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During the spreading of epithelial tissues, the advancing tissue front often develops fingerlike
protrusions. Their resemblance to traditional viscous fingering patterns in driven fluids suggests that
epithelial fingers could arise from an interfacial instability. However, the existence and physical mechanism
of such a putative instability remain unclear. Here, based on an active polar fluid model for epithelial
spreading, we analytically predict a generic instability of the tissue front. On the one hand, active cellular
traction forces impose a velocity gradient that leads to an accelerated front, which is, thus, unstable to long-
wavelength perturbations. On the other hand, contractile intercellular stresses typically dominate over
surface tension in stabilizing short-wavelength perturbations. Finally, the finite range of hydrodynamic
interactions in the tissue selects a wavelength for the fingering pattern, which is, thus, given by the smallest
between the tissue size and the hydrodynamic screening length. Overall, we show that spreading epithelia
experience an active fingering instability based on a simple kinematic mechanism. Moreover, our results
underscore the crucial role of long-range hydrodynamic interactions in the dynamics of tissue morphology.
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The spreading of epithelial monolayers by collective
cell migration is crucial for tissue morphogenesis, wound
healing, and tumor progression. Both in vivo and in vitro,
multicellular protrusions called epithelial fingers often
appear at the front of spreading tissues (Fig. 1) [1–11].
This epithelial fingering resembles the viscous fingering
that occurs via the Saffman-Taylor instability when a viscous
fluid displaces a more viscous one [12,13]. However, the
mechanisms of these two phenomena must be different
because epithelial monolayers are more viscous than the
fluid that they displace. Hence, several models of epithelial
fingering have been proposed [3].
To induce finger formation, some models directly imple-

ment leader cells with a distinct behavior, either via special
particles [14] or via a dependence of the magnitude of cell
motility forces on the curvature of the tissue front [15,16].
Other models recapitulate epithelial fingering by introduc-
ing alignment between cell motility forces and the tissue
velocity field [17]. These models predict a moving front to
be stable and a nonmoving front to exhibit an instability
with an unbounded growth rate for a number of finite
wavelengths [18,19]. Fingers were also observed in the
numerical solution of other continuum models of spreading
epithelia, either treated as active polar fluids [20] or as
active nematics with cell proliferation [21]. Recently,
fingering was also found in a parameter range of an active
vertex model [22]. Finally, interface undulations can
emerge from the coupling of chemotactic fields to the
mechanics of epithelial spreading [23–26].

Despite the many efforts, the physical mechanism of
the fingering instability in epithelia remains a matter of
debate. Here, we address this problem by means of a
continuum active polar fluid model for epithelial spreading.
The model includes hydrodynamic interactions through
the tissue, and it implements neither leader-cell behavior
nor alignment between cellular traction forces and the
flow field. Yet, we analytically predict a long-wavelength
instability of the moving front that explains epithelial
fingering. The instability is based on a generic kinematic
mechanism, namely, the front acceleration associated to a
fixed velocity gradient. In spreading epithelia, the velocity
gradient is imposed by active traction forces at the edge of
the viscous cell monolayer. The fastest-growing mode has a
finite wavelength, typically a few hundred micrometers,
consistent with the measured finger spacing [11]. This
characteristic wavelength is selected by the long-range
hydrodynamic interactions in the tissue, which are either

FIG. 1. Fingering in epithelial spreading. Scale bar, 200 μm.
Adapted from [6] with permission from Pascal Silberzan.
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limited by the tissue size or screened by cell-substrate
friction forces. The model also shows that intercellular
contractility stabilizes short-wavelength perturbations of
the tissue boundary. The stabilizing effect of contractility is
typically stronger than that of tissue surface tension.
Globally, our analysis shows how, as a result of the flows
induced by the traction force field, a morphological
instability may naturally take place in a spreading cell
monolayer. Leader cells could then appear upon the onset
of the instability, influencing finger development.
Model.—We base our analysis on a continuum active

polar fluid model of epithelial spreading, which is, thus,
described in terms of a polarity field p⃗ðr⃗; tÞ and a velocity
field v⃗ðr⃗; tÞ [27–29]. We neglect cell proliferation and the
bulk elasticity of the monolayer, which eventually limit the
spreading process [6,17,30–32]. Tissue spreading is pri-
marily driven by the traction forces exerted by cells close
to the monolayer edge, which polarize perpendicularly to
the edge by extending lamellipodia towards free space.
In contrast, the inner region of the monolayer remains
essentially unpolarized, featuring much weaker and tran-
sient traction forces [27,28]. Hence, we take a free energy
for the polarity field that favors the unpolarized state p ¼ 0
in the bulk, with a restoring coefficient a > 0, and we
impose a normal and maximal polarity as a boundary
condition at the tissue edge. In addition, the polar free
energy includes a cost for polarity gradients, with K the
Frank constant of nematic elasticity in the one-constant
approximation [33]. Altogether,

F ¼
Z �

a
2
pαpα þ

K
2
ð∂αpβÞð∂αpβÞ

�
d3r⃗: ð1Þ

We assume that the polarity field is set by flow-independent
mechanisms, so that it follows a purely relaxational
dynamics, and that it equilibrates fast compared to the
spreading dynamics [34]. Hence, δF=δpα ¼ 0, which
yields

L2
c∇2pα ¼ pα; ð2Þ

where Lc ¼
ffiffiffiffiffiffiffiffiffi
K=a

p
is the characteristic length with which

the polarity modulus decays from p ¼ 1 at the monolayer
edge to p ¼ 0 at the center.
Then, force balance imposes

∂βσαβ þ fα ¼ 0; ð3Þ

where σαβ is the stress tensor of the monolayer, and fα is the
external force density acting on it. Since tissue spreading
occurs over time scales of several hours (Fig. 1), we neglect
the elastic response of the tissue [34]. Thus, we relate tissue
forces to the polarity and velocity fields via the following
constitutive equations for an active polar fluid [61] (see
discussion and justification in Ref. [34]):

σαβ ¼ ηð∂αvβ þ ∂βvαÞ − ζpαpβ; ð4aÞ

fα ¼ −ξvα þ ζipα: ð4bÞ

Here, η is the effective monolayer viscosity, and ξ is the
cell-substrate friction coefficient. Respectively, ζ < 0 is the
active stress coefficient accounting for the contractility of
polarized cells, and ζi > 0 is the contact active force
coefficient accounting for the maximal traction stress
exerted by polarized cells on the substrate, T0 ¼ ζih, with
h the monolayer height.
Stability of the tissue front.—To study the stability of

the advancing front, we consider a rectangular monolayer
typical of in vitro experiments (Fig. 1). Thus, the reference
state is the flat front solution with p⃗ ¼ p0

xðxÞx̂ and v⃗ ¼
v0xðxÞx̂ [34] [dashed lines in Fig. 2(a)]. In addition to a
maximal normal polarity at the edges, we impose stress-
free boundary conditions. For an interface of arbitrary
shape, p⃗ðx ¼ �LÞ ¼ n̂�, and σ · n̂�jx¼�L ¼ 0⃗, respec-
tively, where n̂� is the normal unit vector of the top and
bottom interfaces. The tissue width L changes according
to dL=dt ¼ v⃗ · n̂jx¼L. Then, motivated by experimental
observations (Fig. 1), we introduce peristaltic small-
amplitude perturbations of the flat interface, namely, those
that modify the monolayer width [Fig. 2(a)]: LðyÞ ¼
L0 þ δLðyÞ. From a linear stability analysis [34], we obtain
that the growth rate ωðqÞ of such perturbations is always
real, so that no oscillatory behavior is expected. However,
the growth rate evidences a long-wavelength instability
of the monolayer front. Moreover, the fastest-growing
perturbation has a finite wavelength [Fig. 2(b)]. In the
following, we analyze the contribution of the different
forces to the instability, which allows us to single out its
physical mechanism.
Traction forces.—First, we consider a limit case with

neither intercellular contractility nor cell-substrate friction,
ζ, ξ → 0 [27]. In addition, we also consider that the width
of the polarized boundary layer of cells is much smaller
than the total tissue width, Lc ≪ L0, which is generally
the case in experiments [27,28]. In this limit, since active
forces are concentrated at the narrow boundary layer, most

(b)(a)

FIG. 2. Instability of the monolayer front. (a) Sketch of the
peristaltic perturbations. Dashed lines indicate the flat, unper-
turbed interface. The dotted line indicates the symmetry axis of
the monolayer. (b) Growth rate of the perturbations. Parameter
values are in Table I.
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of the tissue behaves as a passive viscous fluid, for which
∂xσxx ≈ 0 and σxx ≈ 2η dvx=dx. Therefore, the stress is
uniform throughout most of the tissue, with a value given
by the stress accumulated across the boundary layer,
namely, σxx ≈ T0Lc=h. Consequently, the velocity gradient
is also fixed and uniform, and hence, the spreading velocity
vxðL0Þ ¼ V0 ¼ dL0=dt reads

V0 ≈
T0Lc

2ηh
L0 ≡ L0

τ
; ð5Þ

where we have used that vxð0Þ ¼ 0. This result means that,
due to the sole action of a constant traction force, the flat
front accelerates, consistent with measurements [6,62]
and with the size dependence of tissue wetting [28].
Consequently, the q ¼ 0 perturbation mode is unstable,
ωðq ¼ 0Þ ¼ τ−1 > 0, since any uniform displacement of
the advancing front makes it depart from its original
velocity. Thus, the instability mechanism is kinematic in
nature: The advanced regions of the front move faster than
the trailing regions [Fig. 2(a)]. Thereby, traction forces
contribute to destabilize perturbations of all wavelengths
[Fig. 3(a)]. Therefore, since other forces such as surface
tension stabilize short-wavelength perturbations, the tissue
front experiences a long-wavelength instability.
Viscous stresses.—The kinematic mechanism explains

why long-wavelength modes are unstable. However, it does
not explain why the most unstable mode occurs at a finite

wavelength [Fig. 3(a)]. In fact, the existence of a peak in the
growth rate is due to the transmission of viscous stress
across the monolayer. In the so-called wet limit λ ¼ffiffiffiffiffiffiffi
η=ξ

p
≫ L0, corresponding to ξ → 0, viscous stresses

transmit through the entire monolayer. Thus, a given
perturbation of the front generates a flow perturbation that
penetrates a distance of the order of its wavelength, π=q,
into the monolayer. At the monolayer edge, the stress-free
boundary condition imposes δσxxð�LÞ¼∓∂xσ

0
xxð�L0ÞδL.

Hence, since δσxx ¼ 2η ∂xδvx in the absence of contrac-
tility (ζ → 0), the gradient of the velocity perturbation
profile is fixed at the boundary, being positive (negative) for
advanced (trailing) regions of the tissue front. Therefore,
flow perturbations further destabilize the flat front in a
wavelength-dependent manner.
For short wavelengths, π=q < L0, the penetration dis-

tance of flow perturbations is shorter than the tissue
width. Thus, since the slope of velocity perturbations at
the interface is fixed, the longer the wavelength, the larger
the interfacial velocity perturbation [Fig. 4(a)]. Hence, the
growth rate increases with the wavelength [Fig. 3(a)]. In
contrast, for long wavelengths, π=q > L0, the penetration
distance of flow perturbations is longer than the tissue
width. Thus, in this case, the decay of flow perturbations
becomes nearly linear, with a slope that decreases with
increasing wavelength. Consequently, perturbations of
longer wavelength feature a smaller interfacial velocity
perturbation [Fig. 4(a)], and hence, they are less unstable
[Fig. 3(a)]. In conclusion, in the absence of cell-substrate
friction forces, the finite width of the monolayer limits the

(d)(c)

(b)(a)

FIG. 3. Contributions to the instability. Growth rates of shape
perturbations varying the values of different model parameters.
Excluding the varied parameter, other parameter values are in
Table I except for ξ, ζ → 0. (a) Traction forces completely
destabilize the monolayer front. For this plot, T0 ¼ 0, 0.25,
0.5, 0.75, 1 kPa. (b) Long-range transmission of viscous stresses
selects the fastest-growing mode. For this plot L0 ¼ 50, 100, 150,
200, 250 μm. (c) Cell-substrate friction screens hydrodynamic
interactions to limit the wavelength of the fingering pattern. For
this plot, ξ ¼ 10; 102; 103; 104; 105 Pa s=μm2. (d) Contractility
stabilizes short-wavelength perturbations of the monolayer front.
For this plot, −ζ ¼ 0, 10, 20, 30, 40 kPa.

(b)(a)

FIG. 4. Screening of tissue flows. (a) Flow perturbations
induced by short-wavelength shape perturbations (q > π=L0)
penetrate a distance given by their wavelength. Thus, the
interfacial velocity perturbation increases with wavelength. In
contrast, the penetration of flow perturbations induced by long-
wavelength shape perturbations (q > π=L0) is limited by the
tissue width 2L0, which entails a decrease of the interfacial
velocity perturbation. Consequently, shape perturbations with a
wavelength that matches the monolayer width (q ∼ π=L0) feature
the fastest growth [Fig. 3(b)]. Parameter values are in Table I
except for ξ, ζ → 0. (b) The wavelength of the fastest-growing
mode, λ�, is proportional to the monolayer semiwidth L0 if
L0 ≲ λ, with λ ¼ ffiffiffiffiffiffiffi

η=ξ
p

the hydrodynamic screening length. For
wider monolayers, the selected wavelength is size independent,
becoming proportional to λ. Parameter values are in Table I
except for ζ → 0, and ξ ¼ 10; 102; 103; 104; 105 Pa s=μm2.
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range of hydrodynamic interactions in the tissue, thus
giving rise to the peak in the growth rate at q� ∼ π=L0

[Fig. 3(b)].
Cell-substrate friction forces.—Cell-substrate friction

screens the transmission of viscous stresses over distances
larger than λ¼ ffiffiffiffiffiffiffi

η=ξ
p

. Consequently, the peak of the growth
rate occurs at q� ∼ π=λ if λ≲ L0 [Fig. 3(c)]. Thus, for
sufficiently strong friction, the fingering wavelength is
given by the hydrodynamic screening length λ, instead
of the monolayer width L0 [Fig. 4(b)]. We estimate
λ ∼ 0.5 mm (Table I). Therefore, the crossover from a
viscosity-dominated to a friction-dominated regime of
monolayer spreading and fingering should be observable
in usual in vitro experiments.
Surface tension.—The monolayer edge presents a sur-

face tension γ, namely, the work per unit area required to
expand it. For a curved interface, surface tension gives

rise to a normal force: n̂� · σ · n̂�jx¼�L ¼ −γ∇⃗ · n̂�jx¼�L ≈
�γd2δL=dy2. Then, the expansion of the growth rate at
long wavelengths reads

ωðqÞ ≈ 1

τ
þ
�
1

3τ
−

γ

2ηL0

�
ðqL0Þ2 þOððqL0Þ4Þ; ð6Þ

with τ ¼ 2ηh=ðT0LcÞ. This expression reveals the exist-
ence of a critical size Lγ ≈ 3γh=ðT0LcÞ above which the
growth rate curves upwards at q → 0 [ω00ð0Þ > 0], hence,
exhibiting the aforementioned peak at a finite wavelength.
Alternatively, if γ > γ� ≈ T0LcL0=ð3hÞ, surface tension
prevents the hydrodynamic selection of a finite fingering
wavelength, which is then only limited by the length of the
tissue front.
The surface tension of the monolayer could be due to

actin cables found along its edge, particularly along the
sides of epithelial fingers [6,9,10]. Traction force measure-
ments suggest that the tension of such cables is γ ∼
0.2 mN=m [10], lower than typical surface tensions of
cell aggregates, γ ∼ 1–10 mN=m [65–68]. Combining
these value ranges with T0 ¼ 0.2–0.8 kPa and typical
values of h and Lc (Table I), the critical monolayer width
for fingering is Lγ ∼ 0.3–10 μm. Therefore, we expect

surface tension not to play a major role in the fingering
instability in monolayers of typical widths L0 ∼ 0.1–1 mm.
Intercellular contractility.—Because it decreases the

spreading velocity, intercellular contractility has an addi-
tional stabilizing effect on the monolayer front [Fig. 3(d)].
We discuss the effects of a uniform contractility in [34].
Here, we consider an intercellular contractility −ζ con-
centrated at the polarized boundary layer, which has a size-
independent contribution to the spreading velocity,

V0 ≈
T0Lc

2ηh
L0 þ

Lc

2η

�
ζ

2
−
T0Lc

h

�
: ð7Þ

Consequently, in the limit Lc ≪ L0 ≪ λ, this contractility
has no impact on the growth rate of the uniform mode,
ωð0Þ ¼ τ−1, but it contributes a stabilizing quadratic term
to the long-wavelength expansion of the growth rate,

ωðqÞ ≈ 1

τ
þ
�
1

3τ
þ ζL2

c

8ηL2
0

�
ðqL0Þ2 þO(ðqL0Þ4): ð8Þ

Thus, as surface tension, contractility defines a critical size
Lζ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3ζLch=ð4T0Þ

p
above which the growth rate fea-

tures a finite-wavelength peak. Alternatively, if −ζ > −ζ�≈
4T0L2

0=ð3hLcÞ, contractility suppresses the hydrodynamic
selection of a finite fingering wavelength.
For typical contractilities, −ζ∼1–50 kPa [28], the criti-

cal monolayer width for fingering is Lζ ∼ 10–100 μm,
where we have used T0 ¼ 0.2–0.8 kPa and estimates for h
and Lc (Table I). Therefore, we do not expect contractility
to prevent fingering wavelength selection. However, our
estimates give Lγ < Lζ, indicating that contractility typi-
cally dominates over surface tension in stabilizing short-
wavelength shape perturbations. Thus, the competition
between the destabilizing effect of traction forces and
the stabilizing effect of intercellular contractility defines
the band of unstable modes.
Uniformly polarized tissues.—To consider monolayers

with bulk polarity [63], we analyze the morphological
stability of a uniformly polarized monolayer [34]. In this
case, in the absence of contractility, the spreading velocity
is constant: V0 ¼ T0=ðξhÞ. Hence, the q ¼ 0 mode is
marginally stable, ωðq ¼ 0Þ ¼ 0. Moreover, contractility
stabilizes it, ωð0Þ < 0. Nevertheless, the viscous effects
discussed above still give rise to a peak of the growth rate
at a finite wavelength. Therefore, even though uniformly
polarized tissues do not feature an accelerating front, they
still exhibit a fingering instability for sufficiently small
contractility [34].
Conclusions.—Motivated by the observation of finger-

like protrusions during the spreading of epithelial mono-
layers, we studied the stability of the advancing front.
Modeling the cell monolayer as an active polar fluid, we
showed that active traction forces are responsible for a
long-wavelength instability of the monolayer front. Several

TABLE I. Estimates of model parameters.

Symbol Description Estimate

L0 Monolayer half-width 200 μm
h Monolayer height 5 μm [28,63]
Lc Nematic length 25 μm [27,28]
T0 Maximal traction 0.5 kPa [27,28]
−ζ Intercellular contractility 20 kPa [28]
ξ Friction coefficient 100 Pa s=μm2 [64]
η Monolayer viscosity 25 MPa s [27,28]
λ Hydrodynamic screening length 0.5 mm (

ffiffiffiffiffiffiffi
η=ξ

p
)
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features distinguish this instability from previous propos-
als. First, it is generic; it takes place for any value of the
active traction force. Second, the wavelength of the finger-
ing pattern is selected by the range of hydrodynamic
interactions in the tissue. Third, active intercellular forces
stabilize short-wavelength perturbations, typically domi-
nating over surface tension effects.
Our analysis identifies the physical mechanism of the

instability. Cellular traction forces at the monolayer edge
set the velocity gradient in the spreading monolayer.
Hence, under the same traction force, a larger monolayer
spreads faster [28]. Consequently, when the monolayer
front is perturbed, the protruding regions of the interface
advance faster than the trailing regions, thus, making the
perturbation grow. Therefore, the instability is based on a
simple kinematic mechanism, which takes place generi-
cally in viscous fluids that sustain a fixed velocity
gradient in the direction of spreading. In particular, the
same morphological instability should occur in the so-
called squeeze flow [69], in which an incompressible
fluid is forced to spread by decreasing the gap between
two plates. In this case, under perfect slip conditions at
the plates, the rate of gap reduction sets the fixed velocity
gradient.
Regarding spreading epithelia, we conclude that neither

leader-cell behavior nor regulation of cell motility by
curvature or by chemotactic fields are necessary for the
fingering instability. Therefore, our results are consistent
with the emergence of leader cells concomitantly with
finger growth [6–8,10,11]. However, the viscous rheology
of the monolayer is essential for the instability. On the
one hand, it underpins the velocity gradient that renders
the interface unstable, and on the other hand, it enables
wavelength selection for the fingering pattern. Concomitant
with the fingering instability, shear stresses give rise to
flows transversal to the spreading direction, which might
lead to the swirls observed in experiments [6,7]. Finally, in
addition to explaining fingering in tissue spreading, our
results also account for the morphological instability
recently observed during tissue dewetting [28].
Our predictions, such as the absence of a traction force

threshold for the instability and whether the fingering
wavelength is given by either the monolayer width or
the screening length λ ¼ ffiffiffiffiffiffiffi

η=ξ
p

, are experimentally test-
able. Indeed, consistent with our result, recent work has
shown that the finger spacing is an intrinsic quantity that
coincides with the stress correlation length [11]. To further
test our predictions, future experiments could perturb active
cellular forces, cell-cell and cell-substrate adhesion, and
vary monolayer width.
Our findings illustrate how hydrodynamic interactions

impact tissue morphodynamics. In particular, we propose
that epithelial fingering can naturally arise from a generic
morphological instability in a fluid film driven by inter-
facial active forces. Thus, our results showcase the

relevance of interfacial instabilities in driven [70–72] and
active [73–79] fluids for tissue spreading.
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