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UNIFORMITY IN MORDELL–LANG FOR CURVES

VESSELIN DIMITROV, ZIYANG GAO AND PHILIPP HABEGGER

Abstract. Consider a smooth, geometrically irreducible, projective curve of genus
g ≥ 2 defined over a number field of degree d ≥ 1. It has at most finitely many rational
points by the Mordell Conjecture, a theorem of Faltings. We show that the number
of rational points is bounded only in terms of g, d, and the Mordell–Weil rank of the
curve’s Jacobian, thereby answering in the affirmative a question of Mazur. In addition
we obtain uniform bounds, in g and d, for the number of geometric torsion points of the
Jacobian which lie in the image of an Abel–Jacobi map. Both estimates generalize our
previous work for 1-parameter families. Our proof uses Vojta’s approach to the Mordell
Conjecture, and the key new ingredient is the generalization of a height inequality due
to the second- and third-named authors.
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1. Introduction

Let F be a field. By a curve defined over F we mean a geometrically irreducible,
projective variety of dimension 1 defined over F . Let C be a smooth curve of genus at
least 2 defined over a number field F . As was conjectured by Mordell and proved by
Faltings [Fal83], C(F ), the set of F -rational points of C, is finite.

We let Jac(C) denote the Jacobian of C. Recall that Jac(C)(F ) is a finitely generated
abelian group by the Mordell–Weil Theorem.

The aim of this paper is to bound #C(F ) from above. Here is our first result.

Theorem 1.1. Let g ≥ 2 and d ≥ 1 be integers. Then there exists a constant c =
c(g, d) ≥ 1 with the following property. If C is a smooth curve of genus g defined over a
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number field F with [F : Q] ≤ d, then

(1.1) #C(F ) ≤ c1+ρ

where ρ is the rank of Jac(C)(F ).

This theorem gives an affirmative answer to a question posed by Mazur [Maz00,
Page 223]. See also [Maz86, top of page 234] for an earlier question. Before this, Lang
formulated a related conjecture [Lan78, page 140] on the number of integral points of
elliptic curves.

The method of our theorem builds up on the work of many others. At the core we
follow Vojta’s proof [Voj91] of the Mordell Conjecture. Vojta’s proof was later simplified
by Bombieri [Bom90] and further developed by Faltings [Fal91]. Silverman [Sil93] proved
a bound of the quality (1.1) if C ranges over twists of a given smooth curve. The bound
by de Diego [dD97] is of the form c(g)7ρ, where c(g) > 0 depends only on g; the value 7
had already arisen in Bombieri’s work. But she only counts points whose height is large
in terms of a height of C. Work of David–Philippon [DP02] and Rémond [Rém00a] led
to explicit estimates. Recently, Alpoge [Alp18] [Alp20, Theorem 6.1.1] improved 7 to
1.872 and, for g large enough, even to 1.311.

On combining the Vojta and Mumford Inequalities one gets an upper bound for the
number of large points in C(F ); these are points whose height is sufficiently large relative
to a suitable height of C. A lower bound for the Néron–Tate height, such as proved by
David–Philippon [DP02], can be used to count the number of remaining points which we
sometimes call small points. Indeed, Rémond [Rém00a] made the Vojta and Mumford
Inequalities explicit and obtained explicit upper bounds for the number of rational points
on curves embedded in abelian varieties. The resulting cardinality bounds depend on a
suitable notion of height of C, an artifact of the lower bounds for the Néron–Tate height.
Later, David–Philippon [DP07] proved stronger height lower bounds in a power of an
elliptic curve. They then obtained uniform estimates of the quality (1.1) for a curve in
a power of elliptic curves, thus providing evidence that Mazur’s Question had a positive
answer, see also David–Nakamaye–Philippon’s work [DNP07].

We give an overview of the general method in more detail in §1.1 below.
The main innovation of this paper is to prove a lower bound for the Néron–Tate height

that is sufficiently strong to eliminate the dependency on the height of C. This leads
to a uniform estimate as in Theorem 1.1. In prior work [DGH19] we applied the earlier
height lower bound [GH19] to recover a variant of Theorem 1.1 in a one-parameter family
of smooth curves.

We now explain some further results that follow from the approach described above.
For an integer g ≥ 1, let Ag,1 denote the coarse moduli space of principally polarized
abelian varieties of dimension g. This is an irreducible quasi-projective variety which we
can take as defined over Q, the algebraic closure of Q in C. Suppose we are presented
with an immersion ι : Ag,1 → Pm

Q
into projective space. Let h : Pm

Q
(Q) → R denote the

absolute logarithmic Weil height, cf. [BG06, §1.5.1]. For brevity, we sometimes call h
the Weil height. If C is a smooth curve of genus g ≥ 2 defined over Q and if P0 ∈ C(Q),
then we can consider C − P0 as a curve in Jac(C) via the Abel–Jacobi map. We use
[Jac(C)] to denote the point in Ag,1(Q) parametrizing Jac(C).
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An abelian group Γ is said to have finite rank if Γ⊗Q is a finite dimensional Q-vector
space. In this case dimΓ⊗Q is the rank of Γ. Consider an abelian variety A defined over
C and let Γ be a finite rank subgroup of A(C). Lang [Lan65] conjectured that a curve
in A intersects Γ in a finite set unless the curve is smooth of genus 1. The Conjecture
follows from Faltings’s Theorem [Fal83] and work of Raynaud [Ray83].

The following theorem is more in the spirit of [Maz86, top of page 234].

Theorem 1.2. Let g ≥ 2 and let ι be as above. Then there exist two constants c1 =
c1(g, ι) ≥ 0 and c2 = c2(g, ι) ≥ 1 with the following property. Let C be a smooth curve
of genus g defined over Q, let P0 ∈ C(Q), and let Γ be a subgroup of Jac(C)(Q) of finite
rank ρ ≥ 0. If h(ι([Jac(C)])) ≥ c1, then

#(C(Q)− P0) ∩ Γ ≤ c1+ρ
2 .

The following corollary follows from Theorem 1.2 applied to Γ = Jac(C)(Q)tors, which
has rank 0.

Corollary 1.3. Let g ≥ 2 and let ι be as above. Then there exist two constants c1 =
c1(g, ι) ≥ 0 and c2 = c2(g, ι) ≥ 1 with the following property. Let C be a smooth curve
of genus g defined over Q and let P0 ∈ C(Q). If h(ι([Jac(C)])) ≥ c1, then

#(C(Q)− P0) ∩ Jac(C)(Q)tors ≤ c2.

As in Theorem 1.1 we can drop the condition on the height of the Jacobian by working
over a number field of bounded degree.

Theorem 1.4. Let g ≥ 2 and d ≥ 1 be integers. Then there exists a constant c =
c(g, d) ≥ 1 with the following property. Let C be a smooth curve of genus g defined over
a number field F ⊆ Q with [F : Q] ≤ d and let P0 ∈ C(Q), then

#(C(Q)− P0) ∩ Jac(C)(Q)tors ≤ c.

Let us recall some previous results towards Mazur’s Question for rational points, i.e.,
towards Theorem 1.1. Based on the method of Vojta, Alpoge [Alp18] proved that the
average number of rational points on a curve of genus 2 with a marked Weierstrass point
is bounded. Let C be a smooth curve of genus g ≥ 2 defined over a number field F ⊆ Q.
The Chabauty–Coleman approach [Cha41,Col85] yields estimates under an additional
hypothesis on the rank of Mordell–Weil group. For example, if Jac(C)(F ) has rank at
most g − 3, Stoll [Sto19] showed that #C(F ) is bounded solely in terms of [F : Q]
and g if C is hyperelliptic; Katz–Rabinoff–Zureick-Brown [KRZB16] later, under the
same rank hypothesis, removed the hyperelliptic hypothesis. Checcoli, Veneziano, and
Viada [CVV17] obtain an effective height bound under a restriction on the Mordell–Weil
rank.

As for algebraic torsion points, i.e., in the direction of Theorem 1.4, DeMarco–Krieger–
Ye [DKY20] proved a bound on the cardinality of torsion points on any genus 2 curve
that admits a degree-two map to an elliptic curve when the Abel–Jacobi map is based
at a Weierstrass point. Moreover, their bound is independent of [F : Q].

1.1. Néron–Tate distance of algebraic points on curves. Let C be a smooth curve
defined over Q of genus g ≥ 2, let P0 ∈ C(Q), and let Γ be a subgroup of Jac(C)(Q)
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of finite rank ρ. For simplicity we identify C with its image under the Abel–Jacobi
embedding C → Jac(C) via P0.

Our proof of Theorem 1.2 follows the spirit of the method of Vojta, later generalized by
Faltings. Let ĥ : Jac(C)(Q) → R denote the Néron–Tate height attached to a symmetric
and ample line bundle on Jac(C). We divide C(Q) ∩ Γ into two parts:

• Small points
{
P ∈ C(Q) ∩ Γ : ĥ(P ) ≤ B(C)

}
;

• Large points
{
P ∈ C(Q) ∩ Γ : ĥ(P ) > B(C)

}

where B(C) is allowed to depend on a suitable height of C. It turns out that we can take
B(C) = c0max{1, h(ι([Jac(C)]))} for some c0 = c0(g, ι) > 0. The constant c0 is chosen
in a way that accommodates both the Mumford inequality and the Vojta inequality.
Combining these two inequalities yields an upper bound on the number of large points
by c1(g)

1+ρ, see for example Vojta’s [Voj91, Theorem 6.1] in the important case where
Γ is the group of points of Jac(C) rational over a number field or more generally in the
work of David–Philippon [DP02,DP07] and Rémond [Rém00a].

Thus in order to prove Theorem 1.2, it suffices to bound the number of small points.
In this paper we find such a bound by studying the Néron–Tate distance of points in
C(Q).

Roughly speaking, we find positive constants c1, c2, c3, and c4 that depend on g and
ι, but not on C, such that if h(ι([Jac(C)])) ≥ c1 then for all P ∈ C(Q) we have the
following alternative.

• Either P lies in a subset of C(Q) of cardinality at most c2,

• or
{
Q ∈ C(Q) : ĥ(Q− P ) ≤ h(ι([Jac(C)]))/c3

}
< c4.

This dichotomy is stated in Proposition 7.1. In this paper, we make the statement
precise by referring to the universal family of genus g smooth curves with suitable level
structure, and the Néron–Tate height on each Jacobian attached to the tautological line
bundle. The setup is done in §6.

This proposition can be seen as a relative version of the Bogomolov conjecture for
abelian varieties with large height. It has the following upshot: If h(ι([Jac(C)])) ≥ c1,
then the small points in C(Q) ∩ Γ lie in a set of uniformly bounded cardinality, or are
contained in (1 + c0c3)

ρ balls in the Néron–Tate metric, with each ball containing at
most c4 points. This will yield the desired bound in Theorem 1.2, as executed in §8.
1.2. Height inequality and non-degeneracy. We follow the framework presented in
our previous work [DGH19]. In loc.cit. we proved the result for 1-parameter families, as
an application of the second- and third-named authors’ height inequality [GH19, Theo-
rem 1.4]. Passing to general cases requires generalizing this height inequality to higher
dimensional bases. The generalization has two parts: generalizing the inequality itself
under the non-degeneracy condition and generalizing the criterion of non-degenerate
subvarieties. We execute the first part in the current paper while the second part was
done by the second-named author in [Gao20a]. Let us explain the setup.

Let k be an algebraically closed subfield of C. Let S be a regular, irreducible, quasi-
projective variety defined over k that is Zariski open in an irreducible projective variety
S ⊆ Pm

k . Let π : A → S be an abelian scheme of relative dimension g ≥ 1. We suppose
that we are presented with a closed immersion A → Pn

k ×S over S. On the generic fiber
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of π we assume that this immersion comes from a basis of the global sections of the l-th
power of a symmetric and ample line bundle with l ≥ 4. If k = Q and as described in
§3.1 we obtain two height functions, the restriction of the Weil height h : S(Q) → R and

the Néron–Tate height ĥA : A(Q) → R.
Let ℓ ≥ 3 be an integer. Throughout the whole paper, by level-ℓ-structure we always

mean symplectic level-ℓ-structure. For the purpose of our main applications, including
Theorems 1.1 and 1.2, it suffices to work under the following hypothesis.

(Hyp): A → S carries a principal polarization and has level-ℓ-structure for some ℓ ≥ 3.

So in the main body of the paper, we will focus on the case (Hyp). The general case
where (Hyp) is not assumed will be handled in Appendix B.

The non-degenerate subvarieties of A are defined using the Betti map which we briefly
describe here; the precise definition will be given by Proposition B.2 and in Proposi-
tion 2.1 under (Hyp).

For any s ∈ S(C), there exists an open neighborhood ∆ ⊆ San of s which we may
assume is simply-connected. Then one can define a basis ω1(s), . . . , ω2g(s) of the period
lattice of each fiber s ∈ ∆ as holomorphic functions of s. Now each fiber As = π−1(s)
can be identified with the complex torus Cg/(Zω1(s)⊕· · ·⊕Zω2g(s)), and each point x ∈
As(C) can be expressed as the class of

∑2g
i=1 bi(x)ωi(s) for real numbers b1(x), . . . , b2g(x).

Then b∆(x) is defined to be the class of the 2g-tuple (b1(x), . . . , b2g(x)) ∈ R2g modulo
Z2g. We obtain with a real-analytic map

b∆ : A∆ = π−1(∆) → T2g,

which is fiberwise a group isomorphism and where T2g is the real torus of dimension 2g.

Definition 1.5. An irreducible subvariety X of A is said to be non-degenerate if there
exists an open non-empty subset ∆ of San, with the Betti map b∆ : A∆ := π−1(∆) → T2g,
such that

(1.2) max
x∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x = 2dimX

where db∆ denotes the differential and Xsm,an is the analytification of the regular locus
of X.

As the inequality ≤ in (1.2) trivially holds true, (1.2) is equivalent to: there exists
x ∈ Xsm,an ∩ A∆ such that rankR(db∆|Xsm,an)x = 2dimX .

In Proposition 2.2(iii) we give another characterization of non-degenerate subvarieties.
We can now formulate the height inequality.

Theorem 1.6. Suppose that A and S are as above with k = Q; in particular, A satisfies
(Hyp). Let X be a closed irreducible subvariety of A defined over Q that dominates S.
Suppose X is non-degenerate, as defined in Definition 1.5. Then there exist constants
c1 > 0 and c2 ≥ 0 and a Zariski open dense subset U of X with

ĥA(P ) ≥ c1h(π(P ))− c2 for all P ∈ U(Q).

Note that [GH19, Theorem 1.4] is, up to some minor reduction, precisely Theorem 1.6
for dimS = 1 together with the criterion for X to be non-degenerate when dimS = 1.
In general, the degeneracy behavior of X is fully studied in [Gao20a]. See [Gao20a, The-
orem 1.1] for the criterion. However in practice, we sometimes still want to understand
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the height comparison on some degenerate X . One way to achieve this is by apply-
ing [Gao20a, Theorem 1.3], which asserts the following statement: If X satisfies some
reasonable properties, then we can apply Theorem 1.6 after doing some simple operations
with X .

For the purpose of proving Proposition 7.1 and furthermore Theorem 1.2, we work in
the following situation.

Let Ag,ℓ denote the moduli space of principally polarized g-dimensional abelian vari-
eties with level-ℓ-structure. It is a classical fact that Ag,ℓ is represented by an irreducible,
regular, quasi-projective variety defined over a number field, see [MFK94, Theorem 7.9
and below] or [OS80, Theorem 1.9], so it is a fine moduli space. Let Mg,ℓ be the fine mod-
uli space of smooth curves of genus g whose Jacobian is equipped with level-ℓ-structure;
see [DM69, (5.14)] or [OS80, Theorem 1.8] for the existence. Then Mg,ℓ is an irreducible,
regular, quasi-projective variety defined over a number field.

To avoid confusion on different notations in different references, we make the following
convention throughout the paper. We will take Ag,ℓ andMg,ℓ as geometrically irreducible
varieties. Some authors define Ag,ℓ over Z[1/ℓ] (or over Z) and then consider it over

Q by base change. The Q-variety thus obtained may not be irreducible, and each
irreducible component is defined over Q(ζℓ) for some root of unity ζℓ of order ℓ. Choosing
a geometrically irreducible component of Ag,ℓ amounts to fixing a complex root of unity
of order ℓ. We fix such a choice once and for all and consider Ag,ℓ as an irreducible
variety defined over Q. The same holds for Mg,ℓ. We will usually fix ℓ and abbreviate
Ag,ℓ (resp. Mg,ℓ) by Ag (resp. Mg). It is often convenient to consider Ag and Mg as over

Q, but sometimes we will recall that both arise from varieties defined over the number
field Q(ζℓ). We denote the coarse moduli space of smooth curves of genus g with Mg,1.

Furthermore, let Cg → Mg be the universal curve and Ag → Ag be the universal
abelian variety. Taking the Jacobian of a smooth curve leads to the Torelli morphism
Mg → Ag which is finite-to-1 (but not injective as we have level structure). Moreover, for
M ≥ 2 let DM denote the M-th Faltings–Zhang morphism fiberwise defined by sending

(1.3) (P0, P1, . . . , PM) 7→ (P1 − P0, . . . , PM − P0);

we give a precise definition of this morphism in §6.1. Roughly speaking, we will apply
Theorem 1.6 to

X := DM(Cg ×Mg
· · · ×Mg

Cg︸ ︷︷ ︸
(M+1)-copies

) ⊆ Ag ×Mg
· · · ×Mg

Ag︸ ︷︷ ︸
M -copies

for a suitable M . To verify non-degeneracy we will refer to the second-named author’s
work [Gao20a, Theorem 1.2’] which applies if M is large in terms of g. So we can apply
Theorem 1.6 to such X . This will eventually lead to Proposition 7.1.

The morphism and its variants are powerful tools in diophantine geometry, see [Fal91,
Lemma 4.1]. It is closely connected to problems involving small Néron–Tate height,
see [Zha98, Lemma 3.1]. Stoll [Sto19] used a variant of (1.3) to show that a conjec-
ture of Pink [Pin05b] on unlikely intersections implies Theorem 1.2 with the condition
h(ι([Jac(C)])) ≥ c1 removed and with C allowed to be defined over C.

At this stage it is worth outlining the main steps of the proof of [Gao20a, Theorem 1.2’],
or the more general [Gao20a, Theorem 1.3], due to its importance to the current paper.
The major step is to establish a criterion, in simple geometric terms, for an irreducible
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subvariety X of the universal abelian variety Ag to be degenerate. Roughly speaking, the
proof of the desired criterion is divided into two steps. Step 1 transfers the degeneracy
property to an unlikely intersection problem in Ag by invoking the mixed Ax–Schanuel
theorem for Ag [Gao20b, Theorem 1.1]. More precisely we show that X is degenerate if
and only if X is the union of subvarieties satisfying an appropriate unlikely intersection
property. Step 2 solves this unlikely intersection problem, and the key point is to use
[Gao20b, Theorem 1.4] to prove that the union mentioned above is a finite union. In
this step the notion of weakly optimal subvarieties introduced by the third-named author
and Pila [HP16] is involved.

1.3. General notation. We collect here an overview of notation used throughout the
text.

Let S be an irreducible, quasi-projective variety defined over an algebraically closed
field k. Then Ssm denotes the regular locus of X . If π : A → S is an abelian scheme
then [N ] : A → A is the multiplication-by-N morphism for all N ∈ N = {1, 2, 3, . . .},
and if s ∈ S(k), the fiber As = π−1(s) is an abelian variety defined over k. If k ⊆ C,
then San denotes the analytification of S; it carries a natural topology that is Hausdorff.

We write T for the circle group {z ∈ C : |z| = 1}.
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page 32. We would also like to thank Lars Kühne and Ngaiming Mok for discussions
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2. Betti map and Betti form

The goals of this section are to revisit the Betti map, the Betti form and make a
link between them. In this paper we construct the Betti map using the universal family
of principally polarized abelian varieties with level-ℓ-structure and bypass the ad-hoc
construction found in [GH19].

In this section we will make the following assumptions. All varieties are defined
over the field C. Let S be an irreducible, regular, quasi-projective variety over C.
Let π : A → S be an abelian scheme of relative dimension g, that carries a principal
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polarization, and such that A is equipped with level-ℓ-structure, for some ℓ ≥ 3, i.e.,
(Hyp) is satisfied.

Proposition 2.1. Let s0 ∈ S(C). Then there exist an open neighborhood ∆ of s0 in San,
and a map b∆ : A∆ := π−1(∆) → T2g, called the Betti map, with the following properties.

(i) For each s ∈ ∆ the restriction b∆|As(C) : As(C) → T2g is a group isomorphism.
(ii) For each ξ ∈ T2g the preimage b−1

∆ (ξ) is a complex analytic subset of A∆.
(iii) The product (b∆, π) : A∆ → T2g ×∆ is a real analytic isomorphism.

The properties (i) – (iii) do not uniquely determine b∆. Indeed, composing b∆ with an
automorphism of the topological group T2g, i.e., an element of GL2g(Z), leads to a new
Betti map satisfying (i) – (iii). After shrinking ∆ we may assume that it is connected.
In this case, an application of the Baire Category Theorem shows that b∆ is uniquely
determined by (i) and (iii) up to composition with a unique element of GL2g(Z).

André, Corvaja, and Zannier [ACZ20] recently began the study of the maximal rank
of the Betti map, especially the submersivity, using a slightly different definition. A
full study of this maximal rank was realized in [Gao20a]. Closely related to the Betti
map is the Betti form, a semi-positive (1, 1)-form on Aan, which was first introduced in
Mok [Mok91].

Proposition 2.2. There exists a closed (1, 1)-form ω on Aan, called the Betti form, such
that the following properties hold.

(i) The (1, 1)-form ω is semi-positive, i.e., at each point the associated Hermitian
form is positive semi-definite.

(ii) For all N ∈ Z we have [N ]∗ω = N2ω.
(iii) If X is an irreducible subvariety of A of dimension d and ∆ ⊆ San is open with

Xsm,an ∩ A∆ 6= ∅, then
ω|∧dXsm,an 6≡ 0 if and only if max

x∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x = 2d.

We will prove both propositions during the course of this section using the universal
abelian variety. A dynamical approach can be found in [CGHX21, §2].

2.1. Betti map for the universal abelian variety. Our proof of Proposition 2.1
follows the construction in [Gao20a, §3-§4]. We divide it into several steps.

We start to prove Proposition 2.1 for S = Ag, the moduli space of principally polarized
abelian variety of dimension g with level-ℓ-structure; it is a fine moduli space. Let
πuniv : Ag → Ag be the universal abelian variety.

The universal covering Hg → Aan
g , where Hg is the Siegel upper half space, gives a

polarized family of abelian varieties AHg
→ Hg fitting into the diagram

AHg
:= Ag ×Aan

g
Hg

uB
//

��

Aan
g

πuniv

��

Hg
// Aan

g .

For the universal covering u : Cg×Hg → AHg
and for each Z ∈ Hg, the kernel of u|Cg×{Z}

is Zg + ZZg. Thus the map Cg ×Hg → Rg ×Rg ×Hg → R2g, where the first map is the
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inverse of (a, b, Z) 7→ (a+Zb, Z) and the second map is the natural projection, descends
to a real analytic map

buniv : AHg
→ T2g.

Now for each s0 ∈ Ag(C), there exists a contractible, relatively compact, open neigh-
borhood ∆ of s0 in Aan

g such that Ag,∆ := (πuniv)−1(∆) can be identified with AHg,∆′ for
some open subset ∆′ of Hg. The composite b∆ : Ag,∆

∼= AHg,∆′ → T2g is real analytic
and satisfies the three properties listed in Proposition 2.1. Thus b∆ is the desired Betti
map in this case. Note that for a fixed (small enough) ∆, there are infinitely choices of
∆′; but for ∆ small enough, if ∆′

1 and ∆′
2 are two such choices, then ∆′

2 = α · ∆′
1 for

some α ∈ Sp2g(Z) ⊆ SL2g(Z). Thus we have proved Proposition 2.1 for Ag → Ag.

2.2. Betti form for the universal abelian variety. For the universal covering u =
uB ◦ u : Cg ×Hg → Aan

g , we will use (w,Z) to denote the coordinates on Cg ×Hg. Below
Im denotes imaginary part.

Lemma 2.3. Define

ω̂univ :=
√
−1∂∂

(
2(Imw)

⊺

(ImZ)−1(Imw)
)
.

Then ω̂univ is a closed semi-positive (1, 1)-form on Cg × Hg satisfying

(2.1) ω̂univ =
√
−1
(
dZY −1Im(w)− dw

)⊺
∧ Y −1

(
dZY −1Im(w)− dw

)

with Y = Im(Z); here and below the symbol ∧ is used as a combination of wedge product
and matrix multiplication when appropriate. Moreover, if N ∈ Z and if we denote by

Ñ : Cg × Hg → Cg × Hg the map (w,Z) 7→ (Nw,Z), then Ñ∗ω̂univ = N2ω̂univ.

Proof. The (1, 1)-form ω̂univ is closed since d = ∂ + ∂. We will prove the semi-positivity
by direct computation.

We have the following formulae for partial derivatives

∂Imw =

√
−1

2
dw, ∂(Y −1) = −

√
−1

2
Y −1dZY −1,

∂Imw = −
√
−1

2
dw, ∂(Y −1) =

√
−1

2
Y −1dZY −1.

Let us prove the formulae on the right. We hereby do it for ∂(Y −1) =
√
−1
2

Y −1dZY −1 and
the other one is similar. Taking partial derivatives on both sides of Y Y −1 = I, we get

(∂Y )Y −1 + Y ∂(Y −1) = 0. So ∂(Y −1) = −Y −1(∂Y )Y −1. But ∂Y = ∂ImZ = −
√
−1
2

dZ.
Hence we get the desired formula for ∂(Y −1).

Using these formulae and the Leibniz rule (note that Z = Z
⊺

and hence dZ = dZ
⊺

),
we get

ω̂univ =
√
−1
(
(dw)

⊺

Y −1 ∧ dw + (Imw)
⊺

Y −1dZ ∧ Y −1dZY −1(Imw)

− (Imw)
⊺

Y −1dZY −1 ∧ dw − (dw)
⊺ ∧ Y −1dZY −1(Imw)

)
.

Rearranging yields the desired equality (2.1). The associated form is

H :
(
(ξw, ξZ), (ηw, ηZ)

)
7→
(
ξZY

−1Im(w)− ξw
)⊺
Y −1

(
ηZY

−1Im(w)− ηw
)
,
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for ξw, ηw ∈ Cg and ξZ , ηZ ∈ Matg(C) symmetric, is Hermitian and so ω̂univ is real.
Moreover,

H
(
(ξw, ξZ), (ξw, ξZ)

)
= v

⊺

Y −1v with v = ξZY
−1Im(w)− ξw.

But Y is positive definite as a real symmetric matrix and thus positive definite as a
Hermitian matrix. We see that H is positive semi-definite and this implies that ω̂univ is
positive semi-definite.

The “moreover” part of the lemma is clear. �

Next we want to show that ω̂univ descends to a (1, 1)-form on Aan
g . To do this, we

first show that ω̂univ can be written in a simple form under an appropriate change of
coordinates.

Define the complex space X2g,a, which is the universal covering of Aan
g , as follows:

• As a real algebraic space, X2g,a := R2g × Hg.
• The complex structure on X2g,a is given by

(2.2) R2g × Hg = Rg × Rg × Hg
∼= Cg × Hg, (a, b, Z) 7→ (a+ Zb, Z).

Lemma 2.4. Let ω̂univ be as in Lemma 2.3. Then under the change of coordinates (2.2),

we have ω̂univ = 2(da)
⊺ ∧ db.

Proof. For the moment we write Z = X +
√
−1Y with X and Y the real and imaginary

part of Z ∈ Hg, respectively. Note that w = a + Zb = (a + Xb) +
√
−1Y b. Hence

Y −1(Imw) = b and dw = da + Zdb + dZb. Using this and noting that Z is symmetric,
we have that (2.1) becomes

ω̂univ =
√
−1
(√

−1(db)
⊺

Y + (db)
⊺

X + (da)
⊺
)
∧ Y −1

(
da+Xdb−

√
−1Y db

)

=
√
−1
(√

−1(db)
⊺ ∧ da + (db)

⊺ ∧ Y db+ (db)
⊺

X ∧ Y −1da + (db)
⊺

X ∧ Y −1Xdb+

(da)
⊺ ∧ Y −1da+ (da)

⊺ ∧ Y −1Xdb−
√
−1(da)

⊺ ∧ db
)
.

Many terms will vanish. Indeed, if M is a matrix, then (db)
⊺ ∧Mda = −(da)

⊺ ∧M
⊺

db.

As (XY −1)
⊺

= Y −1X and as (db)
⊺

X∧Y −1da = (db)
⊺∧XY −1da we find (db)

⊺

X∧Y −1da+

(da)
⊺ ∧ Y −1Xdb = 0. Observe that Y is symmetric, and so (db)

⊺ ∧ Y db = −(db)
⊺ ∧ Y db

vanishes. Arguing along the same line and using that Y −1 and XY −1X are symmetric
we find (da)

⊺ ∧ Y −1da = 0 and (db)
⊺

X ∧ Y −1X = (db)
⊺ ∧ XY −1Xdb = 0. We are left

with ω̂univ = 2(da)
⊺ ∧ db. �

Corollary 2.5. Let Ĉ be an irreducible, 1-dimensional, complex analytic subset of an
open subset of X2g,a = R2g × Hg and Ĉsm its smooth locus. Then ω̂univ restricted to Ĉsm

is trivial if and only if Ĉ ⊆ {r} × Hg for some r ∈ R2g.

Proof. First, assume that the coordinates (a, b) of R2g are constant on Ĉ. Then ω̂univ,

which is simply 2(da)
⊺ ∧ db by Lemma 2.4, vanishes on Ĉsm.

Conversely, suppose that ω̂univ vanishes identically on Ĉsm. This time we use (2.1)

from Lemma 2.3. As Y −1 is positive definite we find dZY −1Im(w) = dw on Ĉsm. Using
the change of coordinates w = a+Zb we deduce Im(w) = Y b and dw = da+dZb+Zdb.

So dZb = dZY −1Im(w) = dw = da + dZb + Zdb on Ĉsm. This equality simplifies to
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da+Zdb = 0 on Ĉsm. As a and b are real valued and as Z ∈ Hg we conclude da = db = 0

on Ĉsm. So a and b are constant on Ĉ. �

Lemma 2.6. Let ω̂univ be as in Lemma 2.3. Then ω̂univ descends to a semi-positive
(1, 1)-form ωuniv on Ag. Moreover, for N ∈ Z we have [N ]∗ωuniv = N2ωuniv.

Proof. Let Sp2g be the symplectic group defined over Q, and let V2g be the vector group
over Q of dimension 2g. Then the natural action of Sp2g on V2g defines a group P2g,a :=
V2g ⋊ Sp2g.

We use the classical action of Sp2g(R) on Hg, it is transitive. The real coordinate on
X2g,a on the left hand side of (2.2) has the following advantage. The group P2g,a(R) acts
transitively on X2g,a by the formula

(v, h) · (v′, Z) := (v + hv′, hZ)

for (v, h) ∈ P2g,a(R) and (v′, Z) ∈ R2g × Hg = X2g,a. The space Aan
g is then obtained as

the quotient of X2g,a by a congruence subgroup of P2g,a(Q). We refer to [Pin89, 10.5–10.9]
or [Pin05a, Construction 2.9 and Example 2.12] for these facts.

It is clear that both V2g(R) and Sp2g(R) preserve 2(da)
⊺ ∧ db. Thus this 2-form is

invariant under the action of P2g,a(R) on X2g,a.
So by Lemma 2.4, the previous two paragraphs imply that ω̂univ descends to a (1, 1)-

form ωuniv on Ag. The semi-positivity of ωuniv follows from Lemma 2.3.
The property [N ]∗ωuniv = N2ωuniv follows from the “moreover” part of Lemma 2.3

and the following commutative diagram

Cg × Hg
Ñ

//

��

Cg × Hg

��

Aan
g

[N ]
// Aan

g . �

This semi-positive (1, 1)-form ωuniv will be the Betti form for Ag → Ag, as desired in
Proposition 2.2. To show this, it suffices to establish property (iii) of Proposition 2.2.
Hence it suffices to prove the following proposition.

Proposition 2.7. Assume A → S is Ag → Ag. Let X be an irreducible subvariety of
Ag of dimension d and let ∆ be an open subset of San with Xsm,an ∩A∆ 6= ∅. Then

(2.3) ωuniv|∧dXsm,an 6≡ 0 if and only if max
x∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x = 2d.

Proof. We begin by reformulating Corollary 2.5. If C is an irreducible, 1-dimensional,
complex analytic subset of an open subset of A∆, then

(2.4) ωuniv|Csm = 0 if and only if b∆(C) is a point;

indeed, this claim is local and it follows using the universal covering u : Cg × Hg → Ag.
We assume first that the right side of (2.3) is false, i.e., the maximal rank is strictly less

than 2d = 2dimX . So every x ∈ Xsm,an ∩A∆ is a non-isolated point of b−1
∆ (r) ∩Xsm,an

where r = b∆(x). Because b−1
∆ (r) is a complex analytic subset of A∆ (by Proposi-

tion 2.1.(ii) for Ag → Ag) and Xsm,an is complex analytic in a neighborhood of x in Aan,
there exists an irreducible complex analytic curve C in b−1

∆ (r) ∩Xsm,an passing through
x. In particular, b∆(C) is a point and so ωuniv|Csm ≡ 0 by (2.4).
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The upshot of the previous paragraph is that the Hermitian form attached to the semi-
positive (1, 1)-form ωuniv|Xsm,an vanishes along the tangent space of Csm; it is degenerate.
We can complete a tangent vector of Csm to a basis of the tangent space of Xsm,an.
Considering holomorphic local coordinates we find ωuniv|∧dXsm,an = 0 at every point of
Csm. By continuity it also vanishes at x ∈ C. Since x ∈ Xsm,an ∩ A∆ was arbitrary, we
conclude ωuniv|∧dXsm,an ≡ 0.

For the converse we assume ωuniv|∧dXsm,an ≡ 0. So the Hermitian form attached to this
semi-positive (1, 1)-form is degenerate. Thus for each x ∈ Xsm,an, using holomorphic
local coordinates we find an irreducible, 1-dimensional, complex analytic subset Cx which
passes through x and is contained in Xsm,an such that ωuniv|Xsm,an vanishes along the
tangent space of Csm

x . So ωuniv|Csm
x

≡ 0, and hence b∆(Cx) is a point by (2.4). Letting
the point x run over Xsm,an, we conclude that the rank on the right side of (2.3) is
strictly less than 2d. �

2.3. General case. We now prove Propositions 2.1 and 2.2 for π : A → S as near the
beginning of this section. In particular, we assume (Hyp). With the construction in
§2.1, the rest of the proof of Proposition 2.1 follows the construction in [Gao20a, §4].

As Ag is a fine moduli space there exists a Cartesian diagram

A ι
//

π

��

❴

✤

Ag

��

S
ιS

// Ag.

Now let s0 ∈ S(C). Applying Proposition 2.1 to the universal abelian variety Ag → Ag

and ιS(s0) ∈ Ag(C), we obtain an open neighborhood ∆0 of ιS(s0) in Aan
g and a map

b∆0 : Ag|∆0 → T2g

satisfying the properties listed in Proposition 2.1.
Now let ∆ = ι−1

S (∆0). Then ∆ is an open neighborhood of s in San. Denote by
A∆ = π−1(∆) and define

b∆ = b∆0 ◦ ι : A∆ → T2g.

Then b∆ satisfies the properties listed in Proposition 2.1 for A → S. Hence b∆ is our
desired Betti map.

Next let us turn to the Betti form. Let ωuniv be the semi-positive (1, 1)-form on Ag as
in Lemma 2.6. Define ω := ι∗ωuniv. We will show that ω satisfies the properties listed
in Proposition 2.2.

The (1, 1)-form ω is semi-positive as it is the pull-back of the semi-positive form
ωuniv. Moreover, it satisfies [N ]∗ω = N2ω since ωuniv has this property. Hence we have
established properties (i) and (ii) of Proposition 2.2.

Let us verify (iii) of Proposition 2.2. Suppose X is an irreducible subvariety of A of
dimension d. Let ∆ be an open subset of San with Xsm,an ∩ A∆ 6= ∅; we may shrink ∆
subject to this condition. Let Z = ι(X) and observe dimZ ≤ d.

Since ω = ι∗ωuniv, we have

(2.5) ω|∧dXsm,an 6≡ 0 if and only if ωuniv|∧dZsm,an 6≡ 0.
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Next by definition of b∆, we have the following property: For suitable non-empty open
subsets ∆ of San and ∆0 of Aan

g such that ιS(∆) ⊆ ∆0, we have
(2.6)

max
x∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x ≤ max
x∈Zsm,an∩Ag,∆0

rankR(db∆0 |Zsm,an)x ≤ 2 dimZ ≤ 2d.

Suppose first that ω|∧dXsm,an 6≡ 0, then (2.5) implies ωuniv|∧dZsm,an 6≡ 0 and in particular d =
dimZ. We can apply Proposition 2.2(iii) to Z and obtain maxx∈Zsm,an∩Ag,∆0

rankR(db∆0 |Zsm,an)x =
2d. Now ι|X : X → Z is generically finite as dimX = dimZ, so the first inequality in
(2.6) is an equality. We conclude

(2.7) max
x∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x = 2d.

Conversely, assume (2.7) holds true. Then we have equalities throughout in (2.6). By
Proposition 2.2(iii) applied to Z and by (2.5) we get ω|∧dXsm,an 6≡ 0.

3. Setup and notation for the height inequality

In the next few sections we will prove Theorem 1.6. Let us first fix the setting.
All varieties are over an algebraically closed subfield k of C. The ambient data is

given as above Theorem 1.6. We repeat it here.

• Let S be a regular, irreducible, quasi-projective variety over k that is Zariski
open in an irreducible projective variety S ⊆ Pm

k .
• Let π : A → S be an abelian scheme presented by a closed immersion A → Pn

k×S
over S.

• From the previous point, we get a closed immersion of the generic fiber A of
A → S into Pn

k(S). We assume that A → Pn
k(S) arises from a basis of the global

sections of the l-th power L of a symmetric ample line bundle with l ≥ 4.
• Finally, we assume (Hyp) as on page 5.

From the third bullet power, we see that the image of A is projectively normal in
Pn
k(S), cf. [Mum70, Theorem 9]. By the fourth bullet point, Proposition 2.2 provides the

Betti form ω on Aan.
For s ∈ S(k) we write As for the abelian variety π−1(s).

Remark 3.1. Let S be as in the first bullet point. Let π : A → S be an abelian scheme.
Suppose L0 is a symmetric and ample line bundle on A, the generic fiber of π. An
immersion of A as in the second bullet point can be obtained as follows. By [Ray70,
Théorème XI 1.13] there exists an S-ample line bundle L on A whose restriction to the
generic fiber of A → S is isomorphic to L⊗l

0 for some integer l ≥ 4. We may assume
in addition that L satisfies [−1]∗L ∼= L and even that L becomes trivial when pulled
back under the zero section S → A, see [Ray70, Remarque XI 1.3a]. After replacing
L by a sufficiently high power, we may assume that L is very ample over S. We fix a
basis of global sections of L⊗l

0 and, as l ≥ 4, thereby realize the generic fiber of π as
a projectively normal subvariety of Pn

k(S). Now we can take L in the third bullet point

to be L⊗l
0 , which is the restriction of L to A. A closed immersion A → Pn

k × S as in
the second bullet point arises from L⊗ π∗M for some very ample line bundle M on S;
see [Gro61, Proposition 4.4.10.(ii) and Proposition 4.1.4]. On restricting to a fiber of
A → S the induced closed immersion As → Pn

k comes from the restriction L|As
.
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WriteA for the Zariski closure ofA in Pn
k×S. Then A is irreducible but not necessarily

regular. On any product of r projective spaces and if a1, . . . , ar ∈ Z, we let O(a1, . . . , ar)
denote the tensor product over all i ∈ {1, . . . , r} of the pull-back under the i-th projection
of O(ai). We write L for the restriction of O(1, 1) to A.

3.1. Height functions on A. If k = Q we have several height functions on A(Q).
For any n ∈ N, we always consider the absolute logarithmic Weil height function

Pn
Q
(Q) → R, or just Weil height, defined as in [BG06, §1.5.1].
Now say P ∈ A(Q), we write P = (P ′, π(P )) with P ′ ∈ Pn

Q
(Q) and π(P ) ∈ Pm

Q
(Q).

The sum of Weil heights

(3.1) h(P ) = h(P ′) + h(π(P ))

defines our first height A(Q) → [0,∞) which we call the naive height on A. It depends
on the fixed immersion of A.

The line bundle [−1]∗L|A ⊗ L|⊗−1
A of A restricted to the generic fiber A of A → S

equals [−1]∗L ⊗ L⊗−1. By the third bullet point above this line bundle is trivial. So it
equals π∗K for some line bundle K of S by [Gro67, Corollaire 21.4.13 (pp. 361 of EGA
IV-4, in Errata et Addenda, liste 3)]. We conclude [−1]∗L|As

∼= L|As
for all s ∈ S(Q).

So the function (3.1) represents the height function, defined up-to Os(1), given by the
Height Machine, cf. [BG06, Theorem 2.3.8], applied to (As,Ls). As Ls is symmetric, the

fiberwise Néron–Tate or canonical height ĥA : A(Q) → [0,∞), defined by the convergent
limit

(3.2) ĥA(P ) = lim
N→∞

h([N ](P ))

N2
,

is a quadratic form on As(Q). In the notation [BG06, Chapter 9] the height (3.2) is

ĥAs,Ls
where s = π(P ).

Remark 3.2. We use here the notation of Remark 3.1. So that the immersion A → Pn
S

arises via L⊗l
0 . To normalize, we divide (3.2) by l and obtain the Néron–Tate height

ĥA,L0 : A(Q) → [0,∞).

Let us verify that ĥA,L0 depends only on L0. Suppose L′ is another line bundle on
A that restricts to L⊗l

0 , then L′ ⊗ L⊗−1 is trivial on A. By [Gro67, Corollaire 21.4.13
(pp. 361 of EGA IV-4, in Errata et Addenda, liste 3)], this difference is the pull-back
of some line bundle on S under A → S. So the restriction of L′ ⊗L⊗−1 to As for each
s ∈ S(C) is trivial. Thus L|As

and L′|As
induce the same Néron–Tate height on As(Q),

see [BG06, §9.2].
3.2. Integration against the Betti form. Let A and S be as in the beginning of this
section, so they are defined over an algebrically closed subfield k of C. Recall that ω is
the Betti form on Aan as provided by Proposition 2.2. In particular, it is a semi-positive
(1, 1)-form on Aan such that [N ]∗ω = N2ω for all N ∈ Z. We discuss here a modification
of the Betti form that has compact support.

Fix X to be an irreducible closed subvariety of A of dimension d, such that π|X : X →
S is dominant.

We are not allowed to integrate ω∧d over Xsm,an as ω∧d may not have compact support.
So we modify ω in the following way.
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Suppose we are provided with a base point s0 ∈ San. Let furthermore ∆ be a relatively
compact, contractible, open neighborhood of s0 in San. Denote by A∆ the open subset
π−1(∆) of Aan. Fix a smooth bump function ϑ : San → [0, 1] with compact support
K ⊆ ∆ such that ϑ(s0) = 1. Finally, we define θ = ϑ ◦ π : Aan → [0, 1]. Then θω is
a semi-positive smooth (1, 1)-form on Aan; unlike the Betti form, it may not be closed.
By construction, the support of θω lies in π−1(K) which is compact as π is proper and
K is compact.

Remark 3.3. Suppose X is non-degenerate, namely X satisfies one of the two equivalent
conditions in property (iii) of Proposition 2.2. Then Xan contains a smooth point P0 at
which ω|∧dXsm,an > 0. Then we will take s0 = π(P0).

3.3. The graph construction. LetN ∈ Z. The multiplication-by-N morphism [N ] : A →
A may not extend to a morphism A → A. We overcome this by using the graph con-
struction.

Recall that we have identified A ⊆ A ⊆ Pn
k × S ⊆ Pn

k × Pm
k .

We write ρ1, ρ2 : P
n
k × Pn

k × Pm
k → Pn

k × Pm
k for the two projections ρ1(P,Q, s) = (P, s)

and ρ2(P,Q, s) = (Q, s).
Consider ΓN the graph of [N ], determined by

ΓN = {(P, [N ](P )) : P ∈ A(k)}.
We consider it as an irreducible closed subvariety of A×S A.

Let X be an irreducible closed subvariety of A of dimension d. The graph XN of [N ]
restricted to X is an irreducible closed subvariety of ΓN determined by

{(P, [N ]P ) : P ∈ X(k)}.
Observe that ρ1|ΓN

: ΓN → A is an isomorphism; it maps (P, [N ](P )) to P . So we can
use ρ1|−1

ΓN
to identify X with XN .

Moreover, ρ2|ΓN
maps (P, [N ](P )) to [N ](P ). Therefore

(3.3) ρ2|ΓN
◦ ρ1|−1

ΓN
= [N ].

LetXN be the Zariski closure ofXN inA×SA ⊆ Pn
S
×SP

n
S
= Pn

k×Pn
k×S ⊆ Pn

k×Pn
k×Pm

k .

Then XN is an irreducible projective variety (which is not necessarily regular) with
dimXN = dimXN = dimX .

In the next section, we will use the following line bundles on XN . Define

(3.4) F = ρ∗2O(1, 1)|XN
= O(0, 1, 1)|XN

and

(3.5) M = O(0, 0, 1)|XN
.

Let us close this subsection by relating the height functions defined by F and M with
the ones in §3.1. Assume k = Q. Let P ∈ X(Q). Write P = (P ′, π(P )) with P ′ ∈ Pn

Q
(Q)

and π(P ) ∈ Pm
Q
(Q). We have [N ](P ) = (P ′

N , π(P )) for some P ′
N ∈ Pn

Q
(Q).

Under the immersionXN ⊆ Pn
Q
×Pn

Q
×Pm

Q
, the point (P, [N ]P ) inXN(Q) becomes PN =

(P ′, P ′
N , π(P )) ∈ (Pn

Q
×Pn

Q
×Pm

Q
)(Q). The function PN 7→ h([N ](P )) = h(P ′

N)+h(π(P ))

defined in (3.1) represents the height attached by the Height Machine to (XN ,F) and
PN 7→ h(π(P )) represents the height attached to (XN ,M).
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4. Intersection theory and height inequality on the total space

We keep the notation of §3. So we have a closed immersion A → Pn
k × S over S

satisfying the properties stated near the beginning of §3. Moreover, S is a Zariski open
subset of an irreducible projective variety S ⊆ Pm

k . We assume in addition k = Q.
Let X be a closed irreducible subvariety of A of dimension d defined over Q, such that
π|X : X → S is dominant. Let ω be the Betti form on A as defined in Proposition 2.2.

Proposition 4.1. We keep the notation from above and suppose that Xan contains a
smooth point at which ω|∧dXsm,an > 0. Then there exists a constant c1 > 0 satisfying the
following property. Let N ∈ N be a power of 2, there exist a Zariski open dense subset
UN of X defined over Q and a constant c2(N) such that

h([N ]P ) ≥ c1N
2h(π(P ))− c2(N) for all P ∈ UN(Q).

The goal of this section is to prove Proposition 4.1. The key idea is to apply a theorem
of Siu [Laz04, Theorem 2.2.15]. Let us briefly explain the main points before moving on
to the proof.

Let X be as in Proposition 4.1, and let P ∈ X(Q). For each N ∈ N, we work with
XN ⊆ A ×S A, the graph of [N ] : A → A, and its Zariski closure XN in A ×S A ⊆
Pn
k × Pn

k × Pm
k . The point P gives rise to a point PN ∈ XN ; see §3.3. Consider the line

bundles F = O(0, 1, 1)|XN
and M = O(0, 0, 1)|XN

. Choosing representatives as in last
paragraph of §3.3 our height inequality in Proposition 4.1 is equivalent to

hXN ,F(PN) ≥ c1N
2hXN ,M(PN)− c′2(N)

for some c′2(N) independent of P (which may be different from c2(N)). By the Height
Machine it suffices to find positive integers p and q, independent of N , such that F⊗q ⊗
M⊗−pN2

is a big line bundle on XN ; we can then take c1 = p/q.
Both F and M are nef line bundles. Thus a criterion of bigness by Siu [Laz04,

Theorem 2.2.15], states that F⊗q ⊗M⊗−pN2
is big if (F ·d) > dc1(M⊗N2 · F ·(d−1)). Note

that (M⊗N2 · F ·(d−1)) = N2(M · F ·(d−1)) by multi-linearity of intersection numbers.
Thus our task becomes comparing two intersection numbers. Our application continues
to work if the numerical factor d = dimX is replaced by any positive factor that depends
only on the dimension. So it remains to prove an appropriate lower bound for (F ·d) and
an appropriate upper bound for (M · F ·(d−1)).

The proof of Proposition 4.1 will be organized as follows in this section. We first
prove the appropriate lower bound for (F ·d) in Proposition 4.2. This is where we use the
hypothesis that ω|∧dXsm,an > 0 at some smooth point ofXan. Next we prove the appropriate
lower bound for (M·F ·(d−1)) in Proposition 4.3. At this step the assumption of N being
a power of 2 is used. Then we finish the proof of Proposition 4.1 by applying Siu’s
theorem in §4.3.

4.1. Bounding an intersection number from below. Let X be as in Proposi-
tion 4.1. For each N ∈ N, let XN ⊆ Pn

k × Pn
k × Pm

k be as in §3.3. In particular,
dimXN = d. Let F = O(0, 1, 1)|XN

be as in (3.4). The top self-intersection of F on XN

is bounded from below in the following proposition. To prove it, we may replace X by
its base change to C.
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Proposition 4.2. Suppose Xan contains a smooth point at which ω|∧dXsm,an > 0. Then
there exists a constant κ > 0, independent of N , such that (F ·d) ≥ κN2d for all N ∈ N.

Proof. We fix a point P0 ∈ Xsm,an at which ω|∧dXsm,an is positive and let s0 = π(P0),∆, ϑ, θ,
and K be as in §3.2, see Remark 3.3. In particular ϑ(P0) = θ ◦ π(P0) = 1. We extend
ϑ to a smooth function on (Pm

C )
an by setting it 0 outside of the compact set K ⊆ San.

This extends θ = ϑ ◦ π to all of (Pn
C × Pm

C )
an.

Let α be the pull-back of the Fubini–Study form under the analytification of the Segre

morphism Pn
C × Pm

C → P
(n+1)(m+1)−1
C . We replace α by its restriction to Aan

. Thus α

represents the Chern class of O(1, 1) ∈ Pic(Pn
C × Pm

C ) restricted to Aan
, using common

notation.
Note that α is strictly positive on all of Aan. Since ∆ is relatively compact we can

find a constant C > 0 with

(4.1) Cα|A∆
− ω|A∆

≥ 0.

As the smooth and non-negative function θ = ϑ ◦ π on Aan has support in π−1(K) ⊆
π−1(∆) = A∆ we have

Cθα− θω ≥ 0.

We pull this (1, 1)-form back under the holomorphic map [N ] : Aan → Aan and get

(4.2) C[N ]∗(θα)−N2θω = C[N ]∗(θα)− [N ]∗(θω) ≥ 0

where we used [N ]∗ω = N2ω and [N ]∗θ = θ; the former is a property of the Betti form,
see Proposition 2.2(ii) and the latter holds as θ is the pull-back from the base of ϑ.

We define
β = C[N ]∗(θα)−N2θω,

which is a (1, 1)-form on Aan. It is semi-positive by (4.2). The support of θ is contained
in π−1(K), which we have identified as compact at the end of §3.2. So C[N ]∗(θα) and
N2θω have compact support on Aan.

We claim that
∫
Xsm,an(C[N ]∗(θα))∧d ≥

∫
Xsm,an(N

2θω)∧d.
First observe that both integrals are well-defined as both [N ]∗(θα) and N2θω have

compact support on Aan; this follows from work of Lelong [Lel57] which we use freely
below. A textbook proof can be found in [Voi02, Theorem 11.21] and [Dem12, §III.2.B].
To prove the inequality let us write β = γ− δ with γ = C[N ]∗(θα) and δ = N2θω. Then
(4.3)
∫

Xsm,an

γ∧d −
∫

Xsm,an

δ∧d =

∫

Xsm,an

(δ + β)∧d −
∫

Xsm,an

δ∧d =
d−1∑

i=0

(
d

i

)∫

Xsm,an

δ∧i ∧ β∧(d−i)

as the exterior product is commutative on even degree forms. We know that β ≥ 0 on
Aan and it is also crucial that δ ≥ 0 on Aan, the latter follows from ω ≥ 0, property
(i) of Proposition 2.2, and from θ ≥ 0. Then δ∧i ∧ β∧(d−i) is semi-positive on Aan;
see [Dem12, Proposition III.1.11]1. Thus the right-hand side of (4.3) is non-negative,
see [Dem12, Theorem III.2.7], and our claim is settled.

1As our convention is somewhat different from Demailly’s, let us explain how to apply [Dem12,
Proposition III.1.11]. Our definition of semi-positive (1, 1)-form coincides with that of positive (1, 1)-
form of [Dem12, Chapter III] by Corollary 1.7 of loc.cit., and thus are precisely the strongly positive
(1, 1)-forms of [Dem12, Chapter III] by Corollary 1.9 of loc.cit. Therefore we can apply the cited
proposition.
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The claim implies

(4.4) Cd

∫

Xsm,an

[N ]∗(θα)∧d ≥ κ′N2d where κ′ =

∫

Xsm,an

(θω)∧d.

We have κ′ > 0. Indeed, (θω)∧d is semi-positive on Aan because ω ≥ 0 (Proposi-
tion 2.2(i)) and θ ≥ 0 (by construction). But ω|∧dXsm,an is positive at P0 ∈ Xsm,an by
choice of P0 and θ ◦ π(P0) = 1 by choice of θ. So (θω)|∧dXsm,an is positive at P0 ∈ Xsm,an.
Thus κ′ > 0.

Next we want to relate the integral on the left in (4.4) with an intersection number.
First we recall that [N ] is given in terms of the graph construction, cf. (3.3). So we may
rewrite

(4.5)

∫

Xsm,an

[N ]∗(θα)∧d =

∫

Xsm,an

(ρ2|ΓN
◦ ρ1|−1

ΓN
)∗(θα)∧d =

∫

Xsm,an

(ρ1|−1
ΓN

)∗ρ2|∗ΓN
(θα)∧d,

here ΓN , ρ1, and ρ2 are as defined in §3.3.
Because ρ1|Γan

N
: Γan

N → Aan is biholomorphic we can change coordinates and integrate
over XN , which is a complex analytic subset of the graph ΓN , itself a complex manifold.
More precisely, we have

(4.6)

∫

Xsm,an

(ρ1|−1
ΓN

)∗ρ2|∗ΓN
(θα)∧d =

∫

Xsm,an
N

ρ2|∗ΓN
(θα)∧d.

Recall that α is the restriction to Aan
of a (1, 1)-form on (Pn

C × Pm
C )

an. Moreover, ρ2
is also defined on all of Pn

C × Pn
C × Pm

C . So ρ2|∗ΓN
(θα) is the restriction to ΓN of a (1, 1)-

form defined on (Pn
C × Pn

C × Pm
C )

an. Observe that Xsm,an
N ⊆ XN

an
and the difference has

dimension strictly less than d = dimXN . This justifies

(4.7)

∫

Xsm,an
N

ρ2|∗ΓN
(θα)∧d =

∫

XN
an
ρ∗2(θα)

∧d

where we take XN
an

as a complex analytic subset of the analytification of Pn
C ×Pn

C ×Pm
C

and ρ∗2(θα) as a (1, 1)-form on this ambient space. Now θ takes values in [0, 1] and so

(4.8)

∫

XN
an
ρ∗2(θα)

∧d ≤
∫

XN
an
(ρ∗2α)

∧d.

The pull-back ρ∗2α represents ρ∗2O(1, 1) ∈ Pic(Pn
C × Pn

C × Pm
C ) in the Picard group and

has compact support as (Pn
C × Pn

C × Pm
C )

an is compact. But integration coincides with
the intersection pairing in the compact case; see [Voi02, Theorem 11.21]. In particular,
we have

(4.9)

∫

XN
an
(ρ∗2α)

∧d = (ρ∗2O(1, 1)·d[XN ])

where the intersection takes place in Pn
C × Pn

C × Pm
C . We recall (3.4) and apply the

projection formula to obtain

(4.10) (ρ∗2O(1, 1)·d[XN ]) = (O(0, 1, 1)·d[XN ]) = (F ·d).

The (in)equalities (4.5), (4.6), (4.7), (4.8), (4.9), and (4.10) yield
∫

Xsm,an

[N ]∗(θα)∧d ≤ (F ·d).
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We recall the lower bound (4.4) to obtain (F ·d) ≥ (κ′/Cd)N2d where C comes from (4.1)
and κ′ > 0 comes from (4.4). The proposition follows with κ = κ′/Cd. �

4.2. Bounding an intersection number from above. We keep the notation from
the last subsection with k = Q. So X is as above Proposition 4.1 with dimX = d
For each N ∈ N, let XN ⊆ Pn

k × Pn
k × Pm

k be the graph construction as in §3.3. In
particular, dimXN = d. Here we need F = O(0, 1, 1)|XN

as defined in (3.4) and also
M = O(0, 0, 1)|XN

as defined in (3.5).

Proposition 4.3. Assume d ≥ 1. There exists a constant c > 0 depending on the data
introduced above with the following property. Say N ≥ 1 is a power of 2, then

(M· F ·(d−1)) ≤ cN2(d−1).

Let us make some preliminary remarks before the proof. A similar upper bound for
the intersection number was derived by the third-named author in [Hab09,Hab13] using
Philippon’s version [Phi86] of Bézout’s Theorem for multiprojective space. The approach
here is similar but does not refer to Philippon’s result. Rather, we rely on the following
well-known positivity property of the intersection theory of multiprojective space: any
effective Weil divisor on a multiprojective space is nef. This approach was motivated by
Kühne’s [Küh20] work on semiabelian varieties.

Proof of Proposition 4.3. Recall that [2] : A → A is the multiplication-by-2 morphism on
A. For the symmetric and ample line bundle L on A, we have [2]∗L ∼= L⊗4. Recall that A
is projectively normal in Pn

k(S). By a result of Serre, [Wal87, Corollaire 2, Appendix II],

the morphism [2] is represented by homogeneous polynomials f0, . . . , fn in the n + 1
projective coordinates of Pn of degree 4, with coefficients in k(S) and with no common
zeros in A.

Recall that the family A is embedded in Pn
k × S ⊆ Pn

k × Pm
k . We can spread out

the f0, . . . , fn. More precisely, there exist a Zariski closed, proper subset Z ( A and
polynomials f0, . . . , fn ∈ k[X,S] that are bihomogeneous of degree (4, D′) in the (n+1)-
tuple of projective coordinates X of Pn

k and the (m+ 1)-tuple of projective coordinates
S of Pm

k , with the following properties:

(i) the polynomials f0, . . . , fn have no common zeros on (A \ Z)(k), and
(ii) if (P, s) ∈ (A \ Z)(k), then [2](P, s) =

(
[f0(P, s) : · · · : fn(P, s)], s

)
.

Moreover, as f0, . . . , fn have no common zero on the generic fiber, we may assume that
π(Z) is Zariski closed and proper in S. So we may assume that Z = π−1(π(Z)) ( A
and in particular, [2] maps A \ Z to itself.

The 4 in the bidegree (4, D′) comes from 22 = 4. The degree D′ with respect to the
base coordinates S is more mysterious. However, by successively iterating we will get it
under control.

For each integer l ≥ 1 we require polynomials f
(l)
0 , . . . , f

(l)
n to describe multiplication-

by-2l, cf. [GH19, §9]. In order to obtain information on the degree with respect to S we

construct them by iterating the f
(1)
0 = f0, . . . , f

(1)
n = fn. For all i ∈ {0, . . . , n} we set

f
(l+1)
i (X,S) = fi

((
f
(l)
0 (X,S), . . . , f (l)

n (X,S)
)
,S
)

for all i; it is bihomogeneous in X and S. So for all l ≥ 1
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(i) the polynomials f
(l)
0 , . . . , f

(l)
n have no common zeros on (A \ Z)(k), and

(ii) if (P, s) ∈ (A \ Z)(k), then [2l](P, s) =
(
[f

(l)
0 (P, s) : · · · : f (l)

n (P, s)], s
)
.

If for all i the polynomials f
(l)
i are bihomogeneous of degree (Dl, D

′
l), then all f

(l+1)
i

are bihomogeneous of degree (4Dl, D
′ + 4D′

l). Recall that (D1, D
′
1) = (4, D′), thus the

recurrence relations

Dl+1 = 4Dl and D′
l+1 = D′ + 4D′

l

imply

(4.11) Dl = 4l and D′
l =

4l − 1

3
D′ ≤ 4lD′

for all l ≥ 1. Up-to the constant linear factor D′ the bidegrees both grow like 4l.
We proceed as follows to cut out the graph XN where N = 2l. We start out with

X ⊆ Pn
k × Pm

k . As X dominates S but Z does not, there is an i such that f
(l)
i does not

vanish identically on X , without loss of generality we assume i = 0.
Then as i varies over {1, . . . , n} we obtain n trihomogeneous polynomials

gi := Yif
(l)
0 (X,S)− Y0f

(l)
i (X,S)

where Y0, . . . , Yn are the projective coordinates on the middle factor of Pn
k × Pn

k × Pm
k .

The tridegree of these polynomials is (Dl, 1, D
′
l). Their zero locus on X × Pn

k has the
graph XN as an irreducible component; by permuting coordinates we consider X × Pn

k

as a subvariety of Pn
k × Pn

k × Pm
k . We will see below that this is a proper component

of the said intersection. However, there may be further irreducible components in this
intersection, some could even have dimension greater than dimXN .

This issue is clarified by the positivity result [Ful98, Corollary 12.2.(a)]. We apply it
to the ambient variety Pn

k×Pn
k×Pm

k , which becomes X in Fulton’s notation; observe that
the tangent bundle of a product of projective spaces is generated by its global sections,
cf. [Ful98, Examples 12.2.1.(a) and (c)]. For i ∈ {1, . . . , n}, the Vi in Fulton’s notation is
the zero set of gi, and Vn+1 is X×Pn

k . So r = n+1 and V1, . . . , Vn+1 are equidimensional.
Observe that
r∑

i=1

dimVi − (r − 1) dimPn
k × Pn

k × Pm
k = (2n+m− 1)(r − 1) + dimX × Pn

k − (r − 1)(2n+m)

= dimX = dimXN ,

so, and as announced above, XN is a proper component in the intersection of V1, . . . , Vn,
and X × Pn

k . By Fulton’s [Ful98, Corollary 12.2.(a)] the cycle class attached to the
intersection of X ×Pn

k with the zero locus of g1, . . . , gn is represented by a positive cycle
on Pn

k × Pn
k × Pm

k , one of whose components is XN . As O(0, 0, 1) and O(0, 1, 1) are
numerically effective we conclude

(O(0, 0, 1)O(0, 1, 1)·(d−1)[XN ]) ≤
(
O(0, 0, 1)O(0, 1, 1)·(d−1)O(Dl, 1, D

′
l)
·n[X × Pn

k ]
)
.

(4.12)

The cycle [X × Pn
k ] is linearly equivalent to

∑
i+p=n+m−d aipH

·i
1H

·p
2 , with H1 and H2

hyperplane pullbacks of the factors Pn
k×Pm

k ⊇ X, respectively, and with aip non-negative
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integers that depend only on X. Thus the left-hand side of (4.12) is at most
∑

i+p=n+m−d

aip
(
O(0, 0, 1)O(0, 1, 1)·(d−1)O(Dl, 1, D

′
l)
·nO(1, 0, 0)·iO(0, 0, 1)·p

)
.

We can expand the sum using linearly of intersection numbers to find that it equals

∑

i+p=n+m−d
j′+p′=d−1

i′′+j′′+p′′=n

aip

(
d− 1

j′, p′

)(
n

i′′, j′′, p′′

)
Dl

i′′D′
l
p′′
(
O(1, 0, 0)·(i+i′′)O(0, 1, 0)·(j

′+j′′)O(0, 0, 1)·(1+p+p′+p′′)
)

Only terms with i+ i′′ ≤ n and j′+j′′ ≤ n and 1+p+p′+p′′ ≤ m contribute to the sum.
On the other hand, any term in the sum satisfies i+ i′′+j′+j′′+1+p+p′+p′′ = 2n+m.
So we can assume i+ i′′ = n and j′ + j′′ = n and 1 + p+ p′ + p′′ = m in the sum which
thus simplifies to

∑

i+p=n+m−d,i+i′′=n
j′+p′=d−1,j′+j′′=n

i′′+j′′+p′′=n,p+p′+p′′=m−1

aip

(
d− 1

j′, p′

)(
n

i′′, j′′, p′′

)
Dl

i′′D′
l
p′′
.

Note i′′ + p′′ = n− j′′ = j′ = d− 1− p′ ≤ d− 1. We recall (4.11) and conclude that the
left-hand side of (4.12) is at most

(4.13) (4lD′)d−1
∑

i+p=n+m−d
j′+p′=d−1

i′′+j′′+p′′=n

aip

(
d− 1

j′, p′

)(
n

i′′, j′′, p′′

)
≤ (4lD′)d−12d−13n

∑

i+p=n+m−d

aip.

We recall N = 2l and use the projection formula with the estimates above to find

(O(0, 0, 1)|XN
O(0, 1, 1)|·(d−1)

XN
) ≤ cN2(d−1)

where c > 0 depends only on X . Recall our definition F = O(0, 1, 1)|XN
and M =

O(0, 0, 1)|XN
. So we get (M · F ·(d−1)) ≤ cN2(d−1), as desired. �

4.3. Proof of Proposition 4.1. Now let us prove Proposition 4.1 by comparing the
intersection number inequalities in Propositions 4.2 and 4.3.

Let X be of dimension d as in Proposition 4.1. The case d = 0 is trivial. So we assume
d ≥ 1. We may assume N = 2l with l ∈ N. Let XN ⊆ Pn

k × Pn
k × Pm

k be as in §3.3. In
particular dimXN = d.

Let κ > 0 be as in Proposition 4.2. Then (F ·d) ≥ κN2d. Let c > 0 be as in
Proposition 4.3. Then (M·F ·(d−1)) ≤ cN2(d−1). We have indicated how to obtain κ and
c at the end of the proof of each one of the corresponding propositions.

Fix a rational number c1 such that

(4.14) 0 < c1cd < κ.

Let q be a multiple of the denominator of c1. Using the bounds above and linearity of
intersection numbers we get

d(M⊗qc1N2 ·(F⊗q)·(d−1)) = dqdc1N
2(M·F ·(d−1)) ≤ dqdc1N

2cN2(d−1) < κqdN2d ≤ ((F⊗q)·d).
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Then F⊗q ⊗M⊗−qc1N2
is a big line bundle on XN by a theorem of Siu [Laz04, Theorem

2.2.15]. After possibly replacing q by a multiple the line bundle F⊗q⊗M⊗−qc1N2
admits

a non-zero global section. Say hXN ,F and hXN ,M are representives of heights on XN

attached by the Height Machine to F andM, respectively. After canceling q we conclude
that hXN ,F − c1N

2hXN ,M is bounded from below on a Zariski open and dense subset of

XN . The image of this subset under the projection ρ1 contains a Zariski open and dense
subset UN of X . It follows from the end of §3.3 that there exists c2(N) such that

h([N ](P )) ≥ c1N
2h(π(P ))− c2(N) for all P ∈ UN(Q). �

5. Proof of the height inequality Theorem 1.6

We keep the notation of §3. In particular, S is a regular, irreducible, quasi-projective
variety overQ and π : A → S is an abelian scheme of relative dimension g ≥ 1. Moreover,
we have immersions as in §3 and we assume (Hyp) from page 5. We use the heights
introduced in §3.1. Let X be an irreducible closed subvariety of A defined over Q. We
assume that X dominates S and is non-degenerate as defined in Definition 1.5

The upshot of (Hyp) is that we obtain from Proposition 2.2 the Betti form ω on Aan.
Moreover, part (i) and (iii) of Proposition 2.2 implies that, for d = dimX ,

(5.1) ω|∧dXsm,an > 0 at some smooth point of Xan.

Our assumption (5.1) allows us to apply Proposition 4.1 to X . There exists a constant
c1 > 0 as in (4.14) such that the following holds. Let N ∈ N be a power of 2, there
exists a Zariski open dense subset UN ⊆ X and a constant c2(N) ≥ 0 such that

(5.2) h([N ]P ) ≥ c1N
2h(π(P ))− c2(N)

for all P ∈ UN(Q); we stress that UN and c2 ≥ 0 may depend on N in addition to X,A,
and the various immersions such as A ⊆ Pn

Q
× Pm

Q
.

By the Theorem of Silverman-Tate, see [Sil83, Theorem A] and Theorem A.1, there
exist a constant c0 ≥ 0 such that

(5.3) |ĥA(P )− h(P )| ≤ c0max{1, h(π(P ))} ≤ c0
(
1 + h(π(P ))

)

for all P ∈ A(Q).
Next we kill Zimmer constants as in Masser’s [Zan12, Appendix C]. For any P ∈

UN (Q), we have

ĥA([N ](P )) ≥ h([N ](P ))− c0
(
1 + h(π([N ](P )))

)
(by (5.3))

= h([N ](P ))− c0
(
1 + h(π(P ))

)
(as π([N ](P )) = π(P ))

≥ c1N
2h(π(P ))− c2(N)− c0

(
1 + h(π(P ))

)
(by (5.2)).

We use ĥA([N ]P ) = N2ĥA(P ), divide by N2, and rearrange to get

ĥA(P ) ≥
(
c1 −

c0
N2

)
h(π(P ))− c2(N) + c0

N2

for all N ∈ N that are powers of 2 and all P ∈ UN (Q).
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Recall that c0 and c1 are independent of N . We fix N ∈ N to be the least power of 2
such that N2 ≥ 2c0/c1. As h(π(P )) is non-negative we get

ĥA(P ) ≥ c1
2
h(π(P ))− c2(N) + c0

N2

for all P ∈ UN (Q). Since N is now fixed, the Zariski open dense subset UN of X is also
fixed. The theorem follows after adjusting c1 and c2. �

Remark 5.1. In the proof of Theorem 1.6 we can keep track of the process to compute the
constant c1 > 0. Use the notation in §3. In particular ω is the Betti form on A, we have
an immersion A ⊆ Pn

C×Pm
C , α is a (1, 1)-form on Pn

C×Pm
C representing the Chern class

of O(1, 1), ∆ ⊆ San is open and relative compact, and θ : Aan → [0, 1] (which factors
through San) is a smooth function with compact support contained in A∆ := π−1(∆).
The function θ should furthermore satisfy θ(P0) = 1 for some P0 ∈ Xsm(C) such that
(ω|Xsm)∧d is positive at P0, where d = dimX.

Assume d ≥ 1. The proof of Theorem 1.6 tells us that one half of any rational number
satisfying the inequality (4.14) can be taken as c1. So the constant c1 > 0 can be taken
to be any rational number in (0, κ/(2cd)), such that:

• κ = κ′/Cd, where κ′ =
∫
Xsm,an(θω)

∧d, as in (4.4), and C satisfies Cα|A∆
−ω|A∆

≥
0, as in (4.1),

• c is a constant depending on a certain degree of X and coming from (4.13).

6. Preparation for counting points

6.1. The universal family and non-degeneracy. In this section, we fix the basic
setup to prove Proposition 7.1, described as the alternative on page 4, and our main
results.

Fix an integer g ≥ 2. Recall from §1.2 thatMg denotes the fine moduli space of smooth
curves of genus g, with level-ℓ-structure where ℓ ≥ 3 is fixed, cf. [ACG11, Chapter XVI,
Theorem 2.11 (or above Proposition 2.8)], [DM69, (5.14)], or [OS80, Theorem 1.8]. It
is known that Mg is a regular, quasi-projective variety of dimension 3g − 3. We regard
it over Q; it is irreducible according to our convention introduced below Theorem 1.6.
There exists a universal curve Cg over Mg, it is smooth and proper over Mg and its fibers
are smooth curves of genus g. Moreover, Cg → Mg is projective, cf. [DM69, Corollary
to Theorem 1.2] or [BLR90, Remark 2, §9.3].

Denote by Jac(Cg) the relative Jacobian of Cg → Mg. It is an abelian scheme coming
with a natural principal polarization and equipped with level-ℓ-structure, see [MFK94,
Proposition 6.9].

Recall from §1.2 that Ag denotes the fine moduli space of principally polarized abelian
varieties of dimension g, with level-ℓ-structure. Moreover, Ag is regular and quasi-
projective; see [MFK94, Theorem 7.9 and below] or [OS80, Theorem 1.9]. We regard it
as defined over Q; it is irreducible according to our convention. Let π : Ag → Ag be the
universal abelian variety; it is an abelian scheme. Note that π is projective; we refer to
Remark 3.1 for this and other details.
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As Ag is a fine moduli space we have the following Cartesian diagram

(6.1)

Jac(Cg) //

��

❴

✤

Ag

π

��

Mg τ
// Ag

the bottom arrow is the Torelli morphism. As we have level structure, the Torelli
morphism need not be injective on C-points, but it is finite-to-one on such points, cf.
[OS80, Lemma 1.11].

We also fix an ample line bundle M on Ag, where Ag is a, possibly non-regular,
projective variety containing Ag as a Zariski open and dense subset. The Height Ma-
chine provides an equivalence class of height functions of which we fix a representative
hAg,M : Ag(Q) → R.

Next we fix a projective embedding of Ag over Ag. There is a relatively ample line
bundle L on Ag/Ag with [−1]∗L = L; see [Ray70, Théorème XI 1.4]. After replacing L
by L⊗N , with N ≥ 4 large enough, we can assume that L is very ample relative over
Ag and [−1]∗L = L. By [Gro61, Proposition 4.4.10(ii) and Proposition 4.1.4], we then
have a closed immersion Ag → Pn

Q
× Ag over Ag arising from L ⊗ π∗(M|⊗p

Ag
) for some

integer p ≥ 1, note that M|Ag
is ample. For each s ∈ Ag(Q), the fiber Ag,s = π−1(s) is

realized as a projective subvariety of Pn
Q
and the induced closed immersion Ag,s → Pn

Q

comes from the restriction L|Ag,s
which is ample. Flatness of Ag → Ag implies that

dimH0(Ag,s,LAg.s
) is independent of s. So Ag,s is projectively normal inside Pn

Q
, a

property that will play a role later on.
Recall that L is symmetric and very ample on each fiber of Ag. By Tate’s Limit

Argument we obtain the fiberwise Néron–Tate height, cf. (3.2),

(6.2) ĥ : Ag(Q) → [0,∞).

Let M ≥ 1 be an integer. We write A
[M ]
g for theM-fold fibered power Ag×Ag

· · ·×Ag
Ag

over Ag. Then A
[M ]
g → Ag is an abelian scheme.

By taking the product we obtain closed immersions A
[M ]
g → (Pn

Q
)M × Ag. The fiber

of A
[M ]
g → Ag above s ∈ Ag(Q) is the M-fold power of Ag,s. The associated fiberwise

Néron–Tate height ĥ : A
[M ]
g (Q) → [0,∞) is the sum of the Néron–Tate heights, as in

(6.2), of the M coordinates.
Let us now define the Faltings–Zhang morphism. In our setting the relative Picard

scheme Pic(Cg/Mg) exists as a group scheme over Mg. It is a union over all p ∈ Z of open
and closed subschemes Picp(Cg/Mg), where p indicates the degree of a line bundle. By
definition we have Jac(Cg) = Pic0(Cg/Mg). We cannot expect to have a section of Cg →
Mg, so we cannot expect to find an immersion of Cg into Jac(Cg/Mg). As constructed
in the proof of [MFK94, Proposition 6.9] we do have a morphism Cg → Pic1(Cg/Mg)

over Mg. Let C
[M ]
g and Picp(Cg/Mg)

[M ] denote the respective M-th fibered powers over
Mg. The difference morphism coming from the group scheme law Pic(Cg/Mg) ×Mg

Pic(Cg/Mg) → Pic(Cg/Mg) restricts to a morphism Pic1(Cg/Mg) ×Mg
Pic1(Cg/Mg) →

Jac(Cg/Mg) of schemes over Mg. We take the appropriate product morphism over Mg



UNIFORMITY IN MORDELL–LANG FOR CURVES 25

to get a morphism

(6.3) C
[M+1]
g → Jac(Cg/Mg)

[M ]

over Mg. The choice of product is modeled after (1.3). More precisely, consider the
situation above a k-point ofMg, where k is an algebraically closed field. The fiber of Cg →
Mg above this point is a smooth curve C defined over k of genus g. For P0, . . . , PM ∈ C(k)
the morphism (6.3) maps (P0, P1, . . . , PM) 7→ (P1 −P0, P2 −P0, . . . , PM −P0) where the
difference takes place in the Jacobian of C.

Recall (6.1). We take the M-fold product and compose with (6.3) to obtain a com-
mutative diagram of morphisms of schemes

(6.4)

C
[M+1]
g

//

��

A
[M ]
g

��

Mg τ
// Ag.

If S → Mg is a morphism of schemes then we define CS = Cg ×Mg
S and C

[M ]
S =

C
[M ]
g ×Mg

S. If S is irreducible, then so is C
[M ]
S by induction on M and a topological

argument using that CS → S is smooth and hence open. Taking the fibered product with
S and composing with (6.4) yields a commutative diagram of morphisms of schemes

C
[M+1]
S

//

��

A
[M ]
g

��

S
τ◦(S→Mg)

// Ag.

By the universal property of the fibered product we get a morphism of schemes

(6.5)

C
[M+1]
S

DM
//

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

▼

A
[M ]
g ×Ag

S

��

S

over S. We call DM the Faltings–Zhang morphism (over S). Then DM is proper since
the diagonal arrow in (6.5) is proper.

Let for the moment S → Mg be the identity. If s ∈ Mg(Q), then Cs is the curve
parametrized by s, and Ag,τ(s) is its Jacobian. To embed Cs into Ag,τ(s) we must work

with a base point P ∈ Cs(Q). Then Cs−P = D1({P}×Cs) is an irreducible curve inside
Ag lying above τ(s). Hence it provides a closed immersion Cs − P ⊆ Pn

Q
.

Let degX denote the degree of an irreducible closed subvariety X of Pn
Q
and let h(X)

denote its height, cf. [BGS94].

Lemma 6.1. There exists a constant c such that the following two properties hold for
all s ∈ Mg(Q).

(i) We have deg(Cs − P ) ≤ c for all P ∈ Ag,τ(s)(Q).

(ii) There exists Ps ∈ Cs(Q) such that h(Cs − Ps) ≤ cmax{1, hAg,M(τ(s))}.
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Proof. We need a quasi-section of Cg → Mg as provided by [Gro67, Corollaire 17.16.3(ii)].
So there is an affine scheme S and a morphism S → Cg that factors through a surjec-

tive, quasi-finite, étale morphism S → Mg. We consider the product Cg ×Mg
S → C

[2]
g

composed with the Faltings–Zhang morphism D1 : C
[2]
g → Ag ×Ag

Mg over Mg and then
the projection of Ag. This is a morphism of schemes Cg ×Mg

S → Ag. Its image is a
constructible subset of Ag. So it is a union of finitely many irreducible Zariski locally
closed subsets {Xi}i of Ag. We have the following property.

Given a point s ∈ Mg(Q), there is an i such that the fiber of π|Xi
: Xi → Ag above

τ(s) is a finite union of irreducible curves, up-to finitely many points one of these curves
is Cs − Ps with Ps ∈ Cs(Q).

We have a closed immersion Ag → Pn
Q
× Ag. Moreover, a sufficiently large positive

power of M induces a closed immersion of Ag → Pm
Q
for some m. Thus, we consider Ag

as a Zariski locally closed subset Pm
Q
. We identify each Xi with its image in Pn

Q
× Pm

Q
,

an irreducible Zariski locally closed set. Then Cs − Ps ⊆ Pn
Q
arises as an irreducible

component of the intersection of some Zariski closure Xi with Pn
Q
× {τ(s)}.

We use the Segre embedding Pn
Q
× Pm

Q
→ P

(n+1)(m+1)−1

Q
to embed our situation into

projective space. By Bézout’s Theorem [Ful98, Example 8.4.6], deg(Cs−Ps) is bounded
from above uniformly in s. Translating a curve inside Ag,τ(s) by a point of Ag,τ(s)(Q)
does not change its degree. So if P ∈ Ag,τ(s), then deg(Cs − P ) = deg(Cs − Ps). This
yields (i).

Part (ii) follows as (i) but this time we use the Arithmetic Bézout Theorem, still
executing the intersection after applying the Segre embedding. Indeed, recall that Cs−Ps

as an irreducible of the intersection of some Xi with Pn
Q
×{τ(s)}. The height and degree

of Xi are bounded from above independently of s; the same holds for the degree of
Pn
Q
× {τ(s)}. The height of Pn

Q
× {τ(s)} is bounded from above linearly in terms of

h(τ(s)). Finally, we can apply [Phi95, Théorème 3]. Finally, note that by the Height
Machine the absolute logarithmic Weil height h(τ(s)), where τ(s) is understood as an
element of Pm

Q
(Q), is bounded from above linearly in terms of hAg,M(τ(s)). �

6.2. Non-degeneracy of DM(C
[M+1]
S ) for large M . In this subsection all varieties are

defined over the field C. We keep the notation of the previous subsection and let S be

an irreducible variety with a quasi-finite morphism S → Mg. Note that DM(C
[M+1]
S )

is Zariski closed in A
[M ]
g ×Ag

S because DM is proper. We endow this image with the
reduced induced scheme structure.

The following non-degeneracy theorem proved by the second-named author is crucial

to prove our main result. It confirms that Theorem 1.6 can be applied to DM(C
[M+1]
S )

for M ≥ 3g − 2. We obtain a height inequality on a Zariski open dense subset.

Theorem 6.2 ([Gao20a, Theorem 1.2’]). Let S be an irreducible variety with a (not
necessarily dominant) quasi-finite morphism S → Mg. Assume g ≥ 2 and M ≥ 3g −
2. Then DM(C

[M+1]
S ), which is a closed irreducible subvariety of A

[M ]
g ×Ag

S, is non-
degenerate in the sense of Definition 1.5.

The fibered product in the theorem involves S → Mg
τ−→ Ag.
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More precisely, the meaning of the conclusion of the theorem is as follows. For the

abelian scheme π : A = A
[M ]
g ×Ag

S → S and for the irreducible subvariety X :=

DM(C
[M+1]
S ) of A, there exists a open non-empty subset ∆ of San, with the Betti map

b∆ : A∆ = π−1(∆) → T2g, such that

(6.6) rankR(db∆|Xsm,an)x = 2dimX for some x ∈ Xsm,an ∩ A∆,

when g ≥ 2 and M ≥ 3g − 2.

Proof. This theorem, essentially [Gao20a, Theorem 1.2’], is a consequence of Theorem 1.3
of loc.cit. Because of its importance to the current paper, we hereby give more details
of the deduction.

We start by showing the result for the case where CS → S admits a section ǫ. In
this case ǫ induces an Abel–Jacobi embedding jǫ : CS → Jac(CS/S), which is a closed
immersion of S-schemes. The modular map is the Cartesian diagram

Jac(CS/S)
ι

//

��

❴

✤

Ag

��

S // Ag

with the bottom morphism being the composite of the given S → Mg with the Torelli
map τ : Mg → Ag. The Torelli map τ is quasi-finite; see [OS80, Lemma 1.11]. Thus the
bottom morphism is quasi-finite. Hence ι is quasi-finite.

We wish to apply [Gao20a, Theorem 1.3] to the subvariety jǫ(CS) of the abelian scheme
Jac(CS/S) → S. We need to verify the hypotheses. First of all ι|jǫ(CS) is generically finite
because ι is quasi-finite. Hypothesis (a) is satisfied since dim jǫ(CS) = dimS+1 > dimS.
For hypotheses (b) and (c), note that for any s ∈ S(C), the fiber jǫ(CS)s is the Abel–
Jacobi embedding of Cs in its Jacobian via the point ǫ(s). Thus hypothesis (b) is satisfied
because each curve generates its Jacobian, and hypothesis (c) holds true since g ≥ 2.

Thus we can apply [Gao20a, Theorem 1.3.(ii)] and obtain that DM(C
[M+1]
S ) is non-

degenerate2 if M ≥ jǫ(CS) = dimS + 1. But dimS ≤ dimMg = 3g − 3. Hence

DM(C
[M+1]
S ) is non-degenerate if M ≥ 3g − 2.

For an arbitrary S, the generic fiber of CS → S has a rational point over some
finite extension of K(S), the function field of S. Thus there exists a quasi-finite étale
dominant (not necessarily surjective) morphism ρ : S ′ → S, with S ′ irreducible, such

that CS′ = CS ×S S ′ → S ′ admits a section. Thus X ′ := DM(C
[M+1]
S′ ), as a subvariety of

A′ := A
[M ]
g ×Ag

S ′, is non-degenerate by the previous case. So there exists a connected,
open non-empty subset ∆′ of S ′an, with the Betti map b∆′ : A′

∆′ → T2g, such that for
some x′ ∈ X ′sm,an ∩ A′

∆′ we have

rankR(db∆′ |X′sm,an)x′ = 2dimX ′.

We may furthermore shrink ∆′ so that ρ|∆′ is a diffeomorphism. In particular ∆ := ρ(∆′)
is open in San.

2Observe that DM (C
[M+1]
S ) = DA

M (jǫ(C
[M+1]
S )), with DA

M be as in [Gao20a, Theorem 1.3.(ii)] with
A = Ag ×Ag

S ∼= Jac(CS/S). See below (6.3).
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Denote by ρ′A : A′ = A ×S S ′ → A the projection to the first factor. Then ρ′A|A′
∆′

is

a diffeomorphism. Both A → S and A′ → S ′ carry level-ℓ-structures. By construction
and uniqueness properties of the Betti map, we may assume that b∆ : A∆ → T2g equals
b∆′ ◦ (ρ′A|A′

∆′
)−1. Thus

rankR(db∆|Xsm,an)x = 2dimX ′

with x = ρA(x
′). So (6.6) holds true because dimX ′ = dimX . Hence we are done. �

6.3. Technical lemmas. The following lemma will be useful in the proofs of the desired
bounds. Let for the moment k be an algebraically closed field andM ≥ 1, n ≥ 1 integers.
If Z is a Zariski closed subset of (Pn

k)
M we let degZ denote the sum of the degrees of all

irreducible components of Z with respect to O(1, . . . , 1).

Lemma 6.3. Let C ⊆ Pn
k be an irreducible curve defined over k and let Z ⊆ (Pn

k)
M be

a Zariski closed subset of (Pn
k)

M such that CM = C × · · · × C 6⊆ Z. Then there exists a
number B, depending only on M, degC, and degZ, satisfying the following property. If
Σ ⊆ C(k) has cardinality ≥ B, then ΣM = Σ× · · · × Σ 6⊆ Z(k).

Proof. Let us prove this lemma by induction on M . The case M = 1 follows easily from
Bézout’s Theorem.

Assume the lemma is proved for 1, . . . ,M − 1. Let q : (Pn
k)

M → Pn
k be the projection

to the first factor.
The number of irreducible components of Z ∩ CM and their degrees are bounded

from above in terms of M, degC, and degZ by Bézout’s Theorem applied to the Segre
embedding. Let Z ′ be the union of all irreducible components Y of Z ∩ CM with
dim q(Y ) ≥ 1, let Z ′′ be the union of all other irreducible components.

Note that q(Z ′) ⊆ C. For all P ∈ C(k) the fiber q|−1
Z′ (P ) = Z ′ ∩ ({P}× (Pn

k)
M−1) has

dimension at most dimZ ′ − 1 ≤ M − 2. So the projection of q|−1
Z′ (P ) to the final factors

(Pn
k)

M−1 does not contain CM−1. By Bézout’s Theorem the degree of this projection is
bounded in terms of M, degC, and degZ. We apply the induction hypothesis to the
projection of q|−1

Y (P ) to (Pn
k)

M−1 and obtain a number B′, depending only on M, degC,
and degZ satisfying the following property. If Σ ⊆ C(k) has cardinality ≥ B′, then
{P} × ΣM−1 6⊆ Z ′(k) for all P ∈ C(k).

Now dim q(Z ′′) = 0, so q(Z ′′) is a finite set of cardinality at most B′′, the number of
irreducible components of Z ∩ CM .

The lemma follows with B = max{B′, B′′ + 1}. �

In the next lemma we use the Faltings–Zhang morphism in a single abelian variety A,
i.e., DM : AM+1 → AM defined by (P0, . . . , PM) 7→ (P1 − P0, . . . , PM − P0).

Lemma 6.4. Let A be an abelian variety defined over Q and suppose C is a smooth
curve of genus g ≥ 2 contained in A. If Z is an irreducible Zariski closed and proper
subset of DM(CM+1), then

#{P ∈ C(Q) : (C − P )M ⊆ Z} ≤ 84(g − 1).

Proof. For simplicity denote by Ξ = {P ∈ C(Q) : (C − P )M ⊆ Z}. Fix P0 ∈ Ξ. It
suffices to prove that there are only 84(g−1) possibilities for P1−P0 when P1 runs over
Ξ.
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Say P1 ∈ Ξ and let i ∈ {0, 1}. Note that Z ( DM(CM+1) and so dimZ <
dimDM(CM+1) ≤ M + 1, as DM(CM+1) irreducible. Note that (C − Pi)

M ⊆ Z, and so
both have dimension M . As Z is irreducible we find (C −Pi)

M = Z for i = 0 and i = 1.
Applying the first projection AM → A yields C−P1 = C−P0. In other words, P1−P0

stabilizes C. By Hurwitz’s Theorem [Hur92], a smooth curve over Q of genus g ≥ 2 has
at most 84(g − 1) automorphisms. Hence we are done. �

7. Néron–Tate distance between points on curves

The goal of this section is to prove Proposition 7.1, below. Namely we will show
that Q-points on smooth curves are rather “sparse”, in the sense that the Néron–Tate
distance between two Q-points on a smooth curve C is in general large compared with
the Weil height of C.

We use the notation from §6.1. Recall that we have fixed a projective compactification
Ag of Ag over Q, an ample line bundle M, and a height function hAg,M : Ag(Q) → R

attached to this pair. We also fixed a closed immersion Ag into Pn
Q
×Ag over Ag and let

τ : Mg → Ag denote the Torelli morphism. If s ∈ Mg(Q) then Cs is a smooth curve of

genus g defined over Q. Moreover, if P,Q ∈ Cs(Q), then P −Q is a well-defined element

of Ag(Q) and so is its Néron–Tate height ĥ(P −Q), see (6.2).

Proposition 7.1. Let S be an irreducible closed subvariety of Mg defined over Q. There
exist positive constants c1, c2, c3, c4 depending on the choices made above and on S with
the following property. Let s ∈ S(Q) with hAg,M(τ(s)) ≥ c1. There exists a subset

Ξs ⊆ Cs(Q) with #Ξs ≤ c2 such that any P ∈ Cs(Q) satisfies the following alternative.

(i) Either P ∈ Ξs;

(ii) or #{Q ∈ Cs(Q) : ĥ(Q− P ) ≤ hAg ,M(τ(s))/c3} < c4.

Proof. We fix an immersion of Mg into some projective space and let Mg denote its
Zariski closure. By a standard triangle inequality estimate, there exist constants c′′ > 0
and c′′′ ≥ 0 such that

(7.1) h(s) ≥ c′′hAg,M(τ(s))− c′′′

for all s ∈ Mg(Q); see [Sil11, Lemma 4], the left-hand side is the Weil height and

represents a height function coming from an ample line bundle on Mg. If hAg,M(τ(s)) ≥
c1 with c1 ≥ 2c′′′/c′′ then h(s) ≥ c′′hAg,M(τ(s))/2. We find that it suffices to prove the

alternative with hAg,M(τ(s)) replaced by h(s) in (ii) and adjusting c3. Our proof is by
induction on dimS.

If dimS = 0, then the proposition follows by enlarging c1.
If dimS ≥ 1, we fix M = 3g−2. Applying Theorem 6.2 to the immersion Ssm →֒ Mg,

we conclude that the closed irreducible subvariety X := DM(C
[M+1]
Ssm ) of the abelian

scheme A = A
[M ]
g ×Ag

Ssm → Ssm is non-degenerate. Hence we can apply Theorem 1.6

to A and X (and the compactification S is the Zariski closure of S in Mg). So, combined
with (7.1), there exist constants c > 0 and c′ as well as a Zariski open dense subset U of
X , satisfying the following property. For all s ∈ S(Q) and all P,Q1, . . . , QM ∈ Cs(Q),



UNIFORMITY IN MORDELL–LANG FOR CURVES 30

we have

(7.2) ch(s) ≤ ĥ(Q1 − P ) + · · ·+ ĥ(QM − P ) + c′ if (Q1 − P, . . . , QM − P ) ∈ U(Q).

Observe that π(X) = Ssm, where π : A → Ssm is the structure morphism. Therefore,
S \ π(U) is not Zariski dense in S. Let S1, . . . , Sr be the irreducible components of the
Zariski closure of S \ π(U) in S. Then dimSj ≤ dimS − 1 for all j.

By the induction hypothesis, this proposition holds for all Sj . Thus it remains to
prove the conclusion of this proposition for curves above

(7.3) s ∈ S(Q) \
r⋃

j=1

Sj(Q) ⊆ π(U(Q)).

First we construct Ξs and then we will show that we are in one of the two alternatives.
It is convenient to fix a base point Ps ∈ Cs(Q) and consider (Cs−Ps)

M as a subvariety
of As = π−1(s).

Let us set W = X \U , it is a Zariski closed and proper subset of X . By (7.3) we find

Ws ( Xs = DM(C
[M+1]
s ).

Let Z be an irreducible component of Ws. Consider the set

ΞZ := {P ∈ Cs(Q) : (Cs − P )M ⊆ Z}.
Apply Lemma 6.4 to A = (Ag)τ(s), C = Cs − Ps ⊆ A, and Z. As Z ( DM(C

[M+1]
s ) we

have #ΞZ ≤ 84(g − 1).
Let Ξs =

⋃
Z ΞZ where Z runs over all irreducible components of Ws. The number of

irreducible components is bounded from above in an algebraic family. So the number of
irreducible components of Ws is bounded from above by a number that is independent of
s; but it may depend on W . We take c2 to be such a number multiplied with 84(g− 1).
Thus #Ξs ≤ c2 if (7.3) and with c2 independent of s and P .

Say P ∈ Cs(Q) and P 6∈ Ξs. So we are not in case (i) of the proposition. Then
(Cs − P )M 6⊆ Ws. We want to apply Lemma 6.3 to Cs − P and Ws.

Recall that the abelian scheme Ag is embedded in Pn
Q
× Ag over Ag, cf. §6.1. So A

is embedded in (Pn
Q
)M × Ssm over Ssm. We may identify Cs − P with a smooth curve

in Pn
Q
. The degree of Cs − P as a subvariety of Pn

Q
is bounded independently of s by

Lemma 6.1(i); applying the Torelli morphism τ does not affect the degree. Moreover,
Ws is Zariski closed in Xs ⊆ As. Still holding s fixed we may take Ws as a Zariski closed
subset of (Pn

Q
)M . Being the fiber above s of a subvariety of (Pn

Q
)M × Ssm, we find that

the degree of Ws is bounded from above independently of s. From Lemma 6.3 we thus
obtain a number c4, depending only on these bounds and with the following property.
Any subset Σ ⊆ Cs(Q) with cardinality ≥ c4 satisfies (Σ− P )M 6⊆ Ws. It is crucial that
c4 is independent of s.

We work with Σ = {Q ∈ Cs(Q) : ĥ(Q− P ) ≤ h(s)/c3} with c3 = 2M/c. If #Σ < c4,
then we are in alternative (ii) of the proposition.

Finally, let us assume #Σ ≥ c4. The discussion above implies that there exist
Q1, . . . , QM ∈ Σ such that (Q1−P, . . . , QM −P ) 6∈ Ws(Q), i.e., (Q1−P, . . . , QM −P ) ∈
U(Q). Thus we can apply (7.2) and obtain

h(s) ≤ 1

c

(
M

ch(s)

2M
+ c′

)
=

1

2
h(s) +

c′

c
.
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Hence h(s) ≤ 2c′/c. Now (7.1) implies hAg,M(τ(s)) < c1 if c1 > (2c′/c+ c′′′)/c′′. So this

case cannot occur if hAg,M(τ(s)) ≥ c1 and c1 is sufficiently large. �

8. Proof of Theorems 1.1, 1.2, and 1.4

The goal of this section is to prove the theorems and the corollary in the introduction.
To this end let g ≥ 2; we retain the notation of §6.1. In particular, π : Ag → Ag is the
universal family of principally polarized abelian varieties of dimension g with level-ℓ-
structure where ℓ ≥ 3 and τ : Mg → Ag is the Torelli morphism.

Proposition 8.1. The exist constants c1 ≥ 0, c2 ≥ 1 depending on the choices made
above with the following property. Let s ∈ Mg(Q) with hAg,M(τ(s)) ≥ c1. Suppose Γ is

a finite rank subgroup of Ag,τ(s)(Q) with rank ρ ≥ 0. If P0 ∈ Cs(Q), then

#(Cs(Q)− P0) ∩ Γ ≤ c1+ρ
2 .

The proof combines Vojta’s approach to the Mordell Conjecture with the results ob-
tained in §7. We will use Rémond’s quantitative version [Rém00a,Rém00b] of Vojta’s
method. A similar approach was used in the authors’s earlier work [DGH19] which also
contains a review of Vojta’s method in §2. Let us recall the fundamental facts before
proving Proposition 8.1.

Suppose we are given an abelian variety A of dimension g that is defined over Q and
is presented with a symmetric and very ample line bundle L. We assume also that we
have a closed immersion of A into some projective space Pn

Q
determined by a basis of

the global sections of L. We assume that A becomes a projectively normal subvariety
of Pn

Q
. This is the case if L is an at least fourth power of a symmetric and ample line

bundle.
Suppose C is an irreducible curve in A. Then let degC denote the degree of C

considered as subvariety of A ⊆ Pn
Q
, i.e., degC = (C.L). Moreover, let h(C) denote the

height of C.
On the ambient projective space we have the Weil height h : Pn

Q
(Q) → [0,∞). Tate’s

Limit Argument, compare (3.2), applied to h yields the Néron–Tate height ĥL : A(Q) →
[0,∞). It vanishes precisely on the points of finite order. Moreover, it follows from
Tate’s construction that there exists a constant cNT ≥ 0, which depends on A, such that

(8.1) |ĥL(P )− h(P )| ≤ cNT

for all P ∈ A(Q).
Finally, we need a measure for the heights of homogeneous polynomials that define the

addition and substraction on A, as required in Rémond’s [Rém00b]. Consider the n+ 1
global sections of O(1) corresponding to the projective coordinates of Pn

Q
. They restrict

to global sections ξ0, . . . , ξn of L on A. Let f : A × A → A × A denote the morphism
induced by (P,Q) 7→ (P +Q,P −Q), and let p1, p2 : A×A → A be the first and section
projection, respectively. For all i, j ∈ {0, . . . , n} there are Pij ∈ Q[X,X′] with

(8.2) f ∗(p∗1ξi ⊗ p∗2ξj) = Pij((p
∗
1ξ0, . . . , p

∗
1ξn), (p

∗
2ξ0, . . . , p

∗
2ξn))

and where Pij is bihomogeneous of bidegree (2, 2) in X = (X0, . . . , Xn) and X′ =
(X ′

0, . . . , X
′
n); see [Rém00b, Proposition 5.2] with a = b = 1 for the existence of the
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Pij . Here we require that ξ0, . . . , ξn constitute a basis of H0(A,L). Let h1 denote the
Weil height of the point in projective space whose coordinates are all coefficients of all
Pij .

We point out a minor omission in [DGH19, §2]: h1 there must also involve both
addition and subtraction on A, and not just the addition.

The lemma below is [DGH19, Corollary 2.3] which is itself a standard application of
Rémond’s explicit formulation of the Vojta and Mumford inequalities. We thus obtain
a bound that is exponential in the rank of the subgroup Γ for points of sufficiently large
Néron–Tate height.

Lemma 8.2. Let C be an irreducible curve in A. There exists a constant c = c(n, degC) ≥
1 depending only on n and degC with the following property. Suppose Γ is a subgroup
of A(Q) of finite rank ρ ≥ 0. If C is not the translate of an algebraic subgroup of A,
then

#
{
P ∈ C(Q) ∩ Γ : ĥL(P ) > cmax{1, h(C), cNT, h1}

}
≤ cρ.

Proof of Proposition 8.1. As in §6.1 we have a closed immersion Ag → Pn
Q
×Ag over Ag.

Let s ∈ Mg(Q) with

(8.3) hAg ,M(τ(s)) ≥ max{1, c1},
where c1 comes from Proposition 7.1 applied to S = Mg.

We now bound two quantities attached to the abelian variety A = Ag,τ(s) taken with
its closed immersion into Pn

Q
. Observe that this closed immersion satisfies the condition

imposed at the beginning of this section with L = L|A where L is as in §6.1. These
quantities may depend on s. Below, c > 0 denotes a constant that depends on the fixed
data such as g, n, and the ambient objects such as Ag but not on s. We will increase c
freely and without notice.

Bounding cNT. For this we require the Silverman–Tate Theorem, Theorem A.1,
applied to π : Ag → Ag. Recall that h is the Weil height on Pn

Q
(Q). For all P ∈ A(Q)

we have |h(P )− ĥ(P )| ≤ cmax{1, hAg,M(τ(s))}; note that we can bound hS(π(P )) from

above linearly in terms of hAg ,M(τ(s)) by the Height Machine. So we may take

(8.4) cNT = cmax{1, hAg,M(τ(s))}.

Bounding h1. Recall that f : A2 → A2 sends (P,Q) to (P + Q,P − Q). We know
that Pij as above exist. Here we will construct such a family with controlled height.

To this end we consider points P = [ζ0 : · · · : ζn], Q = [η0 : · · · : ηn] ∈ A(Q). Then
f(P,Q) = ([ν+

0 : · · · : ν+
n ], [ν

−
0 : · · · : ν−

n ]). Recall that A = Ag,τ(s) is presented as
a projectively normal subvariety of Pn

Q
by the construction in §6.1. By (8.2) there is

for each i, j ∈ {0, . . . , n} a bihomogeneous polynomial Pij of bidegree (2, 2) that is
independent of P and Q, with

(8.5) ν+
i ν

−
j = λPij((ζ0, . . . , ζn), (η0, . . . , ηn))

for some non-zero λ ∈ Q that may depend on (P,Q). We eliminate λ and consider

(8.6) ν+
i ν

−
j Pi′j′((ζ0, . . . , ζn), (η0, . . . , ηn))− ν+

i′ ν
−
j′Pij((ζ0, . . . , ζn), (η0, . . . , ηn)) = 0
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as a system of homogeneous linear equations parametrized by (i, j), (i′, j′) ∈ {0, . . . , n}2,
the unknowns are the coefficients of the Pij. As each Pij is bihomogeneous of bidegree

(2, 2), the number of unknowns is N = (n + 1)2
(
n+2
2

)2
which is independent of s.

Each pair of points (P,Q) ∈ A(Q)2 yields one system of linear equations. We know
that there is a non-trivial solution (Pij)ij that solves for all (P,Q) simultaneously and
such that some Pij does not vanish identically on A × A. Our goal is to find such a
common solution of controlled height.

First, observe that a common solution for when (P,Q) runs over all torsion points of
A2(Q) is a common solution for all pairs (P,Q). Indeed, this follows as torsion points
of A2(Q) lie Zariski dense in A2. Second, observe that the full system has finite rank
M < N so it suffices to consider only finite many torsion points (P,Q).

Our task is thus to find a common solution to (8.6) for all (i, j), (i′, j′), where some
Pij does not vanish identically on A × A, and where [ζ0 : · · · : ζn],[η0 : · · · : ηn], and
[ν±

0 : · · · : ν±
n ] are certain torsion points on A(Q). We may assume that some ζi is 1 and

similarly for ηi and ν±
i . So all coordinates are in Q. Moreover, the height of each torsion

point is at most cNT by (8.1). The resulting system of linear equations is represented by
an M × N matrix with algebraic coefficients. By elementary properties of the height,
each coefficient in the system has affine Weil height c · cNT, for c large enough. It is
tempting, but unnecessary, to invoke Siegel’s Lemma to find a non-trivial solution. As
M,N are bounded in terms of n, Cramer’s Rule establishes the existence of a basis of
non-zero solution such that the Weil height of the coefficient vector is at most c · cNT.
Among this basis there is one solution where one Pij does not vanish identically on
A× A. By (8.4) we find

(8.7) h1 ≤ cmax{1, hAg,M(τ(s))}
for the projective height of the tuple (Pij)ij. Thus (8.6) holds and so we get (8.5) on all
of A2(Q), at least with λ a rational function on A×A that is not identically zero. But λ
cannot vanish anywhere on A×A, as otherwise the left-hand side of (8.5) would vanish
at some point of A × A for all (i, j). Hence λ is a non-zero constant. Replacing Pij by
λPij does not change the projective height; we get (8.2) with the desired bound for h1.

Bounding height and degree of a curve. By Lemma 6.1 we have

(8.8) deg(Cs − Ps) ≤ c and h(Cs − Ps) ≤ cmax{1, hAg,M(τ(s))}

for some Ps ∈ Cs(Q).

We now follow the argumentation in [DGH19]. Let Γ be a subgroup of Ag,τ(s)(Q) for
finite rank ρ. We first prove the proposition in the case P0 = Ps. We apply Lemma 8.2
to the curve C = Cs −Ps ⊆ Ag,τ(s) = A and use the bounds (8.4), (8.7), and (8.8). Note
that C is a smooth curve of genus g ≥ 2. So it cannot be the translate of an algebraic
subgroup of A. It follows that the number of points P ∈ Cs(Q) with P − Ps ∈ Γ and

ĥ(P − Ps) > R2 where

(8.9) R = (cmax{1, hAg,M(τ(s))})1/2

is at most cρ ≤ c1+ρ.
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The burden of this paper is to find a bound of the same quality for the number of
pairwise distinct points P1, P2, P3, . . . in Cs(Q) with ĥ(Pi − Ps) ≤ R2. This is where
Proposition 7.1 enters. Recall our assumption (8.3) on s. Let c′2 be the constant c2 from
Proposition 7.1; it is independent of s. As #Ξs ≤ c′2 we may assume Pi 6∈ Ξs for all i.
So we may assume that each Pi is in the second alternative of Proposition 7.1.

As in [DGH19] we use the Euclidean norm | · | defined by ĥ1/2 on the ρ-dimensional R-
vector space Γ⊗R. Let r ∈ (0, R]. By an elementary ball packing argument, any subset
of Γ⊗R contained in a closed ball of radius R is covered by at most (1 + 2R/r)ρ closed
balls of radius r centered at elements of the given subset; see [Rém00a, Lemme 6.1].
We apply this geometric argument to R as in (8.9) and to r, the positive square-root of
hAg,M(τ(s))/c3 = max{1, hAg,M(τ(s))}/c3. The contribution of the height hAg ,M(τ(s))

cancels in the quotient R/r. We find R/r ≤ c. So the number of balls in the covering is
at most c1+ρ.

By Proposition 7.1(ii) the number of the Pi’s that map to a single closed ball of radius

r is at most c4. Thus after increasing c we find that #{Pi ∈ Cs(Q) ∩ Γ : ĥ(Pi − Ps) ≤
R2} ≤ c4c

1+ρ, as desired. This completes the proof of the proposition in the case P0 = Ps

for sufficiently large c2.
The case of a general base point follows easily as our estimates depend only on the

rank ρ of Γ. Indeed, let P0 ∈ Cs(Q) be an arbitrary point and let Γ′ be the subgroup of
Ag,τ(s)(Q) generated by Γ and P0 − Ps. Its rank is at most ρ+ 1.

Now if Q ∈ Cs(Q) − P0 lies in Γ, then Q + P0 − Ps ∈ Cs(Q) − Ps lies in Γ′. The
number of such Q is at most c2+ρ

2 by what we already proved. The proposition follows
as c2+ρ

2 ≤ (c22)
1+ρ and since we may replace c2 by c22. �

Proof of Theorem 1.1. It is possible to deduce Theorem 1.1 from Theorem 1.2, which
we prove below. However in view of the importance of Theorem 1.1, we hereby give it
a complete proof.

This proof works for any level ℓ ≥ 3, but we may fix ℓ = 3 for definiteness. Let
Ag,Ag,M, and hAg,M be as in §6.1.

Our curve C corresponds to an F -rational point sF of Mg,1, the coarse moduli space
of smooth genus g curves without level structure.

The fine moduli space Mg of smooth genus g curves with level-ℓ-structure is a finite
cover of Mg,1. For this proof it is convenient to recall that Mg is defined over the
cyclotomic field generated by a third root of unity; recall the convention that we fixed
a third root of unity and that Mg is geometrically irreducible. Say s ∈ Mg(Q) maps to
sF . Then F ′ = F (s) is a number field and [F ′ : F ] is bounded above only in terms of g
and ℓ. We may identify CF ′ = C ⊗F F ′ with Cs, the fiber of Cg → Mg above s.

Constructing the Jacobian commutes with finite field extension. We thus view Γ =
Jac(C)(F ) as a subgroup of Jac(C)(Q) = Jac(CF ′)(Q).

To prove the theorem we may assume C(F ) 6= ∅. So fix P0 ∈ C(F ). We con-
sider the Abel–Jacobi embedding C − P0 ⊆ Jac(C) defined over F . Then #C(F ) ≤
#(CF ′(Q)−P0)∩Γ = #(Cs(Q)−P0)∩Γ. If hAg,M(τ(s)) ≥ c1, the theorem follows from

Proposition 8.1. Note that in this case, the constant c in (1.1) is independent of d.
So we may assume that the height of τ(s) is less than c1. As [F ′ : Q] ≤ [F ′ : F ][F :

Q] ≤ [F ′ : F ]d, Northcott’s Theorem implies that τ(s) comes from a finite set in Ag(Q)
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that depends only on g, d, and ℓ. The same holds for s and thus F ′ = F (s) since
the Torelli morphism τ is finite-to-1 and thus has fibers of bounded cardinality. This
means that the remaining C are twists in finitely many F ′-isomorphism classes. But
then it suffices to apply Rémond’s estimate [DP02, page 643] to a single CF ′ and use
#C(F ) ≤ #(CF ′(Q)− P0) ∩ Γ to conclude the theorem.

Silverman’s older result [Sil93, Theorem 1] also handles uniformity among twists. �

Let us explain how to obtain some extra uniformity in the second case of the proof.
More precisely, we show that the constant c(g, d) in (1.1) grows polynomially in d. We
retain the above proof’s notation.

Denote by ρ : Ag = Ag,ℓ → Ag,1 the natural morphism to the coarse moduli space

which forgets the level structure. We recall that Ag is presented as a closed subvariety
of projective space induced by a basis of global sections of a positive powers of ample
line bundle M. Let ι : Ag,1 → Pm

Q be an immersion, as before Theorem 1.2. By [Sil11,
Lemma 4], there exist c′ > 0 and c′′ ≥ 0 depending on the immersions such that
h(ι(ρ(t))) ≤ c′hAg ,M(t) + c′′ for all t ∈ Ag(Q). So h(ι(ρ(τ(s)))) ≤ c′c1 + c′′ is bounded
uniformly in the second case.

By fundamental work of Faltings [Fal83, §3 including the proof of Lemma 3], see
also [FC90, the remarks below Proposition V.4.4 and Proposition V.4.5], the stable
Faltings height of Ag,τ(s) is bounded from above in terms of c′c1 + c′′ and g only. The
height hDP(Ag,τ(s)) used by David and Philippon is bounded similarly by work of Bost
and David, see [DP02, Corollaire 6.9] and [Paz12].

In Rémond’s bound [DP02, page 643] for #(CF ′(Q) − P0) ∩ Γ, the base in the expo-
nential depends polynomially on Dmax{1, hDP(Ag,τ(s))}, where D is the degree over Q
of a suitable field of definition of Ag,τ(s). As this abelian variety can be defined over F ′

we may assume D ≤ [F ′ : F ]d is bounded linearly in d. Recall that deg(CF ′ − P0) is
bounded from above uniformly. So Rémond’s bound implies that c(g, d) in (1.1) can be
chosen to grow at most polynomially in d.

The definition of hDP(Ag,τ(s)) involves theta functions and a different kind of level
structure. Using standard results on heights and by going down and up in the level
structure it is likely that one can bound hDP(Ag,τ(s)) from above directly in terms of
hAg,M(τ(s)). For this one would need to work with a different level ℓ in the proof of
Theorem 1.1.

Proof of Theorem 1.2. We keep the same notation as in the proof of Theorem 1.1. So
ℓ = 3 and Ag,Ag,M, and hAg,M are as in §6.1.

Let C be a smooth curve of genus g ≥ 2 defined over Q, and let Γ be a finite rank
subgroup of Jac(C)(Q). Let P0 ∈ C(Q).

The curve C corresponds to a Q-point sc of Mg,1.
The fine moduli space Mg of smooth genus g curves with level-ℓ-structure is a finite

covering of Mg,1. So there exists an s ∈ Mg(Q) that maps to sc. Thus C is isomorphic,

over Q, to the fiber Cs of the universal family Cg → Mg. We thus view Γ as a finite rank

subgroup of Jac(Cs)(Q), and P0 ∈ Cs(Q).
Consider the Abel–Jacobi embedding C − P0 ⊆ Jac(C). Then #(C(Q) − P0) ∩ Γ =

#(Cs(Q)−P0)∩Γ. If hAg,M(τ(s)) ≥ c1, then #(C(Q)−P0)∩Γ ≤ c1+ρ
2 by Proposition 8.1.
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Thus it suffices to find a constant c′1 ≥ 0 that is independent of C and such that
h(ι([Jac(C)])) ≥ c′1 implies hAg,M(τ(s)) ≥ c1.

As after the proof of Theorem 1.1 denote by ρ : Ag = Ag,ℓ → Ag,1 the natural mor-
phism. As in the proof of Theorem 1.2 we use h(ι(ρ(t))) ≤ c′hAg,M(t) + c′′ for all

t ∈ Ag(Q). The theorem follows since ρ(τ(s)) = [Jac(C)]. �

Remark 8.3. It is possible to prove Theorem 1.1 (without the dependency claims on
c(g, d)) using Theorem 1.2. Let C be a smooth curve of genus g ≥ 2 defined over a
number field F ⊆ Q. Then by taking Γ = Jac(C)(F ) in Theorem 1.2, we can conclude
Theorem 1.1 if h(ι([Jac(C)])) ≥ c1. The case h(ι([Jac(C)])) < c1 can be handled as
in the proof of Theorem 1.1, and one can furthermore obtain extra uniformity for c2
in Theorem 1.2 by applying Rémond’s bound [DP02, page 643] as after the proof of
Theorem 1.1.

Proof of Theorem 1.4. Let C be a smooth curve of genus g ≥ 2 defined over a number
field F ⊆ Q.

Apply Theorem 1.2 to CQ, P0 ∈ C(Q) and Γ = Jac(C)(Q)tors, whose rank is 0. Then
we obtain c1 ≥ 0 and c2 ≥ 1 such that

#(C(Q)− P0) ∩ Jac(C)(Q)tors ≤ c2

if h(ι([Jac(CQ)])) ≥ c1.

By the Northcott property and Torelli’s Theorem, there are up-to Q-isomophism
only finitely many CQ’s defined over a number field F with [F : Q] ≤ d such that
h(ι([Jac(CQ)])) < c1. By applying Raynaud’s result on the Manin–Mumford Conjecture
to each one of these finitely many curves separately, we obtain Theorem 1.4. �

Appendix A. The Silverman–Tate Theorem revisited

Our goal in this appendix is to present a treatment of the Silverman–Tate Theorem,
[Sil83, Theorem A], using the language of Cartier divisors. Using Cartier divisors as
opposed to Weil divisors allows us to relax the flatness hypotheses imposed on π in
the notation of [Sil83, §3]. Apart from this minor tweak we closely follow the original
argument presented by Silverman.

Suppose S is a regular, irreducible, quasi-projective variety over Q. Let π : A → S be
an abelian scheme. We write η for the generic point of S and Aη for the generic fiber of

π. Then Aη is an abelian variety defined over Q(η).
Suppose we are presented with a closed immersion A → Pn

Q
× S over S and with a

projective variety S containing S as a Zariski open and dense subset. We will assume
that S is embedded into Pm

Q
. We do not assume that S is regular.

We identify A with a subvariety of Pn
Q
×S. Moreover, let A denote the Zariski closure

of A in Pn
S = Pn

Q
× S ⊆ Pn

Q
× Pm

Q
.

We set L = O(1, 1)|A and L = L|A. We will assume in addition that [−1]∗Lη
∼= Lη

where Lη is the restriction of L to Aη. This implies [2]∗Lη
∼= L⊗4

η .

Given these immersions, we have several height functions. For (P, s) ∈ A(Q) ⊆
Pn
Q
(Q) × Pm

Q
(Q) we define h(P, s) = h(P ) + h(s) using the Weil height. Moreover, for
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s ∈ S(Q) ⊆ Pm
Q
(Q) we define hS(s) = h(s). Finally, for all P ∈ A(Q) we denote by

ĥA(P ) = lim
N→∞

h([N ](P ))

N2

the Néron–Tate height with respect to L; it is well-known that the limit converges, cf.
the reference around (3.2).

We will prove the following variant of the Silverman–Tate Theorem.

Theorem A.1. There exists a constant c > 0 such that for all P ∈ A(Q) we have
∣∣ĥA(P )− h(P )

∣∣ ≤ cmax{1, hS(π(P ))}.
The constant c depends on A and on the various immersions but not on P . The proof

is distributed over the next subsections.

A.1. Extending multiplication-by-2. We keep the notation from the previous sub-
section. We have constructed a (very naive) projective model A of A. Note that A and
S may fail to be regular. Moreover, the natural morphism A → S, which we also denote
by π, may fail to be smooth or even flat.

Multiplication-by-2 is a morphism [2] : A → A that extends to a rational map A 99K

A. We consider the graph of [2] on A as a subvariety of A×S A. Let A′
be the Zariski

closure of this graph inside A×SA. Write ρ : A′ → A for the restriction of the projection
onto the first factor and [2] for the restriction onto the second factor. We may identify

A with a Zariski open subset of A′
. Under this identification, ρ restricts to the identity

on A and [2] restricts to multiplication-by-2 on A.
The following diagram commutes

A
⊇

A′ρ
oo

⊇

[2]
// A
⊇

A A [2]
// A

where the first and third inclusions are equal and the middle one comes from the iden-
tification involved in the graph construction.

A.2. Proof of the Silverman–Tate Theorem. We keep the notation from the pre-
vious subsection.

Proposition A.2. There exists a constant c1 > 0 such that

(A.1) |h([2](P ))− 4h(P )| ≤ c1max{1, hS(π(P ))}
holds for all P ∈ A(Q).

Proof. We define

(A.2) F ′ = [2]∗L ⊗ ρ∗L⊗(−4) ∈ Pic(A′
).

Recall that we have identified A with a Zariski open subset of A′
. The restriction of

[2]∗L to the generic fiber Aη ⊆ A ⊆ A′
coincides with [2]∗Lη and the restriction of ρ∗L

to Aη is identified with Lη. Using our assumption [2]∗Lη
∼= L⊗4

η on the generic fiber Aη

we see that F ′ is trivial on Aη.
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By [Gro67, Corollaire 21.4.13 (pp. 361 of EGA IV-4, in Errata et Addenda, liste 3)]
applied to A → S there exists a line bundle M on S such that π|∗AM ∼= F ′|A.

Let us first desingularize the compactified base S by applying Hironaka’s Theorem.

Thus there is a proper, birational morphism b : S
′ → S that is an isomorphism above

S such that S
′
is regular. We consider S as Zariski open in S

′
. Note that b is even

projective and S
′
is integral. So S

′
is an irreducible, regular, projective variety.

Now consider the base change A′ ×S S
′
. This new scheme may fail to be irreducible

or even reduced. However, recall that b is an isomorphism above the regular S ⊆ S. So

(A′ ×S S
′
)S = A′ ×S S is isomorphic to A and thus integral. We may consider A as

an open subscheme of A′ ×S S
′
. It must be contained in an irreducible component of

A′×S S
′
. We endow this irreducible component with the reduced induced structure and

obtain an integral, closed subscheme A ⊆ A′ ×S S
′
. We get a commutative diagram

A ⊆
π

��

A f
//

π
��

A′

π◦ρ
��

S ⊆ S
′

// S

The horizontal morphisms compose to the identity on the domain.

We consider S as a Zariski open subset of S
′
. As S

′
is regular, we can extend M

to a line bundle on the regular S
′
, cf. [GW10, Corollary 11.41]. The pull-back f ∗F ′ ⊗

π∗M⊗(−1) is trivial on A ⊆ A.

By Hironaka’s Theorem there is a proper, birational morphism β : Ã → A that is an

isomorphism above A (which is regular) such that Ã is regular. We may identify A with

a Zariski open subset of Ã.

Now we pull everything back to the regular Ã. More precisely, we set F = β∗f ∗F ′.
Then F ⊗ β∗π∗M⊗(−1) is trivial when restricted to A.

To a Cartier divisor D we attach its line bundle O(D). As Ã is integral we may fix

a Cartier divisor D on Ã with O(D) ∼= F ⊗ β∗π∗M⊗(−1). Let cyc(D) denote the Weil

divisor of Ã attached to D. The linear equivalence class of cyc(D) restricted to A is
trivial. By [GW10, Proposition 11.40] cyc(D) is linearly equivalent to a Weil divisor∑r

i=1 niZi with Zi ⊆ Ã \ A irreducible and of codimension 1 in Ã.

We let π̃ denote the composition Ã → A → S
′
. Let us consider π̃(Zi) = Yi. As π̃ is

proper, each Yi is an irreducible closed subvariety of S
′
. Moreover, Yi ⊆ π̃(Ã\A) ⊆ S

′\S.
So Yi has dimension at most dimS

′ − 1. But Yi could have codimension at least 2 and
thus fail to be the support of a Weil divisor. On the regular S

′
a Cartier divisor is

the same thing as a Weil divisor; see [GW10, Theorem 11.38(2)]. For each i we fix a

Cartier divisor Ei of S
′
such that cyc(Ei) equals a prime Weil divisor supported on an

irreducible subvariety containing Yi. Since cyc(Ei) is effective, we find that Ei is effective,
see [GW10, Theorem 11.38(1)] and its proof. An effective Cartier divisor and its image

under the cycle map cyc(·) have equal support. So the subscheme of S
′
attached to Ei

contains Yi.
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The pull-back π̃∗Ei is well-defined as a Cartier divisor, we do not require that π is
flat, cf. [GW10, Proposition 11.48(b)]. By [GW10, Corollary 11.49] the inverse image

π̃−1(Ei), taken as a subscheme of Ã is the subscheme attached to π̃∗Ei and π̃∗Ei is
effective.

Note that π̃−1(Ei) ⊇ π̃−1(Yi) ⊇ Zi. The support satisfies Supp(π̃
∗Ei) ⊇ Zi. Moreover,

as π̃∗Ei is effective, cyc(π̃
∗Ei) is effective and Supp(cyc(π̃∗Ei)) = Supp(π̃∗Ei). Thus

±
r∑

i=1

niZi ≤ cyc

(
π̃∗

r∑

i=1

|ni|Ei

)
.

Recall that cyc(D) = cyc(divφ)+
∑r

i=1 niZi for some rational function φ on Ã. There-
fore,

0 ≤ cyc

(
±(D − divφ) + π̃∗

r∑

i=1

|ni|Ei

)
.

Since Ã is regular and in particular normal, we find that

(A.3) ± (D − divφ) + π̃∗
r∑

i=1

|ni|Ei

is an effective Cartier divisor for both signs; see [GW10, Theorem 11.38(1)] and its proof.
Moreover, its support equals the support of

0 ≤ cyc

(
±(D − divφ) + π̃∗

r∑

i=1

|ni|Ei

)
= ±cyc(D − divφ) +

r∑

i=1

|ni|cyc(π̃∗Ei).

Thus the support of (A.3) lies in
⋃r

i=1 Supp(π̃
∗Ei).

We apply O(·) and pass again to line bundles. Let us denote E = O(
∑r

i=1 |ni|Ei), a

line bundle on S
′
. The line bundle attached to (A.3) is (F ⊗ β∗π∗M⊗(−1))⊗(±1) ⊗ π̃∗E .

Since (A.3) is effective, both (F⊗β∗π∗M⊗(−1))⊗(±1)⊗π̃∗E have a non-zero global section.
By the Height Machine this translates to

hÃ,(F⊗β∗π∗M⊗(−1))⊗(±1)⊗π̃∗E(P ) ≥ O(1)

for all P̃ ∈ Ã(Q) with π̃(P̃ ) 6∈ ⋃i Supp(Ei). By functoriality properties of the Height
Machine we obtain

|hA′
,F ′(f(β(P̃ )))| ≤ hS

′
,E(π̃(P̃ )) + |hS

′
,M(π(β(P̃ )))|+O(1)

for the same P̃ . We recall (A.2) and again use the Height Machine to find

|h([2](P ′))− 4h(ρ(P ′))| ≤ hS
′
,E(π̃(P̃ )) + |hS

′
,M(π̃(P̃ ))|+O(1)

where P ′ = f(β(P̃ )). Observe that all points of A(Q) are in the image of f ◦ β.
We recall that the desingularization morphism S

′ → S is an isomorphism above S

and that we have identified A with a Zariski open subset of A′
and of A. Under these

identifications and if P ′ corresponds to P ∈ A(Q), then [2](P ′) is the duplicate of P ,

ρ(P ′) = P , and π̃(P̃ ) = π(ρ(P ′)) = π(P ). We apply the Height Machine a final time
and use that hS arises from the Weil height restricted to S(Q). We find

|h([2](P ))− 4h(P )| ≤ c1max{1, hS(π(P ))}
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for all P ∈ A(Q) with π̃(P̃ ) 6∈ ⋃i Supp(Ei), under the identifications above.

Let P ∈ A(Q). As the Yi lie in π̃(Ã \ A) we can choose all Ei above to avoid π(P ).
After doing this finitely often (using noetherian induction) and replacing the Ei from
before and adjusting c1, we find

|h([2](P ))− 4h(P )| ≤ c1max{1, hS(π(P ))}
for all P ∈ A(Q) where c1 > 0 is independent of P . �

Proof of Theorem A.1. Having (A.1) at our disposal the proof follows a well-known ar-
gument. Indeed, say l ≥ k ≥ 0 are integers. Then applying the triangle inequality to
the appropriate telescoping sum yields

∣∣∣∣
h([2l](P ))

4l
− h([2k](P ))

4k

∣∣∣∣ ≤
l−1∑

m=k

∣∣∣∣
h([2m+1](P ))

4m+1
− h([2m](P ))

4m

∣∣∣∣

≤
l−1∑

m=k

4−(m+1)
∣∣h([2m+1](P ))− 4h([2m](P ))

∣∣ .

We apply (A.1) to [2m](P ) and find that the sum is bounded by c1x
∑l−1

m=k 4
−(m+1) ≤

c1x4
−k where x = max{1, hS(π(P ))}. So

(
h([2l](P ))/4l

)
l≥1

is a Cauchy sequence with

limit ĥA(P ). Taking k = 0 and l → ∞ we obtain from the estimates above that

|ĥA(P )− h(P )| ≤ c1x, as desired. �

Appendix B. Full version of Theorem 1.6

The goal of this section is to prove the full version of Theorem 1.6, i.e., without
assuming (Hyp). Let S be an irreducible quasi-projective variety defined over Q and let
π : A → S be an abelian scheme of relative dimension g ≥ 1.

Let L be a relative ample line bundle on A → S with [−1]∗L = L, and let M be an
ample line bundle on a compactification S of S. All data above are assumed to be defined
over Q. Set ĥA,L : A(Q) → R to be the fiberwise Néron–Tate height ĥA,L(P ) = ĥAs,Ls

(P )

with s = π(P ), and hS,M : S(Q) → R to be a representative of the height provided by
the Height Machine; cf. [BG06, Chapter 2 and 9].

The main result of this appendix is the following theorem.

Theorem B.1. Let X be an irreducible subvariety of A defined over Q. Suppose X
is non-degenerate, as defined in Definition B.4. Then there exist constants c1 > 0 and
c2 ≥ 0 and a Zariski open dense subset U of X with

(B.1) ĥA,L(P ) ≥ c1hS,M(π(P ))− c2 for all P ∈ U(Q).

Compared to Theorem 1.6, A → S is no longer required to satisfy (Hyp). Other
minor improvements are that S is not required to be regular and X is not required to
be closed.

In Definition 1.5, we defined non-degenerate subvarieties using the generic rank of the
Betti map if A → S satisfies (Hyp). For an arbitrary A → S, the definition is similar.
But we need to first of all extend our construction of the Betti map, Proposition 2.1, to
an arbitrary A → S.
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B.1. Betti map. In this subsection, we extend the construction of the Betti map, i.e.,
Proposition 2.1, to an arbitrary A → S with S regular. In this subsection, let S be
an irreducible, regular, quasi-projective variety over C and let π : A → S be an abelian
scheme of relative dimension g ≥ 1.

Proposition B.2. Let s0 ∈ S(C). Then there exist an open neighborhood ∆ of s0 in
San, and a map b∆ : A∆ := π−1(∆) → T2g, called the Betti map, with the following
properties.

(i) For each s ∈ ∆ the restriction b∆|As(C) : As(C) → T2g is a group isomorphism.
(ii) For each ξ ∈ T2g the preimage b−1

∆ (ξ) is a complex analytic subset of A∆.
(iii) The product (b∆, π) : A∆ → T2g ×∆ is a real analytic isomorphism.

Just as in the case of Proposition 2.1, the Betti map is uniquely determined by prop-
erties (i) and (iii) up-to the action of GL2g(Z) if ∆ is connected. Composing with an
α ∈ GL2g(Z) does not change the rank. So by the discussion on the uniqueness above,
any map A∆ → T2g satisfying the three properties listed in Proposition B.2 will be
called Betti map.

Proof. Our proof of Proposition B.2 follows the construction in [Gao20a, §3-§4]. We
divide it into several steps.

By [GN09, §2.1], A → S carries a polarization of type D = diag(d1, . . . , dg) for some
positive integers d1|d2| · · · |dg.

Case: Moduli space with level structure. Fix ℓ ≥ 3 with (ℓ, dg) = 1. We
start by proving Proposition B.2 for S = Ag,D,ℓ, the moduli space of abelian varieties
of dimension g polarized of type D with level-ℓ-structure. It is a fine moduli space;
see [GN09, Theorem 2.3.1]. Let πuniv

D : Ag,D,ℓ → Ag,D,ℓ be the universal abelian variety.
The universal covering Hg → Aan

g,D,ℓ [GN09, Proposition 1.3.2], where Hg is the Siegel
upper half space, gives a family of abelian varieties AHg,D → Hg fitting into the diagram

AHg,D := Ag,D,ℓ ×Ag,D,ℓ
Hg

//

��

Aan
g,D,ℓ

πuniv
D

��

Hg
// Aan

g,D,ℓ.

The family AHg,D → Hg is polarized of type D. For the universal covering u : Cg×Hg →
AHg,D and for each Z ∈ Hg, the kernel of u|Cg×{Z} isDZg+ZZg. Thus the map Cg×Hg →
Rg ×Rg ×Hg → R2g, where the first map is the inverse of (a, b, Z) 7→ (Da+Zb, Z) and
the second map is the natural projection, descends to a real analytic map

buniv : AHg,D → T2g.

Now for each s0 ∈ Ag,D,ℓ(C), there exists a contractible, relatively compact, open neigh-
borhood ∆ of s0 in Aan

g,D,ℓ such that Ag,D,ℓ,∆ := (πuniv
D )−1(∆) can be identified with AHg,∆′

for some open subset ∆′ of Hg. The composite b∆ : Ag,D,ℓ,∆
∼= AHg,D,∆′ → T2g clearly

satisfies the three properties listed in Proposition B.2. Thus b∆ is the desired Betti map
in this case.
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Case: With level structure. Assume that A → S carries level-ℓ-structure for some
ℓ ≥ 3 with (ℓ, dg) = 1. As Ag,D,ℓ is a fine moduli space there exists a Cartesian diagram

A ι
//

π

��

❴

✤

Ag,D,ℓ

��

S
ιS

// Ag,D,ℓ.

Now let s0 ∈ S(C). Applying Proposition B.2 to the universal abelian variety Ag,D,ℓ →
Ag,D,ℓ and ιS(s0) ∈ Ag,D,ℓ(C), we obtain an open neighborhood ∆0 of ιS(s0) in Aan

g,D,ℓ

and a real analytic map

b∆0 : Ag,∆0 → T2g

satisfying the properties listed in Proposition B.2.
Now let ∆ = ι−1

S (∆0). Then ∆ is an open neighborhood of s0 in San. Denote by
A∆ = π−1(∆) and define

b∆ = b∆0 ◦ ι : A∆ → T2g.

Then b∆ satisfies the properties listed in Proposition B.2 for A → S. Hence b∆ is our
desired Betti map.

Case: General case. Let s0 ∈ S(C) and ℓ ≥ 3 be a prime with (ℓ, dg) = 1.
Fix any irreducible component S0 of the kernel ker[ℓ] of [ℓ] : A → A. It is Zariski open

in ker[ℓ] as S is regular, so we consider it with its natural open subscheme structure.
Then S0 → ker[ℓ] is both a closed and open immersion. So S0 → S, the composition
with the finite étale morphism ker[ℓ] → S, is finite and étale. The upshot is that the base
change of A → S by S0 → S admits an ℓ-torsion section. After repeating this finitely
many times we obtain a finite and étale morphism ρ : S ′ → S where S ′ is irreducible
and such that A′ := A ×S S ′ → S ′ has level-ℓ-structure. Note that S ′ is regular as
S is regular and regularity ascends along étale morphisms. Moreover, A′ → S ′ is still
polarized of type D.

Let s′0 ∈ ρ−1(s0). Applying Proposition B.2 to A′ → S ′ and s′0 ∈ S ′(C), we obtain an
open neighborhood ∆′ of s′0 in (S ′)an and a map b∆′ : A′

∆′ → T2g satisfying the properties
listed in Proposition B.2.

Let ∆ = ρ(∆′). Up to shrinking ∆′, we may assume that ρ|∆′ : ∆′ → ∆ is a home-
omorphism and that ∆ is an open neighborhood of s0 in San. Thus A′

∆′
∼= A∆. Now

define

b∆ : A∆ → T2g

to be the composite of the inverse of A′
∆′

∼= A∆ and b∆′ . Then b∆ is our desired Betti
map. �

Here is an easy property of the generic rank of the Betti map.

Lemma B.3. Let b∆ : A∆ → T2g be a Betti map as in Proposition B.2. Let X be an
irreducible subvariety of A with Xan ∩A∆ 6= ∅. Let U be a Zariski open dense subset of
X. Then

(B.2) max
x∈Xsm(C)∩A∆

rankR(db∆|Xsm,an)x = max
u∈U sm(C)∩A∆

rankR(db∆|U sm,an)u.
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Proof. The statement (B.2) is true on replacing “=” by “≥”, as Xsm,an ⊇ U sm,an.
For the converse inequality we set maxx∈Xsm,an∩A∆

rankR(db∆|Xsm,an)x = r and pick x ∈
Xsm,an ∩A∆ satisfying rankR(db∆|Xsm,an)x = r. Then there exists an open neighborhood
V of x in Xsm,an such that rankR(db∆|Xsm,an)u = r for all u ∈ V . But U sm(C) ∩ V 6= ∅
since U sm 6= ∅ is Zariski open in X and V is Zariski dense in X . Thus there exists a
u ∈ U sm(C)∩V . Then we must have rankR(db∆|U sm,an)u = r and the lemma follows. �

B.2. Non-degenerate subvariety and Theorem 1.6. We keep the notation as in
the beginning of this appendix.

Definition B.4. An irreducible subvariety X of A is said to be non-degenerate if there
exists an open non-empty subset ∆ of Ssm,an, with the Betti map b∆ : A∆ := π−1(∆) →
T2g as in Proposition B.2, such that Xsm,an ∩A∆ 6= ∅ and

max
x∈Xsm(C)∩A∆

rankR(db∆|Xsm,an)x = 2dimX.

Now we are ready to prove Theorem B.1.

Proof of Theorem B.1. Let ℓ ≥ 3 be a prime. We will reduce the current theorem to
Theorem 1.6 by successively assuming, in addition to the hypothesis of Theorem B.1,
that

(i) X is Zariski closed in A,
(ii) π|X : X → S is dominant,
(iii) S is regular,
(iv) A → S is S-isogenous to an abelian scheme which carries a principal polarization,
(v) A → S carries a principal polarization,
(vi) A carries a level ℓ-structure, and
(vii) we have the same hypothesis as Theorem 1.6.

We will proceed the proof with six dévissage steps. In dévissage step n we will deduce
the theorem under the hypotheses (i),. . . ,(n−1) from the theorem under the hypotheses
(i),. . . ,(n).

First dévissage: reduction to the case where X is Zariski closed in A.

Let X denote the Zariski closure of X in A. Then X is a Zariski open dense subset
of X and dimX = dimX . Therefore, X is non-degenerate if X is non-degenerate. Now
if (B.1) holds true on a Zariski open dense subset U of X , then (B.1) clearly holds true
on U ∩X , which is Zariski open and dense in X . Thus it suffices to prove (B.1) with X
replaced by X .

Second dévissage: reduction to the case where π|X : X → S is dominant.
As X is non-degenerate, there exists a non-empty open subset ∆ of Ssm,an, with Betti

map b∆, such that rankR(db∆|Xsm,an)x = 2dimX for some x ∈ Xsm(C) ∩A∆.
Endow the Zariski closed set S ′ = π(X) with the reduced induced subscheme structure

and set A′ = A ×S S ′ = π−1(S ′). Then X ×S S ′ identifies with X via the natural
projection A′ → A. Hence there exists a non-empty open subset ∆′ of (S ′)sm,an with
π(x) ∈ ∆′ ⊆ ∆ and

rankR(db∆′ |Xsm,an)x = 2dimX.

Thus X is a non-degenerate subvariety of A′. On the other hand, the conclusion of
Theorem B.1 does not change with A → S replaced by A′ → S ′, L replaced by L|A′
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and M replaced by M|S′, where S ′ is the Zariski closure of S ′ in S. Hence it suffices to
prove Theorem B.1 after these replacements and thus we may assume that X dominates
S.

Third dévissage: reduction to the case where S is regular.
Recall that Ssm is the regular locus of S. Now π|X : X → S is dominant, so X ′ =

X ∩ π−1(Ssm) is Zariski open and dense in X . Since X is non-degenerate it follows by
definition that X ′ is non-degenerate. Moreover, the conclusion of Theorem B.1 does not
change if we replace A → S by A′ = π−1(Ssm) → Ssm, L by L|A′, and X by X ′. Finally,
observe that X ′ is Zariski closed in A′ and π(X ′) = π(X) ∩ Sreg, so π|X′ : X ′ → Sreg is
dominant.

Fourth dévissage: reduction to the case where π : A → S is S-isogenous to an abelian
scheme which carries a principal polarization.

By [Mum74, §23, Corollary 1], each abelian variety over an algebraic closed field is
isogenous to a principally polarized one. Applying this to the geometric generic fiber of
A → S, we obtain a quasi-finite étale dominant morphism ρ : S ′ → S with S ′ irreducible
and the following property: There exists a principally polarized A′

0 that is isogenous
over Q(S ′) to the generic fiber A′ of A′ := A×S S

′ → S ′. Up to replacing S ′ by an open
dense subscheme, we may furthermore assume that A′

0 extends to an abelian scheme
A′

0 → S ′. Denote by ρA : A′ = A×S S ′ → A the natural projection; it is a quasi-finite
étale dominant morphism.

As regularity ascends along étale morphisms and as S is regular we conclude that S ′

is regular. Thus A′
0 → S ′ carries a principal polarization by [Ray70, Théorème XI 1.4],

and the isogeny A′
0 → A′ extends to an S ′-isogeny A′

0 → A′ by [Ray70, Lemme XI 1.15].
There is an irreducible component X ′ of ρ−1

A (X) with dimX ′ = dimX . Then X ′ is
Zariski closed in A′, the image ρA(X

′) is Zariski dense in X , and thus X ′ dominates S ′

(it even surjects to S ′ since A′ → S ′ is proper and X ′ is closed). We claim that X ′,
as a subvariety of A′, is non-degenerate. Indeed, ρA(X

′) contains a Zariski open dense
subset U of X . Since X is a non-degenerate subvariety of A, so is U by Lemma B.3.
So there exists an open subset ∆ of San with the Betti map b∆ : A∆ → T2g such that
rankR(db∆|Uan,sm)u = 2dimU = 2dimX for all u from a non-empty open subset of Uan .
Take ∆′ to be a connected component of ρ−1(∆) such thatX ′∩(π′)−1(∆′) 6= ∅. SetA′

∆′ =
(π′)−1(∆′), and replace ∆ by ρ(∆′). Note that ρ|∆′ : ∆′ ∼= ∆ is then bianalytic after
possibly shrinking ∆′ (and so is ρA : A′

∆′
∼= A∆). Now b∆ ◦ ρA|A′

∆′
: A′

∆′ → T2g satisfies

the three properties listed in Proposition B.2. So b∆ ◦ ρA|A′
∆′

is the Betti map, which we

denote for simplicity by b∆′ ; see below Proposition B.2. For u′ ∈ (ρA|A′
∆′
)−1(u) ∩ X ′an

and for sufficiently general u, we have rankR(db∆′ |X′an,sm)u′ = 2dimX . So X ′, as a
subvariety of the abelian scheme A′ over S ′, is non-degenerate.

Now we have a non-degenerate subvariety X ′ of the abelian scheme π′ : A′ → S ′. The
line bundle ρ∗AL on A′ is relatively ample. Suppose that M′ is an ample line bundle on
some compactification S ′ of S ′.

Assume that Theorem B.1 holds for π′ : A′ → S ′, ρ∗AL, M′, and X ′. Thus there exist
constants c′1 > 0, c′2 ≥ 0 and a Zariski open non-empty subset U ′ of X ′ with

ĥA′,ρ∗
A
L(P

′) ≥ c′1hS′,M′(π
′(P ′))− c′2 for all P ′ ∈ U ′(Q).

Denote by P = ρA(P
′). By the Height Machine we have ĥA′,ρ∗

A
L(P

′) = ĥA,L(P ).
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By [Sil11, Lemma 4] applied to ρ : S ′ → S and the line bundles M′ and M, there
exist c′ = c′(ρ,M′,M) > 0 and c′′ = c′′(ρ,M′,M) ≥ 0 such that hS′,M′(π′(P ′)) ≥
c′hS,M(ρ(π′(P ′))) − c′′ = c′hS,M(π(P )) − c′′ for all P ′ ∈ A′(Q). Hence the height in-
equality above implies

ĥA,L(P ) ≥ c′1c
′hS,M(π(P ))− (c′1c

′′ + c′2) for all P ∈ ρA(U
′)(Q).

Now that ρA(U
′) contains a Zariski open non-empty (hence dense) subset U of X by

Chevalley’s Theorem. Thus Theorem B.1 also holds true for π : A → S, L, M, and X .
In summary, we have shown that it suffices to prove Theorem B.1 for π′ : A′ → S ′,

ρ∗AL, M′ and X ′. Thus we are reduced to the case where the generic fiber of A → S is
isogenous to a principally polarized abelian variety.

Fifth dévissage: reduction to the case where π : A → S carries a principal polarization.
From the previous dévissage, there exists a principally polarized abelian scheme

π0 : A0 → S with an S-isogeny λ : A0 → A. Note that λ is a finite étale mor-
phism. The line bundle λ∗L on A0 is relatively ample. By the Height Machine we
have ĥA0,λ∗L(P

′) = ĥA,L(λ(P
′)) for all P ′ ∈ A0(Q).

There is an irreducible component X0 of λ−1(X) with dimX0 = dimX . Then X0 is
Zariski closed in A0 and thus X0 dominates S (it even surjects to S since X = λ(X0)).
We claim thatX0, as a subvariety of A0, is non-degenerate. Assume this. Then it suffices
to prove the height inequality (B.1) with A → S replaced by A0 → S, X replaced by
X0, and L replaced by λ∗L.

It remains to prove that X0 is a non-degenerate subvariety of A0. To do this, we need
some preparation on Betti maps. Let ∆ be an open subset of San with the Betti map
b∆ : A∆ → T2g. Set A0,∆ = π−1

0 (∆), and denote by λ∆ the restriction of λ : A0 → A to
A0,∆. Up to shrinking ∆ we have a Betti map b0,∆ : A0,∆ → T2g. By property (iii) of
Proposition B.2, we have two real analytic isomorphisms (b0,∆, π0) : A0,∆

∼= T2g ×∆ and
(b∆, π) : A∆

∼= T2g ×∆. Thus there exists a real analytic map λ′ : T2g ×∆ → T2g ×∆
such that the following diagram commutes

A0,∆

(b0,∆,π0)

∼
//

λ∆

��

T2g ×∆

λ′

��

A∆

(b∆,π)

∼
// T2g ×∆.

As λ is a finite map, (λ′)−1(r) is a finite set for each r ∈ T2g×∆. As λ is an S-morphism,
for each s ∈ ∆ we have λ′(T2g × {s}) ⊆ T2g × {s}.

By property (i) of Proposition B.2, for each s ∈ ∆ the restriction λ′|T2g×{s} is a group
homomorphism T2g → T2g. Thus ker(λ′|T2g×{s}) is a finite, hence discrete, subgroup
of T2g. In particular, ker(λ′|T2g×{s}) is locally constant. Up to shrinking ∆, we may
assume ker(λ′|T2g×{s}) = H for each s ∈ ∆. Set λT : T

2g → T2g the quotient by the finite
subgroup H . Then the diagram above induces a commutative diagram

(B.3) A0,∆

b0,∆
//

λ∆

��

T2g

λT

��

A∆
b∆

// T2g.
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Note that λT is a local homeomorphism.
Now we turn to proving that X0 is non-degenerate in A0. Indeed, as X is a non-

degenerate subvariety of A, there exists an open subset ∆ of San with the Betti map
b∆ : A∆ → T2g such that rankR(db∆|Xan,sm)x = 2dimX for all x from a non-empty
open subset of Xan. For x0 ∈ λ−1(x) ∩ Xan

0 and for sufficiently general x, we have
rankR(d(λT ◦ b0,∆)|Xan,sm

0
)x0 = 2dimX = 2dimX0. But λT is a local homeomorphism,

so rankR(db0,∆|Xan,sm
0

)x0 = 2dimX0. Thus X0 is non-degenerate.
Sixth dévissage: reduction to the case where A/S carries level ℓ structure.
As in the treatment of the general case in the proof of Proposition B.2 there exists

a finite and étale morphism S ′ → S where S ′ is regular and irreducible such that
A′ := A×S S ′ carries level ℓ-structure.

Denote by ρA : A′ → A the natural projection. By a similar argument as the fourth
dévissage step, it suffices to prove the height inequality (B.1) with A → S replaced by
A′ → S ′, X replaced by an irreducible component of ρ−1

A (X) with dimX ′ = dimX , and
L replaced by ρ∗AL, and M replaced by an ample line bundle on some compactification
of S ′. As in the fourth dévissage X ′ dominates S ′. Finally, A′/S ′ still carries a principal
polarization.

Seventh dévissage: reduction to Theorem 1.6.
It remains to prove the height inequality (B.1) with the extra hypotheses (i) - (v) listed

above using Theorem 1.6. In this theorem we assumed in addition that the fiberwise
Néron–Tate height on A(Q) is induced by a closed immersion A → Pn

Q
× S satisfying

the second and third bullet at the beginning of §3 and that the height on S(Q) is
the restriction of the absolute logarthmic Weil height coming from a closed immersion
S → Pm

Q
.

A basis of the global sections of the line bundle M⊗p, for some p large enough, gives
rise to a closed immersion S ⊆ Pm

Q
. This gives the first bullet point at the beginning of

§3. Note that the Weil height h on Pm
Q
(Q) restricted to S(Q) via this immersion differs

from phS,M by a bounded function.

For the line bundle L on A, which is ample relative over S, we have that L⊗4 is
relatively very ample on A/S. Thus by [Gro61, Proposition 4.4.10.(ii) and Proposi-
tion 4.1.4], there is a closed immersion A → Pn

S = Pn × S given by global sections of
L⊗4⊗π∗M⊗q for some large q. When restricted to the generic fiber A of A → S, we get
a closed immersion A → Pn

k(S) which arises from a basis of the global sections of L⊗4,
where L is the restriction of L over the generic fiber A. Moreover L is ample since L is
relatively ample, and L is symmetric since [−1]∗L = L. Thus we also have the second
and third bullet points at the beginning of §3.

Note that the height function ĥA defined in (3.2) is then

ĥA : A(Q) → [0,∞), P → ĥAs,L⊗4
s
(P )

where s = π(P ). So ĥA,L = (1/4)ĥA.
The full hypothesis of Theorem 1.6 is now satisfied for A and X , e.g., (Hyp) is just

(iv) and (v). We get constants c1 > 0 and c2 and a Zariski open dense subset U of X
such that

ĥA(P ) ≥ c1h(π(P ))− c2 for all P ∈ U(Q).
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Thus (B.1) holds true with c1 replaced by (c1p)/4 and c2 replaced by c2/4+OS(1), where
OS(1) is a bounded function on S(Q). So we are done. �
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[Lel57] P. Lelong. Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France,

85:239–262, 1957.
[Maz86] B. Mazur. Arithmetic on curves. Bulletin of the American Mathematical Society, 14(2):207–

259, 1986.
[Maz00] B. Mazur. Abelian varieties and the Mordell-Lang conjecture. In Model theory, algebra, and

geometry, volume 39 of Math. Sci. Res. Inst. Publ., pages 199–227. Cambridge Univ. Press,
Cambridge, 2000.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan.Geometric invariant theory, volume 34 of Ergebnisse
der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)].
Springer-Verlag, Berlin, third edition, 1994.

[Mok91] N. Mok. Aspects of Kähler geometry on arithmetic varieties. In Several complex variables
and complex geometry, Part 2 (Santa Cruz, CA, 1989), volume 52 of Proc. Sympos. Pure
Math., pages 335–396. Amer. Math. Soc., Providence, RI, 1991.

[Mum70] D. Mumford. Varieties defined by quadratic equations. In Questions on Algebraic Varieties
(C.I.M.E., III Ciclo, Varenna, 1969), pages 29–100. Edizioni Cremonese, Rome, 1970.



UNIFORMITY IN MORDELL–LANG FOR CURVES 49

[Mum74] D. Mumford. Abelian Varieties, 2nd ed. Oxford University Press, London, 1974.
[OS80] F. Oort and J. Steenbrink. The local Torelli problem for algebraic curves. In Journées
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1987. With appendices by Daniel Bertrand and Jean-Pierre Serre.
[Zan12] U. Zannier. Some problems of unlikely intersections in arithmetic and geometry, volume 181

of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2012. With
appendixes by David Masser.

[Zha98] S. Zhang. Equidistribution of small points on abelian varieties. Ann. of Math. (2),
147(1):159–165, 1998.

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto,

Ontario, Canada M5S 2E4

Email address : dimitrov@math.toronto.edu

CNRS, IMJ-PRG, 4 place Jussieu, 75005 Paris, France

Email address : ziyang.gao@imj-prg.fr

Department of Mathematics and Computer Science, University of Basel, Spiegel-

gasse 1, 4051 Basel, Switzerland

Email address : philipp.habegger@unibas.ch


	1. Introduction
	2. Betti map and Betti form
	3. Setup and notation for the height inequality
	4. Intersection theory and height inequality on the total space
	5. Proof of the height inequality Theorem 1.6
	6. Preparation for counting points
	7. Néron–Tate distance between points on curves
	8. Proof of Theorems 1.1, 1.2, and 1.4
	Appendix A. The Silverman–Tate Theorem revisited
	Appendix B. Full version of Theorem 1.6
	References

