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INTEGRAL p-ADIC HODGE THEORY OF FORMAL SCHEMES IN

LOW RAMIFICATION

YU MIN

Abstract. We prove that for any proper smooth formal scheme X over OK , where

OK is the ring of integers in a complete discretely valued non-archimedean extension

K of Qp with perfect residue field k and ramification degree e, the i-th Breuil–Kisin

cohomology group and its Hodge–Tate specialization admit nice decompositions when

ie < p− 1. Thanks to the comparison theorems in the recent works of Bhatt, Morrow

and Scholze [BMS18], [BMS19], we can then get an integral comparison theorem for

formal schemes when the cohomological degree i satisfies ie < p− 1, which generalises

the case of schemes under the condition (i+1)e < p−1 proven by Fontaine and Messing

in [FM87] and Caruso in [Car08].
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0. Introduction

In this paper, we study the Ainf -cohomology theory and the Breuil–Kisin cohomology

theory constructed respectively in [BMS18], [BMS19], now unified as prismatic cohomol-

ogy in [BS19].
1
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Let OK always be the ring of integers in a complete discretely valued non-archimedean

extension K of Qp with perfect residue field k and ramification degree e. Our first main

result is the following:

Theorem 0.1 (Theorem 3.8, Theorem 5.11). Let X be a proper smooth formal scheme

over OK . Let OC be the ring of integers in a complete algebraically closed non-archimedean

extension C of K and X be the adic generic fibre of X̄ := X×Spf(OK) Spf(OC). Assume

ie < p− 1. Then there is an isomorphism of S = W (k)[[u]]-modules

H i
S(X) ∼= H i

ét(X,Zp)⊗Zp S

where H i
S(X) := H i(RΓS(X)) is the Breuil–Kisin cohomology of X. Consequently, we

also have

H i
Ainf

(X̄) ∼= H i
ét(X,Zp)⊗Zp Ainf ,

where H i
Ainf

(X̄) := H i(RΓAinf
(X̄)) is the Ainf-cohomology of X̄. Similarly under the same

assumption ie < p− 1, there is an isomorphism of OK-modules

H i
HT(X) ∼= H i

ét(X,Zp)⊗Zp OK ,

and an isomorphism of OC-modules

H i
HT(X̄)

∼= H i
ét(X,Zp)⊗Zp OC ,

where H i
HT(X) := H i(RΓHT(X))(resp. H i

HT(X̄) := H i(RΓHT(X̄))) is the Hodge–Tate

cohomology1 of X (resp. X̄).

Remark 0.2. Note that the definition of Breuil–Kisin modules (see Definition 1.12)

in [BMS18], [BMS19] is slightly more general than the original definition given by Kisin

in [Kis06]. The difference lies in the existence of u-torsion (note that S = W (k)[[u]] is a

two dimensional regular local ring). However, the theorem above shows that the Breuil–

Kisin cohomology theory constructed by Bhatt, Morrow and Schloze does take values in

the category of Breuil–Kisin modules in a traditional sense, at least when ie < p− 1.

Unfortunately, we can not give any canonical isomorphisms between these modules.

Our method only enables us to compare the module structure. The proof of this theorem

relies essentially on the existence of the Breuil–Kisin cohomology and the construction

of the Ainf -cohomology in [BMS18] by using the Lη-functor and the pro-étale site, which

presents a close relation between Ainf -cohomology and p-adic étale cohomology. In fact,

the Lη-functor provides us with two morphisms between H i
Ainf

(X̄) (resp. H i
HT(X̄)) and

H i
ét(X,Zp) ⊗Zp Ainf (resp. H i

ét(X,Zp) ⊗Zp OC), whose composition in both direction is

µi (resp. (ζp − 1)i). For the definitions of µ and ζp, see Definition 1.5.

Note that H i
HT(X̄) is just the base change of H i

HT(X) along the natural injection

OK → OC . We can then directly verify the statement about the Hodge–Tate cohomology

groups in Theorem 0.1 by studying the two morphisms provided by the Lη-functor.

For the part concerning the Breuil–Kisin cohomology groups, we need to prove some

torsion-free results. Namely, when ie < p − 1, the Breuil–Kisin cohomology group

H i+1
S (X) is E(u)-torsion-free (equivalently, u-torsion-free), where E(u) ∈ S is the Eisen-

stein polynomial for a fixed uniformizer π in OK . Moreover for any positive integer n,

we have H i
S(X)/pn is also E(u)-torsion-free.

1The Hodge–Tate cohomology of X̄ satisfies: RΓHT(X̄) ≃ RΓAinf
(X̄) ⊗L

Ainf ,θ
OC . We also call

RΓHT(X) := RΓS(X)⊗
L

S OK the Hodge–Tate cohomology of X, which may not be a standard notion.
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As a consequence of Theorem 0.1, we can get an integral comparison theorem about

p-adic étale cohomology and crystalline cohomology both in the unramified case and

ramified case, which generalises the case of schemes studied by Fontaine and Messing

in [FM87] and Caruso in [Car08]. This is actually the main motivation of this work. Be-

fore we state our result, we give some background about integral comparison theorems.

Integral p-adic Hodge theory. For a proper smooth (formal) scheme X over OK ,

we can consider the de Rham cohomology H i
dR(X/OK) of X, the p-adic étale cohomol-

ogy H i
ét(X,Zp) of the geometric (adic) generic fiber X and the crystalline cohomology

H i
crys(Xk/W (k)) of the special fiber Xk. Integral p-adic Hodge theory then studies the

relations of these cohomology theories.

The first result concerning integral comparison was given by Fontaine and Messing

in [FM87].

Theorem 0.3 ([FM87]). Let X be a proper smooth scheme over W (k) and Xn =

X ×Spec(W (k)) Spec(Wn(k)), where k is a perfect field of characteristic p. Let GK0 de-

note the absolute Galois group of K0 = W (k)[1p ]. Then for any integer i such that

0 ≤ i ≤ p− 2, there exists a natural isomorphism of GK0-modules

Tcrys(H
i
dR(Xn)) ≃ H i

ét(XK̄0
,Zp/p

n)

where Tcrys is a functor from the category of torsion Fontane–Laffaille modules to the

category of Zp[GK0 ]-modules, which preserves invariant factors.

Note that H i
dR(Xn) ∼= H i

crys(Xk/Wn(k)). Here we have used implicitly that H i
dR(Xn)

is in the category of torsion Fontane–Laffaille modules, which is actually one of the main

difficulties. The proof of Fontaine–Messing’s theorem relies on syntomic cohomology

which acts as a bridge connecting p-adic étale cohomology and crystalline cohomology.

Recall that rational p-adic Hodge theory provides an equivalence between the category

of crystalline representations and the category of (weakly) admissible filtered ϕ-modules.

The idea of Fontane–Laffaille’s theory is to try to classify GK0-stable Zp-lattices in a

crystalline representation V by ϕ-stable W (k)-lattices in D satisfying some conditions,

where D is the corresponding admissible filtered ϕ-module.

To generalize Fontane–Laffaille’s theory to the semi-stable case, Breuil introduced the

ring S and related categories of S-modules in order to add a monodromy operator. He

has also obtained an integral comparison result in the unramified case when i < p − 1

in [Bre98a]. Later, this result was generalized to the case that e(i+1) < p−1 by Caruso

in [Car08].

Theorem 0.4 ([Bre98a] [Car08]). Let X be a proper and semi-stable scheme over OK .

Let Xn be X ×Spec(OK) Spec(OK/pn). Fix a non-negative integer r such that er < p− 1.

Then there exists a canonical isomorphism of Galois modules

H i
ét(XK̄ ,Z/pnZ)(r) ∼= Tst∗(H

i
log−crys(Xn/(S/p

nS)))

for any i < r.

Tst∗ is a functor from the category Modr,ϕ/S∞
(see Definition 6.10) to the category

of Zp[GK ]-modules, which preserves invariant factors. The proof also relies on the

use of syntomic cohomology. One of the main difficulties in their proof is to show
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that H i
log−crys(Xn/(S/p

nS)) is in the category Modr,ϕ/S∞
, in particular, to show that

H i
log−crys(X1/(S/pS)) is finite free over S/pS.

Remark 0.5. One crucial point of Breuil’s theory is that it highly depends on the

restriction r ≤ p − 1 which is rooted in the fact that the inclusion ϕ(FilrS) ⊂ prS is

true only when r ≤ p− 1. One way to remove this restriction is to consider Breuil–Kisin

modules. In fact, one of the main motivations of Ainf -cohomology theory is to give a

cohomological construction of Breuil–Kisin modules. The techniques in [BMS18] can

not directly give the desired Breuil–Kisin cohomology. However, this goal is achieved

in [BMS19] by using topological cyclic homology and in [BS19] by defining prismatic site

in a more general setting.

Recently, Bhatt, Morrow and Scholze have obtained a more general result about the

relation between p-adic étale cohomology and crystalline cohomology in [BMS18] by

using Ainf -cohomology. Their result does not impose any restriction on the ramification

degree, roughly saying that the torsion in the crystalline cohomology gives an upper

bound for the torsion in the p-adic étale cohomology.

As we have said, by studying Ainf -cohomology and its descent Breuil–Kisin cohomol-

ogy, we can generalize the results of Fontaine–Messing, Breuil and Caruso to the case of

formal schemes, at least in the good reduction case.

Theorem 0.6 (Theorem 4.9, Theorem 5.13). Let X be a proper smooth formal scheme

over OK . Let C be a complete algebraically closed non-archimedean extension of K and

X̄ := X×Spf(OK)Spf(OC). Write X for the adic generic fiber of X̄. Then when ie < p−1,

there is an isomorphism of W (k)-modules H i
ét(X,Zp)⊗Zp W (k) ∼= H i

crys(Xk/W (k)).

We will study the unramified case and the ramified case in different ways. For the

proof in the unramified case, we need the following theorem:

Theorem 0.7 (Theorem 4.8). With the same assumptions as the theorem above, when

e = 1, we have

lengthZp
(H i

ét(X,Zp)tor/p
m)) ≥ lengthW (k)(H

i
crys(Xk/W (k))tor/p

m)

for any i < p− 1 and any positive integer m.

In fact, we first compare Hodge-Tate cohomology to Hodge cohomology by proving

that the truncated Hodge-Tate complex of sheaves τ≤p−1Ω̃X̄ is formal in this case, i.e.

there is an isomorphism τ≤p−1Ω̃X̄ ≃
⊕p−1

i=0 H
i(Ω̃X̄)[−i]. We then study the Hodge-to-

de Rham spectral sequence to relate Hodge cohomology to de Rham cohomology. By

Theorem 0.1, we can finally relate de Rham (or crystalline) cohomology to p-adic étale

cohomology. Note that the theorem above gives a converse to Theorem 1.11 in [BMS18],

which implies that Hn
ét(X,Zp) and Hn

crys(Xk/W (k)) have the same invariant factors.

In the ramified case, the integral comparison theorem follows directly from Theorem

0.1 and Theorem 1.9.

Remark 0.8. The Ainf -cohomology theory in the semi-stable case has been studied

in [CK19]. The Breuil–Kisin cohomology might be also generalised to the semi-stable

case by using the prismatic site. Then one could also hope to generalize Theorem 0.1

and Theorem 0.6 to the semi-stable case.
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We also remark that although the result in the ramified case can recover that in the

unramified case, the method used in the unramified case can lead to the following theorem

concerning the Hodge-to-de Rham spectral sequence and integral comparison result for

all cohomological degrees.

Theorem 0.9 (Theorem 4.12, Corollary 4.13). Let X be a proper smooth formal scheme

over W (k), where k is a perfect field of characteristic p. Let C be a complete algebraically

closed non-archimedean extension of W (k)[1/p] and OC be its ring of integers. Let

X̄ = X ×Spf(W (k)) Spf(OC) and write X for the adic generic fiber of X̄. Assume the

relative dimension of X satisfies dimX < p− 1. Then we have the following results:

(i) There is an isomorphism of W (k)-modules for all i

H i
ét(X,Zp)⊗Zp W (k) ∼= H i

crys(Xk/W (k)).

(ii) The (integral) Hodge-to-de Rham spectral sequence degenerates at E1-page.

When X is a scheme, Theorem 0.9 can be deduced from [FM87] together with Poincaré

duality. When X is a formal scheme, the comparison isomorphism in Theorem 0.9 can not

be deduced from Theorem 0.6 since there is still no Poincaré duality for étale cohomology

of rigid analytic varieties over C with coefficient in Z/pn. We also want to remark that

Fontaine and Messing have proved the integral Hodge-to-de Rham spectral sequence

degenerates at E1-page when the special fiber of the proper smooth formal scheme X has

dimension strictly less than p (cf. Remark 4.14).

Acknowledgements. I would like to express my great gratitude to my advisor Matthew

Morrow for suggesting this problem to me and many helpful discussions during the prepa-

ration of this work. I am also grateful to Christophe Breuil, Shizhang Li and Takeshi

Tsuji for their valuable comments. I also want to thank the referee for careful reading

and great suggestions.

Notations. Throughout this paper, let X be a proper smooth formal scheme over OK ,

which is the ring of integers in a complete discretely valued non-archimedean extension

K of Qp with perfect residue field k and ramification degree e.

Fix C a complete algebraically closed non-archimedean extension of K with OC its

ring of integers. Let X̄ = X ×Spf(OK) Spf(OC) and write X for the adic generic fiber of

X̄.

Let Xk denote the special fiber of X and Xk̄ denote its base change to k̄ which is the

residue field of OC (note that k̄ is not necessarily the algebraic closure of k).

Define S := W (k)[[u]]. Fix a uniformizer π in OK . We denote by β the W (k)-linear

map S→ OK sending u to π, whose kernel is generated by a fixed Eisenstein polynomial

E = E(u) for π.

1. Recollections on Ainf-cohomology

In this section, we will simply recall the necessary ingredients for defining the Ainf -

cohomology theory in [BMS18]. In fact, we will stick to the method using the pro-étale

site and the décalage functor Lη, which will provide us with some useful morphisms

between Ainf -cohomology groups and p-adic étale cohomology groups.
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1.1. Pro-étale sheaves. We first define some sheaves on the pro-étale siteXproét. Recall

that there is a natural projection map of sites

ω : Xproét → Xét

which is defined by pulling back U ∈ Xét to the constant tower (· · · → U → U → X) in

Xproét. This just reflects the fact that an étale morphism is pro-étale.

Definition 1.1 ( [Sch13] Section 6). Consider the following sheaves on Xproét.

(i) The integral structure sheaf O+
X := ω∗O+

Xét
.

(ii) The structure sheaf OX := ω∗OXét
.

(iii) The completed integral structure sheaf Ô+
X := lim

←−n
O+

X/pn.

(iv) The completed structure sheaf ÔX := Ô+
X [1p ].

(v) The tilted completed integral structure sheaf Ô+
X♭ := lim

←−ϕ
O+

X/p.

(vi) Fontaine’s period sheaf Ainf,X , which is the derived p-adic completion of W (Ô+
X♭).

Remark 1.2. In [BMS18, Remark 5.5], it has been pointed out that it is not clear

whether W (Ô+
X♭) is derived p-adic complete. So in order to make the Ainf -cohomology

theory work well, we need to define Ainf,X as the derived p-adic completion of W (Ô+
X♭),

which is actually a complex of sheaves.

1.2. The Lη-functor. The other important ingredient for defining the Ainf -cohomology

is the décalage functor, which functions as a tool to get rid of “junk torsion”. The “junk

torsion” exists already in Faltings’ approach to p-adic Hodge theory in [Fal88]. The

introduction of the décalage functor is actually the main novelty of [BMS18] to deal with

this “junk torsion”.

Definition 1.3 (The Lη-functor, [BMS18] Section 6). Let (T,OT ) be a ringed topos and

I ⊂ OT be an invertible ideal sheaf. For any I-torsion-free complex C• ∈ K(OT ), we

can define a new complex ηIC
• = (ηIC)• ∈ K(OT ) with terms

(ηIC)i := {x ∈ Ci|dx ∈ I · Ci+1} ⊗OT
I⊗i

For every complex D• ∈ K(OT ), there exists a strongly K-flat complex C• ∈ K(OT ) and

a quasi-isomorphism C• → D•. By saying strongly K-flat, we mean that each Ci is a flat

OT -module and for every acyclic complex P • ∈ K(OT ), the total complex Tot(C• ⊗ P •)

is acyclic. In particular, C• is I-torsion free. Then we can define

LηI : D(OT )→ D(OT )

LηI(D
•) := ηI(C

•)

A concrete example is to consider a ring A and a non-zero-divisor a ∈ A. If C is a

cochain complex of a-torsion free A-modules, we can define the subcomplex ηaC of C[ 1a ]

as

(ηaC)i := {x ∈ aiCi : dx ∈ ai+1 · Ci+1}

and this induces the corresponding functor Lηa : D(A)→ D(A).

Remark 1.4. (i) The Lη-functor is not an exact functor between derived cate-

gories. For example, consider the distinguished triangle Z/p → Z/p2 → Z/p

where the first map is induced by multiplication by p on Z and the second map

is modulo p. It is easy to see that Lηp(Z/p) = 0 and Lηp(Z/p
2) 6= 0.

(ii) By [BMS18, Proposition 6.7], the Lη-functor is lax symmetric monoidal.
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1.3. The Ainf-cohomology. We recall some basic definitions in p-adic Hodge theory.

Definition 1.5 ( [Fon94]). (i) Define O♭
C := lim

←−x→xp OC/p which is called the tilt

of OC and Ainf := W (O♭
C), the Witt vector ring of O♭

C . Note that O♭
C is a

perfect ring of characteristic p and Ainf is equipped with a natural Frobenius

map ϕ, which is an isomorphism of rings.

(ii) Fix a compatible system of primitive p-power roots of unity {ζpn}n∈N such that

ζp
pn+1 = ζpn. Under the isomorphism of multiplicative monoids O♭

C
∼= lim
←−x→xp OC ,

we define ǫ := (1, ζp, ζp2 , · · · , ζpn , · · · ) ∈ O
♭
C and µ := [ǫ]− 1 ∈ Ainf .

(iii) There is a map θ : Ainf → OC defined by Fontaine. The map θ is surjective and

ker(θ) is generated by ξ = µ/ϕ−1(µ). After twisting with the Frobenius map, we

get θ̃ := θ ◦ ϕ−1 : Ainf → OC , whose kernel is generated by ξ̃ := ϕ(ξ) = ϕ(µ)/µ.

Now we are ready to define the Ainf -cohomology theory. We consider the natural

projection ν : Xproét → X̄zar, which is actually the composite Xproét
ω
−→ Xét → X̄ét →

X̄zar.

Definition 1.6 ( [BMS18] Definition 9.1). Define AΩX̄ := LηµRν∗(Ainf,X) and Ω̃X̄ :=

Lηζp−1Rν∗(Ô
+
X). The Ainf-cohomology is defined to be the Zariski hypercohomology of

the complex of sheaves AΩX̄, i.e. RΓAinf
(X̄) := RΓzar(X̄, AΩX̄). We can also define the

Hodge–Tate cohomology RΓHT(X̄) := RΓzar(X̄, Ω̃X̄).

Remark 1.7. As both Rν∗ and the Lη-functor are lax symmetric monoidal, the complex

Ω̃X̄ is a commutative OX-algebra object in the derived category of OX-modules D(OX).

For the same reason, the complex AΩX̄ is a commutative ring in the derived category

D(Xzar,Z) of abelian sheaves.

The Ainf -cohomology takes values in the category of what we call Breuil–Kisin-Fargues

modules.

Definition 1.8 ( [BMS18] Definition 4.22). A Breuil–Kisin-Fargues module is a finitely

presented Ainf-module M which becomes free over Ainf [
1
p ] after inverting p and is equipped

with an isomorphism

ϕM : M ⊗Ainf ,ϕ Ainf [
1

ξ̃
]

≃
−→M [

1

ξ̃
].

The main theorem about the Ainf -cohomology theory is the following:

Theorem 1.9 ([BMS18] Theorem 14.3). The complex RΓAinf
(X̄) is a perfect complex of

Ainf-modules with a ϕ-linear map ϕ : RΓAinf
(X̄)→ RΓAinf

(X̄) which becomes an isomor-

phism after inverting ξ resp. ξ̃. The cohomology groups H i
Ainf

(X̄) := H i(RΓAinf
(X̄)) are

Breuil–Kisin-Fargues modules. Moreover, there are several comparison results:

(i) With étale cohomology: RΓAinf
(X̄)⊗L

Ainf
Ainf [1/µ] ≃ RΓét(X,Zp)⊗

L
Zp

Ainf [1/µ].

(ii) With crystalline cohomology: RΓAinf
(X̄)⊗L

Ainf
W (k̄) ≃ RΓcrys(Xk̄/W (k̄)), where

the map Ainf = W (O♭
C) → W (k̄) is induced by the natural projection O♭

C → k̄

(in fact, O♭
C is a valuation ring with residue field k̄).

(iii) With de Rham cohomology: RΓAinf
(X̄)⊗L

Ainf ,θ
OC ≃ RΓdR(X̄/OC).

(iv) With Hodge–Tate cohomology: Ω̃X̄ ≃ AΩX̄⊗
L

Ainf ,θ̃
OC and RΓAinf

(X̄)⊗L

Ainf ,θ̃
OC ≃

RΓHT(X̄).

Corollary 1.10. For all i ≥ 0, we have isomorphisms and short exact sequences
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(i) H i
Ainf

(X̄)⊗Ainf
Ainf [1/µ] ∼= H i

ét(X,Zp)⊗Zp Ainf [1/µ].

(ii) 0→ H i
Ainf

(X̄)⊗Ainf
W (k̄)→ H i

crys(Xk̄/W (k̄))→ TorAinf
1 (H i+1

Ainf
(X̄),W (k̄))→ 0.

(iii) 0→ H i
Ainf

(X̄)⊗Ainf ,θ OC → H i
dR(X̄/OC)→ H i+1

Ainf
(X̄)[ξ]→ 0.

(iv) 0→ H i
Ainf

(X̄)⊗
Ainf ,θ̃

OC → H i
HT(X̄)→ H i+1

Ainf
(X̄)[ξ̃]→ 0.

One of the most important applications of the Ainf -cohomology theory is to enable us to

compare étale cohomology to crystalline cohomology integrally without any restrictions

on the degree of cohomology groups and the ramification degree of the base field. More

precisely, it can be showed that the torsion in the crystalline cohomology gives an upper

bound for the torsion in the étale cohomology.

Theorem 1.11 ([BMS18] Theorem 14.5). For any n, i ≥ 0, we have the inequality

lengthW (k)(H
i
crys(Xk/W (k))tor/p

n) ≥ lengthZp
(H i

ét(X,Zp)tor/p
n)

where H i
crys(Xk/W (k))tor is the torsion submodule of H i

crys(Xk/W (k)) and H i
ét(X,Zp)tor

is the torsion submodule of H i
ét(X,Zp).

As we have mentioned, there is a refinement of the Ainf -cohomology, i.e. the Breuil–

Kisin cohomology, which is an S-linear cohomology and recovers the Ainf -cohomology

after base change along a faithfully flat map2 α : S → Ainf (in particular, we have

(α(E)) = (ξ̃)). The Breuil–Kisin cohomology gives a cohomological construction of

Breuil–Kisin modules, which plays a very important role in integral p-adic Hodge theory.

The first construction of the Breuil–Kisin cohomology is given in [BMS19] by us-

ing topological cyclic homology. Another construction is given in [BS19] by using the

prismatic site. We will not say anything about the construction of the Breuil–Kisin co-

homology theory here but choose to state a similar comparison theorem as in the Ainf

case.

Let RΓS(X) denote the Breuil-Kisin cohomology attached to X. We first recall the def-

inition of Breuil–Kisin module which is slightly more general than the original definition

due to Kisin.

Definition 1.12 ( [BMS18] Definition 4.1). A Breuil–Kisin module is a finitely generated

S-module M together with an isomorphism

ϕM : M ⊗S,ϕ S[
1

E
]→M [

1

E
].

Theorem 1.13 ([BMS19] Theorem 1.2). The Breuil–Kisin cohomology RΓS(X) of X

is a perfect complex of S-modules. Moreover, it is equipped with a ϕ-linear map ϕ :

RΓS(X)→ RΓS(X) which induces an isomorphism

RΓS(X) ⊗L
S,ϕ S[

1

E
] ≃ RΓS(X)[

1

E
]

The cohomology groups H i
S(X) := H i(RΓS(X)) are Breuil–Kisin modules. There are

several specializations that recover other p-adic cohomology theories:

(i) With Ainf-cohomology: after base change along α : S → Ainf , it recovers Ainf-

cohomology : RΓS(X)⊗
L
S,α Ainf ≃ RΓAinf

(X̄).

2To define the map α, we fix a compatible system of p-power roots π1/pn ∈ C, which defines an

element π♭ = (π, π1/p, π1/p2 , · · · ) ∈ lim
←−x 7→xp

OC
∼= O♭

C . Then α is defined to send u to [π♭]p and be the

Frobenius on W (k).
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(ii) With étale cohomology: RΓS(X) ⊗L
S,α̃ Ainf [1/µ] ≃ RΓét(X,Zp) ⊗

L
Zp

Ainf [1/µ],

where α̃ is the composite S
α
−→ Ainf →֒ Ainf [1/µ].

(iii) With de Rham cohomology: RΓS(X) ⊗L

S,β̃
OK ≃ RΓdR(X/OK), where β̃ :=

β ◦ ϕ : S→ OK .

(iv) With crystalline cohomology: after base change along the map S→W (k) which

is the Frobenius on W (k) and sends u to 0, it recovers the crystalline cohomology

of the special fiber: RΓS(X) ⊗L
S W (k) ≃ RΓcrys(Xk/W (k)).

For later convenience, we define RΓHT(X) := RΓS(X)⊗
L
S,β OK and call it the Hodge–

Tate cohomology of X. Note that there is an isomorphism: RΓHT(X) ⊗
L
OK
OC ≃

RΓHT(X).

Remark 1.14. Note that there is a Frobenius twist appearing in the specializations

above. As explained in [BMS19, Remark 1.4], this is not artificial but contains some

information about the torsion in the de Rham cohomology.

2. Lemmas in commutative algebra

In this section, we will recollect some results on finitely presented modules over OC

and prove some key lemmas that are frequently used later.

We begin with the following lemma:

Lemma 2.1 ( [Sta19]Lemma 0ASN). Let R be a ring. The following are equivalent:

(i) For a, b ∈ R, either a divides b or b divides a.

(ii) Every finitely generated ideal is principal and R is local.

(iii) The set of ideals of R are linearly ordered by inclusion.

In particular, all valuation rings satisfy these equivalent conditions. The module

structure of finitely presented modules over valuation rings is similar to that of finitely

generated modules over principal ideal domains as the following lemma shows.

Lemma 2.2 ( [Sta19]Lemma 0ASP). Let R be a ring satisfying the equivalent conditions

above, then every finitely presented R-module is isomorphic to a finite direct sum of

modules of the form R/aR where a ∈ R.

Corollary 2.3. Any finitely presented module over OC is of the form
⊕n

i=1OC/πi for

some πi ∈ OC .

We will need to study finitely presented torsion OC -modules later. The main tool to

deal with these modules is the length function lOC
, as used in [CK19], see also [Bha17]. In

particular, this length function behaves additively under short exact sequences. Usually,

we use the normalized length function, i.e. lOC
(OC/p) = 1.

Lemma 2.4. Let A and B be base changes to OC of finitely presented torsion W (k)-

modules. If for each m > 0, we have

lOC
(A/pm) = lOC

(B/pm),

then A is isomorphic to B as OC-modules.

Proof. Note that 2lOC
(A/p) − lOC

(A/p2) is the number of the invariant factor p in A.

This implies that the number of the invariant factor p of A is equal to that of B. By

induction on m, it is easy to prove A ∼= B as OC -modules.

�

https://stacks.math.columbia.edu/tag/0ASN
https://stacks.math.columbia.edu/tag/0ASP
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Next, we want to prove the following key lemma which will be used in the comparison

of Hodge–Tate cohomology and p-adic étale cohomology.

Lemma 2.5. Let M =
⊕m

i=1OC/β
mi and N =

⊕n
j=1OC/β

nj , where β 6= 0 is in the

maximal ideal m of OC and all mi, nj are positive integers. Suppose there are two OC-

linear morphisms f : M → N and g : N →M such that g ◦ f = α and f ◦ g = α, where

α ∈ OC and v(β) > v(α). Then m = n and the multi-sets {mi} and {nj} are the same,

i.e., M ∼= N .

In order to prove this lemma, we consider all finitely presented torsion modules over

OC . As we have mentioned, any such module looks like
⊕n

i=1OC/πi for some non-zero

πi ∈ m. We call trk(N) := n the torsion-rank of N . Note that the torsion-rank of N

is equal to the dimension of N base changed to the residue field of OC . So it is well-

defined. We will also use the normalized length function lOC
for finitely presented torsion

OC -modules.

Now we prove a lemma concerning the torsion-rank:

Lemma 2.6. Let N →֒ M be an injection of finitely presented torsion OC-modules.

Then trk(N) ≤ trk(M). Dually if N ։ M is a surjection of finitely presented torsion

OC-modules, then trk(N) ≥ trk(M).

Proof. Write N =
⊕n

i=1OC/πi and M =
⊕m

i=1OC/̟i. Let π be the smallest of the πi
(i.e., the one with the smallest valuation), and let ̟ be the largest of ̟i. Then

(OC/π)
n ⊂ N →֒M ⊂ (OC/̟)m,

which shows that ̟ ∈ πOC ; write ̟ = πx. The composition of these maps lands in the

π-torsion of (OC/̟)m, which is isomorphic to (xOC/̟OC)
m ∼= (OC/πOC)

m. So now

we have an injection (OC/π)
n →֒ (OC/π)

m. Taking length shows that n ≤ m.

If N ։ M is a surjection of finitely presented torsion OC -modules, we can consider

the injection Hom(M,OC/t) →֒ Hom(N,OC/t) where t is any non-zero element in m.

Then we have trk(M) = trk(Hom(M,OC/t)) ≤ trk(Hom(N,OC/t)) = trk(N). �

Lemma 2.7. Let g : N → M be a morphism of finitely presented torsion OC-modules;

write N =
⊕n

i=1OC/πi and M =
⊕m

i=1OC/̟i. Assume that ker(g) is killed by some

element α ∈ OC whose valuation is strictly smaller that all of the πi. Then trk(N) ≤

trk(M).

Proof. By assumption ker(g) is contained in the α-torsion N [α] of N , which is given by

N [α] ∼=
⊕n

i=1
πi
αOC/πiOC . So

N ։ N/ker(g) ։ N/N [α] ∼=

n⊕

i=1

πi
α
OC/πiOC .

Taking torsion-ranks, Lemma 2.6 for surjections shows that trk(N/ker(g)) = trk(N).

But N/ker(g) →֒M , so Lemma 2.6 also shows that trk(N/ker(g)) ≤ trk(M). �

Now we are ready to prove Lemma 2.5.

Proof of Lemma 2.5. Note that the number of invariant factor βk in M is equal to

trk(βk−1M) − trk(βkM). By Lemma 2.7, we have trk(βkM) = trk(βkN) for any k.

This means that the number of invariant factor βk in M and that in N are equal for any

k. So we must have M ∼= N . �
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Lemma 2.8. Let M = Or
C ⊕ (

⊕m
i=1OC/β

mi) and N = Os
C ⊕ (

⊕n
j=1OC/β

nj ). Suppose

there are two OC-linear morphisms f : M → N and g : N →M such that g ◦ f = α and

f ◦ g = α, where α ∈ OC and v(β) > v(α). Then M ∼= N . In particular, if M = 0, then

N = 0.

Proof. According to Lemma 2.5, M/βk and N/βk are isomorphic for all k. For large

enough k, this means the torsion submodule Mtor of M is isomorphic to the torsion

submodule Ntor of N and also the rank of the free part of M is equal to that of N , i.e.

r = s. We are done. �

3. Hodge–Tate cohomology

In this section, we study the Hodge–Tate specialization of the Breuil–Kisin cohomology

and prove the isomorphism concerning Hodge–Tate cohomology groups in Theorem 0.1

under the restriction ie < p− 1.

Our strategy is to first study the Hodge–Tate specialization of the Ainf -cohomology of

X̄. We can take advantage of the Lη-construction of Ainf -cohomology and its Hodge–Tate

specilizaton. This will provide us with two morphisms which enable us to use Lemma

2.8. In order to make this more precise, we need to introduce the framework of almost

mathematics (derived category version) following [Bha18].

Definition 3.1 (The pair (OC ,m)). Let m denote the maximal ideal of OC . We say an

OC-module M is almost zero if m ·M = 0. A map f : K → L in D(OC) is an almost

isomorphism if the cohomology groups of the mapping cone of f are almost zero.

Now we consider the almost derived category of OC -modules. Precisely, there are two

functors:

D(OC)
()a
−−→ D(OC)

a := D(OC)/D(k), K 7→ Ka

D(OC)
a ()∗
−−→ D(OC), Ka 7→ (Ka)∗ := RHomOC

(m,K)

where the Verdier quotient D(OC)/D(k) is actually the localization of D(OC) with

respect to almost isomorphisms. The functor ()∗ is right adjoint to the quotient functor

()a.

Lemma 3.2. If C is spherically complete, i.e. any decreaing sequence of discs in C has

nonempty intersection, we have K ≃ (Ka)∗ for any perfect complex K ∈ D(OC).

Proof. See [Bha18, Lemma 3.4]. �

There are similar constructions and results in the setting of Ainf -modules.

Definition 3.3 (The pair (Ainf ,W (m♭))). An Ainf-module M is called almost zero if

W (m♭) ·M = 0, where W (m♭) = Ker(Ainf → W (k̄)). A map f : K → L in D(Ainf)

is called an almost isomorphism if the cohomology groups of the mapping cone of f are

almost zero.

Similarly, we consider the almost derived category of Ainf -modules. Let Dcomp(Ainf) ⊂

D(Ainf) be the full subcategory of all derived p-adically complete complexes. There are

two functors:

Dcomp(Ainf)
()a
−−→ Dcomp(Ainf)

a := Dcomp(Ainf)/Dcomp(W (k)), K 7→ Ka

Dcomp(Ainf)
a ()∗
−−→ Dcomp(Ainf), Ka → (Ka)∗ := RHomAinf

(W (m♭),K)
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where the Verdier quotient Dcomp(Ainf)
a := Dcomp(Ainf)/Dcomp(W (k)) is actually the

localization of Dcomp(Ainf) with respect to almost isomorphisms. The functor ()∗ is also

right adjoint to ()a.

Lemma 3.4. If C is spherically complete, we have K ≃ (Ka)∗ for any perfect complex

K ∈ Dcomp(Ainf).

Proof. See [Bha18, Lemma 3.10]. �

Now we are ready to study the structure of the Hodge–Tate cohomology groups.

We first state a lemma about the Lη-functor, which will give us two important maps

connecting Hodge–Tate cohomology and p-adic étale cohomology.

Lemma 3.5. Let A be a commutative ring and a ∈ A be a non-zero divisor. Assume

K ∈ D[0,s](A) with H0(K) being a-torsion free. Then there are natural maps Lηa(K)→

K and K → Lηa(K) whose composition in either direction is as.

Proof. This is [BMS18, Lemma 6.9]. We give the proof here.

Firstly, we choose a representative L of K such that L is a-torsion free. Then we apply

the truncation functor τ≤s and τ≥0 to L, i.e. τ≤sτ≥0L = (· · · → 0 → L0/Im(d−1) →

L1 → · · · → Ls−1 → ker(dn) → 0 · · · ). Since K ∈ D[0,s](A), τ≤sτ≥0L is still isomorphic

to K. Moreover τ≤sτ≥0L is still a-torsion free. It is easy to see that ker(dn) is a-torsion

free. For L0/Im(d−1), suppose x̄ ∈ L0/Im(d−1) is killed by a, then ax ∈ Im(d−1) for any

lifting x ∈ L0 of x̄ and d0(ax) = ad0(x) = 0. As L0 is a-torsion free, d0(x) must be 0,

which implies that x ∈ ker(d0). But this also means that H0(L) = H0(K) has a-torsion.

So τ≤sτ≥0L is still a-torsion free and we can apply η-functor to it.

There is a natural inclusion ηa(τ
≤sτ≥0L) → τ≤sτ≥0L. We can define another map

τ≤sτ≥0L→ ηa(τ
≤sτ≥0L) by multiplying by as. Then the composition of these two maps

in either direction is as. �

We may apply Lemma 3.5 to A = OX̄, a = ζp − 1 and K = τ≤iRν∗Ô
+
X . In fact

τ≤iRν∗Ô
+
X is in D[0,i](OX̄) with H0(τ≤iRν∗Ô

+
X) being (ζp−1)-torsion-free. By the same

argument in the proof of Lemma 3.5 we can always find a representative L of τ≤iRν∗Ô
+
X

such that L is (ζp − 1)-torsion-free and Ls = 0 for any s /∈ [0, i]. Then there are two

natural maps which we denote by f and g,

f : Lηζp−1(τ
≤iRν∗Ô

+
X) ≃ τ≤iΩ̃X̄ → τ≤iRν∗Ô

+
X

g : τ≤iRν∗Ô
+
X → τ≤iΩ̃X̄

whose composition in either direction is (ζp−1)
i. The isomorphism Lηζp−1(τ

≤iRν∗Ô
+
X) ≃

τ≤iΩ̃X̄ is due to the commutativity of the Lη functor and the canonical truncation functor

τ≤i (see [BMS18, Corollary 6.5]). Recall that for any K ∈ D(OX̄), τ
≤iK := (· · · →

Ki−1 di−1

−−−→ ker(di)→ 0→ · · · ).

Passing to sheaf cohomology, we get two natural maps

f : τ≤iRΓzar(X̄, τ
≤iΩ̃X̄)→ τ≤iRΓzar(X̄, τ

≤iRν∗Ô
+
X)

g : τ≤iRΓzar(X̄, τ
≤iRν∗Ô

+
X)→ τ≤iRΓzar(X̄, τ

≤iΩ̃X̄)

whose composition in either direction is (ζp − 1)i. Since there is an isomorphsim

τ≤iRΓzar(X̄, τ
≤iΩ̃X̄) ≃ τ≤iRΓzar(X̄, Ω̃X)
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which is induced by the natural morphism τ≤iΩ̃X̄ → Ω̃X̄, we get two maps

f : τ≤iRΓzar(X̄, Ω̃X̄)→ τ≤iRΓzar(X̄, Rν∗Ô
+
X)

g : τ≤iRΓzar(X̄, Rν∗Ô
+
X)→ τ≤iRΓzar(X̄, Ω̃X̄)

whose composition in either direction is (ζp − 1)i.

Note that there is an isomorphism RΓzar(X̄, Rν∗Ô
+
X) ≃ RΓproét(X, Ô+

X ). What we

want to study at the end is not the pro-étale cohomology but the p-adic étale cohomology.

Actually we get almost what we want. Recall the primitive comparison theorem due to

Scholze.

Theorem 3.6 ([Sch13, Theorem 8.4]). For any proper smooth adic space Y over C,

there are natural almost isomorphisms

RΓét(Y,Zp)⊗
L
Zp
OC ≃ RΓproét(Y, Ô

+
Y )

and

RΓét(Y,Zp)⊗
L
Zp

Ainf ≃ RΓproét(Y,Ainf,Y ).

Then by passing to the world of almost mathematics, we get two natural maps in

D(OC)
a:

fa : (τ≤iRΓzar(X̄, Ω̃X̄))
a → (τ≤iRΓzar(X̄, Rν∗Ô

+
X))a ≃ (τ≤iRΓét(X,Zp)⊗Zp OC)

a

ga : (τ≤iRΓzar(X̄, Rν∗Ô
+
X))a ≃ (τ≤iRΓét(X,Zp)⊗Zp OC)

a → (τ≤iRΓzar(X̄, τ
≤iΩ̃X̄))

a

Lemma 3.7. The complex τ≤iRΓHT(X̄) = τ≤iRΓzar(X̄, Ω̃X̄) (resp. τ≤iRΓAinf
(X̄)) is a

perfect complex of OC-modules (resp. Ainf-modules).

Proof. Recall that we have

RΓHT(X̄) ≃ RΓS(X)⊗
L
S,α Ainf ⊗

L
Ainf

Ainf/ξ̃ ≃ RΓS(X)⊗
L
S,β OK ⊗

L
OK
OC .

Since RΓS(X) is a perfect complex of S-modules and RΓHT(X) := RΓS(X) ⊗S,β OK ,

the Hodge–Tate cohomology RΓHT(X) of X is a perfect complex of OK -modules by

[Sta19, Lemma 066W]. Moreover as OK is a Notherian local ring, the cohomology groups

H i
HT(X) are finitely generated OK-modules and so finitely presented OK -modules. So

we see that every Hodge–Tate cohomology group H i
HT(X̄) is also finitely presented over

OC . By Lemma 2.3, this means H i
HT(X̄)

∼=
⊕n

j=1OC/πj for some πj ∈ OC . So H i
HT(X̄)

is perfect. The lemma hence follows from [Sta19, Lemma 066U]. For τ≤iRΓAinf
(X̄), this

follows from [BMS18, Lemma 4.9] stating that each H i
Ainf

(X̄) is perfect. �

As τ≤iRΓét(X,Zp) and τ≤iRΓzar(X̄, Ω̃X̄) are perfect complexes, Lemma 3.2 shows

that if C is spherically complete, we then have (τ≤iRΓ(X̄, Ω̃X̄))
a
∗ ≃ τ≤iRΓ(X, Ω̃X) and

(τ≤iRΓét(X,Zp)⊗ZpOC)
a
∗ ≃ τ≤iRΓét(X,Zp)⊗ZpOC . By moving back to the real world,

we have two maps

(fa)∗ : τ
≤iRΓzar(X̄, Ω̃X̄)→ τ≤iRΓét(X,Zp)⊗Zp OC

(ga)∗ : τ
≤iRΓét(X,Zp)⊗Zp OC → τ≤iRΓzar(X̄, Ω̃X̄)

whose composition in either direction is (ζp− 1)i. These two maps induce maps between

cohomology groups for any n ≤ i.

f : Hn(X̄, Ω̃X̄)→ Hn
ét(X,Zp)⊗Zp OC

g : Hn
ét(X,Zp)⊗Zp OC → Hn(X̄, Ω̃X̄)

https://stacks.math.columbia.edu/tag/066W
https://stacks.math.columbia.edu/tag/066U
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whose composition in either direction is (ζp − 1)i.

Now we come to the following key theorem:

Theorem 3.8. Let X be a proper smooth formal scheme over OK , where OK is the

ring of integers in a complete discretely valued non-archimedean extension K of Qp with

perfect residue field k and ramification degree e. Let OC be the ring of integers in a

complete and algebraically closed extension C of K and X be the adic generic fibre of

X̄ := X×Spf(OK) Spf(OC). Assuming ie < p− 1, there is an isomorphism of OC-modules

between the Hodge–Tate cohomology group and the p-adic étale cohomology group

H i
HT(X̄) := H i(X̄, Ω̃X) ∼= H i

ét(X,Zp)⊗Zp OC .

Proof. Note that replacing C by its spherical completion C ′ will not make any difference

to this theorem. The spherical completion always exists (cf. [Rob13, Chapter 3]), which

is still complete and algebraically closed. On one hand, p-adic étale cohomology is

insensitive to such extensions in the rigid-analytic setting (cf. [Hub13, Section 0.3.2]).

On the other hand, by the base change of prismatic cohomology (cf. [BS19, Theorem

1.8]), we have H i
HT(X⊗OC

OC′) ∼= H i
HT(X)⊗OC

OC′ and the natural injection OC → OC′

is flat.

So now we assume C is spherically complete. Using the flat base change along α : S→

Ainf from the Breuil–Kisin cohomology to the Ainf -cohomology, we see thatH i(X̄, Ω̃X̄) has

a decomposition as On
C⊕(

⊕m
j=1OC/π

mj ). By requiring ie < p−1, we have v((ζp−1)
i) <

v(π) in OC as v((ζp − 1)p−1) = v(p) and v(p) = v(πe). Now the theorem follows from

Lemma 2.8 and the existence of maps

f : H i(X̄, Ω̃X̄)→ H i
ét(X,Zp)⊗Zp OC

g : H i
ét(X,Zp)⊗Zp OC → H i(X̄, Ω̃X̄).

�

4. The unramified case: comparison theorem

In this section, let OK = W (k), i.e. the ramification degree e = 1. We will study

the relation between the p-adic étale cohomology group H i
ét(X,Zp) and the crystalline

cohomology group H i
crys(Xk/W (k)) in the unramifed case. Note that in the unramified

case, the crystalline cohomology RΓcrys(Xk/W (k)) is canonically isomorphic to the de

Rham cohomology RΓdR(X/OK).

In order to prove the integral comparison theorem, we first relate Hodge–Tate coho-

mology to Hodge cohomology. And then we can use Theorem 3.8 to get a link between

Hodge cohomology and p-adic étale cohomology. The last step is to study the Hodge-to-

de Rham spectral sequence and we can prove the converse to [BMS18, Theorem 14.5],

which results in the final comparison theorem.

4.1. Decomposition of Hodge–Tate cohomology groups. In this subsection, we

explain how to relate Hodge–Tate cohomology to Hodge cohomology. In fact, we can

show that the complex of sheaves τ≤p−1Ω̃X̄ is formal in the unramified case.

Theorem 4.1. The complex of sheaves τ≤p−1Ω̃X̄ is formal, i.e. there is an isomorphism

γ :

p−1⊕

i=0

Ωi
X̄
{−i}[−i] ≃ τ≤p−1Ω̃X̄,
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where Ωi
X̄
:= lim
←−

Ωi
(X̄/pn)/(OC/pn)

is the OX̄-module of continuous differentials and Ωi
X̄
{−i}

is the Breuil–Kisin twist of Ωi
X̄
.

Proof. We proceed by first showing that τ≤1Ω̃X̄ is formal and then constructing the

general isomorphism in the statement. In this proof, LX̄/Zp
and LX̄/W (k) always mean

the derived p-adic complete cotangent complex.

By [BMS18, Proposition 8.15], there is an isomorphism τ≤1Ω̃X̄ ≃ LX̄/Zp
{−1}[−1].

Considering the sequence of sheaves Zp → W (k) → OX̄, there is an associated distin-

guished triangle

̂LW (k)/Zp
⊗L

W (k) OX̄ → LX̄/Zp
→ LX̄/W (k).

By derived Nakayama lemma, we know that ̂LW (k)/Zp
vanishes as Lk/Fp

vanishes. There-

fore, we have

LX̄/Zp
{−1}[−1] ≃ LX̄/W (k){−1}[−1].

For any affine open Spf(R) ⊂ X, write R̄ for the base change R⊗W (k)OC and R̂ for

its p-adic completion. Then we have ̂L̂R/W (k)
≃ ̂LR̄/W (k).

By the Künneth property of cotangent complex (cf. [Ill06]), we get

LR̄/W (k) ≃ (LOC/W (k) ⊗
L
W (k) R)⊕ (LR/W (k) ⊗

L
W (k) OC).

Applying the derived p-adic completion functor which is exact, we see

̂LR⊗W (k)OC/W (k) ≃ ( ̂LOC/W (k) ⊗
L
W (k) R)⊕ ( ̂LR/W (k) ⊗

L
W (k) OC).

On one hand, we have

̂LOC/W (k) ⊗W (k) R ≃
̂̂

LOC/W (k) ⊗W (k) R ≃ ¯̂R{1}[1].

As R̂ coincides with the derived p-adic completion of R̄ (cf. [Sta19, Example 0BKG]), we

have ̂LOC/W (k) ⊗W (k) R ≃ R̂{1}[1]. On the other hand, by the base change property of

cotangent complex (cf. [Ill06]), we get LR/W (k) ⊗W (k) OC ≃ LR̄/OC
. The derived p-adic

completion L̂R̄/OC
is isomorphic to lim

←−n
Ω1
(R̄/pn)/(OC/pn)

. In fact as R̄/pn is a smooth

OC/p
n-algebra for all n, we have

L̂R̄/OC
≃ Rlim(LR̄/OC

⊗L
Zp

Zp/p
n) ≃ Rlim(L(R̄/pn)/(OC/pn)) ≃ lim

←−
n

Ω1
(R̄/pn)/(OC/pn).

So finally there is an isomorphism

LX̄/W (k) ≃ OX̄{1}[1] ⊕ Ω1
X̄

and we get a decomposition τ≤1Ω̃X̄ ≃ OX̄ ⊕ Ω1
X̄
{−1}[−1]. In particular, we have a map

γ1 : Ω1
X̄
{−1}[−1] → Ω̃X̄ which gives the Hodge–Tate isomorphism C−1 : Ω1

X̄
{−1} →

H1(Ω̃X̄) (cf. [BMS18, Theorem 8.3]).

Now we consider the map for any i ≤ p− 1 given by

(Ω1
X̄
)
⊗i
→ Ωi

X̄
, ω1 ⊗ · · · ⊗ ωi 7→ ω1 ∧ · · · ∧ ωi

It has an anti-symmetrization section a as shown in [DI87], given by

a(ω1 ∧ · · · ∧ ωi) = (1/i!)
∑

s∈Symi

sgn(s)ωs(1) ⊗ · · · ⊗ ωs(i)

https://stacks.math.columbia.edu/tag/0BKG
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Then we define γi as the composite

Ωi
X̄
{−i}[−i]

a
−→ (Ω1

X̄
{−1})

⊗i
[−i] ≃ (Ω1

X̄
{−1}[−1])

⊗Li γ⊗Li
1−−−→ (Ω̃X̄)

⊗Li multi
−−−→ Ω̃X̄

Note that Ω̃X̄ is a commutative OX-algebra object in D(OX) (see Remark 1.7). By

applying Hi, we have

Ωi
X̄
{−i}

a
−→ Hi((Ω1

X̄
{−1}[−1])

⊗Li
) ∼= (H1(Ω1

X̄
{−1}[−1]))⊗i γ⊗Li

1−−−→ (H1(Ω̃X̄))
⊗i →Hi((Ω̃X̄)

⊗Li)
multi
−−−→ Hi(Ω̃X̄)

Since the Hodge–Tate isomorphism is compatible with multiplication (cf. [BMS18,

Corollary 8.13]), this composite is exactly the Hodge–Tate isomorphism C−1 : Ωi
X̄
{−i} ≃

Hi(Ω̃X̄). So we get the desired isomorphism γ =
⊕p−1

i=0 γi :
⊕p−1

i=0 Ωi
X̄
{−i}[−i] ≃ τ≤p−1Ω̃X̄.

�

Remark 4.2. Note that the key input in the proof above is the Hodge–Tate isomor-

phism C−1 : Ωi
X̄
{−i} → Hi(Ω̃X̄). In general, there is a Hodge–Tate isomorphism for

any bounded prism (A, I) (cf. [BS19, Theorem 4.10]) and also a generalization of the

isomorphism τ≤1Ω̃X̄ ≃ LX̄/Zp
{−1}[−1].

The map OX̄ → τ≤1Ω̃X̄ splits as an OX̄-module map if and only if X̄ lifts to Ainf/ξ̃
2

(cf. [BMS18, Remark 8.4]). In the ramified case, this seems to be hardly satisfied due

to the non-vanishing of the cotangent complex LOK/W (k). Note that H0(LOK/W (k)) ≃

Ω1
OK/W (k) is generated by one element (cf. [Ser13, Chapter III, Proposition 14]).

Corollary 4.3. There is a natural decomposition for any n ≤ p− 1,

Hn
HT(X̄) = Hn(X̄, Ω̃X̄)

∼=

n⊕

i=0

Hn−i(X̄,Ωi
X̄
{−i}).

4.2. Hodge-to-de Rham spectral sequence. In this subsection, we study the Hodge-

to-de Rham spectral sequence and finish the proof of the integral comparison theorem

in the unramified case. More precisely, we will prove the converse to Theorem 1.11 by

analyzing the length of the torsion submodule of de Rham cohomology groups and that

of p-adic étale cohomology groups.

Note that we have the Hodge-to-de Rham spectral sequence

Ei,j
1 = Hj(X̄,Ωi

X̄
) =⇒ H i+j(X̄,Ω•

X̄
) = H i+j

dR (X̄/OC)

As X̄ = X×Spf(W (k)) Spf(OC), this spectral sequence can be seen as the flat base change

to OC of the Hodge-to-de Rham spectral sequence of X over W (k). This tells us Ei,j
∞ is

a finitely presented OC-module (note that Ei,j
∞ is also a subquotient of Hj(X̄,Ωi

X̄
)).

For any integers i and n such that 0 ≤ i ≤ n, we have the abutment filtration

0 = Fn+1 ⊂ Fn ⊂ · · · ⊂ F 0 = Hn
dR(X̄/OC)

and the short exact sequences

0→ F i+1 → F i → Ei,n−i
∞ → 0.

Now we consider the normalized length lOC
for finitely presented torsion OC -modules.

Recall that this length behaves additively under short exact sequences and lOC
(OC/p) =

1. For any finitely presented OC-module M , one can deduce from Lemma 2.3 that Mtor
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is also a finitely presented OC -module and so is Mtor/p
m for any m > 0. Then we have

the following lemma:

Lemma 4.4. For any short exact sequence of finitely presented OC-modules

0→ A→ B → C → 0

we have lOC
(Btor) ≤ lOC

(Ator)+lOC
(Ctor) and lOC

(Btor/p
m) ≤ lOC

(Ator/p
m)+lOC

(Ctor/p
m)

for any m > 0.

Proof. For the first statement, it is easy to see that M = Btor/Ator is a submodule of

Ctor, so we have lOC
(M) = lOC

(Btor) − lOC
(Ator) ≤ lOC

(Ctor) by the additivity of the

length. For the second one, we have an exact sequence

M [pm]→ Ator/p
m → Btor/p

m →M/pm → 0

So we get lOC
(Btor/p

m) ≤ lOC
(Ator/p

m) + lOC
(M/pm). Then we need to prove that

lOC
(M/pm) ≤ lOC

(Ctor/p
m). More generally, given two finitely presented torsion OC

modules N1 ⊂ N2, there is an exact sequence

N [pm]→ N1/p
m → N2/p

m → N/pm → 0

where N = N2/N1. Note that lOC
(N [pm]) = lOC

(N/pm). In fact, this follows from the

exact sequence

0→ N [pm]→ N
pm
−−→ N → N/pm → 0

Hence lOC
(N2/p

m) ≥ lOC
(N/pm)+ lOC

(N1/p
m)− lOC

(N [pm]) = lOC
(N1/p

m). So finally

we get lOC
(Btor/p

m) ≤ lOC
(Ator/p

m) + lOC
(Ctor/p

m). �

Corollary 4.5. For any integers i and n such that 0 ≤ i ≤ n and any positive in-

teger m, we have lOC
(F i

tor/p
m) ≤ lOC

(F i+1
tor /pm) + lOC

(Ei,n−i
∞ tor/p

m). In particular,

lOC
(Hn

dR(X̄/OC)tor/p
m) ≤

∑n
i=0 lOC

(Ei,n−i
∞ tor/p

m).

Recall that the rational Hodge-to-de Rham spectral sequence degenerates at E1 page:

Theorem 4.6 ([Sch13, Corollary 1.8]). For any proper smooth rigid analytic space Y

over C, the Hodge-to-de Rham spectral sequence

Ei,j
1 = Hj(Y,Ωi

Y ) =⇒ H i+j
dR (Y/C)

degenerates at E1. Moreover, for all i ≥ 0,

i∑

j=0

dimCH
i−j(Y,Ωj

Y ) = dimCH
i
dR(Y/C) = dimQpH

i
ét(Y,Qp).

As a consequence, we have the following lemma:

Lemma 4.7. For any m > 0, we have

lOC
(Ei,n−i

∞ tor/p
m) ≤ lOC

(Hn−i(X̄,Ωi
X̄
)tor/p

m).

Proof. Theorem 4.14 tells us that the integral Hodge-to-de Rham spectral sequence de-

generates at E1 after inverting p. This means that the coboundaries Bi,n−i
∞ must be a

finitely presented torsion OC-module. Consider the short exact sequence

0→ Bi,n−i
∞ → Zi,n−i

∞ → Ei,n−i
∞ → 0.
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For any x ∈ Ei,n−i
∞ tor, there exists x̂ ∈ Zi,n−i

∞ whose image in Ei,n−i
∞ is x. As Ei,n−i

∞ is

killed by pN for some large enough N , we can see that pN x̂ is in Bi,n−i
∞ ⊂ Zi,n−i

∞ tor. So

we have another short exact sequence

0→ Bi,n−i
∞ → Zi,n−i

∞ tor → Ei,n−i
∞ tor → 0.

Then by the additivity of the length, we get that

lOC
(Ei,n−i

∞ tor/p
m) ≤ lOC

(Zi,n−i
∞ tor/p

m),

and

lOC
(Zi,n−i

∞ tor/p
m) = lOC

(Zi,n−i
∞ tor[p

m]) ≤ lOC
(Hn−i(X̄,Ωi

X̄
)tor[p

m]) = lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m).

So we have lOC
(Ei,n−i

∞ tor/p
m) ≤ lOC

(Hn−i(X̄,Ωi
X̄
)tor/p

m). �

Now we prove the converse to Theorem 1.11.

Theorem 4.8. For any positive integer m and any integer n such that 0 ≤ n < p − 1,

we have

lOC
(Hn

dR(X̄/OC)tor/p
m) ≤ lOC

(Hn
ét(X,Zp)tor ⊗Zp OC/p

m).

Proof. By Theorem 3.8 and Theorem 4.3, we have

Hn
ét(X,Zp)⊗Zp OC

∼= Hn
HT(X̄)

∼=

n⊕

i=0

Hn−i(X̄,Ωi
X̄
).

This implies that

n∑

i=0

lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m) = lOC
(Hn

ét(X,Zp)tor ⊗Zp OC/p
m)

Moreover, by Corollary 4.5 and Lemma 4.7, we have

lOC
(Hn

dR(X̄/OC)tor/p
m) ≤

n∑

i=0

lOC
(Ei,n−i

∞ tor/p
m) ≤

n∑

i=0

lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m).

So we get that

lOC
(Hn

dR(X̄/OC)tor/p
m) ≤ lOC

(Hn
ét(X,Zp)tor ⊗Zp OC/p

m)

�

Theorem 4.9. For any n < p− 1, there is an isomorphism of W (k)-modules

Hn
crys(Xk/W (k)) ∼= Hn

ét(X,Zp)⊗Zp W (k).

Proof. We first prove that there is an isomorphism of OC-modules

Hn
dR(X̄/OC) ∼= Hn

ét(X,Zp)⊗Zp OC .

Note that Theorem 1.11 tells us that for any positive integer m,

lOC
(Hn

ét(X,Zp)tor ⊗Zp OC/p
m) ≤ lOC

(Hn
dR(X̄/OC)tor/p

m)

So they must be equal by Theorem 4.8. This means that Hn
ét(X,Zp)tor ⊗Zp OC

∼=

Hn
dR(X̄/OC)tor by Lemma 2.4. Furthermore by [BMS18, Theorem 1.1], the OC-modules

Hn
dR(X̄/OC) and Hn

ét(X,Zp) ⊗Zp OC have the same rank. So we have Hn
dR(X̄/OC) ∼=

Hn
ét(X,Zp)⊗Zp OC .
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On the other hand, there is an isomorphism between de Rham cohomology and crys-

talline cohomology in the unramified case (cf. [Ber06])

Hn
dR(X/W (k)) ∼= Hn

crys(Xk/W (k)).

We also have

Hn
dR(X/W (k)) ⊗W (k) OC

∼= Hn
dR(X̄/OC)

by base change of de Rham cohomology. So finally we get the isomorphism of W (k)-

modules

Hn
crys(Xk/W (k)) ∼= Hn

ét(X,Zp)⊗Zp W (k).

�

4.3. Degeneration of the Hodge-to-de Rham spectral sequence. In this subsec-

tion, we assume d = dimX < p− 1, where dimX means the relative dimension of X. We

will improve Theorem 4.9 by considering all cohomological degrees and study the degen-

eration of the Hodge-to-de Rham spectral sequence. These will follow from improvements

of Theorem 3.8 and Corollary 4.3.

We begin with an improvement of Corollary 4.3.

Lemma 4.10. When d = dimX < p− 1, we have

Hn
HT(X̄) = Hn(X̄, Ω̃X̄)

∼=

n⊕

i=0

Hn−i(X̄,Ωi
X̄
{−i}).

for all n.

Proof. Recall the Hodge–Tate isomorphism: H i(Ω̃X)
∼= Ωi

X
(cf. [BMS18, Theorem 8.3]).

When i ≥ p − 1 > d, we have Ωi
X
= 0. This implies τ≤p−2Ω̃X ≃ Ω̃X. In particular, the

whole complex Ω̃X is formal by Theorem 4.1, from which this lemma follows.

�

Next we study the comparison between Hodge–Tate cohomology and p-adic étale co-

homology. Recall that we have the following two maps

f : τ≤dΩ̃X → τ≤dRν∗Ô
+
X

g : τ≤dRν∗Ô
+
X → τ≤dΩ̃X

whose composition in either direction is (ζp − 1)d.

We claim that Rν∗Ô
+
X is almost supported in degrees ≤ d, i.e. there is an almost

isomorphism τ≤dRν∗Ô
+
X ≃ Rν∗Ô

+
X . We will check this locally.

Recall that an OC-algebra R is called formally smooth (as in [BMS18]) if it is a

p-adically complete flat OC-algebra such that R/p is a smooth OC/p-algebra. And a

formally smooth OC -algebra R is called small (cf. [BMS18, Definition 8.5]) if there is an

étale map

✷ : SpfR→ SpfOC〈T
±1
1 , · · · , T±1

d 〉.

We call such étale map a framing. Given a framing, we can define

R∞ := R⊗̂OC〈T±1
1 ,··· ,T±1

d 〉OC〈T
±1/p∞

1 , · · · , T
±1/p∞

d 〉

which is an integral perfectoid ring. And there is an action of Γ = Zp(1)
d on it. More

precisely, choose a compatible system (ζpm) of p-power roots of unity and let γi, i =



20 YU MIN

1, · · · , d be generators of Γ. Then γi acts by sending T
1/pm

i to ζpmT
1/pm

i and sending

T
1/pm

j to T
1/pm

j for j 6= i.

By Faltings’ almost purity theorem (cf. [Fal88, Chapter 1, Section 3 and 4]) and

[Sch13, Proposition 3.5, Proposition 3.7, Corollary 6.6], there is an almost isomorphism

of complexes of OC -modules

RΓ(Γ, R∞)→ RΓ(Yproét, Ô
+
Y ),

where Y = Spa(R[1/p], R). Moreover the continuous group cohomology on the left hand

side can be calculated by the Koszul complex KR∞
(γ1−1, · · · , γd−1) by [BMS18, Lemma

7.3], which can be defined as

KR∞
(γ1 − 1, · · · , γd − 1) = R∞ ⊗Z[γ1,··· ,γd] (

d⊗

i=1

(Z[γ1, · · · , γd]
γi−1
−−−→ Z[γ1, · · · , γd])).

This complex sits in non-negative cohomological degrees [0, d]. On the other hand, since

X is a proper smooth formal scheme over OC , there exists a basis of small affine opens

(cf. [Ked03, Theorem 2], [Bha18, Lemma 4.9]). So when i > d, we get that Riν∗Ô
+
X is

almost zero.

So now we have an almost isomorphism: τ≤dRν∗Ô
+
X → Rν∗Ô

+
X . Taking cohomology,

we then get an almost isomorphism: RΓ(X, τ≤dRν∗Ô
+
X) → RΓ(X, Rν∗Ô

+
X). Again by

Theorem 3.6, we get two maps in almost derived category D(OC)
a:

f : (RΓ(X, τ≤dΩ̃X))
a → (RΓét(X,Zp)⊗Zp OC)

a

g : (RΓét(X,Zp)⊗Zp OC)
a → (RΓ(X, τ≤dΩ̃X))

a

whose composition in either direction is (ζp−1)d. Since both sides are perfect complexes

of OC-modules, we get two maps in the derived category D(OC):

f : RΓ(X, τ≤dΩ̃X)→ RΓét(X,Zp)⊗Zp OC

g : RΓét(X,Zp)⊗Zp OC → RΓ(X, τ≤dΩ̃X)

whose composition in either direction is (ζp − 1)d.

Now as τ≤dΩ̃X ≃ Ω̃X, we have RΓ(X, τ≤dΩ̃X) ≃ RΓ(X, Ω̃X) = RΓHT(X). So we get

two maps

f : RΓHT(X)→ RΓét(X,Zp)⊗Zp OC

g : RΓét(X,Zp)⊗Zp OC → RΓHT(X)

whose composition in either direction is (ζp − 1)d.

Theorem 4.11. There is an isomorphism of OC-modules for all n

Hn
HT(X)

∼= Hn
ét(X,Zp)⊗Zp OC .

Proof. This follows from Lemma 2.8. �

Theorem 4.12. Assume d = dimX < p − 1. Then there is an isomorphism of W (k)-

modules for all n

Hn
crys(Xk/W (k)) ∼= Hn

ét(X,Zp)⊗Zp W (k).
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Proof. Note that if Theorem 4.8 is true for all n, then Theorem 4.9 is true for all n. And

if Theorem 3.8 and Theorem 4.3 are true for all cohomological degrees, then Theorem

4.9 is true for all cohomological degrees. So this theorem follows from Theorem 4.10 and

Theorem 4.11.

�

Corollary 4.13. If d = dim(X) < p − 1, the coboundaries Bi,n−i
∞ vanish for all n. In

particular the Hodge-to-de Rham spectral sequence degenerates at E1-page.

Proof. By Theorem 4.10 and Theorem 4.11, we see that

n∑

i=0

lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m) = lOC
(Hn

ét(X,Zp)tor ⊗Zp OC/p
m)

is true for all n.

Theorem 4.12 shows that for all n we have

lOC
(Hn

dR(X̄/OC)tor/p
m) = lOC

(Hn
ét(X,Zp)tor ⊗Zp OC/p

m).

So we conclude that

lOC
(Hn

dR(X̄/OC)tor/p
m) =

n∑

i=0

lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m)

holds for all n.

As we have seen in the proof of Lemma 4.7, there are inequalities for all n

lOC
(Ei,n−i

∞ tor/p
m) ≤ lOC

(Zi,n−i
∞ tor/p

m) ≤ lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m).

Also by using the same argument as in the proof of Theorem 4.8, we have

lOC
(Hn

dR(X̄/OC)tor/p
m) ≤

n∑

i=0

lOC
(Ei,n−i

∞ tor/p
m) ≤

n∑

i=0

lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m).

holds for all n. But these inequalities are in fact equalities. This means that

lOC
(Ei,n−i

∞ tor/p
m) = lOC

(Zi,n−i
∞ tor/p

m) = lOC
(Hn−i(X̄,Ωi

X̄
)tor/p

m).

In other words, the coboundaries Bi,n−i
∞ vanish as we have lOC

(Bi,n−i
∞ ) = lOC

(Zi,n−i
∞ tor)−

lOC
(Ei,n−i

∞ tor) = 0. So the Hodge-to-de Rham spectral sequence degenerates at E1-

page. �

Remark 4.14. We collect some other results about the degeneration of the (integral)

Hodge-to-de Rham spectral sequence.

(i) In [FM87, Corollary 2.7], Fontaine and Messing have proved that for any proper

smooth (formal) scheme Y whose special fiber has dimension strictly less than

p, the Hodge-to-de Rham spectral sequence degenerates at E1-page. Their proof

makes use of the syntomic cohomology.

(ii) For any projective smooth scheme Y over W (k) where k is a perfect field of

characteristic p, Kazuya Kato has proved that if dim(Y) ≤ p, the Hodge-to-de

Rham spectral sequence degenerates at E1-page and the de Rham cohomology

groups are Fontane–Laffaille modules (cf. [K+87, chapter II, Proposition 2.5]).
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(iii) For any proper smooth formal scheme Y over OK , where OK is the ring of

integers of a complete discretely valued non-archimedean extension K of Qp

with perfect residue field k and ramification degree e. Let S be W (k)[[u]] and E

be an Eisenstein polynomial for a uniformizer π of OK . Shizhang Li has proved

that if Y can be lifted to S/(E2) and dim(Y) · e < p− 1, then the Hodge-to-de

Rham spectral sequence is split degenerate (cf. [Li20, Theorem 1.1]). His proof

uses Theorem 0.1.

5. The ramified case: comparison theorem

In this section, we will get some properties about the torsion in the Breuil–Kisin co-

homology groups H i+1
S (X) when ie < p − 1 and obtain an integral comparison theorem

comparing the p-adic étale cohomology groups and the crystalline cohomology groups.

5.1. Torsion in Breuil–Kisin cohomology groups. Note that the ringS = W (k)[[u]]

is a two-dimensional regular local ring. The structure of S-modules is subtle in general

(see Remark 5.12). In particular, it is difficult to study the u-torsion. But in our case,

it turns out to be simpler.

Recall that we can define Ainf := W (O♭
C) as in Definition 1.5. We start by studying

the Ainf -cohomology groups of X.

Lemma 5.1. The Ainf-cohomology group H i+1
Ainf

(X̄) := H i+1(X̄, AΩX̄) is ξ̃-torsion-free

for any i such that ie < p− 1.

Proof. We assume that C is spherically complete. As in the proof of Theorem 3.8, we see

that the spherical completion of C exists and is still complete and algebraically closed.

Moreover since RΓAinf
(X) ≃ RΓS(X) ⊗

L
S,α Ainf where α : S → Ainf is the faithfully flat

map taking (E) to (ξ̃), we have H i+1
Ainf

(X̄) ∼= H i+1
S (X) ⊗S,α Ainf , in particular H i+1

Ainf
(X̄)

is ξ̃-torsion-free if and only if H i+1
S (X) is E-torsion-free as (α(E)) = (ξ̃). So it does not

matter whether C is spherically complete or not.

As in Chapter 3, we apply Lemma 3.5 to the complex of sheaves of Ainf -modules

τ≤iRν∗Ainf,X and the element µ ∈ Ainf . Precisely, in the category D[0,i](X, Ainf), we get

two natural maps

f : τ≤iRν∗Ainf,X → Lηµτ
≤iRν∗Ainf,X ≃ τ≤iAΩX

g : τ≤iAΩX ≃ Lηµτ
≤iRν∗Ainf,X → τ≤iRν∗Ainf,X

whose composition in either direction is µi.

We consider the the complex of sheaves τ≤iRν∗Ô
+
X as in the category D(X̄, Ainf) via

the map Ainf
θ̃
−→ OC → OX̄. Moreover it is in the category D[0,i](X̄, Ainf).

There is a map τ≤iRν∗Ainf,X → τ≤iRν∗Ô
+
X induced by θ̃ : Ainf,X → Ô

+
X . So we can

get a commutative diagram

Lηµτ
≤iRν∗Ainf,X Lηµτ

≤iRν∗Ô
+
X

τ≤iRν∗Ainf,X τ≤iRν∗Ô
+
X

s1

f1 f2

s2

g1 g2
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where the composition of fj with gj in either direction is µi for j = 1, 2. Note that

Lηζp−1τ
≤iRν∗Ô

+
X is isomorphic to Lηµτ

≤iRν∗Ô
+
X in D(X̄, Ainf).

Recall that τ≤iRΓAinf
(X̄) is a perfect complex of Ainf -modules according to Lemma

3.7. Then by the second almost isomorphism in Theorem 3.6 and Lemma 3.4, we can

get two maps

f : τ≤iRΓAinf
(X̄)→ τ≤iRΓét(X,Zp)⊗Zp Ainf .

g : τ≤iRΓét(X,Zp)⊗Zp Ainf → τ≤iRΓAinf
(X̄)

whose composition in either direction is µi.

By taking cohomology, we can obtain another commutative diagram

H i
Ainf

(X̄) H i
HT(X̄)

H i
ét(X,Zp)⊗Zp Ainf H i

ét(X,Zp)⊗Zp OC

s1

f1 f2

s2

g1 g2

Note that Coker(s1) is in fact H i+1
Ainf

(X̄)[ξ̃] and Coker(s2) = 0.

Therefore we get two induced maps

H i+1
Ainf

(X̄)[ξ̃] 0
f3

g3

where the composition of f3 and g3 in either direction is µi. Since H i+1
Ainf

(X̄)[ξ̃] ≃

H i+1
S (X)[E] ⊗OK

OC as OC-modules, it has a decomposition as Om
C ⊕ (

⊕n
s=1OC/π

ns).

Note that the image of µ under the reduction Ainf → Ainf/ξ̃ is ζp − 1 and v((ζp − 1)i) <

v(π) when ie < p− 1. We then can get H i+1
Ainf

(X̄)[ξ̃] = 0 by Lemma 2.8.

�

Remark 5.2. The previous version of this lemma covers the cohomological degree i such

that ie < p− 1. We want to thank Shizhang Li for pointing out that the previous proof

can be improved slightly to include the cohomological degree i+ 1 such that ie < p− 1.

In the next lemma, we give an equivalent statement to the ξ̃-torsion-freeness for some

special Ainf -modules.

Lemma 5.3. Let M be a finitely presented Ainf-module such that M [1p ] is finite projective

over Ainf [
1
p ], and let x ∈ m\(p) where m is the maximal ideal of Ainf . Then M is ξ̃-

torsion-free if and only if it is x-torison-free.

Proof. Note that the radical ideal of (p, x) is the maximal ideal. If there exists a ∈ M

such that xa = 0, then for any other y ∈ m\(p), we have yna = 0 for any sufficiently

large n. This is because all torsion in M is killed by some power of p. Then this lemma

follows. �

Corollary 5.4. When ie < p − 1, the Ainf-cohomology group H i+1
Ainf

(X̄) is ξ-torsion-free

and the Breuil–Kisin cohomology group H i+1
S (X) is both E-torsion-free and u-torsion-

free.

Recall that for any finitely presented Ainf -moduleM such that M [1p ] is finite projective

over Ainf [
1
p ], we have the following proposition:
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Proposition 5.5 ( [BMS18] Proposition 4.13). Let M be a finitely presented Ainf-module

such that M [1p ] is finite projective over Ainf [
1
p ]. Then there is a functorial exact sequence

0→Mtor →M →Mfree →M → 0

satisfying:

(i) Mtor, the torsion submodule of M , is finitely presented and perfect as an Ainf-

module, and is killed by pn for n≫ 0.

(ii) Mfree is a finite free Ainf-module.

(iii) M is finitely presented and perfect as an Ainf-module, and is supported at the

closed point s ∈ Spec(Ainf).

Here we recall the construction of the free module Mfree. Since M/Mtor is torsion-free,

the quasi-coherent sheaf associated to it restricts to a vector bundle on Spec(Ainf)\{s}

by [BMS18, Lemma 4.10]. By [BMS18, Lemma 4.6], the global section of this vector

bundle is a finite free Ainf -module, which gives Mfree. In particular, if M/Mtor is free

itself, then M/Mtor = Mfree. For more details, see the proof of [BMS18, Proposition

4.13].

By applying this proposition to H i
Ainf

(X̄), we can obtain the following lemma saying

that H i
Ainf

(X̄) is a direct sum of its torsion submodule and a free Ainf -module.

Lemma 5.6. For any i such that ie < p−1, the term M in the functorial exact sequence

0→Mtor →M = H i
Ainf

(X̄)→Mfree →M → 0

vanishes.

Proof. Let N = H i
ét(X,Zp) ⊗Zp Ainf , we have two maps f : M → N and g : N → M ,

whose composition in either direction is µi. Then we have a commutative diagram

0 Mtor M Mfree M 0

0 Ntor N Nfree 0 0

by functoriality. All the vertical maps have inverses up to µi.

On the other hand, the exact sequence associated to H i
Ainf

(X̄) is the flat base change

of the canonical exact sequence associated to H i
S(X) (see [BMS18, Proposition 4.3 and

4.13]). Hence M ∼= H i
S(X)⊗SAinf and M/ξ̃ ∼= (H i

S(X)/E)⊗SAinf whereH
i
S(X) is a tor-

sion S-module and is killed by some power of (p, u). Again, by using the decomposition

of H i
S(X)/E and the fact that v((ζp−1)i) < v(π) when ie < p−1, we get H i

S(X)/E = 0

and M/ξ̃ = 0 by Lemma 2.8. Then M = 0 follows from Nakayama lemma.

�

Corollary 5.7. For any i such that ie < p − 1, the Ainf-cohomology group H i
Ainf

(X)

is a direct sum of a free Ainf-module and its torsion submodule. Also, the Breuil–Kisin

cohomology group H i
S(X) is a direct sum of a free S-module and its torsion submodule.

In the following part, we consider the torsion submodules of the cohomology groups

H i
Ainf

(X̄) and H i
S(X), and let H i

A−tor, H
i
S−tor denote them respectively.

We first prove a key lemma which enables us to study the structure of Hn
S−tor.
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Lemma 5.8. For any i such that ie < p− 1, the modules (psH i
A−tor

)/pm (resp.

(psH i
S−tor)/p

m) are ξ̃-torsion-free (resp. E-torsion-free) for all non-negative integers

m, s.

Proof. Recall that we have two injective map f : H i
A−tor → H i

ét−tor ⊗Zp Ainf and

g : H i
ét−tor ⊗Zp Ainf → H i

A−tor whose composition in either direction is µi. These induce

two new maps (we still denote f and g) between ((psH i
A−tor

)/pm)[ξ̃] and ((psH i
ét−tor)⊗Zp

Ainf/p
m)[ξ̃] whose composition in either direction is µi. Note that ((psH i

ét−tor) ⊗Zp

Ainf/p
m)[ξ̃] = 0. This means ((psH i

A−tor)/p
m)[ξ̃] is killed by µi. As ((psH i

A−tor)/p
m)[ξ̃] ∼=

((psH i
S−tor)/p

m)[E]⊗S Ainf admits a decomposition as
⊕n

t=1OC/π
nt and v((ζp− 1)i) <

v(π), the module ((psH i
A−tor)/p

m)[ξ̃] must be 0 by Lemma 2.8. Since ((psH i
A−tor)/p

m)[ξ̃] ∼=

(psH i
S−tor)/p

m)[E] ⊗S,α Ainf and the map α : S → Ainf is faithfully flat, we also have

(psH i
S−tor)/p

m) is E-torsion-free. �

In order to determine the module structure of H i
S(X), we need the following lemma.

Lemma 5.9. Let M be a finitely presented torsion S-module. If M/p ∼= (S/p)n and

pM ∼=
⊕r

i=1 S/pni, we have an isomorphism of S-modules: M ∼=
⊕n

i=1S/pmi .

Proof. The proof is just that of [Bre98b, Lemma 2.3.1.1], simply by replacing S by S.

For readers’ convenience, we give the proof here.

Choose m ≥ 0 such that pmM = 0. Let (e1, e2, · · · , en) be a basis of M/pM over S/p

and we choose their liftings ê1, ê2, · · · , ên in M . By Nakayama lemma, we see that M

is generated by (ê1, ê2, · · · , ên) as a S/pm-module. So (pê1, pê2, · · · , pên) generate the

S/pm-module pM .

After renumbering (êi), we can suppose that the images of pê1, pê2, · · · , pêr in pM⊗S/pm

k form a basis over k. Choose f1, · · · , fr ∈ pM such that pM ∼=
⊕r

i=1 S/pniS ·

fi. Then there exists a r × r-matrix A ∈ Mr(S/pmS) such that (f1, f2, · · · , fr)A =

(pê1, pê2, · · · , pêr). Since A mod (p, u) ∈ GLr(k), we know that A is in GLr(S/pmS).

So we can replace (ê1, ê2, · · · , êr) by (ê1, ê2, · · · , êr)A
−1 and suppose pêi = fi for 1 ≤ i ≤

r.

For r+1 ≤ j ≤ n, there exist aij ∈ S/pmS for 1 ≤ i ≤ r such that pêj =
∑r

i=1 aijfi =∑r
i=1 aijpêi. Again, we can replace êj by êj −

∑r
i=1 aij êi for r+ 1 ≤ j ≤ n. That means

we can suppose pêj = 0 for r + 1 ≤ j ≤ n.

Finally, we can construct a surjective morphism of S/pmS-module:

h : M ′ = (

r⊕

i=1

S/pni+1S× gi)
⊕

(

n⊕

i=r+1

S/pS× gi)→M

gi 7→ êi

Note that the morphism h : M ′ → M induces two isomorphisms: h1 : pM ′ ∼
−→ pM and

h2 : M
′/pM ′ ∼

−→M/pM under the choice of êi, 1 ≤ i ≤ n. For any x such that h(x) = 0,

if x ∈ pM ′, then x = 0 since h2(x) = h(x) = 0. If x /∈ pM ′, then h2(x̄) = 0 implies that

x ∈ pM ′ where x̄ is the image of x in M ′/pM ′. So h : M ′ →M must be an isomorphism.

We are done. �

Corollary 5.10. Let M be a finitely presented torsion S-module which is killed by some

power of p. If (psM)/p is u-torsion-free for all s ≥ 0, the module M admits a decompo-

sition as M ∼=
⊕n

i=1S/pmi .
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Proof. To prove this corollary, we want to apply Lemma 5.9 to M . Note that M/p is

u-torsion-free by our assumption, therefore finite free as a S/p = k[[u]]-module. So we

need to prove that pM admits a nice decomposition as in Lemma 5.9. Since the module

(pM)/p is also u-torsion-free by our assumption, we only need to prove that p2M admits

a nice decomposition as in Lemma 5.9. We can continue this process until that we need

to prove pmM admits a nice decomposition as in Lemma 5.9 for some m such that M

is killed by pm+1. As p(pmM) = 0 and (pmM)/p = pmM has no u-torsion, we see that

pmM is a free S/p-module by Lemma 5.9. So we are done.

�

5.2. Integral comparison theorem. Now we state our main theorem of this section

comparing the module structure of Breuil–Kisin cohomology groups to that of p-adic

étale cohomology groups.

Theorem 5.11. Let X be a proper smooth formal scheme over OK , where OK is the

ring of integers in a complete discretely valued non-archimedean extension K of Qp

with perfect residue field k and ramification degree e. Let OC be the ring of integers

in a complete algebraically closed non-archimedean extension C of K and X be the adic

generic fibre of X̄ := X×Spf(OK) Spf(OC). Assuming ie < p− 1, there is an isomorphism

of S-modules

H i
S(X) ∼= H i

ét(X,Zp)⊗Zp S.

In particular, we also have an isomorphism of Ainf-modules

H i
Ainf

(X) ∼= H i
ét(X,Zp)⊗Zp Ainf .

Proof. Note that the torsion submodule H i
S−tor of H

i
S(X) is killed by some power of p.

Then by Lemma 5.8 and Lemma 5.10, we get a decomposition H i
S−tor

∼=
⊕n

t=1 S/pmt .

Since H i
S(X) is a direct sum of a free S-module and H i

S−tor by Corollary 5.7, this

theorem then follows from the étale specialization of the Breuil–Kisin cohomology groups

(see Theorem 1.13)

Hn
S(X)⊗S Ainf [1/µ] ∼= Hn

ét(X,Zp)⊗Zp Ainf [1/µ].

where the map S→ Ainf [1/µ] is the composition of the faithfully flat map α : S→ Ainf

and the natural injection Ainf = W (O♭
C)→ Ainf [1/µ].

�

Remark 5.12. In general, for any finitely generated module M over S (or any other

two dimensional regular local ring), there is a pseudo-isomorphism between M and Sr⊕

(
⊕n

i=1 S/Pi) where each Pi is a prime ideal of height 1. Pseudo-isomorphism means its

localization at all prime ideals of height 1 is in fact an isomorphism. Within the range

ie < p−1, the theorem above tells us that the classical p-adic cohomology theories provide

enough information to determine the structure of Breuil–Kisin cohomology groups. But

beyond this range, the situation gets subtle.

Now we come to prove the integral comparison theorem in the ramified case.

Theorem 5.13. Let X be a proper smooth formal scheme over OK , where OK is the

ring of integers in a complete discretely valued non-archimedean extension K of Qp with

perfect residue field k and ramification degree e. Let OC be the ring of integers in a

complete algebraically closed non-archimedean extension C of K with residue field k̄. Let
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X be the adic generic fibre of X̄ := X×Spf(OK) Spf(OC) and Xk be the special fiber of X.

If ie < p− 1, then there is an isomorphism of W (k)-modules

H i
ét(X,Zp)⊗Zp W (k) ∼= H i

crys(Xk/W (k)).

Proof. Assume ie < p−1. By Corollary 1.10 and Corollary 5.4, we have an isomorphism

of OC-modules

H i
Ainf

(X̄)/ξ ∼= H i
dR(X̄/OC).

Since we also have H i
Ainf

(X̄) ∼= H i
ét(X,Zp) ⊗Zp Ainf by Theorem 5.11, we get an iso-

morphism of OC-modules

H i
dR(X̄/OC) ∼= H i

ét(X,Zp)⊗Zp OC .

Note that when e < p, we have an integral comparison isomorphism between de Rham

cohomology and crystalline cohomology (cf. [Ber06])

H i
dR(X̄/OC) ∼= H i

crys(Xk̄/W (k̄))⊗W (k̄) OC

where Xk̄ := Xk ⊗k k̄.

So finally, we get the isomorphism

H i
ét(X,Zp)⊗Zp W (k̄) ∼= H i

crys(Xk̄/W (k̄)).

By virtue of the base change of crystalline cohomology

H i
crys(Xk̄/W (k̄)) ∼= H i

crys(Xk/W (k)) ⊗W (k) W (k̄),

we also have

H i
ét(X,Zp)⊗Zp W (k) ∼= H i

crys(Xk/W (k)).

�

Remark 5.14. When (i + 1)e < p − 1, the proof of the integral comparison isomor-

phism for schemes in [Car08] depends on the fact that the crystalline cohomology groups

H i
crys(XOK/p/S) admits a decomposition as H i

crys(XOK/p/S) ∼= Sn⊕ (
⊕m

j=1 S/p
aj ). This

can also be deduced from Theorem 5.11 and the base change of prismatic cohomology

along the map of prisms (S, (E)) → (S, (p)), which is the composition of the Frobenius

map S→ S and the natural injection S →֒ S.

6. Categories of Breuil–Kisin modules

In this section, we want to give a slightly more general result about the structure of

torsion Breuil–Kisin modules of height r, under the restriction er < p − 1. Namely, all

torsion Breuil–Kisin modules in this case are isomorphic to
⊕n

i=1 S/pai . As a result,

this gives another proof of Theorem 5.11 without using Lemma 5.8.

Recall that there is a natural W (k)-linear surjection β : S = W (k)[[u]]→ OK sending

u to π. The kernel of this map is generated by an Eisenstein polynomial E = E(u) for π.

Fix a non-negative integer r. We first need to define some categories that we will study.

Definition 6.1 (′Modr,ϕ/S , [CL09]). The objects of category ′Modr,ϕ/S are defined to be S-

modules M equipped with a ϕ-linear endomorphism ϕ : M → M such that the cokernel

of id ⊗ ϕ : ϕ∗M := S⊗ϕ,S M →M is killed by Er. Morphisms are homomorphisms of

S-modules compatible with ϕ. We say that a short sequence 0→M1 →M2 →M3 → 0

is exact if it is exact in the abelian category of S-modules.
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Definition 6.2 (Modr,ϕ/S1
, [CL09]). The category Modr,ϕ/S1

is the full subcategory of ′Modr,ϕ/S

spanned by the objects which are finite free over S1 := S/p = k[[u]].

Definition 6.3 (Modr,ϕ/S∞
, [CL09]). We define Modr,ϕ/S∞

to be the smallest full subcategory

of ′Modr,ϕ/S which contains Modr,ϕ/S1
and is stable under extensions.

Remark 6.4. The category Mod1,ϕ/S1
first appeared in [Bre]. And the category Mod1,ϕ/S∞

is just the category Mod/S defined by Kisin in [Kis06].

The following lemma gives us some important descriptions of objects in Modr,ϕ/S∞
.

Lemma 6.5. (i) For any M in Modr,ϕ/S∞
, the morphism id ⊗ ϕ : ϕ∗M → M is

injective.

(ii) An object M in ′Modr,ϕ/S is in Modr,ϕ/S∞
if and only if it is of finite type over S,

it has no u-torsion and it is killed by some power of p.

Proof. See [Liu07, section 2.3]. �

Corollary 6.6. The torsion submodule H i
S−tor of the Breuil–Kisin cohomology groups of

a proper smooth formal scheme over OK is in the category Modr,ϕ/S∞
when i ≤ r < p−1

e .

Proof. This follow from Corollary 5.4 and [BS19, Theorem 1.8 (6)] �

Next we introduce Breuil’s ring S and define some related categories analogous to

those associated with the ring S.

Definition 6.7 (Breuil’s ring). Let S be the p-adic completion of the PD-envelope of

W (k)[u] with respect to the ideal (E) ⊂ W (k)[u]. The ring S is endowed with several

additional structures:

(i) a canonical (PD-)filtration: FiliS is the p-adic completion of the ideal generated

by elements (E
m

m! )m≥i.

(ii) a Frobenius ϕ: it is the unique continuous map which is Frobenius semi-linear

over W (k) and sends u to up.

For r < p − 1, we have ϕ(FilrS) ⊂ prS and we can define ϕr = ϕ
pr : FilrS → S. Set

Sn := S/pn.

Definition 6.8 (′Modr,ϕ/S , [CL09]). The objects of ′Modr,ϕ/S are the following data:

(i) an S-module;

(ii) a submodule FilrM ⊂M such that FilrS ·M ⊂ FilrM ;

(iii) a ϕ-linear map ϕr : Fil
rM →M such that for all s ∈ FilrS and x ∈M we have

ϕr(sx) = c−rϕr(s)ϕr(E
rx), where c = ϕ1(E).

The morphisms are homomorphisms of S-modules compatible with additional structures.

We say a short sequence 0→M1 →M2 →M3 → 0 in ′Modr,ϕ/S is exact if both sequences

0 → M1 → M2 → M3 → 0 and 0 → FilrM1 → FilrM2 → FilrM3 → 0 are exact in the

abelian category of S-modules.

Definition 6.9 (Modr,ϕ/S1
, [CL09]). The objects of Modr,ϕ/S1

are M in ′Modr,ϕ/S such that

M is finite free over S1 and the image of ϕr generates M as an S-module.

Definition 6.10 (Modr,ϕ/S∞
, [CL09]). The category Modr,ϕ/S∞

is the smallest subcategory

of ′Modr,ϕ/S containing Modr,ϕ/S1
and is stable under extensions.
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For any r < p− 1, one can define a functor MS∞
: Modr,ϕ/S∞

→ ′Modr,ϕ/S as follows:

(i) MS∞
(M) = S⊗ϕ,SM. Here ϕ : S→ S is the composite S→ S→ S where the

first map is the Frobenius on S and the second map is the canonical injection.

(ii) Submodule: The Frobenius on M induces a S-linear map id⊗ ϕ : S ⊗ϕ,S M→

S⊗SM. The submodule FilrMS∞
(M) is then defined by the following formula:

FilrMS∞
(M) := {x ∈MS∞

(M) | (id⊗ ϕ)(x) ∈ FilrS ⊗S M ⊂ S ⊗S M)}

(iii) Frobenius: the map ϕr is the following composite:

FilrMS∞
(M)

id⊗ϕ
−−−→ FilrS ⊗S M

ϕr⊗id
−−−−→MS∞

(M).

We state a theorem describing the functor MS∞
.

Theorem 6.11. For any r < p − 1, the functor MS∞
takes value in Modr,ϕ/S∞

. The

induced functor MS∞
: Modr,ϕ/S∞

→ Modr,ϕ/S∞
is exact and it is an equivalence of cate-

gories. Moreover, if we choose MS∞
a quasi-inverse of MS∞

, then the functor MS∞
is

also exact.

Proof. See [CL09, Proposition 2.1.2, Theorem 2.3.1, Proposition 2.3.2]. �

Theorem 6.12. Assuming er < p − 1, the category Modr,ϕ/S∞
is an abelian category

and every object is of the form
⊕n

i=1 S/p
ai . For any morphism f : (M1,Fil

rM1, ϕr) →

(M2,Fil
rM2, ϕr) in Modr,ϕ/S∞

, the underlying module of Ker(f) is the kernel of the mor-

phism f : M1 →M2 in the category of S-modules and the underlying module of FilrKer(f)

is the kernel of the morphism f : FilrM1 → FilrM2 in the category of S-modules. A Sim-

ilar statement is true for Coker(f).

Proof. See [Car06, Section 3]. We remark that the category which Caruso used is different

from ours but they can be proved to be equivalent by using a generalization of [Bre98a,

Proposition 2.3.1.2], as mentioned in the proof of [Car08, Theorem 4.2.1]. �

Remark 6.13. This theorem is false without the restriction er < p− 1.

From now on, we fix a non-negative integer r such that er < p− 1. Then Modr,ϕ/S∞
is

an abelian category.

Lemma 6.14. For any morphism f : M1 →M2 in Modr,ϕ/S∞
, the underlying module of

Ker(f) is the kernel of the morphism f : M1 → M2 in the category of S-modules. A

Similar statement is true for Coker(f).

Proof. By Lemma 6.5, the kernel and the image of the underlying morphism f : M1 →

M2 in the category of S-modules together with the induced Frobenius maps are objects

of Modr,ϕ
/S∞

. It is easy to see that the kernel equipped with the induced Frobenius map

is indeed Ker(f) in the category Modr,ϕ/S∞
. So we can assume f : M1 →M2 is injective.

Then MS∞
(f) is also injective. In fact, let L be the kernel of MS∞

(f) and we choose

a quasi-inverse functor MS∞
of MS∞

. Let h : L → M1 be the image of the inclusion

L → MS∞
(M1) under MS∞

. Then f ◦ h = 0, which implies h = 0. In consequence,

we have L = 0. Put M = Coker(f). By Theorem 6.11 and Theorem 6.12, we get an

exact sequence 0 →M1 →M2 → MS∞
(M) → 0 in the exact category Modr,ϕ/S∞

(where

the class of the exact sequences is as defined in Definition 6.1). So we have MS∞
(M)

is isomorphic to M2/M1 as S-modules. In particular M2/M1 has no u-torsion. By
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Lemma 6.5, the module M2/M1 equipped with the induced Frobenius map is an object

of Modr,ϕ/S∞
. It is easy to check that Coker(f) is isomorphic to M2/M1 equipped with

the induced Frobenius map. �

Corollary 6.15. The full subcategory Modr,ϕ/S1
of Modr,ϕ/S∞

is an abelian category.

Proof. For any morphism f : M1 →M2 in Modr,ϕ/S1
, Ker(f) and Coker(f) are then both

killed by p. By Lemma 6.5, they are u-torsion free. So Ker(f) and Coker(f) are in the

category Modr,ϕ/S1
. �

Let ModFIr,ϕ/S∞
denote the full subcategory of Modr,ϕ/S∞

spanned by the objects that

are isomorphic to
⊕n

i=1S/pai as S-modules. In particular, ModFIr,ϕ/S∞
contains Modr,ϕ/S1

.

Lemma 6.16. For any M ∈ Modr,ϕ/S∞
, the quotient M/p is in Modr,ϕ/S1

.

Proof. Consider the morphism M
×p
−−→ M in Modr,ϕ/S∞

. Since Modr,ϕ/S∞
is an abelian

category, we know that M/p is also in Modr,ϕ/S∞
. It is killed by p and has no u-torsion

by Lemma 6.5, therefore M/p is in Modr,ϕ/S1
. �

We now reformulate Lemma 5.9 by using the categories we have defined.

Lemma 6.17. Let M be in Modr,ϕ/S∞
. If pM is in ModFIr,ϕ/S∞

, so is M.

Proof. By Lemma 6.16, we have M/p ∈ Modr,ϕ/S∞
. Then this lemma follows from Lemma

5.9. �

Lemma 6.18. Let L →֒M be an injection in Modr,ϕ/S∞
. If M is in ModFIr,ϕ/S∞

, so is L.

Proof. We show that pL is in ModFIr,ϕ/S∞
, then this lemma follows from Lemma 6.17.

Consider the map pL →֒ pM. We proceed by induction on the minimal integer such that

pnM = 0. If n = 1, this is easy. Assume that when n < m this lemma is true. Then

when n = m, pL is also in ModFIr,ϕ/S∞
as pm−1(pM) = 0. We are done. �

Theorem 6.19. The category ModFIr,ϕ/S∞
is an abelian category.

Proof. For any morphism f : M1 →M2 in ModFIr,ϕ/S∞
, we need to show L = Ker(f) and

C = Coker(f) are also in the category ModFIr,ϕ/S∞
. For the kernel L, this follows from

Lemma 6.18. For the cokernel C, we proceed by induction on the minimal integer n such

that pnM2 = 0. Without loss of generality, we can assume f is an injection.

When n = 1, we have M1,M2 are both in Modr,ϕ/S1
. Then by Corollary 6.15, we

see that C is also in Modr,ϕ/S1
⊂ ModFIr,ϕ/S∞

. Now suppose the statement is true when

n < m. When n = m, consider the sequence pM1 → pM2 → pC. Then there is a short

exact sequence 0 → L
′

→ pM2/pM1 → pC → 0. Since pm−1(pM2/pM1) = 0, by the

assumption, we get pC is in ModFIr,ϕ
/S∞

. Then by Lemma 6.17, we see that C is also in

ModFIr,ϕ/S∞
. This finishes the proof. �

Theorem 6.20. There is an equivalence of categories: ModFIr,ϕ/S∞
=Modr,ϕ/S∞

.

Proof. We just need to prove that every object M in Modr,ϕ/S∞
is also in ModFIr,ϕ/S∞

. To

see this, we proceed by induction on the minimal integer n such that pnM = 0.

When n = 1, this follows from Lemma 6.17. Now suppose the statement is true when

n < m. Then when n = m, we know that pM is killed by pm−1. So by the assumption,
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we have pM ∈ ModFIr,ϕ/S∞
. By Lemma 6.17, we can obtain that M ∈ ModFIr,ϕ/S∞

. We

are done. �

So Theorem 6.20 provides another proof of Theorem 5.11.

Theorem 6.21. For any i ≤ r < p−1
e , we have H i

S−tor, the torsion submodule of the

Breuil–Kisin cohomology group of a proper smooth formal scheme over OK , is in the

category ModFIr,ϕ/S∞
, i.e. H i

S−tor
∼=

⊕n
i=1S/pai .
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