(Supplementary Table S1 and S2) is available in the Supplementary 
Material, but briefly: Tissue samples from de-identified stage III 
colorectal cancer (CRC) patients were obtained from Beaumont 
Hospital/RCSI, Dublin, Ireland, Queen’s University Belfast, Northern 
Ireland, and Paris Descartes University, Paris, France. Three tissue 
microarray (TMA) blocks were constructed comprising of 79 patient 
tumor cores and 6 formalin-fixed, paraffin-embedded cell pellets (i.e. 
cell lines). Formalin-fixed, paraffin-embedded cell pellets of cell lines 
(HeLa, HCT116 XIAP-KO, MCF7, JURKAT) were included in the three 
TMAs. The TMA slides underwent multiplexed immunofluorescence 
(MxIF) microscopy at GE Global Research. A detailed description of the 
multiplexed microscopy technique and single-cell analysis has been 

described previously (Gerdes 2013). The platform used herein (Cell 
DIVETM, Leica Microsystem) allows for an iterative staining, imaging 
(on a IN Cell 2200), and a chemical dye inactivation workflow for over 
60 biomarkers on a single tissue section with automated calibration 
scripts providing objective centration and focus, blank glass subtraction, 
distortion correction, and field flattening. Post-processing of the images 
includes autofluorescence subtraction, registration with baseline DAPI, 
and region stitching. The TMAs were stained with 24 biomarkers 
(iterative staining steps with two biomarkers stained per round), 
including apoptosis pathway markers, BAK, BAX, BCL2, Bclxl, SMAC, 
XIAP, APAF, Caspases and MCL1; Immune cell/response markers: 
 CD3, CD4, CD8, CD45, FOXP3, PD1, HLA1; Epithelial cell markers:  
PCK26, NaKATPase, cytoplasmic S6, and functional markers: CA9, 
Glut 1 and Ki67 (see Supplementary Table S1 for more details). All 
antibodies underwent extensive validation prior to multiplexing 
(workflow described in supplementary data of Gerdes et al 2013 and 
Berens, Sood et al 2019), starting with evaluation of staining sensitivity 
and specificity of the primary-secondary clones compared to isotype 
controls in a multi-tissue array containing 15 cancer types (MTU481, 
Pantomics, CA). This was followed by simulation of the dye inactivation 
process for up to 10 times and evaluation of staining performance, and 
finally direct conjugation of each antibody which is necessary for the 
multiplexed staining process and avoidance of cross-reactivity issues. 
Staining patterns for all biomarkers was compared and verified against 
known positive and negative controls or cell types, data from the Human 
Protein Atlas and/or prior staining data by the research team. DAPI is 
refreshed and imaged in each staining/imaging round and used for image 
registration.

Normalization methods

We assembled a list of normalization methods and workflows from 
the literature that are summarized in Table 1 and described in greater 
detail in the Supplementary Material and Table S3. Median 
normalization is defined (Equation 1) as an additive transformation 
shifting the intensity of all objects within an image to a global median 
without changing the spread in the intensity distribution of objects within 
the image. For example, the normalized intensity of object j found in 
image k ( ) is equal to the raw intensity of object j in image k ( ) 𝐼𝑛𝑜𝑟𝑚

𝑘,𝑗 𝐼𝑟𝑎𝑤
𝑘,𝑗

shifted by the differences in the median intensity for all objects across all 
images ( ) minus the median intensity of all objects within Median (𝐼𝑟𝑎𝑤)
image k ( ).Median (𝐼𝑟𝑎𝑤

𝑘 )

 𝐼𝑛𝑜𝑟𝑚
𝑘,𝑗 =  𝐼𝑟𝑎𝑤

𝑘,𝑗 + [Median (𝐼𝑟𝑎𝑤) ― Median (𝐼𝑟𝑎𝑤
𝑘 )]        (Equation 1)

The quantile normalization methods (e.g. Q50, Q75) scale the raw 
intensity values by means of a multiplicative transformation (Equation 
2). The normalized intensity of object j found in image k is equal to the 
raw intensity of object j multiplied by the ratio of the quantile intensity 
for all objects across all images ( ) divided by the quantile Quantile (𝐼𝑟𝑎𝑤)
intensity of all objects within image k (Quantile (𝐼𝑟𝑎𝑤

𝑘 )).

𝐼𝑛𝑜𝑟𝑚
𝑘,𝑗 =  𝐼𝑟𝑎𝑤

𝑘,𝑗
Quantile (𝐼𝑟𝑎𝑤)

Quantile (𝐼𝑟𝑎𝑤
𝑘 )                           (Equation 2)

We implemented both the median and quantile normalization methods as 
a function in R because of their simplicity. For all other normalization 
methods listed in Table 1 including Smooth Quantile Normalization, 
Median Ratio Normalization, and Trimmed Mean of the M-values, we 
downloaded their implementation in R packages from Bioconductor.org 
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that included: qsmooth (Hicks 2018), fCI (Tang 2016), and NOISeq 
(Tarazona 2011, 2015).

Table 1.  List of normalization methods that were evaluated

 Median normalization
 Q50 and Q75: 50% and 75% quantile normalization 
 SQUA: smooth quantile normalization (Hicks 2018)
 UQUA: upper quartile normalization (Bullard 2010)
 MRN: median ratio normalization (Maza 2013)
 TMM: trimmed mean of the M-values (Robinson and 

Oshlack 2010, Tarazona 2011, 2015)

Virtual slides and ground truth definition

To benchmark multiple normalization methods, we defined a metric to 
quantify the differences between a set of evaluation objects across a 
series of virtual slides. We utilized 14 rounds of DAPI re-staining and 
imaging of the same physical TMA slide to represent our ground truth. 
We abstracted the individual rounds of DAPI staining and imaging to 
represent virtual slides. Each virtual TMA slide is the exact same 85 
physical samples that have undergone a set of experimental conditions 
that introduce both random variation and systematic offsets between the 
virtual slides. Some of the systematic offsets introduced by lab 
technicians were known and electronically recorded. For example, the 
exposure time for the DAPI imaging was changed in a known amount 
between the virtual slides (rounds of imaging). The exposure time was 
either 20, 50, or 100 milliseconds for specific virtual slides which 
introduces known systematic offsets between the virtual slide images. 
Supplementary Table S2 presents the details for each virtual slide. A 
second known batch effect was the time of consecutive processing of the 
physical TMA slide; this was electronically captured via time stamps. 
The last virtual slide was stained and imaged 43 days after the staining 
and imaging of the first virtual slide. The time interval between staining 
of each virtual slide was not equivalent and ranged up to a maximum of 
14 days. There are other batch effects that occurred in the empirically 
derived virtual slide data. For example, the DAPI stain on the physical 
slide is refreshed for each round with several changes in the chemical lot 
of DAPI solution used over the course of the 14 staining rounds.

Evaluation objects (EO) were defined and used to compute the 
differences across the virtual slides. The virtual slides are the same 
physical slide and thus contain the same physical samples, and 
consequently contain the same evaluation objects. The exact same 
evaluation objects were used to quantify and compare the performance 
for all methods and for both the segmented object and grid-based object 
workflows. 

Overall, there were 297,430 nuclei objects generated by segmenting 
the DAPI images from the first TMA slide. A subset of these can be 
selected to become evaluation objects by prefiltering objects of lower 
quality prior to normalization. First, we filtered out the smallest and 
largest segmented nuclei objects. The area of the DAPI segmented nuclei 
objects ranged from 62 to 14500 pixels2 (Supplementary Table S4). The 
10% and 90% quantiles from the distribution of all nuclei object areas 
were selected as the tolerances to filter by object size. Next, we filtered 

out objects that were not of sufficient image quality. Image correlation 
metrics (Bello 2008) that measure alignment of a cell object’s pixels 
between rounds of successive DAPI staining was used to characterize an 
object’s image quality. Objects with less than 90% correlation across all 
14 rounds of DAPI staining and imaging were filtered out. Filtering for 
both size and image quality resulted in 144,315 ground truth evaluation 
objects being selected out of all 297,430 nuclei objects.

Metrics to quantify and compare methods and workflows

We utilized the coefficient of variation (CV) as a metric to quantify the 
error in the intensity value for an individual evaluation object across the 
multiple rounds of staining and imaging (i.e. virtual slides). The intensity 
of an evaluation object is the mean of image pixel intensities contained 
within each evaluation object’s boundaries. We define EO[i,k] to be the 
intensity for the ith evaluation object for the kth virtual slide. The 
coefficient of variation for the ith evaluation object EO-CV(i) is defined 
(equation 3) to equal to the standard deviation (  of the intensity 𝜎)
distribution for the ith evaluation object across the Ns virtual slides 
divided by the mean ( ) of the same distribution.𝜇

EO - CV(i) =  𝜎 𝜇                        (Equation 3)

σ =
∑𝑁𝑠

𝑘 = 1(𝐸𝑂[𝑖,𝑘] ― 𝜇)2

𝑁𝑠
                  𝜇 =   

∑𝑁𝑠
𝑘 = 1𝐸𝑂[𝑖,𝑘]

𝑁𝑠
  

Each evaluation object represents the same physical nuclei therefore 
the variance in the intensity is a result of systematic offset errors and 
random measurement noise. The EO-CV metric quantifies the variance 
in the intensity value of the evaluation object across the virtual slides that 
includes both contributions from systematic errors that in principle can 
be eliminated by a normalization method and random errors that cannot. 
A perfect normalization method would remove all experimental batch 
effects and the CV for the evaluation object would approach a limiting 
value that is dependent only upon the standard deviation of the 
measurement noise relative to the true intensity of the object and the 
number of slides being normalized. Under the condition of normalizing 
an infinite number of slides, the CV limit is the standard deviation of the 
measurement noise divided by the object’s true intensity value.

The mean of the EO-CV(i) distribution (MEO-CV) across all 
evaluation objects (NE = 144,315) is what we used to quantify the 
performance of a normalization method under a given test scenario.

 MEO - CV =
∑𝑁𝐸

𝑖 = 1EO - CV(i)

𝑁𝐸
                           (Equation 4)

Test scenarios to evaluate normalization methods and workflows

We applied each normalization method and then computed its MEO-CV 
metric for each of 29 test scenarios. Each test scenario involved 
correcting the images from a specified subset of the 14 virtual slides. 
Details of each test scenario is presented in the Supplementary Table S6. 
We applied both biased selection as well as random selection to define 
the virtual slide subsets for the test scenarios. For example, we forced the 
creation of test cases correcting virtual slides across and within known 
imaging exposure times. We created test cases that considered correcting 
virtual slides that were stained and imaged consecutively over a short 
period of time and other cases that were generated over weeks of time. 
Finally, we forced the cases of correcting 2, 3, 10 and 14 virtual slides. 
We also used random selection to generate some of the test cases at 
correcting 2 and 3 virtual slides.
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3 Results

Comparing normalization methods in a segmented object workflow

We began our evaluation by first comparing the performance of each 
normalization method to correct the systematic error (i.e. batch effects) 
across the virtual slide images. We used all 297,430 nuclei objects for 
the segmented object normalization workflow. Unless otherwise noted, 
we ran 29 test scenarios (Supplementary Table S6) for each 
normalization method in which 2, 3, 10, or 14 virtual slides were 
corrected. Figure 2A presents the performance and comparison of 
multiple normalization methods (see Supplementary Figure S3 and 
Supplementary Table S7 for results of all normalization comparisons). 
We found all six normalization methods reduced the slide-to-slide error 
(ANOVA p-value < 1E-16) for the evaluation objects as quantified by 
the MEO-CVs across the 29 test scenarios. All methods performed better 
in log space vs absolute space except for the SQUA method 
(Supplementary Table S7). The TMM and MRN methods applied in log 
space performed the best reducing the slide-to-slide error by 
approximately 10-fold and were found not to be statistically different 
from each other (Wilcoxon rank sum test with Bonferroni correction p-
value = 0.93). Figure 2B and 2C presents one example of a test scenario 
involving the correction of 14 virtual slides before and after 
normalization respectively. The full distributions of DAPI intensities for 
the segmented nuclei objects pre (Fig. 2B) and post (Fig. 2C) 
normalization is presented in Supplementary Figure S4.

Figure 2. Performance of normalization methods for DAPI segmented 
nuclei objects. A) The bar chart presents the performance of six 
normalizations across 29 test scenarios relative to the uncorrected case 
(left most bar). The horizontal red dashed line in the bar chart located at 
0.0738 is achieved by the TMM method when applied in log space (right 
most bar). The height of each bar represents the median of the MEO-
CVs across the 29-test scenarios. Within each bar there is a vertical line 
segment that represents the range in the 29 test values. The mean of the 

test cases is represented by a thicker horizontal line segment that is near 
the height of each bar. The two inset line plots (B, C) present 14 lines 
each representing a different virtual slide. The y axis is the median of the 
evaluation objects within each of the 85 TMA sample positions. The 
upper line plot (B) presents the uncorrected data, and the lower line plot 
(C) presents the data after normalizing using the 50% Quantile (Q50) 
method in log space. The horizontal dashed lines represent the global 
median intensity of all evaluation objects across all sample positions and 
virtual slides pre (B) and post (C) normalization respectively.

Impact of filtering objects prior to image normalization

We next evaluated the approach of filtering low image quality cell 
objects prior to inputting them into the bioimage normalization method. 
Our hypothesis was that by prefiltering objects of lower image quality 
prior to normalization would subsequently improve the slide-to-slide 
error correction. Surprisingly, we learned that the best performance in 
error correction was achieved by using all 297,430 nuclei objects when 
performing normalization (Supplementary Figure S5). The image quality 
metric we used for filtering was the object’s pixel correlation across all 
14 rounds of DAPI staining and imaging. If the correlation of pixels is 
low, then there is either blurring, tissue movement, or even tissue loss 
that has occurred across the imaging rounds. Moderate to low quality 
objects still provide good information when correcting errors and offsets. 
For example, very slight tissue movement or very slight image blurring 
can lead to a reduction in an object’s pixel correlation and thus its 
assessed imaging quality. However, the object’s mean intensity value 
computed as the mean of the pixel values within the object’s boundaries, 
can remain relatively constant. Therefore, it may be a blurry object, but 
its intensity value is still informative from the perspective of normalizing 
bioimages. 

Evaluating a grid-based object workflow to normalize bioimages

We evaluated a grid-based object normalization approach to determine if 
it could achieve the same level of performance to normalizing segmented 
objects (e.g. nuclei) directly. We started by first understanding how the 
grid size impacted the normalization performance. Evaluations were 
conducted on grid sizes that ranged from an entire FOV (2560 x 2160 
pixels2) down to a square grid size of 16 (15 x 15 pixels2). The median 
area for the nuclei segmented objects is 203 pixels (Supplementary Table 
S4) which is approximately equal to the area of a grid size of 16 
(Supplementary Table S5). We found that a grid size of 32 produced the 
best performance, achieving a median value of 0.0741 for the MEO-CVs 
across the 29-test scenarios (Supplementary Figure S6A). A grid size of 
32 had a 9.2% improvement vs using the whole image (Wilcoxon rank 
sum test with Bonferroni correction p-value = 4.7E-05). Furthermore, 
using a grid size of 32 had only a slight reduction of 0.4% in the MEO-
CVs vs the TMM method applied directly to the nuclei objects (0.0741 
vs 0.0738, p-value = 0.092). Thus, the unbiased grid-based approach can 
achieve similar performance (see Supplementary Figure S7 comparing 
distributions) as the TMM method applied directly to the segmented 
nuclei objects.

Supplementary Figure S6B presents the quantile normalization using 
quantiles that ranged from 50% up to 100% (Q50 to Q100). The 75% 
quantile (Q75) achieved the best performance. The Q50 method had a 
42% loss in performance as did the MRN and TMM methods when 
applied to the grid objects. In contrast, when normalizing segmented 
nuclei objects directly, the Q50, MRN, and TMM methods achieved the 
best performance (Figure 2A, Supplementary Figure S3).
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Using on-slide controls to normalize bioimages

We next wanted to evaluate the use of on-slide tissue and cell-line 
control samples. To assess their use in normalization, we conducted a 
series of virtual slide normalization simulations that used different 
numbers of control samples to correct either two or three virtual TMA 
slides. There were 27 test scenarios in all. For each of these we 
performed random selections of control samples from each virtual TMA 
slide. As illustrated in Figure 3A, the randomly selected control samples 
for each virtual slide were constrained such that a randomly selected 
sample used as a control on one virtual TMA slide could not be selected 
and used as a control on any other virtual slide.

Figure 3B presents the results and shows that ten or more on-slide 
controls are required for robust normalization. Relying on five or less 
control samples can be detrimental. In other words, by relying on only a 
few controls there is an unacceptable probability that the error in the data 
will increase after normalization relative to the original uncorrected data. 
Even with five controls, the probability that the controls would be of 
limited value in reducing the batch effects between slides is still 
relatively high as indicated by the range observed in our simulations 
(Figure 3B). Using ten to twenty controls reduces the range to a more 
acceptable level but comes with the cost of reducing the number of 
available positions for experimental samples within the TMA. Our 
simulations show that by using 5 control samples, the median of MEO-
CVs that is achieved across the 270 (27 x 10) test simulation runs was 
0.134 which is 36% higher in error than when using 20 control samples.

Figure 3. The effect of control sample number on error correction of 
TMA slide images. A limited number (1, 2, 3, 4, 10, or 20) of control 
samples and their images were used to normalize virtual TMA slide 
images. Each normalization was performed 10 times in which TMA 
samples were randomly selected and used as controls for normalization. 
The random selection of control samples for each virtual slide was 
constrained such that a randomly selected sample used as a control on 
one virtual TMA slide could not be selected and used as a control on any 
other virtual slide. An example is illustrated (a) in which five control 
samples are randomly selected from three virtual TMA slides. The bar 
chart (b) presents the performance of applying the Q75 normalization 
method in log space to the grid objects of size 32 from the control 
samples on each virtual slide. After normalizing the images, the 
evaluation of nuclei objects across all 85 samples from the virtual TMA 
slides was used to compute the MEO CVs. The computed performance 
was based on 27 testing scenarios that involved either 2 or 3 virtual 
slides. The “None” case (left most bar) is the uncorrected data with a 
median value of 0.728. This value is slightly different than the 
uncorrected data presented in figure 2 that included two additional test 
scenarios. The horizontal red dashed line is located at 0.0738 in the bar 
chart.

Demonstration of grid-based object normalization performance

We applied the grid-object normalization workflow to 24 multiplexed 
biomarkers imaged on each of three TMA slides. As an exemplar, figure 
4 presents the median image intensity for the staining of the BCL2 
associated X, apoptosis regulator (BAX) protein across 85 samples that 
includes both CRC tissues and cell lines. The BAX staining intensity for 
slide A3 (Figure 4A) is distinctly lower than the corresponding slides A1 
and A2 for the uncorrected images of each of the four cell lines. BAX is 
a member of the Bcl-2 protein family and is pro-apoptotic (Oltvai 1993). 
A decrease in BAX staining may indicate less sensitivity to apoptosis 
when comparing different cell lines. However, each individual cell line 
sample on each physical slide is from the same paraffin-embedded cell 
pellet. Furthermore, a reduction in BAX protein levels is unlikely to 
occur proportionally across four cell lines under physiological culture 
growing conditions. This reduction in BAX intensity for slide A3 vs the 
other two slides is purely an experimental artifact (i.e. slide to slide batch 
effect). To prevent false biological discoveries, it is critical to remove 
this artifact from the data prior to downstream analysis. We applied the 
grid-based object normalization workflow with grids of 32 pixels in size 
and the Q75 method applied in log space. The normalized data presented 
in figure 4A shows approximately equivalent BAX staining intensity 
across the three slides and the relative proportions across the four cell 
lines is now constant across the three slides. Figure 4B presents the 
uncorrected and normalized images of the BAX staining across the three 
slides for the HeLa cell line. Supplementary Table S10 summarizes the 
performance of the grid-based object normalization workflow assessed 
by four cell lines across twenty-four independent fluorescently labelled 
antibody markers that were analyzed on the same slides. We finally 
applied Uniform Manifold Approximation and Projection (UMAP) to 
visualize the high-dimensional data before and after normalization. The 
UMAP plots (Supplementary Figure S8) clearly show a batch effect 
between the three slides with serial tissue slices prior to normalization 
which is then eliminated after the grid normalization method is applied. 
This provides a clear demonstration of the ability of the grid-based 
object normalization workflow to reduce the batch effects for 
fluorescently labelled antibody markers in addition to DAPI in real data.

Figure 4. Application of grid-object normalization to BAX staining of 
three physical TMA slides that include 85 CRC tissues and cell lines. A) 
The median BAX staining intensity of each image for each of the three 
slides is presented uncorrected and normalized by applying the grid-
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based object workflow with grids of 32 pixels in size and the 75% 
quantile (Q75) method in log space. The intensity of four cell lines, 
HeLa (square), HCT116 (circle), MCF7 (triangle), and Jurkat (diamond) 
is shown for the three TMA slides. B) The images for the HeLa cell line 
across the three slides is presented before and after normalization.

4 Discussion
The main goal of our work was to both evaluate published normalization 
methods and test a new normalization method for correction of 
experimental errors and batch variation between multiplexed 
immunofluorescence bioimages. The biggest initial challenge we faced 
was simply defining a ground truth to judge all the methods against. 
Without a ground truth, the value of any comparative analysis becomes 
limited. We generated a ground truth dataset from multi-round staining 
and imaging of the same marker in the same tissue with each round 
representing a “virtual slide” image. These virtual slides consist of the 
same physical tissue, include actual batch processing errors and noise, 
and serve as the ground truth necessary to compare multiple methods and 
workflows.

Our virtual slide ground truth approach does have its limitations when 
it comes to approximating batch effects in epitope-antibody staining and 
imaging. For example, there may be significant differences between 
antibody permeability arising from differences in slide section thickness, 
access to binding sites and difference in binding affinities, or off target 
binding and background staining. These potential limitations of our 
virtual slide approach still need to be further studied and understood. 
Nevertheless, we are encouraged by our results at applying the grid-
object normalization workflow to 24 twenty-four independent 
fluorescently labelled antibody markers.

We examined the unbiased grid-based object workflow to normalize 
images prior to segmenting the bioimages into cell objects. When 
compared to the workflow of normalizing segmented cell objects 
directly, we found the differences in performance (0.4%) to be 
statistically insignificant (p-value > 0.05). With the performance being 
almost equivalent, the grid-based object workflow has the additional 
advantage of performing normalization of the bioimages across the 
staining channels prior to segmenting pixels into cell objects. This can 
improve global intensity thresholding for segmentation, identifying cell 
type classification, and performing unsupervised clustering based on cell 
marker intensity levels.

We found that filtering of objects prior to bioimage normalization did 
not improve performance in error correction. Most normalization 
methods that we evaluated (TMM, MRN, median, Q50, Q75) are robust 
to the presence of outlier and experimental artifact object values. In a 
situation where you have potentially lower quality information which 
can be randomly distributed across both high and low values, the use of 
the median tends not to be impacted by the presence of outlier data.

This use of quality control samples becomes increasingly important to 
normalization approaches when the slides cannot be balanced. 
Unbalanced situations can occur if there are significant mean differences 
between slides such as tissue type, tissue morphology, cell type, cell 
density, cancer stage, and other factors impacting protein expression. In 
that case, it may be more appropriate to redesign the TMA slides to be 
more balanced for types of samples. For the case of balanced TMA 
slides, we found that normalizing across all samples achieves improved 

performance relative to normalizing based on a small number of quality 
control tissues or cell lines. Sub-optimal performance (36% loss) was 
achieved with five controls per slide. We found that relying on only one 
or two controls on a slide had an unacceptable probability of amplifying 
errors upon normalization. Consequently, the normalized data were 
further from the ground truth than the original uncorrected data. Using 
ten to twenty controls per slide improved the performance but with a cost 
of having a portion of the TMA being devoted to control samples. 
However, one further benefit of having a larger number of control 
samples available is the ability to set aside some of them to validate if 
the normalization process itself is introducing biases into the data. 

Software and data availability
The data underlying this article along with the FLINO R-scripts used to 
perform the evaluation of image normalizations methods and workflows 
can be downloaded from https://github.com/GE-Bio/FLINO
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