
HAL Id: hal-03374664
https://hal.sorbonne-universite.fr/hal-03374664v1

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interferometric Order Parameter for Excited-State
Quantum Phase Transitions in Bose-Einstein

Condensates
Polina Feldmann, Carsten Klempt, Augusto Smerzi, Luis Santos, Manuel

Gessner

To cite this version:
Polina Feldmann, Carsten Klempt, Augusto Smerzi, Luis Santos, Manuel Gessner. Interferometric Or-
der Parameter for Excited-State Quantum Phase Transitions in Bose-Einstein Condensates. Physical
Review Letters, 2021, 126 (23), �10.1103/PhysRevLett.126.230602�. �hal-03374664�

https://hal.sorbonne-universite.fr/hal-03374664v1
https://hal.archives-ouvertes.fr


Excited-state quantum phase transitions in spinor Bose-Einstein condensates
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Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transi-
tions beyond the ground state. They are characterized by closing energy gaps amid the spectrum.
Identifying order parameters for ESQPTs poses however a major challenge. We introduce spinor
Bose-Einstein condensates as a versatile platform for studies of ESQPTs. Based on the mean-field
dynamics, we define a topological order parameter that distinguishes between excited-state phases,
and discuss how to interferometrically access the order parameter in current experiments. Our work
opens the way for the experimental characterization of excited-state quantum phases in atomic
many-body systems.

Quantum phase transitions (QPTs) are sudden
changes in the ground-state properties of a system.
The ground-state energy and wave function behave non-
analytically and the gap between the ground state and
the first excited state closes when, at zero temperature,
a control parameter is adiabatically varied across a crit-
ical value [1]. The idea of QPTs has been extended in
recent years to out-of-equilibrium quantum many-body
systems [2, 3]. For example, a sudden shift of a param-
eter (quantum quench), can lead to dynamical QPTs,
which are characterized by a non-analyticity of physical
quantities as a function of time [3]. A direct generaliza-
tion of QPTs beyond the ground state is given by excited-
state quantum phase transitions (ESQPTs) [4–6]. Their
distinguishing signature is a closing gap at nonzero en-
ergies: excited states cluster at a critical energy, which
leads to a singularity in the density of states (DOS). Typ-
ically, the critical energy is a continuous function of a con-
trol parameter. Thus, in contrast to ground-state QPTs,
ESQPTs can be crossed both by varying a control pa-
rameter at constant energy and by varying the energy at
fixed parameters.

ESQPTs have been theoretically studied in a large
variety of many-body quantum systems [5, 7, 8], in-
cluding the Lipkin-Meshkov-Glick (LMG) model [9],
Dicke and Jaynes-Cummings models [10, 11], interact-
ing boson models [4, 5, 12], molecular bending transi-
tions [13, 14], and the quasi-energy spectrum of driven
systems [15]. Experimentally, ESQPTs have been con-
firmed in microwave Dirac billiards [16] and in molecu-
lar spectroscopy [17, 18]. Signatures of ESQPTs have
been predicted in the many-body dynamics after a
quench [10, 19, 20] and in time-averaged expectation val-
ues [21]. However, identifying order parameters that dis-
tinguish neighboring excited-state quantum phases from
each other remains a challenge [4, 5].

Spinor Bose-Einstein condensates (BECs) attract since
several years a major interest as an exceptional tool for
the study of many-body quantum dynamics [22, 23], in-
cluding coherent spinor dynamics [24], classical bifurca-
tions [25], and the generation of highly-entangled many-

body states [26–29]. So far systematic investigations of
critical behavior in such systems have focused on the
ground-state QPTs [22, 28, 30–32], though observations
of diverging oscillation periods can be interpreted as sig-
natures of ESQPTs [33, 34]. Very recently, a study of the
quench dynamics of a spinor BEC revealed a dynamical
QPT, which has been related to a phase transition in the
highest-energy level [35].

In this Letter, we propose spinor BECs as a platform
to explore ESQPTs in a paradigmatic class of models.
We identify ESQPTs in a ferromagnetic spin-1 BEC, and
show that the different excited-state quantum phases can
be distinguished by the topology of classical phase-space
trajectories. We use this to introduce an order param-
eter that is related to the dynamics of coherent states.
This order parameter can be accessed by interferometry
in existing experimental setups. Our work is, hence, an
important step towards the characterization of excited-
state quantum phases and towards the systematic explo-
ration of ESQPTs with controllable many-body quantum
systems.

Ground-state quantum phases.—We consider a ferro-
magnetic spin-1 BEC of N atoms with three spin states
m = ±1, 0. We assume a tight enough external trap-
ping of the BEC such that, to a good approximation, all
spin states share a common spatial mode (single-mode
approximation). The spin degrees of freedom are then
well described by the Hamiltonian density [22]

ĥ =
q

2N

(
N − 2N̂0

)
(1)

+
c

N2

[
â†1â
†
−1â

2
0 + â†20 â1â−1 + N̂0

(
N−N̂0 +

1

2

)
+
D̂2

2

]
,

where â†m and âm are the bosonic creation and annihila-

tion operators for state m, N̂m ≡ â†mâm with
∑
m N̂m =

N , and D̂ ≡ N̂1 − N̂−1 is the magnetization. The inter-
action strength c depends on the spatial wave function
and on the mass and scattering lengths of the atoms. A
ferromagnetic BEC is characterized by c < 0 [22]. The ef-
fective quadratic Zeeman shift q incorporates microwave
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FIG. 1. Excited state quantum phases of a ferromagnetic spin-1 BEC with zero magnetization. (a) DOS in the mean-field
limit as a function of ξ and η − η0 with η0(ξ) = − 1

2
(ξ2 + 1). The ESQPTs at η∗ = −|ξ| (black) divide the ξ-η-plane into three

phases: the TF′ phase, the P′ phase, and the BA′ phase. The DOS diverges at the ESQPTs. The inset shows the DOS along
lines of constant ξ = −0.2 (red, dashed) and η − η0 = 0.2 (orange, solid). The spectrum of a BEC of N = 100 atoms (gray,
every third eigenvalue) exhibits avoided crossings at the ESQPTs. (b) Classical phase space and trajectories for ξ = 0.5. The
separatrix (black) separates trajectories in the P′ phase (η > η∗, green) with winding number w = 1 from trajectories in the
BA′ phase (η < η∗, yellow) with w = 0. Stationary points of hmf are marked in red.

dressing and thus may be both positive and negative [34].
The linear Zeeman effect has been eliminated by moving
to a rotating frame. The Hamiltonian density (1) con-

serves D̂ and the parity Î = (−1)N̂0 . In the eigenspace

of D̂ with eigenvalue D = 0, ĥ features three ground-
state phases [22, 28] depending on the ratio ξ ≡ q

2|c| : the

Twin-Fock (TF) phase for ξ < −1, the Polar (P) phase
for ξ > 1, and the Broken-Axisymmetry (BA) phase for
|ξ| < 1.

Excited-state quantum phases.—To reveal the excited-
state phases, we study the mean-field limit [36–39]
N → ∞ of Model (1) for the case of zero magne-
tization. We introduce the coherent states |α, N〉 ≡

1√
N !

(
∑
m αmâ

†
m)N |0〉, where α ≡ (α1, α0, α−1), αm ≡

√
nm eiφm , nm ≥ 0, φm ∈ [0, 2π), and

∑
mnm = 1. The

coherent states with 〈D̂〉 = 0, i. e., |α1|2 = |α−1|2, yield
the classical Hamiltonian [39]

hmf(α)

|c|
=

1

|c|
lim
N→∞

〈α, N |ĥ|α, N〉

= ξ(1− 2n0)− 2n0(1− n0) cos2φ,

(2)

where φ ≡ φ0− (φ1 +φ−1)/2. Note that parity conserva-
tion results in hmf(φ+ π) = hmf(φ). The mean-field dy-
namics is governed by the equations of motion [22, 33, 39]

d

dτ
n0 =

∂

∂φ

hmf

|c|
,

d

dτ
φ = − ∂

∂n0

hmf

|c|
, and

d

dτ
(φ1 − φ−1) = 0

(3)

with τ ≡ |c|t/~. The mean-field limit of the DOS ν0(η)

in the D = 0 subspace can be computed according to [39]

lim
N→∞

|c|ν0(η)

N
=

∫
Dαδ(n1 − n−1) δ

(
hmf(α)

|c|
− η
)
,

(4)

where Dα ≡ 1
(2π)3

∏
mdnmdφm δ(

∑
mnm − 1) and η de-

notes the energy divided by N |c|. Below we employ
Eqs. (3) and (4) to study the signatures of ESQPTs.

Extending the ground-state phase diagram to the en-
tire energy spectrum, we identify three excited-state
phases in the ξ-η-plane: the TF′ phase for η > −|ξ| and
ξ < 0, the P′ phase for η > −|ξ| and ξ > 0, and the BA′

phase for η < −|ξ|. The phases are indicated in Fig. 1a,
where we have subtracted η0(ξ) = − 1

2 (ξ2 + 1), which
corresponds to the ground-state energy in the mean-field
limit, from η. The excited-state phases are separated by
ESQPTs at η∗ = −|ξ| with 0 < |ξ| < 1. In the limit
|ξ| → 0, η∗ hits the maximum of hmf/|c|. As |ξ| ap-
proaches 1, the ESQPTs evolve into the known ground-
state QPTs.

Signatures of ESQPTs.—As expected for ESQPTs [4,
5], the DOS (4) diverges at η∗(ξ). Fig. 1a displays the
mean-field DOS as a function of ξ and η − η0. Further-
more, it shows that in a finite-size system the ESQPTs
reveal themselves by a sequence of avoided crossings in
the energy spectrum [4]. The divergence of the DOS is
due to stationary points of hmf . At a stationary point,
∂
∂φhmf = ∂

∂n0
hmf = 0 causes the integrand in Eq. (4) to

become singular. There are three stationary points at
each 0 < |ξ| < 1: a saddle point at η∗ and two minima at
η0. The saddle point is located at n0 = 0 for ξ < 0 or at
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n0 = 1 for ξ > 0, and the minima are at n0 = (ξ + 1)/2
and cos2(φ) = 1, see Fig. 1b. Note that these station-
ary points do not depend on the restriction to coherent
states with 〈D̂〉 = 0. However, the unrestricted DOS [39]
remains finite at η∗.

The phase-space trajectories [39] of hmf provide fur-
ther signatures of the ESQPTs. The classical phase space
is a sphere with z-axis n0 and azimuthal angle φ. Fig-
ure 1b shows exemplary trajectories for ξ = 0.5. The
trajectories reflect the symmetry hmf(φ + π) = hmf(φ).
Since hmf(ξ, n0, φ) = hmf(−ξ, 1 − n0, φ), for ξ < 0 the
phase space would appear upside down. As in the LMG
model [40], the sets of trajectories at fixed ξ and η
(the energy hypersurfaces) change topology at η∗(ξ)—at
the critical energy hypersurfaces called separatrices. For
η > η∗, i. e., in the TF′ and P′ phases, there is only one
trajectory per ξ and η. By contrast, for η < η∗, i. e., in
the BA′ phase, the evolution can follow one of two discon-
nected trajectories. Each of these trajectories breaks the
classical symmetry hmf(φ+π) = hmf(φ). Note, however,
that the corresponding quantum symmetry I cannot be
broken in the D = 0 subspace, where all states belong to
a single eigenspace of I.

Order parameter.—The solutions n0(t) and φ(t) of
the classical equations of motion, Eq. (3), are peri-
odic [22, 33, 39]. In the TF′ and P′ phases, the phase-
space trajectories encircle the n0-axis (green curves in
Fig. 1b)—clockwise in the TF′ phase and counterclock-
wise in the P′ phase. By contrast, the trajectories in the
BA′ phase do not enclose the n0-axis (yellow curves). We
define our order parameter w as the winding number of
the classical trajectories with respect to the n0-axis, such
that w = −1 in the TF′, w = 1 in the P′, and w = 0 in
the BA′ phase. We observe that w can be expressed in
a particularly simple form. Let us denote the period of
n0(t) at fixed ξ and η by T . In the BA′ phase, the peri-
ods of φ(t) and n0(t) coincide and, thus, φ(t+T ) = φ(t).
In the TF′ and P′ phases, however, φ(t+ T ) = φ(t)± π.
Hence,

w =
1

π
[φ(T )− φ(0)]. (5)

In contrast to most observables that have been studied
in the context of ESQPTs [5, 10, 11, 15, 19, 20, 40, 41], w
is not merely singular at the phase transitions. It qual-
itatively distinguishes the entire excited-state phases by
the dynamics of coherent states.

In the following, we present an interferometric scheme
that extracts

p ≡ cos(πw) (6)

and therefore distinguishes neighboring excited-state
phases from each other: in the BA′ phase p = 1, while in
the TF′ and P′ phases p = −1. To measure p, first, an ini-
tial point (n0(0), φ(0)) on a trajectory at the ξ and η of in-
terest is selected. Then the corresponding coherent state
with φ1 = φ−1, |ψ(0)〉, is prepared at q = 2|c|ξ. The state
freely evolves for the time T . Next, the spin states m = 0

and m = ±1 are coupled by the internal-state beam-

splitter exp(−iπ2 Ŝθ0) with Ŝθ ≡ 1
2 (e−iθ â†0ĝ + eiθ ĝ†â0),

ĝ ≡ (â1 + â−1)/
√

2, and θ0 ≡ π/2−φ(0). Finally, the ex-

pectation value of N̂0/N is measured. In the mean-field
limit, this yields [39]

lim
N→∞

1

N
〈ψ(T )| eiπ2 Ŝθ0 N̂0 e−i

π
2 Ŝθ0 |ψ(T )〉 =

1− V p
2

,

(7)
where we have introduced the visibility V =
2
√

1− n0(0)
√
n0(0). As long as n0(0) 6= 0, 1, this un-

ambiguously determines p.
Experimental realization.—We detail the measurement

of p for 87Rb atoms in their hyperfine ground state [26,
28]. However, most of our discussion applies to any fer-
romagnetic spin-1 BEC. We assume that, initially, the

condensate is in the state â†N0 |0〉/
√
N !. Then a coher-

ent state characterized by n0(0), φ(0), and φ1 = φ−1 can

be obtained by applying exp(−iχŜθ0) with cos2(χ/2) =
n0(0). Thus, both the state preparation and the beam-

splitter are generated by Ŝθ0 and can be implemented by

a sequence of a phase shift exp(i(θ0 − θrf)N̂0), a radio-

frequency pulse exp(−iζŜθrf ) 1 with ζ = χ or ζ = π/2,

respectively, and another phase shift exp(−i(θ0−θrf)N̂0).
Since we aim at the expectation value in Eq. (7), the
first step of the state preparation and the last one of the
beamsplitter can be omitted. N0 can be measured, e. g.,
by a magnetic-field gradient that spatially separates the
different spin states and subsequent absorptive imaging.

Reliably distinguishing p = ±1 requires a large visi-
bility V , which can be maximized by choosing n0(0) as
close to 1/2 as possible. The optimal n0(0), nopt, is [39]:

nopt =


1
2 (1 + ξ − ξ

|ξ|

√
1 + 2η + ξ2) for η < − 1

2
1
2 for − 1

2 ≤ η ≤ 0
1
2 (1− η

ξ ) for 0 < η

(8)
A corresponding φ(0), φopt, is obtained from

cos2φopt =
ξ(1− 2nopt)− η
2nopt(1− nopt)

. (9)

Figure 2a shows that the optimized visibility is large
throughout the vast majority of the phase diagram.

The coherence time in typical BEC experiments is lim-
ited to few seconds. This constrains the accessible peri-
ods T . It is known [22, 33, 39] that

|c|
~
T =

{√
y−1K(x/y) for η < η∗√
x
−1
K(y/x) for η > η∗

, (10)

1 The phase θrf is fundamentally fixed by the interaction of the
atoms with the radio-frequency pulse. While we do not state its
value, it may be both derived and measured.
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FIG. 2. Measuring p = cos(πw) to distinguish adjacent excited-state quantum phases requires a large optimized visibility Vopt

and a short periodicity T . (a) Vopt is large throughout the vast majority of the phase diagram. (b) T for |c|/~ = 2π × 4 Hz. A
moderate value of 0.3 s (gray) is surpassed only at the immediate vicinity of the ESQPTs. (a, b) Black lines mark the ESQPTs.
The insets show Vopt and T along lines of constant ξ = −0.2 (red, dashed) and η − η0 = 0.2 (orange, solid).

where K(k2) =
∫ π/2
0

dγ
√

1− k2 sin2γ
−1

is the complete

elliptic integral of the first kind, x = |ξ|
√

1 + ξ2 + 2η,
and y = (x − ξ2 − η)/2. T diverges at the ESQPTs.
Figure 2b displays T for the typical interaction strength
|c|/~ = 2π × 4 Hz. Fortunately, T exceeds a moderate
value of, e. g., 0.3 s only in the immediate vicinity of the
ESQPTs.

So far we have considered only the mean-field limit,
N →∞. To study the impact of a finite system size, we
simulate a measurement of p for N = 100 bosons by exact
diagonalization of the Hamiltonian density (1), see Fig. 3.
The jump discontinuities signaling the ESQPTs in the
mean-field limit are, as expected, smoothed at finite N .
However, the BA′ phase can still be clearly distinguished
from the TF′ and P′ phases. In typical experiments, N is
of the order of 104 and, thus, a much better convergence
to the mean-field limit can be expected.

Conclusions.—Ferromagnetic spin-1 BECs exhibit ES-
QPTs, which, in the mean-field limit, show up as a di-
verging DOS and a change in the topology of phase-space
trajectories. We characterize the mean-field dynamics
by a winding number w that distinguishes the excited-
state quantum phases from each other and, thus, is an
order parameter. Adjacent phases differ in |w| and can be
told apart by interferometrically monitoring the coherent
many-body dynamics in present-day experiments. Note
that the local order parameter N̂0/N that characterizes
the ground-state QPTs [28, 32] cannot be directly gen-
eralized to excited states. The topological order param-
eter w, instead, is defined for all energies apart from the
very ground state, where the trajectories reduce to single
points. Our results show that ESQPTs can be studied
in well-controlled atomic quantum many-body systems,
and that these studies are not limited to properties of the
transition itself. We propose a feasible experiment for
characterizing excited-state quantum phases. This rep-

resents an important step towards employing ESQPTs in
quantum state engineering.

Finally, we remark that our findings apply to any of
the numerous quantum systems with the same mean-
field limit, including bosonic two-level pairing models at
zero generalized angular momentum [5]. Our theoreti-
cal treatment of ESQPTs complements previous studies
for opposite interaction sign [5]. Bosonic two-level pair-
ing models comprise, e. g., the LMG model, the vibron
model for molecules, and the interacting boson model for
nuclei.
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FIG. 3. Simulated measurement of p for N = 100 atoms. The
finite-size results closely resemble the mean-field limit, where
p = 1 in the BA′ phase and p = −1 in the TF′ and P′ phases.
Black lines mark the ESQPTs. The inset shows p along lines
of constant ξ = −0.2 (red, dashed) and η − η0 = 0.2 (orange,
solid). The shaded regions indicate the standard deviation.
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Appendix A: Mean-field limit of bosonic systems

We consider a system of N ∈ N (pseudo-)spin-j bosons with j ∈ N0/2 or, equivalently, a system of N bosons
distributed among 2j+ 1 ∈ N modes. Such systems can be treated in terms of creation and annihilation operators â†m
and âm, where m ∈ {j, j − 1, . . . ,−j} denotes the spin projection quantum number. Then N̂m ≡ â†mâm counts the

number of particles in mode m. Our Hilbert space is restricted to eigenstates of N̂ ≡
∑
m N̂m with eigenvalue N .

We will focus on operators Â with the following properties:

1. Â is a polynomial in â†mâl/N

2. the polynomial coefficients ck(N) are time-independent

3. the N -dependence of the ck(N) is such that for any k there are dk ∈ R and ek ∈ C with |ck(N)| ≤ dk ∀N and
limN→∞ ck(N) = ek

For example, the ck(N) may be independent of N or include O(N−1) corrections. Note that Â is simultaneously

defined for all N and [Â, N̂ ] = 0. We call the set of all such operators A, and the subset of Hermitian operators

E ⊂ A. Let Ĥ be the system’s Hamiltonian and ĥ ≡ Ĥ/N the Hamiltonian density. We require that ĥ ∈ E .

Let us discuss some further properties of A. For any Â, B̂ ∈ A:

4. Obviously, ÂB̂ ∈ A.

5. N [Â, B̂] ∈ A. To confirm № 3 of the defining properties, one may iteratively apply

[D̂Ê, F̂ ] = [D̂, F̂ ]Ê + D̂[Ê, F̂ ] and [D̂, ÊF̂ ] = [D̂, Ê]F̂ + Ê[D̂, F̂ ], (A1)

which holds for any operators D̂, Ê, and F̂ . This yields a finite number of terms, each of which contains a single
elementary commutator, [âm/

√
N, â†m/

√
N ] = 1/N . For the coefficients of these terms, property № 3 follows

immediately.

6. Let ‖·‖N denote the spectral norm in the N -particle Hilbert space. Then there is a c ∈ R such that ‖Â‖N ≤ c ∀N .

Note that ‖·‖N is sub-additive and sub-multiplicative, and that ‖â(†)m ‖N =
√
N . Hence, c can be chosen to be

the (finite) sum of the dk defined in property № 3.

We employ the projective coherent states |α, N〉 ≡ 1√
N !

(
∑
m αmâ

†
m)N |0〉, where α ∈ C2j+1 comprises the αm, αm ≡

√
nm eiφm , nm ≥ 0, φm ∈ [0, 2π), and

∑
mnm = 1. These states are separable and fulfill âm|α, N〉 =

√
Nαm|α, N −1〉

and CN
∫
Dα |α, N〉〈α, N | = 1N with Dα ≡ 1

(2π)3

∏
mdnmdφm δ(

∑
mnm − 1) and CN = (N+2j)!

N ! . 1N denotes the

identity operator on the N -particle Hilbert space.
Let us now turn towards the mean-field limit N → ∞. To start with, we consider the coherent-state expectation

value of Â ∈ A. Let : Â : denote the normal ordering of Â. Using that âm|α, N〉 =
√
Nαm|α, N − 1〉 and, for any

finite k ∈ N0, limN→∞
N−k
N = 1, we obtain limN→∞〈α, N | : Â : |α, N〉 from : Â : by substituting the â

(†)
m by

√
Nα

(∗)
m

and taking the limit N →∞. Note that, since the αm commute, it does not matter whether we substitute the â
(†)
m in

:Â : or in Â. We denote the result by Amf(α). From the scaling of [âm/
√
N, â†m/

√
N ] = 1/N with N we can conclude

that limN→∞〈α, N |Â− :Â : |α, N〉 = 0. Hence, limN→∞〈α, N |Â|α, N〉 = Amf(α).

For Â, B̂ ∈ A, obviously,

lim
N→∞

〈α, N |ÂB̂|α, N〉 = Amf(α)Bmf(α). (A2)

This is a central observation, which we can further generalize by means of Tannery’s theorem, which we state below.
Let us first show that

lim
N→∞

〈α, N | ezÂ |α, N〉 = ezAmf (α) ∀z ∈ C. (A3)
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We already know that limN→∞〈α, N |Âk|α, N〉 = Akmf(α) ∀k ∈ N0. Tannery’s theorem ensures that we can pull the
N → ∞ limit into the exponential series. Its assumptions are fulfilled since, by property № 6, there is some c ∈ R

such that |〈α, N |Âk|α, N〉| ≤ ck ∀N , and since
∑
k
|zc|k
k! = e|zc| is finite. Note that this argument can be immediately

generalized to arbitrary N -independent complex analytic functions on A, the set of which we denote by C(A):

lim
N→∞

〈α, N |f(Â)|α, N〉 = f(Amf(α)) ∀f ∈ C(A), Â ∈ A. (A4)

Similarly, employing the Baker-Campbell-Hausdorff formula, we obtain

lim
N→∞

〈α, N | ezNÂ B̂ e−zNÂ |α, N〉 =
∑
k

zk

k!
K

(k)
mf (α) with K̂(0) ≡ B̂, K̂(k) ≡ N [Â, K̂(k−1)]. (A5)

The key step in proving Eq. (A5) is to demonstrate that we can find a suitable N -independent bound on ‖K̂(k)‖.
For ‖Â‖N and ‖B̂‖N , we first construct upper bounds cA and cB as suggested in the proof of property № 6. Then,

iteratively applying the relation (A1), we find that ‖K̂(k)‖ ≤ 2rBcB(2rAcA)k, where rA and rB are the polynomial

degrees of Â and B̂, respectively.
Finally, including a Ĉ ∈ A, we can show that

lim
N→∞

〈α, N | ezNÂ B̂Ĉ e−zNÂ |α, N〉 =
(

lim
N→∞

〈α, N | ezNÂ B̂ e−zNÂ |α, N〉
)(

lim
N→∞

〈α, N | ezNÂ Ĉ e−zNÂ |α, N〉
)
.

(A6)

Note that, in general, ezNÂ B̂ e−zNÂ /∈ A and thus Eq. (A6) is not implied by Eq. (A2). Instead, it can be derived
from Eq. (A5) by using Eqs. (A1) and (A2) to observe that

K
(n)
mf [B̂Ĉ] =

n∑
l=0

(
n

l

)
K

(l)
mf [B̂]K

(n−l)
mf [Ĉ], (A7)

where the argument of K
(k)
mf specifies the operator K̂(0), and K̂(k) ensues inductively as defined in Eq. (A5).

In the following two sections, we use Eqs. (A3), (A5), and (A6) to derive the mean-field limits of the density of
states and of the equations of motion. In Section A 3 we summarize, for completeness, some of the mathematical
theorems we use.

1. Density of states

We denote the energy per particle by ε and define the density of states (DOS) ν(ε) by way of its Fourier transform:

F [ν](ζ) ≡
∫

dε eiζε ν(ε) ≡ Tr eiζĥ, ζ ∈ R, (A8)

where the trace is taken over the respective N -particle Hilbert space. To obtain the DOS in the mean-field limit, we
argue that

lim
N→∞

1

N2j
Tr eiζĥ = lim

N→∞

CN
N2j

∫
Dα 〈α, N | eiζĥ |α, N〉 =

∫
Dα eiζhmf (α) =

∫
dε eiζε

∫
Dα δ(hmf(α)− ε) (A9)

and conclude that

lim
N→∞

ν(ε)

N2j
=

∫
Dα δ(hmf(α)− ε). (A10)

In the following we comment on some details of this derivation.

First of all, note that ν(ε) is well defined by Eq. (A8). For any N , the inverse Fourier transform of Tr eiζĥ is a
unique tempered distribution, ν ∈ S ′(R).

Next, we discuss each step of Eq. (A9). The first equality follows from the resolution of the identity in terms of
coherent states:

Tr D̂ = Tr

[
CN

∫
Dα |α, N〉〈α, N | · D̂

]
= CN

∫
Dα 〈α, N |D̂|α, N〉 (A11)



7

for any operator D̂. The second equality in Eq. (A9) comprises several steps. First, we note that limN→∞ CN/N
2j = 1.

Second, we apply Eq. (A3) to the integrand:

lim
N→∞

〈α, N | eiζĥ |α, N〉 = eiζhmf (α) (A12)

Third and last, we argue by Lebesgue’s dominated convergence theorem that we can interchange the operation of
taking the N → ∞ limit with the integration. To check the assumptions of the theorem it is helpful to note that

the domain of integration is compact, 〈α, N | eiζĥ |α, N〉 is a continuous function of α, and that |〈α, N | eiζĥ |α, N〉| ≤
‖eiζĥ‖N ≤ 1 ∀N . The last step of Eq. (A9) is, essentially, a change of variables. Some caution is needed at values of α
where the gradient of hmf(α) vanishes. For measurable sets of α with hmf(α) = c the equality can be proven directly.
Measure-zero sets with ∇hmf(α) = 0, e. g., isolated stationary points of hmf , can be excluded from the integration.

Finally, to arrive at Eq. (A10) we demonstrate that, for any sequence of tempered distributions fN ∈ S ′(R),

lim
N→∞

fN = f ⇔ lim
N→∞

F [fN ] = F [f ]. (A13)

Since the fN are distributions, we can demand convergence only in the following weak sense:

lim
N→∞

fN = f ⇔ lim
N→∞

∫
dx fN (x)t(x) =

∫
dx f(x)t(x) (A14)

for all test functions t ∈ S(R). Similarly, the Fourier transform of any g ∈ S ′(R) is defined by∫
dxF [g](x)t(x) ≡

∫
dx g(x)F [t](x) ∀t ∈ S(R). (A15)

Since the Fourier transformation is an automorphism on S(R), we can replace the arbitrary test function t(x) in
Eq. (A14) by its Fourier transform F [t](x). This connects Eq. (A14) with Eq. (A15) and yields Eq. (A13).

2. Equations of motion

We consider the Heisenberg representation ÂH(t) ≡ eiĤt/~ Â e−iĤt/~ of an operator Â ∈ E . The Heisenberg equation

of motion for 〈α, N |ÂH(t)|α, N〉 reads

d

dt
〈α, N |ÂH(t)|α, N〉 =

i

~
〈α, N |[Ĥ, ÂH(t)]|α, N〉. (A16)

This section contains two results. We demonstrate that

lim
N→∞

〈α, N |ÂH(t)|α, N〉 = Amf(αt), (A17)

where α0 ≡ α and αt consists of αm(t) ≡
√
nm(t) eiφm(t) with nm(t) ≥ 0, φm(t) ∈ [0, 2π), and

∑
m nm(t) = 1.

Furthermore, we prove that the dynamics of Amf(αt) is governed by

d

dt
Amf(αt) =

i

~
Kmf(αt) with K̂ ≡ [Ĥ, Â]. (A18)

To derive Eq. (A17), we recall that Â is a polynomial in â†mâl/N with coefficients ck(N). Let us define λml(t) ≡
limN→∞

1
N 〈α, N |[â

†
mâl]H(t)|α, N〉. Then, according to Eq. (A6), limN→∞〈α, N |ÂH(t)|α, N〉 is a polynomial in λml(t)

with the respective coefficients limN→∞ ck(N). Next, we argue that λml(t) can be parametrized, without loss of

generality, by
√
nm(t)nl(t) e−i(φm(t)−φl(t)) with nm(t) and φm(t) as introduced above. At t = 0 this parametrization

is obviously correct. For m = l, λmm(t) = nm(t) is a valid parametrization because λmm(t) ≥ 0 and
∑
m λmm(t) =

limN→∞
1
N 〈α, N |N̂H(t)|α, N〉 = 1. Employing, again, Eq. (A6), we find

λmlλlm = lim
N→∞

1

N2
〈α, N |[â†mâlâ

†
l âm]H(t)|α, N〉

= lim
N→∞

1

N2
〈α, N |[â†mâmâ

†
l âl + â†mâm]H(t)|α, N〉 = nm(t)nl(t).

(A19)
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Together with λml(t) = λ∗lm(t) this entails |λml(t)| = |λlm(t)| =
√
nm(t)nl(t). The phases of all λml(t) with

m 6= l can be deduced from the phases of λ1l(t) by using the relations λml(t) = λ∗lm(t) and λml(t)λlk(t)λkm(t) =

nm(t)nl(t)nk(t) ∈ R. The parametrization λml(t) =
√
nm(t)nl(t) e−i(φm(t)−φl(t)) reflects these relations without

constraining the λml any further.
To obtain the mean-field equation of motion (A18), we take the N → ∞ limit of Eq. (A16). In any time interval

[t1, t2], Theorem 3 permits to interchange the limit with the time derivative because the right-hand side (RHS) of
Eq. (A16) is continuous in t and uniformly converges for N → ∞. Let us prove the uniform convergence. We know
from Eq. (A5) that the pointwise limit of

fN (t) ≡ 〈α, N |[Ĥ, ÂH(t)]|α, N〉 =
∑
k

(it/~)k

k!
〈α, N |K̂(k+1)|α, N〉 with K̂0 ≡ Â, K̂k ≡ [Ĥ, K̂(k−1)] (A20)

is

lim
N→∞

fN (t) ≡ f(t) =
∑
k

(it/~)k

k!
K

(k+1)
mf . (A21)

It is sufficient to show that the RHS of

|fN (t)− f(t)| ≤
∑
k

|t/~|k

k!

∣∣∣〈α, N |K̂(k+1)|α, N〉 −K(k+1)
mf (α)

∣∣∣ , t ∈ [t1, t2] (A22)

uniformly converges to zero as N →∞. Similarly to the proof of Eq. (A5), we can find some c, c̃ ∈ R such that

|〈α, N |K̂(k+1)|α, N〉| ≤ c̃ck ∀N ⇒
∣∣∣〈α, N |K̂(k+1)|α, N〉 −K(k+1)

mf (α)
∣∣∣ ≤ 2c̃ck ∀N. (A23)

Hence, we can apply Tannery’s theorem, which yields that the RHS of Eq. (A22) converges to zero pointwise. The
RHS of Eq. (A22) is a strictly increasing function of |t|. Let us assume, without loss of generality, that |t2| ≥ |t1|.
Then, for any N , the RHS of Eq. (A22) is absolutely bounded by its value at t2 and the pointwise convergence to
zero in t2 implies uniform convergence.

3. Mathematical supplement

For completeness, we state here some well-known theorems which we have used above:

Theorem 1 (Tannery [42]). Consider the sequence ak(n) ∈ C with k ∈ N0, n ∈ N and assume that for any k there
are bk, ck such that limn→∞ ak(n) = bk, |ak(n)| ≤ ck ∀n, and

∑
k ck <∞. Then limn→∞

∑
k ak(n) =

∑
k bk.

Theorem 2 (Lebesgue [43]). Let fn : U ⊂ Rd → C, n ∈ N be Lebesgue integrable functions which, for n → ∞,
converge pointwise to a function f and are dominated by some Lebesgue integrable function g, i. e., |fn(x)| ≤ g(x)
∀n ∈ N, x ∈ U . Then f is integrable and

lim
n→∞

∫
U

dx fn(x) =

∫
U

dx f(x). (A24)

Theorem 3 ([44]). Let fn : [a, b] → R, n ∈ N be continuously differentiable functions which, for n → ∞, converge
pointwise to f . Let the sequence of derivatives f ′n : [a, b]→ R converge uniformly. Then f is differentiable and

f ′(x) = lim
n→∞

f ′n(x) ∀x ∈ [a, b]. (A25)

Appendix B: Ferromagnetic spin-1 Bose-Einstein condensate with zero magnetization

In this section we focus on a ferromagnetic spin-1 Bose-Einstein condensate (BEC), which we model by the Hamil-
tonian density in Eq. (1) from the main text,

ĥ =
q

N

(
1

2
N − N̂0

)
+

c

N2

[
â†1â
†
−1â

2
0 + â†20 â1â−1 + N̂0

(
N − N̂0 +

1

2

)
+

1

2
D̂2

]
. (B1)
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Recall that q ∈ R, c < 0, D̂ = N̂1 − N̂−1 is the magnetization, and [ĥ, D̂] = 0. We are particularly interested
in the case of zero magnetization. This has several reasons. First, the present work is motivated by the utility of
ground-state quantum phase transitions (QPTs) in the magnetization-free subspace [29, 45]. Second, previous results
on excited-state QPTs (ESQPTs) suggest [5] that the signatures should be most pronounced at zero magnetization.
Third, the restriction to zero magnetization eases the computations.

As discussed in Section A, we base our mean-field study on spin-1 projective coherent states. Most of these states
are no eigenstates of D̂. It is therefore not obvious how to restrict the N -particle Hilbert space to the eigenspace of
D̂ with eigenvalue D = 0. In Section B 1 we demonstrate that the mean-field limit of the restricted density of states
can be still expressed in terms of spin-1 coherent states.

For the mean-field dynamics of expectation values, we simply confine ourselves to coherent states |α, N〉 with

〈α, N |D̂|α, N〉 = 0 or, equivalently, with |α1|2 = |α−1|2. Importantly, such states can be readily realized experimen-

tally. To identify the mean-field Hamiltonian hmf(α) = limN→∞〈α, N |ĥ|α, N〉, we substitute the â
(†)
m by

√
Nα

(∗)
m

with αm ≡
√
nm eiφm and take the limit N → ∞, as explained in the introduction to Section A. We introduce

φ ≡ φ0 − (φ1 + φ−1)/2 and ξ ≡ q
2|c| and, for n1 = n−1, obtain

hmf

|c|
= ξ(1− 2n0)− 2n0(1− n0) cos2φ, (B2)

cf. Eq. (2) from the main text. Applying Eq. (A18) to N̂0/N , (â†1â
†
−1â

2
0 + â†20 â1â−1)/N2, â†1â−1/N , and â†−1â1/N

yields the equations of motion in Eq. (3) from the main text:

d

dτ
n0 =

∂

∂φ

hmf

|c|
,

d

dτ
φ = − ∂

∂n0

hmf

|c|
, and

d

dτ
(φ1 − φ−1) = 0 (B3)

The first two equations of motion are Hamilton’s equations for the Hamiltonian hmf and the canonical coordinates
n0 and φ. The corresponding phase space is a sphere with z-axis 0 ≤ n0 ≤ 1 and azimuthal angle φ ∈ [0, 2π). Below,
Section B 2 provides the classical phase-space trajectories. In Section B 3 we review the dynamics of n0.

In the main text, we have introduced an order parameter for the ESQPTs in ferromagnetic spin-1 BECs with zero
magnetization and have proposed to reveal this order parameter by interferometry. In Section B 4 we supplement
some mathematical details regarding our measurement prescription.

1. Restricting the density of states

The Fock basis of the N -particle Hilbert space consists of the joint eigenstates |N1, N0, N−1〉 of the N̂m with

eigenvalues Nm and
∑
mNm = N . In this basis, the projection onto the eigenspace of D̂ with eigenvalue D = 0 reads

P̂0 =

N/2∑
k=0

|k,N − 2k, k〉〈k,N − 2k, k|. (B4)

We define the density of states (DOS) in the D = 0 subspace by

F [ν0](ζ) =

∫
dε eiζε ν0(ε) ≡ Tr P̂0 eiζĥ, ζ ∈ R. (B5)

Below, we show that

lim
N→∞

1

N
Tr P̂0 eiζĥ =

∫
Dαδ(n1 − n−1) eiζhmf (α) . (B6)

In the same way as in Section A 1, this implies

lim
N→∞

ν0(ε)

N
=

∫
Dαδ(n1 − n−1) δ(hmf(α)− ε) (B7)

for the restricted DOS in the mean-field limit. Expressing ν0 as a function of η = ε/|c| yields Eq. (4) from the main
text.

In the following, we prove that

lim
N→∞

1

N
Tr P̂0f(Â) =

∫
Dαδ(n1 − n−1) f(Amf(α)) ∀f ∈ C(A), Â ∈ A, (B8)
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where, as before, Dα ≡ 1
(2π)3

∏
mdnmdφm δ(

∑
mnm − 1) and C(A) denotes the complex analytic functions on A.

Equation (B6) immediately follows as a special case. First, we assume that

lim
N→∞

1

N
Tr P̂0f(Â) =

∫ ∏
m

dnmdφmµ(α) f(Amf(α)) (B9)

and determine µ(α). We observe that P̂0 is invariant under phase shifts:

e−iθN̂m P̂0 eiθN̂m = P̂0 ⇒ Tr P̂0f(eiθN̂m Â e−iθN̂m) = Tr P̂0f(Â) ∀θ,m (B10)

The mean-field limit of eiθN̂m Â e−iθN̂m is Amf(α
′) with φ′m = φm − θ and, apart from that, α′ coinciding with α.

Hence, µ(α) cannot depend on any of the φm. For an arbitrary function f ∈ C(A) of (N̂1 + N̂0 + N̂−1)/N ,

lim
N→∞

1

N
Tr P̂0f

(
N̂1 + N̂0 + N̂−1

N

)
= lim
N→∞

1

N

N/2∑
k=0

f(1) =
1

2
f(1). (B11)

Similarly, for functions of D̂/N ,

lim
N→∞

1

N
Tr P̂0f

(
D̂

N

)
=

1

2
f(0). (B12)

Hence, µ(α) = µ̃(n0)δ(
∑
m nm − 1)δ(n1 − n−1). To determine µ̃(n0), we consider functions of N̂0/N :

lim
N→∞

1

N
Tr P̂0f

(
N̂0

N

)
= lim
N→∞

1

N

N/2∑
k=0

f

(
N − 2k

N

)
=

1

2

∫
dn0 f(n0). (B13)

This, finally, yields µ(α) = 1
(2π)3 δ(

∑
m nm − 1)δ(n1 − n−1) as required for Eq. (B8).

The proof of our assumption, Eq. (B9), relies on results from Ref. [36]. Recall that all Â ∈ A and f(Â) with
f ∈ C(A) are endomorphisms on N -particle Hilbert spaces with arbitrary N . Considered as sequences in N , they

belong to the set of approximately symmetric sequences Ỹ defined in Ref. [36]. On each N -particle Hilbert space,

we introduce the state ρ̂N ≡ 1
bN/2c+1 P̂0 and the corresponding linear functional TN : Ỹ → C, TN (Ŷ ) ≡ Tr ρ̂N ŶN ,

where ŶN denotes the sequence elements of Ŷ . The TN constitute a sequence TN in a compact space [36]. The
compactness has two consequences. First, TN has a convergent subsequence. Second, if all convergent subsequences
of TN converge to the same T∞, so does the entire TN. According to Propositions III.3 and IV.5 in Ref. [36], the limit
of any convergent subsequence of TN assumes the form

T∞(Ŷ ) =

∫ ∏
m

dnmdφmµ(α) lim
N→∞

〈α, N |Ŷ |α, N〉. (B14)

The arguments from the previous paragraph immediately yield µ(α) = 2
(2π)3 δ(

∑
m nm − 1)δ(n1 − n−1), where the

additional factor of 2 reflects the different normalization of ρ̂N and 1
N P̂0. Hence, T∞ does not depend on the convergent

subsequence under consideration and TN converges to T∞. Finally, we observe that

lim
N→∞

1

N
Tr P̂0f(Â) =

1

2
T∞(f(Â)). (B15)

Recalling that lim
N→∞

〈α, N |f(Â)|α, N〉 = f(Amf(α)), see Eq. (A4), completes the proof.

2. Phase-space trajectories

An energy hypersurface at ξ and η consists of all phase-space points (n0, φ) which fulfill

η =
hmf

|c|
= ξ(1− 2n0)− 2n0(1− n0) cos2φ. (B16)
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For 0 < |ξ| < 1, Eq. (B16) can be rewritten as

n0(φ) =


m±(φ) ∀ cos2φ ≥

√
η2 − ξ2 − η for η < η∗{

m+(φ) ∀φ for ξ < 0

m−(φ) ∀φ for ξ > 0
for η > η∗

1
2

(
1− ξ

|ξ|

)
+ ξ

cos2φ ∀ cos2φ ≥ |ξ| for η = η∗

(B17)

with m±(φ) = 1
2 cos2φ (cos2φ + ξ ±

√
∆) and ∆ = cos4φ + 2η cos2φ + ξ2. Recall that η0 = − 1

2 (ξ2 + 1), η0 ≤ η ≤ |ξ|,
and η∗ = −|ξ|.

A phase-space trajectory is the set of all points (n0, φ) which are connected by the Hamiltonian dynamics. Partic-
ularly, any closed line of constant η which does not pass through a stationary point of hmf is a trajectory. For each
η > η∗, the energy hypersurface is a closed line by itself, while for η0 < η < η∗ each energy hypersurface comprises
two disconnected closed lines. Since the stationary points of hmf are at η0 and η∗, we conclude that the phase-space
trajectories for η /∈ {η0, η∗} are the connected components of the energy hypersurfaces (B17). This result can be
extended to η0, where the energy hypersurface consists of two stationary points, each of which is its own trajectory.
At η∗, the energy hypersurface has the shape of an eight with the stationary point located at the intersection. There
are, hence, three trajectories: the two wings of the eight excluding the stationary point, and the stationary point
itself.

Phase-space trajectories are commonly assigned the direction in which they are traced by the evolution forward in
time. This direction is determined by the equations of motion, see Eq. (B3).

3. Dynamics

The dynamics of n0 is governed by

d

dτ
n0 =

∂

∂φ

hmf

|c|
= 4n0(1− n0) cosφ sinφ. (B18)

We square Eq. (B18) and, exploiting the conservation of η, cf. Eq. (B16), obtain for ξ 6= 0(
d

dτ
n0

)2

= 16ξ(n0 − z0)(n0 − z+)(n0 − z−) (B19)

with z0 = 1
2 (1− η/ξ) and z± = 1

2 (1 + ξ±
√

1 + ξ2 + 2η). Recall that ESQPTs at η∗ = −|ξ| and 0 < |ξ| < 1 divide the
ξ-η-plane into three excited-state quantum phases: the TF′ phase for η > η∗ and ξ < 0, the P′ phase for η > η∗ and
ξ > 0, and the BA′ phase for η < η∗. In the TF′ and P′ phases z− ≤ z0 ≤ z+, while in the BA′ phase z0 ≤ z− ≤ z+
for ξ < 0 and z− ≤ z+ ≤ z0 for ξ > 0.

Let us introduce x1 = 1
2 (1 + |ξ| −

√
1 + ξ2 + 2η) and

x2 =

{
1
2 (1 + |ξ|+

√
1 + ξ2 + 2η) for η ≤ η∗

1
2 (1− η/|ξ|) for η > η∗

, x3 =

{
1
2 (1− η/|ξ|) for η ≤ η∗
1
2 (1 + |ξ|+

√
1 + ξ2 + 2η) for η > η∗

. (B20)

Note that x1 ≤ x2 ≤ x3 and that for ξ > 0 the xi coincide with the appropriately ordered zeroes z0 and z±. According
to Refs. [22, 33],

n0(τ) = x2 − (x2 − x1) cn2

(
2
√
|ξ|(x3 − x1)τ + u0,

x2 − x1
x3 − x1

)
≡ ñ0(τ) for ξ > 0, (B21)

where cn(u; k2) is the Jacobi elliptic cosine and u0 accounts for the initial conditions2. It can be easily verified that
Eq. (B21) solves Eq. (B19). The dynamics for ξ < 0 and ξ > 0 are related by hmf(ξ, n0, φ) = hmf(−ξ, 1 − n0, φ).
Combining this with the equations of motion in Eq. (B3) and using the time-reversal symmetry of ñ0(τ) one can show
that

n0(τ) = 1− ñ0(τ) for ξ < 0. (B22)

2 Note that at (|ξ| = 1, η = −1) the denominator x3 − x1 vanishes. Hence, ñ0(τ) has to be computed by taking an appropriate limit.
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The evolution n0(τ) is periodic with period

T =
1√

|ξ|(x3 − x1)
K

(
x2 − x1
x3 − x1

)
, (B23)

where K(k2) =
∫ π/2
0

dγ
√

1− k2 sin2γ
−1

is the complete elliptic integral of the first kind. Plugging in the respective
expressions for the xi yields

T =

{√
y−1K(x/y) for η < η∗√
x
−1
K(y/x) for η > η∗

(B24)

with x = |ξ|
√

1 + ξ2 + 2η and y = (x− ξ2 − η)/2. To obtain Eq. (10) from the main text, recall that τ = |c|t/~. The
periodicity diverges at the ESQPTs, as can be derived from limk2↗1K(k2) =∞.

4. Measuring the order parameter w

In the main text, we have introduced the order parameter w, which distinguishes between the TF′ (w = −1), the
P′ (w = 1), and the BA′ (w = 0) phase. Our measurement prescription for p = cos(πw) is summarized in Eq. (7)
from the main text. It relies on the mean-field dynamics at a given ξ and η. To evaluate the corresponding mean-field
limit, we have employed Eq. (A17).

The visibility V = 2
√

1− n0(0)
√
n0(0), which depends on the initial condition n0(0), quantifies how well one can

experimentally tell |w| = 1 from |w| = 0 and, thus, neighboring excited-state quantum phases from each other. To
optimize V , n0(0) has to be chosen as close to 1/2 as is compatible with the periodic dynamics n0(τ) at the ξ and η
under consideration. We denote the optimal value of n0(0) by nopt.

According to Section B 3, n0(τ) oscillates in the TF′ phase between the minimum value z0 and the maximum value
z+, in the P′ phase between the minimum z− and the maximum z0, and in the BA′ phase between z− and z+. We
observe that z0 ≤ 1/2 ⇔ η/ξ ≥ 0 and z0 ≥ 1/2 ⇔ η/ξ ≤ 0. Furthermore, for ξ < 0 it is obvious that z− < 1/2,
and for ξ > 0 that z+ > 1/2. Finally, one can show for ξ > 0 that z− ≤ 1/2 ⇔ η ≥ −1/2 and for ξ < 0 that
z+ ≥ 1/2⇔ η ≥ −1/2. Combining these findings yields Eq. (8) from the main text:

nopt =


1
2 (1 + ξ − ξ

|ξ|

√
1 + 2η + ξ2) for η < −1/2

1
2 for − 1/2 ≤ η ≤ 0
1
2 (1− η

ξ ) for 0 < η

(B25)
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[6] P. Cejnar, P. Stránský, M. Macek, and M. Kloc, “Excited-state quantum phase transitions,” arXiv:2011.01662 (2020).
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and entanglement by scanning through quantum phase transitions in spinor bose-einstein condensates,” Phys. Rev. A 97,
032339 (2018).

http://dx.doi.org/10.1103/PhysRevLett.111.180401
http://dx.doi.org/10.1103/PhysRevA.72.013602
http://dx.doi.org/10.1103/PhysRevA.89.023608
http://dx.doi.org/ 10.1103/PhysRevLett.124.043001
http://dx.doi.org/ 10.5169/seals-116175
http://dx.doi.org/ 10.5169/seals-116175
http://dx.doi.org/ 10.1142/S0129055X92000108
http://dx.doi.org/10.1142/1696
http://dx.doi.org/10.1142/1696
http://dx.doi.org/10.1103/PhysRevE.78.021106
http://dx.doi.org/ 10.1088/0305-4470/38/9/002
http://dx.doi.org/ 10.1088/0305-4470/38/9/002
http://dx.doi.org/10.1007/978-1-4939-6795-7
http://dx.doi.org/10.1007/3-540-35077-2
http://dx.doi.org/10.1007/978-3-658-00317-3
http://dx.doi.org/ 10.1103/PhysRevA.97.032339
http://dx.doi.org/ 10.1103/PhysRevA.97.032339

	Excited-state quantum phase transitions in spinor Bose-Einstein condensates
	Abstract
	A Mean-field limit of bosonic systems
	1 Density of states
	2 Equations of motion
	3 Mathematical supplement

	B Ferromagnetic spin-1 Bose-Einstein condensate with zero magnetization
	1 Restricting the density of states
	2 Phase-space trajectories
	3 Dynamics
	4 Measuring the order parameter w

	 References


