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In this paper we consider the energy and momentum transport in (1+1)-dimension conformal
field theories (CFTs) that are deformed by an irrelevant operator T T̄ , using the integrability
based generalized hydrodynamics, and holography. The two complementary methods allow us to
study the energy and momentum transport after the in-homogeneous quench, derive the exact
non-equilibrium steady states (NESS) and calculate the Drude weights . Our analysis reveals
that all of these quantities satisfy universal formulae regardless of the underlying CFT, thereby
generalizing the universal formulae for these quantities in pure CFTs. We also compute the exact
momentum diffusion constant using the integrability-based method, and confirm that it agrees with
the conformal perturbation. These fundamental physical insights have important consequences for
our understanding of the T T̄ -deformed CFTs. First of all, they provide the first check of the T T̄ -
deformed AdS3/CFT2 correspondence from the dynamical standpoint. And secondly, we are able to
identify a remarkable connection between the T T̄ -deformed CFTs and reversible cellular automata.

I. INTRODUCTION

Spreading of energy is a central topic of
thermodynamics, which has been scrutinized already in
the Fourier’s work on the energy flow in materials, and,
and Stefan’s and Boltzmann’s work on the black body
radiation. Stefan-Boltzmann law states that the energy
current between two regions at different temperatures is
simply proportional to the difference of the temperatures
to the power d, where d is the dimension of the system.
Rather surprisingly, it was recently noticed that Stefan-
Boltzmann law exactly describes the energy transport in
conformal field theories (CFTs) [1, 2].

In this paper we shall take a step forward, by studying
how a departure from the strict CFT limit affects the
spreading of energy and momentum. In particular we
will be concerned with the effects of irrelevant interaction
on the dynamics of (1+1)-dimensional CFTs. Such
situation is especially pertinent in gapless systems where
the asymptotic approach to the low-energy sector is
controlled by irrelevant operators. Indeed, a systematic
consideration of their effects culminated in the birth of
non-linear Luttinger liquid theory, in which the nonlinear
dispersion relation gives rise to important ramifications
of conventional Luttinger liquid theory [3, 4]. While
in general irrelevant perturbations are hard to handle,
it has recently been discovered that a special classes
of deformed theories, so called T T̄ -deformations [5–12]
(for a review, see [13]), are exactly solvable. T T̄ -
deformations have a number of remarkable properties,
and using their structure will allow us to address the
questions associated with transport and thermodynamics
from two complementary perspectives: integrability and
holography.

Recently, we have witnessed rapid developments in
our understanding of the dynamical phenomena in

interacting integrable systems, which have been mainly
driven by the advent of generalized hydrodynamics
(GHD) [14, 15] (see [16] for a review). Integrable
systems are characterized by possessing an infinite
number of conserved charges in the infinite size limit,
which presents an apparent obstacle in using the
usual hydrodynamic description. The pursuit of
hydrodynamics of integrable systems resulted in the
discovery of GHD. Due to its integrable foundations,
GHD allows for analytical treatment, which goes
well beyond the conventional hydrodynamics [17–21].
In particular, it led to numerous exact results on
transport coefficients [22–24], operator spreading [25],
entanglement spreading [26], integrability breaking [27–
30], etc. Furthermore, predictions of GHD have provided
appropriate description of experimental observations
which go beyond the standard hydrodynamics [31, 32]. In
this paper we shall fully exploit the machinery of GHD to
explore the out-of-equilibrium dynamics of T T̄ -deformed
CFTs.

On the other side, we have the holographic
correspondence, which maps a class of strongly-coupled
CFTs to a weakly coupled dual gravitational theory
on the asymptotically anti-de Sitter space background
(a space of negative constant curvature); the dual
theory can be treated semiclassically in the limit
of large central charge of the CFT [33–35]. The
correspondence has proven very powerful especially in
the hydrodynamic regime, where it led to many new
insights concerning the transport properties of strongly
coupled systems at a critical point, e.g. universal
properties of certain transport coefficients [36, 37],
effects of quantum anomalies on transport [38], effective
theory for dissipative fluids [39, 40] (for a review
see [41, 42]). Since in (1+1)-dimensional CFTs the
hydrodynamic behavior is completely determined by
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the symmetry, the holographic correspondence cannot
provide any new insights in this regard. The behavior of
the T T̄ -deformed CFTs is, however, markedly different,
opening an opportunity to study physical phenomena
associated with the breaking of conformal invariance and
to establish the first connection between holography and
GHD.

In this manuscript we provide the exact solutions
of the partitioning protocol, where two T T̄ -deformed
CFTs at different temperatures and different momenta
are joined together and let to evolve unitarily. The
partitioning protocol is one of the simplest setups for
studying the dynamics, and has been analyzed in many
models, ranging from higher dimensional CFTs to hard
rod models [43, 44]. It was also realized recently that
the protocol can be used to compute the Drude weights,
i.e. the quantities that measure the strength of ballistic
transport, using a linear response argument [22, 45].
Intriguingly, we find that in T T̄ -deformed CFTs both
the energy and momentum NESS currents are universal,
which also implies the universality of the energy and
momentum Drude weights. The agreement of these
quantities computed by integrability and holography
provides, as far as we are aware, the first instance where
the T T̄ -deformed AdS/CFT correspondence in (1+1)-
dimensions is validated from a dynamical point of view.
Further, we show that T T̄ -deformation gives rise to
diffusive corrections that are absent in a pure CFT. We
argue, however, that they are suppressed in the large-
c holographic T T̄ -deformed CFT. On the hydrodynamic
level we also observe a curious connection between the
T T̄ -deformation and the reversible cellular automaton
54 (RCA 54) [46]. It turns out that RCA 54 can be
understood as a discrete space-time version of a T T̄ -
deformed CFT with hard-core interaction between the
same species of particles.

The paper is structured as follows. In the first two
sections we discuss the basics of energy transport in
one dimension and T T̄ -deformation. This is followed by
overviews of main results before discussing the details of
them. We then start the main part with introducing the
integrability-based treatment of T T̄ -deformation in the
scope of thermodynamic Bethe ansatz (TBA) and GHD.
Using these results we shall obtain the Drude weights,
diffusive corrections and the nonequilibrium steady states
(NESS) following the partitioning protocol, and discuss
the connection with the RCA 54. To provide better
understanding of the structure of T T̄ -deformed CFTs,
we then analyze two concrete examples; T T̄ -deformation
of the critical Ising CFT and T T̄ -deformed Liouville
CFT, which is an interacting CFT. Having obtained
the main results by making use of GHD, we then move
on to the holographic parts. First we briefly review
the holographic approach to transport, after which we
derive the Drude weights, solve for NESS in T T̄ -deformed
holographic CFTs. Finally as a consistency check,
we compute the momentum diffusion constant using
conformal perturbation up to the second order in the

deformation parameter before closing the paper with an
outline of future directions. This paper is a longer and
more detailed version of the companion paper [47].

II. ENERGY TRANSPORT

Stefan Boltzmann law j = σSBT
d+1, describing

the black body radiation, relates the energy flux j
in d-dimensions to its temperature T , where σSB is
the Stefan Boltzmann constant. The thermodynamic
derivation of the law by Boltzmann, however, relies on
the tracelessness of the stress-energy tensor Tµµ = 0.

In recent years a more general setup called the
partitioning protocol has been extensively studied in
(1+1) dimensional CFTs. In this setup the left and the
right sides of the infinitely large system are initialized
at different temperatures, TL and TR. In the long time
limit the system relaxes to the ever expanding NESS. In
the scope of the partitioning protocol the exact NESS
energy and charge currents, as well as their fluctuations
were obtained for CFTs [48]. The full space-time NESS
average profile 〈jE(x, t)〉 of the energy current operator
jE is particularly simple; it is given by 〈jE(x, t)〉 =
jNESSϑ(x − |t|), where jNESS = πc(T 2

L − T 2
R)/12 with

the central charge c, and ϑ(x) the step function. Hence
the NESS energy current takes a constant value jNESS

inside of the light cone |t| < x and is zero otherwise.
In particular, the NESS at x = 0 can be thought of
as a boosted thermal state ρ ∼ e−βH+νP with the rest
frame inverse temperature β =

√
βRβL and the boost

parameter tanh ν = (βL− βR)/(βL + βR). Such a simple
profile is a consequence of chiral separation in pure CFTs;
elementary excitations in CFTs are simply the right and
the left moving chiral modes, which do not interact.
Consequently right (resp. left) movers contributing to
the NESS are thermalized with respect to the left (resp.
right) bath. As expected, if one of the temperatures, say
TR, is set to 0, we reproduce the Stefan Boltzmann law
exactly [1].

The partitioning protocol can also be used to obtain
linear response transport coefficients such as the Drude
Dij and diffusion D j

i coefficients. Drude weights
characterize the persistence of the current in the system

Dij = lim
t→∞

∫ t

−t

ds

2t

∫
R

dx〈ji(x, s)jj(0, 0)〉c, (1)

where ji(x, t) is the current density associated with the
conserved density qi, while the connected correlation
function 〈o1(x, t)o2(0, 0)〉c is evaluated in the stationary
state at some temperature. From the point of view
of partitioning protocol, Dij can be interpreted as
the increase of the current ji, generated due to the
infinitesimal bias of the chemical potential δµj pertaining
to the conserved quantity qj [45]

Dij = lim
t→∞

1

2t

∫
R dx 〈ji(x, t)〉δµj

δµj
. (2)
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Diffusion constants, on the other hand, control the
broadening of the ballistic trajectories. It is useful to
consider the Onsager matrix L = DC instead of the bare
diffusion constants D j

i , which reads [24]

Lij =

∫
R

dt

(∫
R

dx〈ji(x, t)jj(0, 0)〉c −Dij

)
, (3)

where Cij =
∫
R dx〈qi(x, 0)qj(0, 0)〉c is the susceptibility

matrix. The Onsager matrix has the physical meaning
of a matrix of conductivities; the frequency-dependent
conductivity (at zero momentum) has generically the
form [49] σij(ω) = Dijδ(ω) + σ̃ij(ω), where σ̃ij is a
smooth function at ω = 0 and σ̃ij(ω = 0) = Lij . The
finite part of the conductivity can be recovered also from
the well-known Green-Kubo formula [50, 51]:

Lij = − lim
ω→0

lim
k→0

1

ω
ImGRij(ω, k) , (4)

where GRij(ω, k) = −i
∫

dtdx eikx−iωtθ(t)〈[ji(x, t), jj(0, 0)]〉
is the retarded current-current correlator.

III. T T̄ -DEFORMATION

T T̄ -deformation of the (1+1)-dimensional quantum
field theory with Lagrangian L(0) is obtained through
the sequence of infinitesimal changes L(σ) 7→ L(σ+δσ) as

L(σ+δσ) = L(σ) +
δσ

2
detTµν . (5)

The trajectory is induced by a composite operator
detTµν = − 1

π2 (T T̄ − Θ2), where T (z, z̄) = −2πTzz,

T̄ (z, z̄) = −2πTz̄z̄, and Θ(z, z̄) = −2πTzz̄ are the
components of the stress-energy tensor Tµν . Importantly,
Tµν depends on the value σ. A salient feature of this
deformation is that independently of the original theory
L(0), a finite-volume spectrum En(R, σ) can be obtained
from the undeformed energies En(R, 0), by solving the
Burgers equation [5]

∂σEn(R, σ) = En(R, σ)∂REn(R, σ) +
1

R
P 2
n(R), (6)

where R is the volume of the (compactified) system. Note
that the momenta Pn(R) = 2πpn/R, pn ∈ Z remain
undeformed. This suggests that if we know the spectrum
of the undeformed theory, which is the case in CFTs and
integrable systems, we can immediately obtain that of
the deformed system. For instance, solving the Burgers
equation, in the infinite volume, the free energy of a T T̄ -
deformed CFT with the central charge c at temperature
β = R, which in fact equals f = E0(β, σ)/β, can be
computed exactly, reading

f = − 1

σ

(
1−

√
1− πσc

3β2

)
. (7)

Observe that when σ > 0, the free energy becomes
complex when T exceeds the Hagedorn temperature
TH =

√
3/πσc, signifying the peculiar UV behavior of

T T̄ -deformed CFTs. It is also important to note that the
T T̄ -deformation keeps the structure of conserved charges
intact: for instance in T T̄ -deformed CFTs, conserved
charges are given by the deformed KdV charges, which
are still local [52].

There is another consequence of the T T̄ -deformation,
which is central in the study of thermodynamics
and hydrodynamics. Consider a scattering involving
asymptotic incoming particles with a set of four-momenta
{pµa} and outgoing particles with {qµa}, where pµ =
(E, p). Then the S-matrix of the deformation is given
by [53, 54]

S(σ)({pµa}, {qµa}) = eiσ
∑
a<b εµνp

µ
ap
ν
b+iσ

∑
a<b εµνq

µ
a q
ν
b

× S(0)({pµa}, {qµa}), (8)

where S(0)({pµa}, {qµa}) is the S-matrix of the original
theory. The deformation at the level of S-matrix can
be inferred from a geometric interpretation of the
T T̄ -deformation, or similarly, by thinking of it as a
field-dependent coordinate transformation [54]. On the
other hand, S-matrix can be obtained by resorting to the
identification of the T T̄ -deformation and the coupling of
the undeformed theory to the Jackiw-Teitelboim gravity
[53, 55], hence the name gravitational dressing. This
modification is rather simple for integrable systems with
a two-body S-matrix S(σ)(θ). In the deformed theory,
S-matrix is obtained by the multiplication with the
CDD factor Σ(θ): S(σ)(θ) = eiΣ(θ)S(0)(θ). The CDD
factor is Σ(θ) = σm2 sinh θ when the undeformed theory
is massive, while Σ(θ) = σ

2M
2eθ = −σp+(θ1)p−(θ2)

with θ = θ1 − θ2 and p±(θ) = ±M2 e
±θ when perturbing

a massless theory. Here M is the energy scale that
controls the crossover from ultraviolet to infrared. We
can formally apply the same logic to CFTs, even though
the notion of S-matrix is not well-defined in these
cases. This is achieved by regarding CFTs as massless
integrable models following the works by Bazhanov,
Lukyanov, and Zamolodchikov [56]. Later we will
implement this idea by focusing on CFTs that can be
described by two non-linear integral equations.

While the solvability of the T T̄ -deformation is not
manifest in the holographic setting, it might be reflected
by the simplicity of the deformed correspondence. In [57]
it was conjectured that the deformation corresponds to
imposing Dirichlet boundary conditions on the gravity
fluctuations on a surface at a finite value of the radial
coordinate ρ. The evidence for the conjecture is that
the equation of state derived holographically with this
prescription is in agreement with the field theory result;
however [58] argued for a different approach. By
analysing the phase space of solutions, they found that
the correct prescription is to consider a modified mixed
boundary condition for the graviton at the boundary.
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They also showed that this prescription is equivalent
to the finite-cutoff one in the case where other fields
apart from the graviton are not sourced (but they can
have an expectation value). This is the case we consider
since we take a setup where gravity is the only field, so
we will still refer to the finite-cutoff prescription. It is
important to mention though that the interpretation as
mixed boundary condition allows for both signs of the
deformation, whereas the finite cutoff can only make
sense for one sign, as we will see in section XI. Fig. 3
illustrates the AdS geometry that we have in mind.

IV. MAIN RESULTS

Before proceeding any further, let us present the main
results. We consider an arbitrary T T̄ -deformed CFT
with the central charge c and the deformation parameter
σ at a finite temperature T = 1/β. Firstly let us focus
on the energy and momentum NESS currents, which
emerge after joining two thermal baths of the systems
with different temperatures TL and TR. From two
independent computations, one based on integrability
and another that makes use of holography, they turn out
to be given by

〈jE〉NESS =
πc

12
eRL

(
T̃ 2
L − T̃ 2

R

)
,

〈jP 〉NESS =
πc

12
eRL

(
T̃ 2
L + T̃ 2

R −
πcσ

6
T̃ 2
LT̃

2
R

)
, (9)

where

T̃ (T ) =
2T

1 +
√

1− πσcT 2

3

, eRL =
1

1−
(
πσc
12

)2
T̃ 2
LT̃

2
R

(10)

with T̃R,L = T̃ (TR,L). It is remarkable that such general
formulae hold even away from critically. We emphasize
that a priori there is no reason why the NESS currents
computed by these two methods have to agree, because in
general the dynamics of integrable CFTs (e.g. minimal
models) and holographic CFTs can qualitatively differ
[59]. However our analysis reveals that, in fact, as far
as the energy and momentum transport are concerned,
physics seems to be rather universal. As we discuss
below, there is strong evidence that such universality
also persists in the momentum diffusion constant. We
suspect that this phenomenon is strongly tied to the
fact that, at least in the classical case, the energy,
momentum, and pressure evolve without being mixed
with other higher-spin conserved charges [60]. Since
we are dealing with the hydrodynamic behavior of the
system, which is presumably classical, it is reasonable
that such a decoupling also occurs at the level of mean
values, which amounts to the universal NESS formulae.
We also note that these results reproduce the known

universal formulae in pure CFTs [2]

〈jE〉NESS =
πc

12

(
T 2
L − T 2

R

)
,

〈jP 〉NESS =
πc

12

(
T 2
L + T 2

R

)
. (11)

It should be stressed that our derivation based on
integrability does not appeal to any technique of CFT,
hence serves as a yet another derivation of these
CFT formulae. The universality of NESS currents
automatically implies that of Drude weights as well. Let
us recall that in a pure CFT they are obtained by (11),
and read [2]

DEE =
πc

3v
T 3, DPP =

πcv

3
T 3 (12)

where v is the Fermi velocity or the sound velocity.
It is related to the dispersion relation at the quantum
critical point E ∼ v|p| and determined by the details
of the underlying microscopic model (Luttinger liquid,
quantum Hall edge states etc). In this article we set
it to v = 1. Our computations reveal that also for T T̄ -
deformed theories Drude weights take exceedingly simple
universal forms in terms of the energy density e and
pressure p

DEE =
e + p

β
=

πc

3vc
T 3, DPP =

(p
e

)2

DEE =
πcvc

3
T 3,

(13)
where vc is the generalized sound velocity depending only
on the deformation parameter σ and the central charge c

vc =

√
1− πσcT 2

3
. (14)

This is a rather natural generalization of the Drude
weight formulae in pure CFTs; the only change induced
by the T T̄ -deformation is the modification of the sound
velocity, which is reminiscent of how the spectrum of
CFTs is altered by the deformation. This also confirms
previous perturbative results [49, 57, 61].

One can show that in 2d CFTs diffusion is absent in
general. Importantly, we will prove that the deformation
gives rise to the finite momentum diffusion constant,
which, remarkably, in generic T T̄ -deformed CFTs, read

LPP =
σ2

2
vcD

2
EE =

σ2

2

D2
PP

v3
c

(15)

It turns out that the momentum diffusion, which is also
called the bulk viscosity, is related to the entropy density
s in a simple fashion

LPP =
πc

6β5
σ2s, s =

πc

3vcβ
. (16)

We also support this computation by carrying out the
conformal perturbation up to the second order in the
deformation parameter. Note that the energy diffusion
is still absent in T T̄ -deformed CFTs due to their Lorentz
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invariance [24]. However, we will argue that in the
classical gravity also the momentum diffusion vanishes,
implying that it originates from the quantum gravity
corrections that are suppressed by powers of 1/c.

Lastly we also point out a connection between T T̄ -
deformed CFTs and an integrable cellular automaton
model called the reversible cellular automaton 54 (RCA
54). To be more precise, the energy density of T T̄ -
deformed CFTs and the soliton density of the RCA 54,
both of which are denoted by ρ± here, satisfy the same
hydrodynamic equations

∂tρ± + ∂x(veff
± ρ±) = 0, veff

± =
±1 + σ(ρ+ − ρ−)

1 + σ(ρ+ + ρ−)
, (17)

whereby the identification of the energy quanta in T T̄ -
defomed CFTs and solitons in the RCA 54 is established.

V. THERMODYNAMICS OF T T̄ -DEFORMED
CFTS

Here we shall elaborate on the universal structure of
the T T̄ -deformed CFTs from the integrability point of
view. The discussion will rest upon the assumption that
the model can be formulated à la Bazhanov-Lukyanov-
Zamolodchikov with the phase shift T , which holds for
numerous CFTs, such as minimal models (c < 1) and
the Liouville CFT (c ≥ 25). Later we illustrate how the
general idea works for two of these models: critical Ising
model and the Liouville CFT. Below, for simplicity, we
also focus on the case where the CFT can be described
by two non linear integral equations (NLIE) only, one
for the left movers and one for the right movers. The
NLIEs for CFTs in a generalized Gibbs ensemble (GGE)
ρ ∼ e−βH+νP−W , where W =

∑∞
i=2 β

iQi with higher
conserved chargesQi and associated Lagrange multipliers
βi, then read

ε±(θ) = (β ∓ ν)E±(θ) + w±(θ)− T ? L±(θ), (18)

where E±(θ) = Me±θ/2, L±(θ) = log(1 + e−ε±(θ)),
and w±(θ) =

∑∞
i=2 β

ihi,±(θ), with hi,±(θ) ∝ e±iθ

one-particle eigenvalues of Qi. Here ? stands for the
convolution: T ∗ L(θ) =

∫
dθ′T (θ, θ′)L(θ′), and the

phase shift T (θ) depends on the parameter. For their
asymptotics we assume the usual ones: ε±(θ) → (β ∓
ν)E±(θ) + w±(θ), when θ → ±∞ while ε±(θ) → 0 for
θ → ∓∞. Note that the two equations are decoupled
without the T T̄ -deformation, hence we can treat them
separately. Also ε+(θ) = ε−(−θ) in a thermal state
ν = w±(θ) = 0. In the absence of R − L scattering and
higher charges, the scaling of M 7→ sM merely shifts the
rapidity θ 7→ θ+log s. This implies a lack of characteristic
scale of the system, which is a hallmark of conformal
invariance. The central charge of the system is given by
the scaling function c̃(β, ν) = c̃+(β, ν) + c̃−(β, ν) where

c̃±(β, ν) =
3(β ∓ ν)M

2π2

∫ ∞
−∞

dθe±θL±(θ), (19)

for ν = w±(θ) = 0 (i.e. thermal state). Invoking the
standard dilogarithm calculus in TBA, one can usually
carry out the integration, recovering the central charge of
the CFT c̃+(β, 0) = c in terms of the model parameters
that also enter into T . Note that in the presence of higher
charges the scaling function no longer equals c.

Now, let us turn on the T T̄ -deformation, which induces
the R − L scatterings, resulting in the phase shift

T̃±∓(θ, θ′) = σM2

8π e±(θ−θ′) = T̃T
±∓(θ, θ′). The TBA

equations for the T T̄ -deformed CFT then reads

ε±(θ) = (β∓ν)E±(θ)+w±(θ)−T ?L±(θ)− T̃±∓ ?L∓(θ),
(20)

which can be conveniently rewritten as

ε±(θ) =

(
β ∓ ν − πσ

6(β ± ν)
c̃∓

)
E±(θ)+w±(θ)−T?L±(θ).

(21)
T T̄ -deformation only affects the UV property of the
CFT; the IR asymptotics remain unchanged and the UV
asymptotics (i.e. θ → ±∞ for ε±(θ)) simply becomes

ε±(θ)→
(
β ∓ ν − πσ

6(β ± ν)
c̃∓

)
E±(θ) + w±(θ). (22)

Observe that the NLIEs are actually the same as (18)

upon replacing β ∓ ν with β̃± = β ∓ ν − πσ
6(β±ν) c̃∓. In

a boosted state, which has w±(θ) = 0, this allows us to
compute the scaling function c̃±(β, ν) explicitly, which
now depends on β and ν due to the deformation. To be
more precise, we have

c̃±(β, ν) =
β ∓ ν
β̃±

3β̃±M

2π2

∫ ∞
−∞

dθe±θL±(θ) =
β ∓ ν
β̃±

c

2
,

(23)
which can be solved simply:

c̃±(β, ν) =
3(β2 − ν2)

πσ

(
1−

√
1− πσc

3(β2 − ν2)

)
. (24)

For the thermal case ν = 0, this gives the free energy
f = −πc̃(β)/(6β2), which is in agreement with the one
obtained from solving the Burgers equation (7). The
explicit c̃±(β, ν) allows us to write the NLIEs for the
boosted state in a more transparent way

ε±(θ) = β̃±(β, ν)E±(θ)− T ? L±(θ), (25)

where

β̃±(β, ν) =
β ∓ ν

2

(
1 +

√
1− πσc

3(β2 − ν2)

)
. (26)

We next compute the dressed quantities. At finite
temperatures (or in GGEs), thermodynamic quantities
associated with quasi-particles get dressed due to their
interactions with the background. In general, when T is
symmetric, the dressing operation to a function f±(θ) is

defined by fdr
± (θ) = f±(θ)+[Tn±f

dr
± ](θ)+[T̃±∓n∓f

dr
∓ ](θ),
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where we used the integral operator representation
[Tf ](θ) =

∫
dθ′T (θ, θ′)f(θ′). Those that are relevant for

our purpose are Edr
± , p

dr
± and (E′±)dr, (p′±)dr, the former

of which can be conveniently obtained by Edr
± (θ) =

∂ε±(θ)/∂β and pdr
± (θ) = −∂ε±(θ)/∂ν. We first notice

that Edr
± = (p′±)dr and pdr

± = (E′±)dr, since E± = p′± and
p± = E′±. From (21) we then have

(p′±)dr(θ) =
∂β̃±
∂β

E±(θ) + [T ? n(p′±)dr](θ)

(E′±)dr(θ) = −∂β̃±
∂ν

E±(θ) + [T ? n(E′±)dr](θ), (27)

which actually implies that

veff
± (θ) =

(E′±)dr(θ)

(p′±)dr(θ)
= −∂β̃±

∂ν

/
∂β̃±
∂β

. (28)

This is a crucial observation in applying GHD to T T̄ -
deformed CFTs; contrary to the common belief, the
deformation does not induce curvature to the dispersion
relation, but merely modifies the light-cone velocity. In
particular, in the partitioning protocol this immediately
implies that the NESS profile always consists of two
contact discontinuities which can be thought of as
two entropically stable shocks. We will study the
phenomenon in detail later. We also note that in a
thermal state veff can be readily evaluated and reads

veff
± (θ) = ±

√
1− πσc

3β2
. (29)

Observe the superluminal behavior when σ < 0 in the
thermal case.

Interestingly, in fact veff can be written solely in terms
of the energy densities ρ±, which has an important
consequence in hydrodynamics. To see this, we first note
from (19) and (28) that

veff
± =

±1 + σρ∓v
eff
∓

1 + σρ∓
, (30)

which can be solved as

veff
± =

±1 + σ(ρ+ − ρ−)

1 + σ(ρ+ + ρ−)
, (31)

where ρ± are chiral energy densities ρ± =∫
dθ
2πp
′
±(θ)n±(θ)Edr

± (θ). We stress that this is true
in any situation.

VI. HYDRODYNAMICS OF T T̄ -DEFORMED
CFTS AND THE REVERSIBLE CELLULAR

AUTOMATON 54

The fact that veff
± (θ) does not depend on θ is of

paramount importance in applying GHD to T T̄ -deformed
CFTs. Let us recall that the GHD equation in terms of

the particle density ρp
±(θ) = (p′±)dr(θ)n±(θ)/(2π), where

n±(θ) = 1/(1 + eε±(θ)) is the occupation function, reads

∂tρ
p
±(θ) + ∂x(veff

± (θ)ρp
±(θ)) = 0. (32)

Since veff
± (θ) is independent of θ, the equation for each θ is

actually decoupled, wherefore we can solve the equation
for each θ independently. More importantly, this implies
that the hydrodynamic equation for the chiral energy
densities ρ± is closed, i.e. the equation evolves self-
consistently. The hydrodynamic equation then reads

∂tρ± + ∂x(veff
± ρ±) = 0, veff

± =
±1 + σ(ρ+ − ρ−)

1 + σ(ρ+ + ρ−)
. (33)

Observe that the equation is invariant under the scaling
σ 7→ aσ and ρ± 7→ ρ±/a. Using this scaling we
can always define new densities ρsol,± := σρ±, with
which the equation becomes the GHD equation for a
celebrated integrable cellular automaton model called
Rule 54 chain (RCA54) [62]. RCA 54 (also known
as the Floquet Fredrickson-Andersen model) is one of
the simplest interacting systems [46]. It comprises left
and right moving solitons propagating at a constant
velocity ±1. Upon scattering the two solitons undergo
a constant phase shift. Despite this apparent simplicity
the model provided a playground for understanding
transport properties [25, 62, 63], and operator spreading
[64, 65] in integrable classical and quantum systems. As
mentioned earlier, remarkably, the GHD equation for
T T̄ -deformed CFTs and the RCA 54 are exactly the same
with the identification ρsol,± = σρ±. Namely, the energy
densities in T T̄ -deformed CFTs, ρ±, can be interpreted
as the densities of right/left moving solitons in the RCA
54 with an appropriate scaling by σ. Furthermore, on
the Euler scale, the particle current in the RCA 54 can
be identified as the energy current 〈jE〉 = ρ+ − ρ− in
T T̄ -deformed CFTs. A crucial distinction between T T̄ -
deformed CFTs and the RCA 54 is that in the latter the
particles cannot be arbitrarily close due to the exclusion
principle, inducing the hard core interaction. Since
T T̄ -deformed CFTs are field theories, there is no such
restrictions, and the hard-core self-scattering terms are
replaced by the soft self-scattering terms (i.e. scatterings
that depend on θ). While this has an impact on
thermodynamics, it does not affect the hydrodynamics,
since the same particle species in both T T̄ -deformed
CFTs and the RCA 54 never scatter due to the same
velocities1. See Fig. 1 for a comparison between a
scattering in a T T̄ -deformed CFT and the RCA 54.

GHD equations are usually labeled by the continuous
parameter θ. However, we have just observed above

1 Therefore the notion of scattering matrices between the same
species should be taken with a grain of salt; they are obtained
by the massless limit of some massive theories, and ultimately
justified by the fact that they reproduce the expected properties
of CFTs [66]
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FIG. 1. Scattering between a right and left mover in a T T̄ -
deformed CFT, and in the RCA 54.

that when specializing to energy densities, a coupled two-
component hydrodynamics suffices to predict the energy
dynamics in T T̄ -deformed CFTs. Such reduction to a
finite-component system of GHD in a particular situation
has been previously known to occur only when integrable
models whose ground states are Luttinger liquids are
(locally) in zero-entropy states consisting of multi-Fermi
seas [67]. It is important to bear it in mind that
the mechanism of these two reductions are completely
different; the one here is exact in the sense that these two
equations are enough to describe the dynamics of a fluid,
which never suffers from shocks (gradient catastrophe),
as solutions of these equations are given by contact
discontinuities, which can be thought of as stable shocks
that are not accompanied by any entropy production.
Another difference is that the equation is for the energy
density, while in the zero-entropy case the equation can
be written down for the dynamical Fermi points, which
therefore could be used to compute the dynamics of other
observables.

VII. NESS AND TRANSPORT COEFFICIENTS
IN T T̄ -DEFORMED CFTS

To study the partitioning protocol in T T̄ -deformed
CFTs, we make use of the results from GHD, and in
particular the equation in terms of ρ±. A Riemann
problem of a hyperbolic system of this type was in
fact worked out before [68]; the solution simply consists
of two contact discontinuities along ξ = −veff

L and
ξ = veff

R , where ξ = x/t, emanating in space-time
(see Appendix for the detail). A contact discontinuity
can be considered as a stable shock in the sense that
there is no entropy production across the jump, and is
realized as a consequence of a merger of a shock and
a rarefaction wave. In fact, the existence of a contact
discontinuity is intimately related to the fact that some
eigenvalue of the lineralization matrix A j

i = ∂〈jj〉/∂〈qi〉
is linearly degenerate, i.e. there exists an eigenvalue veff

i

such that
∑
k(R−1) ik ∂v

eff
i /∂〈qk〉 = 0, where RAR−1 =

diag(veff). Indeed, it has been known that fluids of

integrable systems constitute a large class of totally linear
degenerate systems, which are characterized by the fact
that all the eigenvalues of the matrix A are linearly
degenerate [69]. Here by directly solving a Riemann
problem in the reduced GHD equation for ρ±, we can
confirm this peculiar property of integrable systems.
Consequently we obtain a rather simple profile of a
Riemann problem in a T T̄ -deformed CFT; a current-
carrying steady state emerges in between −veff

R < ξ <
veff
L , outside of which the state corresponds to the

asymptotic baths. In the two-temperatures partitioning
protocol starting from two baths with temperatures TR
and TL, which are subject to TL, TR < TH, we can
in fact derive the closed forms of the NESS currents
for any T T̄ -deformed CFTs. Solving (33) with the
initial condition ρ±(x, 0) = ρ±,Lϑ(−x) + ρ±,Rϑ(x) (see
Appendix:A for the derivation), where ρ±,R/L are energy
densities evaluated with respect to temperatures TR/L,
the energy and momentum NESS currents 〈jE〉 = ρ+−ρ−
and 〈jP 〉 = ρ+v

eff
+ − ρ−veff

− are given by

〈jE〉NESS =
πc

12
eRL

(
1

β̃2
L

− 1

β̃2
R

)
,

〈jP 〉NESS =
πc

12
eRL

(
1

β̃2
L

+
1

β̃2
R

− πcσ

6β̃2
Lβ̃

2
R

)
, (34)

where

eRL =
1

1−
(
πσc
12

)2 1
β̃2
Rβ̃

2
L

(35)

and β̃R,L = β̃±(βR,L, 0). Some comments are due.
First, note that when taking the undeformed limit σ →
0, (34) reduces to the aforementioned CFT result, as
expected. Second, from this expression, it is clear that
the contributions to the NESS current stem from the
right (resp. left) movers that are thermalized with
respect to the left (resp. right) bath, which is exactly the
same as in pure CFTs. A critical difference from the CFT
formula is that (34) cannot be written as f(βL)− f(βR),
which is a consequence of the scatterings between the
left and the right movers. Notice, however, that such
mixing is absent in the first order in σ in accordance with
the perturbative result [49]. In general, we expect that
the contributions from the deformation can be divided
into two parts: thermodynamic contributions that are
linear in σ and scattering (dynamical) contributions that
depend on higher powers of σ (a similar observation
was also made in [61]). The fact that the effect of
scatterings is encoded through the coefficient eRL also
reminds us of how NESS currents are modified in pure
CFTs in the presence of an impurity at x = 0 [70].
Second, in the two-temperatures partitioning protocol,
the local equilibrium state always takes a form of a
boosted thermal state. In particular, the NESS is
specified by the effective temperature T =

√
TRTL with

the boost parameter tanh ν = (βL − βR)/(βL + βR),
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which again coincides with the structure of the NESS in
the undeformed CFTs. An even more important impact
of the dynamical contributions can be observed in the
momentum spreading, which admits diffusive corrections
that are absent in the pure CFTs or at the first order
in σ [49]. Later we shall compute the exact momentum
diffusion constant for T T̄CI.

To summarize, the only effect induced by the T T̄ -
deformation in the partitioning protocol in the T T̄ -
deformed CFTs is the modification of the light cone
velocities, whose magnitude could be larger/smaller than
1 depending on the sign of the deformation parameter
σ. It is interesting to compare our finding with the
previous perturbative analysis performed in [49], in which
it was concluded that, at least at the leading order in σ,
there were regions in space-time where the exact profile
of a fluid could not be determined by hydrodynamic
consideration. This is because the derivative corrections
can be completely absorbed by redefining fluid variables,
and thus entropic condition (i.e. a condition that ensures
the stability of shocks) cannot be imposed to single out
a weak solution. We speculate that, in T T̄ -deformed
CFTs, such undetermined regions will shrink as one
includes higher order terms in σ, and eventually vanish,
resulting in the simple profile obtained below. It is

FIG. 2. The partitioning protocol starting with two heat
baths with temperatures TL and TR in a T T̄ -deformed CFT.
The whole space-time is divided by the modified light cones
with velocities −veff

R and veff
L . In the stationary region a

current-carrying NESS current emerges with the effective
temperature T =

√
TLTR.

clear by construction that the modification to the pure
CFT result is caused by the R − L scattering introduce
by the T T̄ -deformation. From the holographic point of
view, however the effect of the deformation incarnates
in a completely different way. Namely there is a dual
picture of the T T̄ -deformation: one is the introduction
of the CDD factor while the another one is the field-
dependent coordinate change, the latter of which is
exploited in holography. To be more precise, particles
in a T T̄ -deformed theory behave like free particles in
the new coordinate, which incidentally hints at the
picture proposed in the context of GHD [71]. Later, we

shall employ similar point of view in order to compute
the NESS currents using the AdS/CFT correspondence.
Next we turn to Drude weights. In order to compute the
Drude weights exactly, we can use the general expression
derived in the scope of the GHD [22]

Dij =
∑
a=±

∫
R

dθρa(θ)(1− na(θ))(veff
a (θ))2hdr

a,i(θ)h
dr
a,j(θ),

(36)
where ρa(θ) = na(θ)ρtot(θ) with ρtot(θ) =
(p′a)dr(θ)/(2π). In general it is hard to explicitly
carry out the integration, but in thermal equilibrium,
we can compute the energy Drude weight from the free
energy in a boosted state by appealing to the fact that
the energy current is conserved in T T̄ -deformed CFTs:
DEE = − ∂2f/∂ν2

∣∣
ν→0

. Furthermore, using the fact

that pdr
± (θ) = veff

± E
dr
± (θ) in a boosted state, we can

actually relate the energy and the momentum Drude
weights as DPP = DEE(veff)2. The results turn out to
be surprisingly simple, and read

DEE =
πc

3β3

1

veff
, DPP =

πc

3β3
veff , (37)

where

veff =

√
1− πσc

3β2
. (38)

Note that both quantities admit a perturbative expansion
in σ and are also UV finite so long as T < TH. Through
the holographic computation, we shall later provide
another derivation of the NESS currents as well as Drude
weights which agree perfectly, whereby validating these
universal formulae as well as serving as a new nontrivial
confirmation of the deformed AdS/CFT correspondence
in (1+1)-dimension.

Finally, we turn to the momentum diffusion, which
in fact can also be explicitly computed for the T T̄ -
deformed CFTs. To do so, we employ the formula for the
diffusion constants in integrable systems obtained within
the framework of GHD

Lij =
1

2

∑
a,b

∫
dθdλχa(θ)χb(λ)|veff

a (θ)− veff
b (λ)|

×

(
T dr
ba (λ, θ)hdr

i,b(λ)

ρtot
b (λ)

−
T dr
aβ(θ, λ)hdr

i,a(θ)

ρtot
a (θ)

)

×

(
T dr
ba (λ, θ)hdr

j,b(λ)

ρtot
b (λ)

−
T dr
ab (θ, λ)hdr

j,a(θ)

ρtot
a (θ)

)
, (39)

where χa(θ) = ρa(θ)(1 − na(θ)) is the quasi-particle
susceptibility. We are in particular interested in the
momentum diffusion, which turns out to be given by a
simple expression in T T̄ -deformed CFTs
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LPP = 8π2(veff)3

∫
dθdλχ(θ)χ(λ)(T dr

+−(θ, λ) + T dr
−+(λ, θ))2. (40)

A crucial observation that facilitates the computation
is that in fact even after the dressing operation
the phase shift T±∓ is factorized: T dr

±∓(θ, λ) =

−σpdr
± (θ)pdr

∓ (λ)/(2π). To see this, note first that

T dr
±∓(θ, λ) satisfies

T dr
±∓(θ, λ) = − σ

2π

(
p±(θ) + [T drnp±](θ)

)
p∓(λ)

+ [T dr
±∓nT ](θ, λ), (41)

where we used the relation TnT dr = T drnT (integral
operator representation is implied). Likewise the dressing
equation for pdr

± can be written as

pdr
± (θ) = p±(θ) + [T dr

±∓np∓](θ) + [T drnp±](θ), (42)

which allows us to rewrite (41) in an alternative way

T dr
±∓(θ, λ) = − σ

2π

(
pdr
± (θ) + [T dr

±∓np∓](θ)
)
p∓(λ)

+ [T dr
±∓nT ](θ, λ). (43)

Recalling that

pdr
± (θ) =

(
1− σ

2π
[pdr
±np∓](θ)

)
p±(θ) + [pdr

±nT ](θ), (44)

It is then clear that T dr
±∓(θ, λ) = −σpdr

± (θ)pdr
∓ (λ)/(2π)

satisfies (43), which we assume as the unique solution
(a Fredholm integral equation usually admits a unique
solution). Using this expression for T dr

±∓, and the fact

that at the thermal equilibrium Edr
+ = Edr

− and pdr
+ =

−pdr
− , we end up with

LPP =
σ2

2

(
πc

3β3

)2
1

veff
. (45)

Notice that it goes to zero in the undeformed limit
σ → 0, and in particular, the effect of deformation starts
at the second order in σ, which is in agreement with
the previous discussion. We can therefore interpret the
diffusion as a fingerprint of scatterings between the left
and the right movers.

In the next two sections, we explain how the general
structure in T T̄ -deformed CFTs shows up in two
illustrative examples: the critical Ising model and the
Liouville CFT. In particular we shall provide the exact
momentum diffusion constant in T T̄CI.

VIII. T T̄ -DEFORMED CRITICAL ISING
MODEL (T T̄CI)

Without T T̄ -deformation, the critical Ising model is a
free CFT with the central charge c = 1/2 and trivial S-
matrices, which makes the model much more amenable

to analytical treatments than interacting CFTs. The
deformation induces a nontrivial interaction between
two chiral modes controlled by the two-body S-matrix
S(p, q) = eiσpq, where p = p+(θ) is the energy of the
right mover, while q = −p−(θ) is the energy of the left
mover [7]. In T T̄CI we shall use a parameterization in
terms of p and q, which turns out to be useful. TBA of
the T T̄CI is governed by the pseudo-energy ε± [7]

ε±(p) = βp−
∫ ∞

0

dqTT(p, q)L∓(q), (46)

with L±(p) = log(1 + e−ε±(p)). In thermal equilibrium
(46) can be solved explicitly, yielding ε±(p) = εp with

ε =
1

2

(
β +

√
β2 − πσ

6

)
. (47)

Another ingredients needed for our purpose are the
dressed functions of quasi-momentum p. If h±(p) is
invariant under the reparameterization p 7→ f(p) (e.g.
h±(p) = E±(p)), i.e. h±(p) is a scalar, then its dressed
version can be obtained from hdr

± = h± + TTn∓h
dr
∓ . If

instead h±(p)dp is invariant under such repramerization
(e.g. h±(p) = E′±(p)), i.e. h±(p) is a vector, then hdr

±
can be obtained as hdr

± = ±h± + Tn∓h
dr
∓ . Notice that

we distinguish between T and TT, which is important in
the parameterization in terms of p and q. Remarkably,
in T T̄CI such dressing transformations can be carried
out exactly, for quantities such as E±(p) = p and
p±(p), yielding rather simple expressions: Edr

± (p) = e−p,

pdr
± (p) = ±e+p, (E′±)dr(p) = ±e+, (p′±)dr(p) = e−, where
e+ = ε/β and e− = ε/(2β−ε). In particular the effective
velocity veff reads

veff
± (p) = ±

√
1− πσ

6β2
, (48)

which is in accordance with (29).

IX. T T̄ -DEFORMED LIOUVILLE CFT

While T T̄CI exhibits representative features of T T̄ -
deformed CFTs, some of its properties are subject to the
fact that the underlying CFT is free. To incorporate
the effect of interaction, we shall deal with the T T̄ -
deformed Liouville CFT (T T̄LC), and in particular
obtain the energy Drude weight of T T̄LC, confirming
(12). The reason to study T T̄LC is threefold: first, the
Liouville CFT is one of the most well-studied interacting
CFTs that is not a minimal model. Its rich structure
also allows us to obtain a plethora of analytic results,
e.g. the DOZZ formula for the three-point function
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[72, 73]. Second, the central charge of the Liouville
CFT is always greater than 25, and can actually be
arbitrarily large by tuning the model parameter. This
is particularly useful in view of the comparison with
the holographic CFTs. Third, most importantly for our
purpose, the TBA-like formulation of the Liouville CFT
as per Bazhanov-Lukyanov-Zamolodchikov is actually
known, and was reported in the unpublished paper by
Alexei Zamolodchikov, entitled “Generalized Mathieu
equation and liouville TBA” [74]. Let us recall some of
the essential and somewhat anomalous properties of the
Liouville TBA.

The non linear integral equation (NLIE) that describes
the Liouville CFT in a boosted Gibbs state ρ ∼ e−βH+νP

is given by

ε±(θ) = (β ∓ ν)E±(θ)− T ? L±(θ), (49)

The phase shift T (θ) is in fact the same as the one for
the massive sinh-Gordon model [75]

T (θ) =
1

2π

4 cosh θ cos πa2
cosh 2θ + cos(πa)

, (50)

with a = (1−b2)/(1+b2). Here, b is the model parameter
that can be restricted to 0 < b ≤ 1. What distinguishes
the Liouville TBA from the sinh-Gordon TBA is the
asymptotics

ε±(θ)→ ±4PQ

(
θ + log

(β ∓ ν)M

2π

)
− 2C(P ) (51)

when θ → ∓∞, and where P is an arbitrary positive
parameter and Q = b + b−1. C(P ) is fixed by the NLIE
(49) itself. The asymptotics of the opposite limit θ →
±∞ is ε±(θ) → βE±(θ) as in the sinh-Gordon model.
The central charge of the system is given by the scaling
function (19). A variant of dilogarithmic computation
shows that we can explicitly carry out the integration,
obtaining c̃±(β, ν) = (1 + 24P 2)/2, hence c̃(β, ν) = 1 +
24P 2 (for the detail, see Appendix). The actual central
charge for the Liouville CFT is then obtained by setting
P = Q/2, which gives cL = 1 + 6Q2. Notice that the
value is always greater than c = 25, which occurs at the
self-dual point b = 1.

Now, let us turn on the T T̄ -deformation. We can
proceed exactly as in the general case. For instance, we
can obtain the free energy as well as the scaling function
that exactly match with (7) and (24) with c = cL.We
emphasize that at the level of NESS currents the T T̄LC
and the T T̄ -deformed holographic CFTs behave in same
way for any value of c, without having to take the large
c limit.

X. HOLOGRAPHY AND TRANSPORT

The holographic correspondence relates a CFT in d
dimensions to a gravity theory in d + 1 dimensions.

Correlators of CFT operators can be obtained by
studying the fluctuations of fields in an asymptotically
AdS spacetime (referred to as ”the bulk”, as opposed
to the boundary of AdS where the CFT lives). In
particular, the stress-energy tensor is dual to the graviton
flucutations, which satisfy the equations of motion
derived from the Einstein-Hilbert action

S =
1

16πGN

∫
Rd+1

dd+1x
√
g(R− 2Λ) , (52)

where Λ = −d(d−1)
2`2 is the cosmological constant, and ` is

the radius of curvature of the background AdS solution
around which the fields fluctuate. A generic solution

admits the Fefferman-Graham expansion ds2 = `2 dρ
2

4ρ2 +
1
ργµνdx

µdxν with γµν = γ
(0)
µν (x) + ργ

(2)
µν (x) + O(ρ2). In

the holographic dictionary this geometry correspond to
a state in the CFT that lives on the boundary at ρ = 0
with a background metric γ(0), and γ(2) encoding the
expectation value of Tµν in this state. For applications
to transport properties we are usually interested in the
thermal state, which is dual to a black brane geometry.
An important point is that because gravity is described
universally by the Einstein-Hilbert action, at the lowest
order in derivatives, the properties of stress-energy tensor
correlators, and quantities derived from them, can in
some cases be found independently of other details of
the CFT and are therefore universal (for instance, the
shear viscosity of a conformal holographic plasma is
one such quantity). In general, however, the dual
gravity theory may contain higher-derivative corrections
(e.g. higher powers of the Riemann tensor) which
are not universal. Neglecting these higher-order terms
corresponds to a strong-coupling limit, and considering
the classical theory in the bulk, by neglecting quantum
corrections, corresponds to the limit of large central
charge of the CFT. There can also be other fields coupled
to gravity. In this paper we will consider only the
simplest model described by pure gravity.

The holographic dual of the partitioning protocol
was considered in [43]. It was shown there that the
solution for the NESS generated by two baths at different
temperature is a boosted black brane, with boost and
temperature determined by the initial conditions TL, TR.
They found, in the case of d = 2, the result for the NESS
energy current in agreement with [48], as well as the
extension to higher dimensional CFTs. As mentioned
in the introduction, in the 2d case with an unbroken
conformal symmetry we don’t expect any particular
insight from holography as far as transport properties
are concerned.

XI. T T̄ -DEFORMED HOLOGRAPHIC CFTS

We discuss here the implementation of the partitioning
protocol in the deformed holographic correspondence.
We follow closely [58], where the gravity solutions



11

FIG. 3. Correspondence between the AdS with the finite
radius and the T T̄ -deformed CFT.

relevant for our problem are given. It is well-known
that the most general solution of pure gravity in 3d with
a cosmological constant, and a flat boundary metric at
infinity, is given by the Bañados geometry [76]

ds2 = `2
dρ2

4ρ2
+
dudv

ρ
+ L(u) du2+

+ L̄(v) dv2 + ρL(u)L̄(v) dudv . (53)

Here ρ is the radial direction, as in section III, u, v are
light-cone coordinates at the boundary, ` is the AdS
radius, related to the central charge by c = 3`

2G . The

solution depends on two arbitrary functions L(u), L̄(v)
that describe the left and right moving excitations of
the CFT, and are in fact related to the expectation
value of the stress-energy tensor: L = 8πG`〈Tuu〉, L̄ =
8πG`〈Tvv〉. When L = L̄ = 0, the bulk geometry is pure
AdS and is dual to the vacuum of the CFT; the metric
seen by the CFT is du dv. A particularly important
class of solutions is the rotating BTZ black hole, dual
to the boosted thermal ensemble e−β(H−ΩP ); its mass
and angular momentum are related to L, L̄, which are
constants in this case2.

Following the prescription of [57, 58], the T T̄ -deformed
solution must have a flat induced metric on the cutoff
surface ρ = µ. One might expect that as a consequence
the metric at infinity will not be flat, which would take
us outside of the Bañados metrics. However, it turns
out that

√
γR(γ) (where γ is the induced metric on a

slice of constant ρ) is preserved under the flow of the
deformation, implying that also the metric at infinity
is flat. Importantly, in 2d any two flat metrics can be
related by a coordinate transformation. The solution is

2 In the gravity literature the space coordinate is usually taken to
be an angle, therefore the notion of the angular momentum is
used. We are considering the case where the space is a line
and consequently the angular momentum becomes the linear
momentum.

obtained by the following change of coordinates

U = u+µ

∫ v

L̄(v′)dv′ , V = v+µ

∫ u

L(u′)du′ . (54)

One can check that in the new coordinates, the metric
(53) at the cutoff surface is simply dUdV . The simplicity
of the solution is related to the special properties of the
T T̄ -deformation: its equivalence to a state-dependent
change of coordinates has been emphasized in [77, 78].
The explicit form of the solution cannot be obtained in
the general case, but for our purpose we only need to
consider (piecewise) constant L, L̄ and in this case we
can easily invert the relations (54). Note however that
even though (54) is linear in µ, the metric in the new
variables is given by a non-linear, and non-polynomial
expression.

Once we have the solution for the boosted thermal
ensemble, we are in a position to implement the
partitioning protocol, as was done in the case of
undeformed CFT in [43]. At time t = 0 we join two
different solutions on the left and right; for this we have
to consider piece-wise constant functions

L(u) = LLθ(−u)+LRθ(u) , L̄(v) = L̄Lθ(−v)+L̄Rθ(v) .
(55)

The solution develops two shock waves that propagate
along the lines u = 0 and v = 0. Inverting the coordinate
change in this case, the shock waves trajectories become,
at t > 0,

x = −1 + µL̄L
1− µL̄L

t , x =
1 + µLR
1− µLR

t , (56)

where x, t are related to the light-cone coordinates as
U = x + t, V = x − t. These last equations generalize
the perturbative result for the speed of the shock in
[49] to all orders in σ. Expressing the speed in terms

of temperature, v =
√

1 + 4π2`2µ
β2 and this agrees with

(14) once we use the relation between the cutoff and
the deformation parameter (C10) that we repeat here
for convenience:

µ = − c

12π`2
σ . (57)

As explained in the appendix, the prescription
formulated in terms of mixed boundary conditions makes
sense for either sign of µ. The case of positive µ,
which corresponds to a finite cutoff, lead to superluminal
propagation, as observed in [79]. Notice also that the
classical gravity computation requires us to scale σ ∼
1/c, if we want to keep the cutoff fixed in terms of the
AdS radius.

The non-equilibrium steady state that develops
between the two shock waves has a form of the general
solution, with L = LR, L̄ = L̄L. One can then simply
read off the NESS energy and momentum currents from
the expressions for the stress-energy tensor (C6). If



12

we consider the zero-momentum initial states, namely
LL = L̄L,LR = L̄R, we find

〈jE〉NESS =
1

8πG`

LL − LR
1− µ2LLLR

, (58)

〈jP 〉NESS =
1

8πG`

LL + LR + 2µLLLR
1− µ2LLLR

. (59)

We recognize the same structure as in (34), and we can
check that the formulae agree precisely once we express
the solution’s parameters in terms of temperature (see
(C4)):

√
L =

β
(√

4π2l2µ
β2 + 1− 1

)
2πlµ

=
π`

β̃±(β, 0)
. (60)

As explained in the introductory section on energy
transport, we can extract the Drude weights from the
NESS currents. Both, the energy and the momentum
Drude weights are then given in terms of thermodynamic
quantities:

DEE =
e + p

β
, DPP =

(p
e

)2

DEE , (61)

which hold at all orders in the deformation parameter.
In holography, the presence of a horizon in the bulk is

the mechanism by which a theory can exhibit dissipation
at finite temperature: matter simply disappears behind
the horizon; the rate of absorption can be related to the
diffusion constant. In 2d CFT the conformal symmetry
prevents dissipation from happening even at finite
temperature; as is well-known, the finite temperature
theory is related to the one at zero temperature by a
conformal mapping. The holographic manifestation of
this fact is that pure gravity in 3d has no propagating
degrees of freedom: any solution is locally pure AdS.
The T T̄ -deformation breaks conformal symmetry, and

one could expect that diffusive behavior emerge in gravity
already at the classical level. This, however, is not
the case: the only effect of the T T̄ -deformation at the
classical level is the modification of the effective speed
of propagation. In fact, the deformed solution appears
to be, at the classical level, equivalent to a CFT in a
deformed geometry, so that there is effectively no mixing
of left/right movers. The diffusion constant should
presumably arise from the quantum gravity corrections,
which goes beyond the scope of the present work.

XII. DIFFUSION FROM CONFORMAL
PERTURBATION THEORY

In this section we show that the diffusion constants, or
the Onsager matrix, can be obtained very generally, to
the second order in the deformation, using CFT methods.
The Onsager matrix is given, in linear response theory,
by the formula (3). As we already mentioned, only the
diagonal momentum component of the matrix can be
non-vanishing because of relativistic invariance. This is
the term coming from the correlator 〈jP jP 〉 = 〈TxxTxx〉.
It is easy to see that a correlator 〈Ttt ji〉, for any current
ji, cannot give a finite contribution in (3) because Ttt is
a conserved charge density. Therefore we can substitute
〈jP jP 〉 with 〈(Txx−Ttt)(Txx−Ttt)〉. This is the correlator
of the trace of T , and an important property of the T T̄
deformation is that the trace satisfy the relation

trT = −σ det(Tµν) , (62)

as can be checked, for instance, in the holographic
formulation, (C8). At leading order we find trT (z, z̄) =
σ
π2T (z, z̄)T̄ (z, z̄). The two point function of the trace is
then a four point function evaluated in the underformed
CFT, and it factorizes between the left and right movers;
in real time we have

〈trT (x, t)trT (0, 0)〉 =
σ2

π4

c2

4

1

sinh4(πβ (x+ t)) sinh4(πβ (x− t))
. (63)

The right-hand side has the form of the finite-
temperature correlator of a scalar operator of dimension
4. The retarded correlator of an operator of conformal
dimension (h, h̄) is [80]

GR(ω, q) =− sin(2πh)(2πT )2(h+h̄−1)× (64)

B(h− iω + q

4πT
, 1− 2h)B(h̄− iω − q

4πT
, 1− 2h̄)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Euler beta function. The

correlator is singular at integer values of the dimension,
so we expand it around h = h̄ = 2 and keep the finite

part. Finally, recalling the fluctuation-dispersion relation
between the retarded GR and symmetrized correlator C,
ImGR(ω, q) = (1 − e−βω)C(ω, q), we can evaluate the
Onsager coefficient:

LPP =
σ2

2

π2c2

9β6
. (65)

This agrees with the result (15) to order σ2. Notice that
the diffusion constant, given by the Onsager coefficient
divided by the susceptibility, is of order σ2c, therefore
it is suppressed as 1/c in the classical limit c → ∞
with σc fixed. To see it in holography would require
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a computation of quantum gravity effects.

XIII. CONCLUSION

In the present paper we presented the results on energy
and momentum transport in the T T̄ -deformed CFTs
by employing integrability and holography. First, we
solved the partitioning protocols, with the two sides of
the system prepared at different temperatures, exactly,
using both integrability and holography. Although
these methods have presumably disconnected ranges of
validity, the results turn out to agree, yielding universal
closed form expressions for the energy and momentum
NESS currents in T T̄ -deformed CFTs with the arbitrary
central charge. This, in turn, also allowed us to compute
the energy and momentum Drude weights. Furthermore,
we calculated the exact momentum Onsager matrix,
which is related to the momentum diffusion constant,
in generic T T̄ -deformed CFTs using the idea of GHD.
The result is also supported by conformal perturbative
expansion up to the second order in the deformation
parameter. These computations of the momentum
Onsager matrix are consistent with the fact that it
vanishes in holographic CFTs in the leading order of 1

c .
Our results have far reaching consequences from a

number of different perspectives. First of all, we calculate
the corrections of the famous Stefan Boltzmann law
by considering integrable deformations of the conformal
field theory. Secondly, we made an identification
between the T T̄ dynamics and RCA 54. And lastly,
the matching of the Drude weights between GHD and
holography represent a first verification of the T T̄ -
deformed gauge/gravity correspondence on the level of
dynamics.

There are many questions that the present manuscript
opens up from the point of view of holography. In
general T T̄ -deformed CFTs offer a playground where
the dynamical aspects of holography can be tested by
exact methods. This includes entanglement dynamics,
operator spreading (which is related to the Lyapunov
exponent), and additional features of transport. In
particular, we have only focused on Euler scale
hydrodynamics, which, however, admits corrections.
First order corrections are directly connected to the
diffusion constant and since we found no diffusion at
the classical level, it should arise as a consequence of
quantum corrections to the gravity. Such corrections
may be computable using the effective theory formulation
of [81]. Notice also that the scaling σ ∼ 1/c, required
for the gravity dual, is the same scaling used in [82] to
derive evolution equations for the correlation functions;
generalizing this method to finite temperature would

provide an alternative way to derive 1/c corrections.

Another aspect that deserves further consideration
is that of the observed universality. Namely, we
found universal expressions for the NESS currents and
Drude weights. It would be interesting to understand
this universality from the viewpoint of the holographic
dual, by considering different models in which gravity
can interact with other fields. It would be very
interesting also to consider more general current-current
deformations like JT̄ [83], which break Lorentz invariance
and would lead to energy diffusion. In general, we would
like to establish a full connection at a level of generalized
Gibbs ensembles, which would require the inclusion of
higher-order conserved charges, that are dual to higher-
spin fields in the bulk. This would allow us to derive
the full expressions for the Drude weights and diffusion
constant in terms of the normal modes of GHD [84, 85]
from holography.

Another exciting future direction is offered by the
connection between T T̄ -deformed CFTs and RCA 54
on hydrodynamic level. In fact, this observation is
consistent with the finding in a recent work [71] in
which Cardy and Doyon observe that generically a T T̄ -
deformation can be thought of as a deformation that
introduces a “width” to constituent particles. To make
the connection valid even at the level of thermodynamics,
we however need to introduce hard-core R−R and L−L
scatterings in T T̄ -deformed CFTs. A natural question to
ask is if we could concoct another (irrelevant) operator
that amounts to such scatterings. A somewhat related
direction was pushed in [86] where the authors studied
the consequences of adding the most generic CDD
factors to scattering matrices in integrable quantum
field theories. A careful look, however, shows that
such deformations cannot yield scatterings between the
same species. In general, relating the two theories from
microscopics represents an exciting future perspective,
which might lead to the holographic CA.
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Appendix A: Riemann problem in a T T̄ -deformed
CFT

In this section we solve the two-temperature partioning
protocol in a T T̄ -deformed CFT, which can be
formulated as a Riemann problem in RCA54 where the
solition densities are now replaced by the energy densities
ρ± in a T T̄ -deformed CFT. To reiterate, the GHD
equation reads(

∂tρ+

∂tρ−

)
+ ∂x

(
veff

+ 0
0 veff

−

)(
ρ+

ρ−

)
= 0, (A1)

with(
veff

+

veff
−

)
=

1

1 + σ(ρ+ + ρ−)

(
1 + σ(ρ+ − ρ−)
−1 + σ(ρ+ − ρ−)

)
. (A2)

It is in fact easier to work with another fluid coordinate
u = ρ+ + ρ−, v = ρ+ − ρ− by realizing the following
relation

ρ+v
eff
+ + ρ−v

eff
− = ρ+ − ρ− (A3)

ρ+v
eff
+ − ρ−veff

− = ρ+ + ρ− −
4σρ+ρ−

1 + σ(ρ+ + ρ−)
. (A4)

In terms of u and v, (A1) can be recast into

∂tu+ ∂xv = 0 (A5)

∂tv + ∂x

(
u− σ(u2 − v2)

1 + σu

)
= 0, (A6)

which can also be represented as(
∂tu
∂tv

)
+ J

(
∂xu
∂xv

)
= 0, J =

(
0 1

1−σ2v2

(1+σu)2
2σv

1+σu

)
. (A7)

Note that the eigenvalues of the Jacobian is veff
± as it

should be.
We want to solve a general Riemann problem with an

initial condition

u(x, 0) =

{
uL x < 0

uR x > 0
, v(x, 0) =

{
vL x < 0

vR x > 0
.

(A8)
Let us start with looking for a two-shocks solution that
is natural to exist on the physical ground. To find it, we
first solve the Rankine-Hugoniot condition for the left
moving shock connecting the left state uL, vL and the
right state that is to be determined u∗, v∗. Denoting the
shock speed ξ1, the equations we have to solve are

vL − v∗ = ξ1(uL − u∗)

(A9)

uL −
σ(u2

L − v2
L)

1 + σuL
− u∗ +

σ(u2
∗ − v2

∗)

1 + σu∗
= ξ1(vL − v∗).

(A10)
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After some laborious calculations, quite surprisingly, it
turns out that the shock speed ξ1 does not depend on u∗
nor v∗, and simple reads

ξ1 =
σvL ± 1

σuL + 1
= veff
± (uL, vL). (A11)

The sign can be determined as follows: when both
densities are zero ρ±,L = 0 (i.e. vL = uL = 0), we
want the shock to propagate to the left, thus we choose
the minus sign.

In the exactly same manner, we can perform a similar
analysis for the second shock connecting the left state
u∗, v∗ and the right state uR, vR with the shock speed ξ2.
The set of equations to be satisfied are

vR − v∗ = ξ2(uR − u∗)

(A12)

uR −
σ(u2

R − v2
R)

1 + σuR
− u∗ +

σ(u2
∗ − v2

∗)

1 + σu∗
= ξ2(vR − v∗),

(A13)

yielding

ξ2 =
σvR ± 1

σuR + 1
= veff
± (uR, vR). (A14)

We will choose the plus sign here as well for the similar
reason above. Plugging ξ1, ξ2 into (A9) and (A12), we
have (

u∗
v∗

)
=

1

σ(ξ2 − ξ1)

(
ξ1 − ξ2 + 2
ξ2 + ξ1

)
(A15)

which gives

veff
− (u∗, v∗) = ξ1, veff

+ (u∗, v∗) = ξ2. (A16)

This implies a remarkable feature of the fluid. Namely,
the Lax condition for the stability of shocks are satisfied
with equality:

veff
− (uL, vL) ≥ ξ1 ≥ veff

− (u∗, v∗),

veff
+ (u∗, v∗) ≥ ξ2 ≥ veff

+ (uR, vR). (A17)

This class of wave is called contact discontinuity, and it
turns out that both the left and the right moving shocks
are contact discontinuities.

We are then finally in the position to obtain the explicit
steady state profile (u∗, v∗), which, according to (A15),
is (

u∗
v∗

)
=

1

σ(veff
+,R − veff

−,L)

(
veff
−,L − veff

+,R + 2

veff
+,R + veff

−,L

)
. (A18)

Since v is nothing but the energy current in the language
of the T T̄ -deformed CFTs, we immediately obtain (34)
by plugging (A2) into (A18).

Appendix B: Central charge in the Liouville CFT

Here we explicitly compute the central charge of the
Liouville CFT at the self-dual point; the computation
away from the point is completely analogous. To
facilitate the calculation, we set βM = 2π without loss
of generality. Let us start with introducing two functions
L0(θ) and L1(θ) defined by

L0(θ) = 2PQ log(1 + e−2θ) (B1)

L1(θ) =
C

2
(1− tanh θ). (B2)

Their convolutions with T (θ) can be easily computed,
reading

f0(θ) := T ∗ L0(θ) = 2PQ log
(

1 + e−2θ + 2e−θ cos
πa

2

)
(B3)

f1(θ) := T ∗ L1(θ) =
C

2

(
1− sinh θ

cosh θ + cos πa2

)
. (B4)

With these functions, we can rewrite the TBA equation
(49) as

ε(θ) = πeθ−f0(θ)−f1(θ)−[T ∗(LR−L0−L1)](θ), (B5)

which is also useful for numerics in that its asymptotics
is properly controlled. The object of interest here is the
central charge

cP =
6

π

∫
dθeθ log(1 + e−ε(θ)), (B6)

where we suppressed the subscript + of ε(θ). A
crucial difference between the standard dilogarithm
computations in TBA and the one we spell out below
is that some of the integrations that appear in the
computation might not be convergent, and can be made
finite only when the divergence is canceled out by
a divergence in another integral. First notice from
differentiating (49) with respect to θ that

πeθ = (1− Tn)∂θε. (B7)

Replacing eθ in (B6) with this, we proceed the
calculations as follows

c =
6

π2

∫ ∞
−∞

dθL(1− Tn)∂θε

=
6

π2

∫ ∞
ε(−∞)

dε log(1 + e−ε)

+
6

π2

∫ ∞
−∞

dθL(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L′(θ′). (B8)

Let us focus on the double integral in the second term.
Importantly these two integrals do not commute due to
the divergence from the θ-integration, hence we cannot
appeal to the standard trick to change the order of
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integrations and replace the θ-integration using the TBA
equation (49). To compute the integration with better
control, we shall isolate the integration that causes
divergence by rewriting it as∫ ∞
−∞

dθL(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L′(θ′)

=

∫ ∞
−∞

dθ(L(θ)− L̃(θ))

∫ ∞
−∞

dθ′T (θ − θ′)(L′(θ′)− L̃(θ′))

+

∫ ∞
−∞

dθL(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L̃′(θ′)

+

∫ ∞
−∞

dθL̃(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L′(θ′)

−
∫ ∞
−∞

dθL̃(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L̃′(θ′), (B9)

where we introduced L̃(θ) = L0(θ) + L1(θ). The two
integrations in the first line commute safely now, thus
making use of (49) one can massage them to get

∫ ∞
−∞

dθ(L(θ)− L̃(θ))

∫ ∞
−∞

dθ′T (θ − θ′)(L′(θ′)− L̃′(θ′))

=

∫ ∞
−∞

dθ′(L′(θ′)− L̃′(θ′))
[
πeθ

′
− ε(θ′)−

∫ ∞
−∞

dθT (θ − θ′)L̃(θ)

]
= −π

∫ ∞
−∞

dθeθL(θ)−
∫ ∞
−∞

L′(θ)ε(θ)−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L(θ)

+

∫ ∞
−∞

dθ′L′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ) +

∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ). (B10)

The second and the third terms in RHS of (B9) can be written just in terms of L̃ when combined with some of the
terms in (B10). To be precise, we have∫ ∞

−∞
dθL(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L̃′(θ′)−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L(θ)

=

∫ ∞
−∞

dθ′L̃(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃′(θ)−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ) (B11)

and ∫ ∞
−∞

dθL̃(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L′(θ′)−
∫ ∞
−∞

dθ′L′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ)

=

∫ ∞
−∞

dθ′L̃(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃′(θ)−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ). (B12)

Therefore merging everything together, we end up with∫ ∞
−∞

dθL(θ)

∫ ∞
−∞

dθ′T (θ − θ′)L′(θ′) = −π
∫ ∞
−∞

dθeθL(θ) +

∫ ∞
ε(−∞)

dε
ε

1 + eε

+

∫ ∞
−∞

dθ′L̃(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃′(θ)

−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ), (B13)

implying that the central charge is now given by

c = 1 +
3

π2

(∫ ∞
−∞

dθ′L̃(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃′(θ)−
∫ ∞
−∞

dθ′L̃′(θ′)

∫ ∞
−∞

dθT (θ − θ′)L̃(θ)

)
= 1 +

3

π2

∫ ∞
−∞

dθ [(L0(θ) + L1(θ))(f ′0(θ) + f ′1(θ))− (L′0(θ) + L′1(θ))(f0(θ) + f1(θ))] , (B14)
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where we noted that

3

π2

∫ ∞
ε(−∞)

dε

[
log(1 + e−ε) +

ε

1 + eε

]
= 1. (B15)

So the task boils down to compute the single integration
in (B14), which we shall denote by I. So far the

computation is valid for any value of Q, but to illustrate
how the remaining computation can be achieved, we
again specialize to the self-dual case. It turns out that
it is convenient to divide the integration into the term
proportional to P 2, PC, and C2. We first deal with the
term that comes with P 2, which reads

32P 2

∫ ∞
−∞

dθ

[
− log(1 + e−2θ)

1

1 + eθ
+ 2 log(1 + e−θ)

1

1 + e2θ

]
= 32P 2

∫ ∞
−∞

dθ

[
− log(1 + e2θ)

eθ

1 + eθ
+ 2 log(1 + eθ)

e2θ

1 + e2θ

]
= 32P 2

∫ ∞
−∞

dθ

[
−
(
2θ + log(1 + e−2θ)

)(
1− 1

1 + eθ

)
+ 2

(
θ + log(1 + e−θ)

)(
1− 1

1 + e2θ

)]
= 32P 2

∫ ∞
−∞

dθ

[
2 log(1 + e−θ)− log(1 + e2θ) + 2θ

(
1

1 + eθ
− 1

1 + e2θ

)]
− 32P 2

∫ ∞
−∞

dθ

[
− log(1 + e−2θ)

1

1 + eθ
+ 2 log(1 + e−θ)

1

1 + e2θ

]
. (B16)

Hence the term is simplified and can be exactly computed to be

32P 2

∫ ∞
−∞

dθ

[
− log(1 + e−2θ)

1

1 + eθ
+ 2 log(1 + e−θ)

1

1 + e2θ

]
= 32P 2

∫ ∞
0

dθ

[
2 log(1 + e−θ)− log(1 + e2θ) + 2θ

(
1

1 + eθ
− 1

1 + e2θ

)]
= 128P 2

∫ ∞
0

dθ θ

(
1

1 + eθ
− 1

1 + e2θ

)
= 96P 2

∫ ∞
0

dθ θ
1

1 + eθ

= 8π2P 2, (B17)

where in the second line we noted that the integrand is an even function of θ.
Next we move on to the term with PC, which is given by

2PC

∫ ∞
−∞

dθ

[
− log(1 + e−2θ)

d

dθ
tanh

θ

2
+ 2 log(1 + e−θ)

d

dθ
tanh θ

]
+ 4PC

∫ ∞
−∞

dθ

[
− 2

1

1 + eθ
(1− tanh θ) + 2

1

1 + e2θ
(1− tanh

θ

2
)

]
. (B18)

It turns out that each integration is identically zero. For instance, the first line becomes∫ ∞
−∞

dθ

[
− log(1 + e−2θ)

d

dθ
tanh

θ

2
+ 2 log(1 + e−θ)

d

dθ
tanh θ

]
=

∫ ∞
−∞

dθ

[
− tanh

θ

2
+ 2 tanh θ

1

1 + eθ

]
=

∫ ∞
−∞

dθ
tanh θ

2

cosh θ

= 0 (B19)

Likewise, one can also show that the second line also vanishes.
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Finally we are left with the term proportional to C2,
but it is immediately to realise that it is zero:

C2

∫ ∞
−∞

dθ

[
−(1− tanh θ)

1

2 cosh2 θ
2

+

(
1− tanh

θ

2

)
1

cosh2 θ

]

= C2

∫ ∞
−∞

dθ

(
1

cosh2 θ
− 1

2 cosh2 θ
2

)
= 0. (B20)

Therefore we conclude that the central charge c in the
self-dual case is nothing but

c = 1 + 24P 2 (B21)

with P = Q/2 = 1.

Appendix C: Black hole solutions in the deformed
correspondence

We give some details on the gravity solutions used for
the partitioning protocol. As explained in the main text,
the solution for a black hole with finite temperature and
momentum is obtained by (53), with constant L, L̄, with
the change of coordinates (54). The explicit result is,
in terms of the Fefferman-Graham expansion given in
section III,

γ(0)
µν dx

µdxν =
(dU − µL̄dV )(dV − µLdU)

(1− µ2LL̄)2

γ(2)
µν dx

µdxν =
(1 + µ2LL̄)

(1− µ2LL̄)2
(LdU2 + L̄dV 2)

− 4µLL̄dUdV
(1− µ2LL̄)2

(C1)

γ(4)
µν = LL̄γ(0)

µν

The dual energy-momentum tensor is given by the
Brown-York tensor on the ρ = µ slice, with the addition
of the usual holographic counterterm [87]

Tij = TBYij − 1

8πG`
γij(ρ = µ) (C2)

=
1

8πG`

LdU2 + L̄dV 2 + 2µLL̄dUdV
1− µ2LL̄

. (C3)

Fixing the metric at ρ = µ means fixing g = γ(0) +
µγ(2) + µ2γ(4). Recalling that γ(2) ∼ 〈T 〉, and the fact
that γ(4) ∼ ((γ(0))−1γ(2))2, this can be reinterpreted
as a mixed non-linear boundary condition between the
metric and the energy-momentum tensor. With this
interpretation one is not limited to positive values of µ.

The solution has an horizon at ρ = 1/
√
LL̄. One

can compute the Hawking temperature and the (angular)
velocity by expanding near the horizon in suitable
coordinates such that the horizon is at r = 0 and the

metric has the form ds2 = dr2 − 4π2

β2 r
2dt2 + A(r)(dx −

Ω(r)dt)2. One finds

β =
π`

2

(
1√
L

+
1√
L̄

)
(1− µ

√
LL̄) , (C4)

Ω =

√
L−
√
L̄

√
L+
√
L̄
. (C5)

We see that L = L̄ corresponds to the non-boosted, or
non-rotating, case. It is useful to give the expressions for
the components of the energy-momentum tensor in x, t
coordinates:

Ttt =
1

8πG`

L+ L̄ − 2µLL̄
1− µ2LL̄

,

Txt =
1

8πG`

L − L̄
1− µ2LL̄

, (C6)

Txx =
1

8πG`

L+ L̄+ 2µLL̄
1− µ2LL̄

.

We can find the equation of state for the pressure p = Txx
in terms of energy density e = Ttt and momentum density
j = Txt:

p =
e− 8πG`µj2

1− 8πG`µe
. (C7)

This is equivalent to the trace relation

trT = p− e = 8πG`µdetTµν . (C8)

At zero momentum density, j = 0, we can express the
pressure as

p =
1

8πG`

L
1− µL

=

√
1 + 4π2`2

β2 µ− 1

8πG`µ
. (C9)

The pressure is equal to the free energy, so comparing
with (7) we can find the relation between the cutoff radius
and the deformation parameter:

µ = − σc

12π`2
. (C10)

In order to compute the NESS current we have just
to identify the relevant parameters for the solution. As
stated in the main text, the steady state that forms
between the two shock waves is described by (C1) with
parameters L = LR, L̄ = L̄L. When we compute the
NESS energy current, we can take the initial states to
have zero boost, so LL = L̄L,LR = L̄R. Then the
energy current density jE = Txt is given by (C6) with
these parameters, which gives (58); integrating between
the position of the two shock waves we have the total
current JE(t) =

∫
dx jE(x, t):

〈JE〉 =
1

8πG`

LL − LR
1− µ2LLLR

(
1 + µLL
1− µLL

+
1 + µLR
1− µLR

)
(C11)
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The Drude weight is obtained as

DEE =
1

2

(
∂

∂βR
− ∂

∂βR

)
JE |βR=βL

=
1

2

∂L
∂β

(
∂

∂LR
− ∂

∂LL

)
JE |LR=LL

=
π`

2Gβ3

1− µL
1 + µL

=
e + p

β
.

(C12)

For the momentum Drude weight, we need to have a
bias of angular velocity, but we could set βL = βR in the
initial state. However this does not give a simple relation
in terms of L, L̄, so we take arbitrary temperatures and
set them equal only at the end. The momentum NESS
current is the integral of Txx between the shock waves,
and we need to subtract the expectation value in the

initial state which is non-zero, unlike the case of the
energy current. We find

〈JP 〉 =
1

8πG`

LR + L̄L + 2µLRL̄L
1− µ2LRL̄L

(
1 + µLR
1− µLR

+
1 + µL̄L
1− µL̄L

)
− 1 + µLR

1− µLR
jP,L −

1 + µL̄L
1− µL̄L

jP,R . (C13)

The chemical potential coupled to the momentum
density is ν = βΩ, so for the momentum Drude weight
we have

DPP =
1

2β
(
∂JP
∂ΩL

|βL −
∂JP
∂ΩR

|βR)|βL=βR,ΩL=ΩR=0

=
π`

2Gβ3

1 + µL
1− µL

=
(p
e

)2

DEE .

(C14)
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