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Intermittency of three-dimensional perturbations in a point-vortex model
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Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL,
CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France

(Dated: April 27, 2021)

Three-dimensional (3-D) instabilities on a (potentially turbulent) two-dimensional (2-D) flow are
still incompletely understood, despite recent progress. Here, based on known physical properties of
such 3-D instabilities, we propose a simple, energy-conserving model describing this situation. It
consists of a regularized 2-D point-vortex flow coupled to localized 3-D perturbations (“ergophages”),
such that ergophages can gain energy by altering vortex-vortex distances through an induced diver-
gent velocity field, thus decreasing point-vortex energy. We investigate the model in three distinct
stages of evolution: (i) The linear regime, where the amplitude of the ergophages grows or decays
exponentially on average, with an instantaneous growth rate that fluctuates randomly in time. The
instantaneous growth rate has a small auto-correlation time, and a probability distribution featuring
a power-law tail with exponent between −2 and −5/3 (up to a cut-off) depending on the point-
vortex base flow. Consequently, the logarithm of the ergophage amplitude performs a Lévy flight.
(ii) The passive-nonlinear regime of the model, where the 2-D flow evolves independently of the
ergophage amplitudes, which saturate by non-linear self-interactions without affecting the 2-D flow.
In this regime the system exhibits a new type of on-off intermittency that we name Lévy on-off
intermittency, which we define and study in a companion paper [van Kan et al. 2021]. We compute
the bifurcation diagram for the mean and variance of the perturbation amplitude, as well as the
probability density of the perturbation amplitude. (iii) Finally, we characterize the fully nonlinear
regime, where ergophages feed back on the 2-D flow, and study how the vortex temperature is al-
tered by the interaction with ergophages. It is shown that when the amplitude of the ergophages is
sufficiently large, the condensate is disrupted and the 2-D flow saturates to a zero-temperature state.
Given the limitations of existing theories, our model provides a new perspective on 3-D instabilities
growing on 2-D flows, which will be useful in analysing and understanding the much more complex
results of DNS and potentially guide further theoretical developments.

I. INTRODUCTION

Point-vortex flow is a simple (but singular, i.e. weak)
solution of the two-dimensional (2-D) Euler equation de-
scribing inviscid fluid flow, in which N strongly localized
vortices advect each another chaotically by their induced
velocity fields [1–5]. They admit a famous equilibrium
statistical mechanics description due to Onsager [6, 7],
who showed that states with negative temperatures exist
in the system, where same-signed point vortices cluster
to form two strong counter-rotating vortices. Indeed, 2-D
turbulent flow features isolated vortices which aggregate
and merge over time in a process called inverse energy
cascade, forming a large-scale condensate, where most of
the energy is concentrated in the largest-scale mode [8–
10]. This is in contrast with three-dimensional (3-D) tur-
bulence, where energy is transferred from large to small
scales [11]. Inverse cascades and associated condensa-
tion phenomena are also found in quasi-2-D flows, such
as turbulence in thin layers [12–16] and rapidly rotating
turbulence [17, 18], which feature 3-D components, but
are predominantly 2-D. A review of such flows is given in
[19].

Point-vortex models have found numerous applications
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in simplified descriptions of turbulent fluid flows. An
early successful simulation of the inverse cascade in 2-
D turbulence indeed relied on the point-vortex-based
vortex-in-cell approximation, [20]. In the 1990s, there
was a significant activity devoted to vortex gas mod-
elling of (particularly decaying) 2-D turbulence [21–25],
where merging rules for point vortices were prescribed,
yielding 2-D turbulence-like behavior at reduced numer-
ical cost. Point-vortex models have also been used to
investigate stirring by chaotic advection [26], as well as
Lagrangian intermittency, pair dispersion and transport
in turbulence [27–29]. Recently, vortex gas scaling argu-
ments were leveraged to find a highly accurate local clo-
sure in baroclinic turbulence [30]. Other physical prob-
lems which have been fruitfully treated by point-vortex
models include the stability of vortex streets and vor-
tex sheets [31–34], quantum turbulence [35–38], plasma
dynamics [39] and stellar dynamics [40].

For flows in thin layers, rotating flows and flows un-
der the action of an external magnetic field, it has been
proven using upper bound theory [41, 42] that a non-
dimensional threshold exists in terms of the layer depth
and fluid viscosity (as well as the rotation rate and or the
external magnetic field, if present), where the flow under-
goes exact bi-dimensionalization (for periodic or stress-
free boundary conditions). Beyond this point, 3-D per-
turbations away from a 2-D flow decay due to the action
of viscous damping. This has profound consequences for
turbulent flows since, as mentioned, the phenomenology
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of 2-D turbulence differs strongly from the 3-D case due
to additional conserved quantities in the 2-D case [10, 11].
Therefore, it is important to understand quasi-2-D flows
close to the onset of three-dimensionality. The bound-
ing theory only establishes the existence of a threshold,
but since it is built on rather conservative estimates, it
cannot capture the physics occurring near the threshold.
Very recently, in an extensive numerical study [43], Se-
shasayanan and Gallet investigated the linear stability of
3-D perturbations on a 2-D turbulent condensate back-
ground flow at the onset of three-dimensionality. The
authors showed that when instability is present, the time
evolution of the energy of linear 3-D modes involves
phases of jump-like exponential growth occurring ran-
domly in time, inter-spaced by plateau-like phases where
growth is absent. Here, in the spirit of the wide range of
applications of point vortices described above, we formu-
late and analyze a point-vortex model of localized 3-D
perturbations in quasi-2-D turbulence, whose dynamics
are qualitatively similar to the exponential growth and
decay evolution found in [43].

The remainder of this article is structured as follows.
In section II, we provide a brief introduction to the con-
cept of point-vortex temperature, in section III, we for-
mulate the model to be studied. In section IV, we de-
scribe the method of our investigation. Then, in section
V we present the results of our numerical simulations
and finally in section VI we discuss the implications of
our results and remaining open questions.

II. BACKGROUND: TEMPERATURE OF
POINT-VORTEX STATES

We briefly summarize the concept of the temperature
of point-vortex flow, which was introduced in 1949 by On-
sager [6]. The energy of a set of point vortices is given by
the HamiltonianH, which only depends on the vortex po-
sitions (x, y). These positions are the conjugate variables
of the point-vortex Hamiltonian. In bounded domains,
the total phase space volume is therefore finite. We de-
note by Ω(E) the phase space volume occupied by states
whose energies H lie in the interval [E,E + dE]. Then
the thermodynamic entropy is kB ln(Ω(E)/Ω0), where kB
is the Boltzmann constant and Ω0 is a reference volume
required for dimensional reasons. In the extreme situa-
tion where vortex dipoles (vortex-antivortex pairs) col-
lapse, which corresponds to negative energies E < 0,
the available phase space volume is vanishingly small,

Ω(E)
E→−∞−→ 0. The opposite limit of large positive ener-

gies occurs when like-sign vortices concentrate at a point,

in which case also Ω(E)
E→∞−→ 0. Since the total volume

is non-zero, the non-negative function Ω(E) must reach
a maximum at an intermediate energy −∞ < Em < ∞.
The associated microcanonical inverse temperature,

β(E) ≡ ∂ ln(Ω(E))

∂E
(1)

FIG. 1. Overview of point-vortex states at negative, zero
and positive inverse temperatures β. Clustering occurs for
β < βc < 0, a homogeneous state is found at β = 0, and pair
condensation occurs for β > βpc.

is thus positive for E < Em, but vanishes at E = Em and
is negative for E > Em. Negative-temperature states
can generally arise in both classical and quantum sys-
tems with a finite number of degrees of freedom whose
state space is bounded, such as localized spin systems
[44–46]. In the point-vortex system, high-energy states at
negative temperatures, corresponding to condensates fea-
turing same-sign vortex clusters, have been extensively
studied since Onsager’s initial contribution [6, 7, 47? ].
In particular, there is a negative clustering temperature
βc, which marks the onset of same-sign vortex clustering.
Similarly, there is a positive pair condensation tempera-
ture βpc, at which opposite-sign vortices form dipole pairs
which propagate through the domain, see [48]. The van-
ishing inverse temperature at E = Em corresponds to
a homogeneous state with positive and negative vortices
spread out evenly over the domain. The point-vortex
states at different temperatures are summarized in figure
1. Such point-vortex states at any given inverse tem-
perature β may be generated using the noisy gradient
method presented in appendix B, which was previously
introduced in [49]. Specifically, once a statistically sta-
tionary state is reached, this numerical method generates
random point-vortex states according to the canonical
distribution associated with the inverse temperature β.
For a given value of β, the mean energy in the statis-
tically stationary state can be measured from the time
series. Thus, like every microcanonical temperature cor-
responds to an energy E according to (1), in the noisy
gradient method every value of β corresponds to a mean
energy 〈E〉 in steady state. The resulting mean energy
as a function of temperature is shown in figure 2.

III. THE MODEL

Here we construct the simplified model of the inter-
action of 2-D and 3-D flow studied in this paper. The
model is in the same spirit as shell models of turbulent
cascade processes [50], which replace the Navier-Stokes
dynamics with a simpler set of coupled nonlinear ordi-
nary differential equations, which conserve a number of
quantities including total energy and enstrophy in the 2-
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FIG. 2. Mean point-vortex energy 〈E〉 of Nv = 32 vortices
versus β, computed using the method described in appendix
B in the periodic domain [0, 2π]× [0, 2π] (with a truncation at
distances smaller than ε = 0.1, cf. appendix B). This curve
allows a translation from vortex energies at steady state to
corresponding temperatures.

D case, aiming at providing insights into turbulent cas-
cade processes. The present model, as we show below,
may similarly provide insights into the dynamics of 3-D
instabilities on turbulent 2-D flows.

For the sake of simplicity and clarity, the theoretical
formalism is presented in the infinite domain. In ap-
pendix A, we provide the equations for the 2-D doubly
periodic domain [0, 2πL]× [0, 2πL], where the statistical
point-vortex temperature from section II is well defined.

Our main goal is to arrive at a model of minimum com-
plexity describing the growth of 3-D perturbations on a 2-
D large-scale condensate flow. Two key ingredients must
be selected. Firstly, a model of the two-dimensional base
flow must be chosen. Here we opt for 2-D point-vortex
flow, in view of its many successful modelling applica-
tions to two-dimensional turbulent flows, as presented
in the introduction. Specifically, we consider an even
number Nv of point vortices with circulations Γi = Γ
for odd i and Γi = −Γ for even i, located at positions

x
(i)
v = (x

(i)
v , y

(i)
v ).

Secondly, the 3-D perturbations have to be modelled.
While there exist 3-D vortex filament models, commonly
used in quantum turbulence, which describe mutual ad-
vection of curved vortex lines [51, 52], these are signif-
icantly more complex than their 2-D counterparts – in
particular, each segment of every vortex line is advected
by all other vortex lines via the Biot-Savart law, and
in addition proper handling of vortex reconnections is
a complicating factor. Instead, here we seek a simpler
description. Simulations of turbulent flows close to the
onset of three-dimensionality reveal that 3-D perturba-
tions are strongly localized (spatially intermittent) in the
2-D plane [14, 15, 43]. Indeed, close to the onset of three-

dimensionality, high wavenumbers in the third dimension
are suppressed by viscous damping. Hence, the 3-D in-
stability, while being strongly localized in the 2-D plane,
is also expected to have a simple spatial structure in the
third dimension, and its intensity can be approximately
characterized by a single scalar amplitude.

Combining these two insights, we model 3-D motions
as Np localized, point-like entities in the plane whose de-
tailed spatial structure in the third dimension is ignored,
and whose intensity is characterized by an effective per-
turbation amplitude Ak, for k = 1, . . . , Np. We name
these entities “ergophages” and denote their positions by

x
(k)
p = (x

(k)
p , y

(k)
p ). While the model describes 3-D flow,

the mathematical structure of the model is effectively 2-
D. We stress that this is not a contradiction, since the
reduction is based on the physical properties of 3-D per-
turbations close to onset, and retains 3-D information.

Point vortices and 3-D perturbations induce velocity
fields that advect each other following the equations

d

dt
x(i)
v = U′(i)v + U(i)

p + u
(i)
f (2)

and

d

dt
x(k)
p = U(k)

v + v
(k)
f (3)

where U
′(i)
v is the velocity induced on vortex i by all point

vortices i 6= j, U
(i)
p is the velocity induced on vortex i

by the 3-D ergophages and U
(k)
v is the velocity induced

on ergophage k by all Nv point vortices. Finally, u
(i)
f

and v
(k)
f are externally imposed velocity fields that could

inject energy to the system. Also, note that ergophages
do not advect each other, a choice which is made for
simplicity – mutual advection of ergophages can easily be
included in the model presented below (while this was not
studied in detail, it did not seem to affect the qualitative
model behavior).

In the absence of ergophages and external velocities,
the model reduces to classical point-vortex flow. In this
case, point vortices move due to their mutual advection,
following Hamiltonian dynamics so that the velocity field

U′
(i)
v can be written as

U′
(i)
v = Γ−1i

(
∂
y
(i)
v
H

−∂
x
(i)
v
H

)
, (4)

corresponding to the advection of the i-th vortex by all
vortices j 6= i. The Hamiltonian H in R2 is given by

H(x(1)v , . . . , x(Nv)
v ) = −1

2

Nv∑
i,j=1
i6=j

ΓiΓj log(|x(i)
v −x(j)

v |), (5)

which is a sum over pairs depending on the vortex-vortex

distances alone. The velocity field U
(k)
v closely resem-

bles U′
(i)
v , but it includes the advection due to all Nv
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vortices, formally omitting the condition i 6= j in H be-

fore differentiating in (4) and evaluating at x
(i)
v → x

(k)
p .

The Hamiltonian also gives the kinetic energy of the
flow (up to a factor of (2π)−1 times the constant fluid
density, and an additive infinite constant due to self-
energy), which is conserved. The point-vortex energy
increases when same-sign vortices approach each other
and when opposite-sign vortices move apart, while it de-
creases when same-sign vortices move apart and when
opposite-sign vortices approach each other.

In the presence of ergophages, energy of the 2-D field
can be transferred to the 3-D field perturbations. Thus,
in order to gain energy, an ergophage must reduce the
energy of a given point-vortex configuration on which it
is superimposed. Each ergophage induces a 3-D pertur-
bation velocity field ukp(x) of amplitude A2

k. Importantly,
despite the model being formally 2-D, the fact that er-

gophages represent 3-D structures implies that u
(k)
p (x)

has a non-zero divergence in the (x, y) plane. This is

in contrast to the velocity field U
(i)
v (x) induced by 2-D

point vortices, whose 2-D divergence vanishes. The total
velocity field induced by the ergophages is then given by

Up(x) =

Np∑
k=1

A2
ku

(k)
p (x), (6)

such that the velocity induced on vortex i can be written

as U
(i)
p = Up

(
x
(i)
v

)
. This field modifies the point-vortex

positions and thus their energy, allowing ergophages to
grow under suitable conditions.

Our choice for u
(k)
p (x) should be the simplest possi-

ble. It is shown in the appendix D that the choice of a
monopole, which at first does suggest itself for its simplic-
ity, cannot produce 3-D instability. Hence the simplest

non-trivial choice for u
(k)
p (x) is given by a dipole field,

u(k)
p = (d̂k · ∇)

(
∂xφ

(k)

∂yφ
(k)

)
. (7)

where d̂k = (cos(ϕk), sin(ϕk)) is the dipole moment with
ϕk the angle between the dipole moment and the x-axis.
The potential φ(k) is given by

φ(k)(x) = −1

2
c log(|x(k)

p − x|), (8)

where c is a coupling coefficient. An example of dipole
interactions is shown in figure 3. In this case the pertur-
bation velocity field makes same-sign vortices approach

each other (e.g. x
(1)
v and x

(2)
v in figure 3) and opposite-

sign vortices move apart (e.g. x
(3)
v and x

(4)
v in figure 3),

thus reducing the point-vortex energy. Now, assume one

were to interchange x
(1)
v ↔ x

(4)
v and x

(2)
v ↔ x

(3)
v in fig-

ure 3, keeping xp the same. The dipole field would then
cause an increase in point-vortex energy and thus would
no longer lead to any 3-D instabilities. However, it suf-
fices to rotate the dipole moment by 180◦ to recuperate a

FIG. 3. Illustration of how a velocity field up (steam lines)
due to a 3-D perturbation at xp, can reduce point-vortex en-
ergy. This is done by increasing the distance between the

same-sign vortices at x
(1)
v ,x

(2)
v and/or decreasing the distance

between opposite-sign vortices at x
(3)
v ,x

(4)
v . The bold black

arrow passing through xp represents the dipole moment.

3-D instability. This example illustrates that the dipole
field can lead to 3-D instability for a given vortex config-
uration (even if monopole field would not), provided that
the orientation of the dipole moment is suitably chosen.
For simplicity the dipole moment in this work will always
be chosen such as to ensure maximum (positive) energy
extraction from the 2-D field.
In our model we assign to the ergophages the 3-D energy

E3D =
1

2

∑
k

A2
k. (9)

The energy exchanges between 2-D and 3-D flow must
be conservative. Thus any decrease of the point-vortex
energy should correspond to an increase of 3-D ergophage
energy. We let the amplitudes Ak evolve according to

dAk
dt

= (γk − ν)Ak − δA3
k (10)

(no implicit summation), where γk is an instantaneous
growth rate due to interactions with the point vortices,
ν (proportional to viscosity) is a linear damping coeffi-
cient and δ is a nonlinear damping coefficient due to self-
interactions. Such nonlinear effects in three-dimensional
velocity fields are associated with a Kolmogorov forward
energy cascade, whose amplitude will generally depend
on system parameters, such as domain geometry and sys-
tem rotation rate. Hence the coefficient δ should also
depend on these system parameters. In order for the
coupling to conserve energy, the growth-rate is given by

γk = −
Nv∑
i=1

u(k)
p

(
x(i)
v

)
· ∇

x
(i)
v
H. (11)
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As is shown in appendix C, these model equations imply
that the total energy

Etot = H +
1

2

Np∑
k=1

A2
k = H + E3D (12)

is conserved, provided µ = δ = 0 (no dissipation) and
uf = 0 (no energy injection). Note that for Etot to
be dimensionally consistent, Ak must have dimensions
of circulation. In addition to the energy, the 2-D Eu-
ler equation conserves the so-called Casimir invariants,
which are of the form

∫
ωnd2x, (n = 2 gives the en-

strophy), where ω denotes vorticity. In the point-vortex
model, the vorticity depends only on the number and cir-
culation of vortices, both of which are conserved in our
model.

In the presence of dissipation it is useful to have a
driving mechanism as well, so that a non-trivial steady
state is reached. This is achieved by the choice

u
(i)
f = εf

[
∇xi

H + |βf |−1/2ηi(t)
]
, (13)

where ηk(t) = (η1k(t), η2k(t))T with independent white
Gaussian noise components ηik satisfying 〈ηik(t)〉 = 0 and

〈ηikηi
′

k′〉 = 2δi,i′δk,k′δ(t− t′) for the ensemble average 〈·〉.
In the absence of ergophages, this noisy-gradient driving
leads to a point-vortex flow with temperature β−1f and
is described in detail in appendix B. We emphasize that
the driving (13) can either increase or decrease the 2-
D energy. If the 2-D energy at any given time is above
the equilibrium value corresponding to the temperature
β−1f (shown in Fig. 2), then the driving will act to de-
crease energy to the equilibrium value. Conversely, if the
2-D energy is below that equilibrium value, the driving
will act to increase the 2-D energy. We also point out
that, as a consequence of the inverse energy cascade, 2-D
flows typically feature the formation of large-scale coher-
ent structures at late times. Such a structure is observed
in the point-vortex system at negative β. At intermediate
stages of the inverse cascade process, for instance if the
cascade is interrupted by large-scale friction, one finds
an approximately homogeneous gas of vortices [53]. In
the point-vortex system, this is realized when β ≈ 0. At
β > 0, the point-vortex model is characterized by vortex-
antivortex bound states. To the best of our knowledge,
however, these are never observed in laboratory experi-
ments [13, 54] nor numerical studies [12, 14, 15] of turbu-
lent quasi-2-D flows. We conclude that the regime β ≤ 0
is the physically relevant one.

Finally, since the total energy is independent of the er-
gophage positions, we chose vf to be a noise term, with-
out altering the energy dynamics,

v
(k)
f = σηk(t) (14)

where ηi = (η
(1)
i , η

(2)
i ), with η

(j)
i pairwise independent

zero-mean white Gaussian noise terms. The noise is

added to eliminate a remaining dependence on initial con-
ditions. Note that in our model, different ergophages do
not directly affect each other, neither in terms of their
amplitudes, nor their positions. They can only affect
each other indirectly by altering the background 2-D flow
non-negligibly and thus changing the growth rate γk ex-
perienced by each ergophage. This is mainly motivated
by our goal of maximum simplicity. Firstly, the model
3-D energy is independent of ergophage positions, thus
we may decide to neglect mutual advection of ergophages
in a minimal description of how 3-D energy evolves. Sec-
ondly, while in a strongly 3-D flow, the 3-D components
of the flow will feed back on one another, the growth
or decay of 3-D perturbations at small to moderate 3-
D amplitudes on a primarily 2-D flow should be mainly
determined by direct interactions between 2-D and 3-D
components, rather than interactions between 3-D and
3-D components.

Equations (2,3,10) define the time evolution of our
model, which we solve numerically in the following sec-
tions.

IV. NUMERICAL IMPLEMENTATION

We developed a fully MPI-parallelized Fortran pro-
gram, using a fourth-order Runge-Kutta time stepper,
to simulate the model in the 2-D doubly periodic do-
main [0, 2πL]× [0, 2πL], based on the Weiss-McWilliams
formalism introduced in [55]. The parallelization is im-
plemented by assigning a subset of vortex-vortex pairs
and vortex-ergophage pairs to each processor, over which
to sum when computing quantities involving such pairs

such as U
(i)
v ,U

(i)
p , H and γk. The specific model equa-

tions for the periodic domain are given in appendix A.
Since the periodic domain has a finite area, the statistical
point-vortex temperature introduced in section II is well
defined here and no vortices can escape to infinity. A
regularization was introduced at distances smaller than
a positive cut-off ε� 2πL (we set ε/(2πL) = 0.015), sim-
ilarly as in [34]. This regularization is required to avoid
blow-ups, i.e. events where the time step required by
the CFL condition [56] for well-resolvedness becomes ex-
tremely small. The way the cut-off is introduced approx-
imately corresponds to smearing out the delta-peaked
vorticity over a circular patch of constant vorticity, also
known as a Rankine vortex [57]. In a realistic turbulent
flow, there is a cut-off at small length scales related to vis-
cosity. We note that vortex merging does not occur in the
point-vortex model used here, with or without a cut-off
(however, it may be added explicitly as in [21–25]). The
time step ∆t for the Runge-Kutta scheme is dictated by
the maximum growth rate γk, which is associated with
close encounters where some distances are of the order
of ε. For highly condensed configurations, where Nv/2
vortices form a cluster for each sign of circulation, each
cluster comprises approximately N2

v /8 vortex pairs con-
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tributing to γk. At small distances
∣∣∣u(k)
p

∣∣∣ = O(ε−2) and∣∣∣∇x
(i)
v
H
∣∣∣ = O(ε−1), such that the time step thus bounded

above by

∆t . (max(γk))−1 ∝ 8ε3

N2
v

. (15)

For dilute vortex configurations, the largest growth rates
stem from encounters between a single ergophage and a
single vortex, such that ∆t . ε3. This strong dependence
of the required time step on the cut-off ε, and the number
of vortices Nv for dense configurations, is an important
limiting factor in terms of computational cost. The oper-
ation of the highest numerical complexity at every time
step is the evaluation of γk, since it requires summing
O(N2

v ) vortex-vortex pairs for every k = 1, . . . , Np.

V. SIMULATION RESULTS

To study the model introduced in section III, we first
use the noisy gradient method described in appendix B
to generate point-vortex states with Nv = 32 vortices at
both positive and negative temperatures. This relatively
small number of vortices is chosen in order to be able to
run simulations for long times in order to obtain satis-
factory statistics. The energy of the resulting equilibria
as a function of their inverse temperature β is as shown
in figure 2. We note that at this relatively low number
of vortices, the transitions to a condensate and to pair
condensation are not sharp. Using these states generated
by the noisy gradient method as initial conditions for the
point vortices, we proceed in the three following steps:

(A) The passive, linear regime: perturbation ampli-
tudes Ak/Γ� 1 and δ → 0 for a given background
point-vortex flow. In this limit, the evolution equa-
tion (10) of Ak is linear and the point-vortex energy
H is constant in time since Up = O(A2

k) is negli-
gible with respect to the conservative Hamiltonian
advection terms. To investigate this limit we set
Up = 0 in (3) and δ = 0 in (10). Since there is no
dissipation in the system we also set uf = 0.

(B) The passive, nonlinear regime: still Ak/Γ� 1, such
that H still remains unaffected by the 3-D instabil-
ities, but we include saturation of the amplitude
Ak due finite δ, i.e. nonlinear self-interaction (in
both the linear and passive nonlinear regimes, in-
dividual 3-D perturbations evolve independently).
In this limit Up = uf = 0 in (3) as well.

(C) The fully nonlinear regime, where the amplitudes
Ak/Γ = O(1), thus the induced ergophage velocity
Up is finite and its effect on point vortices cannot
be neglected. In this case H is no longer conserved.
To sustain the dynamics against dissipation, the
“driving” term uf given in eq. (13) is included.

FIG. 4. Snapshots from two simulations with Np = 128 per-
turbations (black dots) evolving on a point-vortex flow con-
sisting of Nv = 32 individual vortices, which is highly con-
densed at β = − 1

8
(top) and dilute at β = − 1

128
(bottom).

A. The passive linear regime

We initialize the simulation with Nv = 32 vortices at
an inverse temperature β < 0, with half of the vortices
having circulation Γi = Γ, and the other half having cir-
culation Γi = −Γ. In addition, we introduce Np = 128
randomly placed ergophages of some small initial ampli-
tude (the same for every perturbation). It is worth re-
iterating that in the linear phase of the evolution, since
there is no feedback on the flow, each ergophage is evolv-
ing independently from all the others. Furthermore in
the linear phase the effect of the damping parameter ν is
to induce a mean exponential decay. The time evolution
of Ak(t, ν) for any value of ν can thus be recovered from
the ν = 0 case as Ak(t, ν) = Ak(t, 0)e−νt. For this reason
only the ν = 0 case is examined and the growth rate γ′k
of a ν 6= 0 case is obtained as γ′k = γk − ν.

The configuration under investigation is illustrated in
figure 4 for a highly condensed case (β = − 1

8 ) and a di-
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FIG. 5. Lin-log plot showing the time series of the energy
of Np = 128 localized 3-D perturbations (total energy shown
in solid blue, selected individual contributions 1

2
A2

k in dashed
black lines) in the passive linear regime with ν = 0, growing
on a highly condensed background 2-D flow at β = − 1

8
.

lute case (β = − 1
128 ). Then we let the system evolve in

time and obtain a time series like the one shown in figure
5 for the highly condensed case, where the 3-D energy
(solid blue line) alternates between plateau-like phases
of slow growth and phases of abrupt exponential growth.
The time series bears resemblance to that obtained from
the complete linear stability analysis of 3-D instabilities
on a turbulent 2-D flow performed by Seshasayanan and
Gallet (see fig. 1 in [43]). In the same figure 5, we
also show the energy of individual ergophages, 1

2A
2
k, by

dashed lines. Their sum is equal to the blue solid line.

Two points need to be made. Firstly, one observes in
the time evolution of individual ergophages that there
are alternating phases of slow growth/stagnation and of
rapid exponential growth. Secondly, at a given time t,
E3D(t) is dominated by the ergophage with the largest
amplitude Ak(t). Abrupt growth events in E3D also oc-
cur when another ergophage Ak′ grows exponentially and
“overtakes” Ak, thereby leading to abrupt growth of the
sum. Each of the Np localized perturbations experiences
a different, time-varying growth rate γk(t). To under-
stand this linear growth, we need to quantify the statis-
tical properties of these random growth rates.

In figure 6, we plot histograms of γk sampled over all
k = 1, . . . , Np and all time steps. In both cases, one ob-
serves a power-law range in the PDF. For the dilute case
(β = − 1

128 ) the power-law exponent is close to −2 while

for the dense state (β = − 1
8 ) it is closer to −5/3. These

two exponents can be understood if one identifies the
dominant interactions. In the dilute case |β| � 1, where
point vortices are far apart, an ergophage maximizes its
energy extraction when being close to a single point vor-
tex. It does so by displacing the vortex towards the near-
est opposite-sign vortex and/or further apart from the

nearest same-sign vortex. In the dense (condensate) case
−β � 1, point vortices form high-density, same-signed
clusters. In order for an ergophage to maximize energy
extraction, it needs to be located close to these clusters.
The PDF of the growth rate γk can then be calculated
by assuming that all positions in space are equally prob-
able and that at each time it is the interaction with the
closest pair of point vortices that dominates. A detailed
calculation, given in appendix E, yields

P (γ) ∝ γ−2 at large γ. (16)

for the dilute limit |β| � 1, while for the dense limit
−β � 1 one obtains

P (γ) ∝ γ−5/3 at large γ. (17)

The predicted power laws agree with the PDFs obtained
numerically. Note, however, that in our numerical set-up
these results are valid up to a large-γ cut-off resulting
from the regularization at distances less than ε. This is
important because without this regularization, the vari-
ance and the mean would be infinite for the power-law
PDFs of γk found here. This implies that some of the
results observed here have an explicit dependence on ε.

Besides the growth-rate distribution, to character-
ize the statistical properties of γk we also need to
quantify its auto-correlation time τac. We define τac
in terms of the normalized auto-correlation function
Γ(τ) = 〈γ(t)γ(t + τ)〉/〈γ(t)2〉, as the smallest τ for
which Γ(τ) ≤ 0.5, where Γ(0) = 1 by definition and

〈f(γ)〉 = 1
NpT

∫ T
0
dt
∑Np

k=1 f(γk(t)) is an average over

time t (T is the time at the end of the simulation)
and realizations (ergophages). We stress that the small-
distance cut-off introduced in the velocity field, leading
to a large-γ cut-off in P (γ) is essential for obtaining a
finite mean growth rate 〈γ〉 and finite variance, since a
PDF featuring power-law tails with exponents −2, −5/3
does not have a finite mean or variance otherwise. Figure
7 shows that the auto-correlation time decreases mono-
tonically with σ (defined in (14)), as τac ∼ σ−2. By
increasing σ sufficiently, one obtains an arbitarily small
auto-correlation time. When τc〈γ〉 � 1, the random pro-
cess γk(t) can be approximated as uncorrelated in time.

Summarising the above findings, the increments of Ak
are randomly distributed according to a PDF with power
law tails whose exponents are between −2 and −5/3
and approximately white in time since it is uncorrelated
in time beyond a small correlation time (for sufficiently
large σ). These properties imply that the evolution of Ak
due to γk is well approximated by a Lévy flight process.

A Lévy flight is a random process with independent
stationary increments η, where the increments follow a
heavy-tailed PDF. By the generalized central limit theo-
rem [58], the sum of many such heavy-tailed increments
follows a stable PDF Pα,β̃(η) depending on two parame-

ters α ∈ (0, 2] and β̃ ∈ [−1, 1]. Lévy flights were first in-
troduced in [59] and have since found numerous applica-

tions in physics and beyond [60, 61]. The influence of α, β̃
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FIG. 6. Two histograms of the growth rate γk, sampled over
all time steps and all 128 ergophages from the run correspond-
ing to the two linear simulations with a dilute vortex state at
β = −1/128 (top) and a condensed vortex state at β = −1/8
(bottom) visualized in figure 4. Power-law ranges with expo-
nents −2 and −5/3 can be discerned, as predicted for dilute
and dense vortex base states, respectively.

on the PDF Pα,β̃(η) is as follows. For α = 2, one obtains
the Gaussian distribution. For α < 2, a stable distribu-
tion features power-law tails P (η) ∝ {1+β̃sign(η)}η−α−1
at |η| → ∞. The parameter β̃ measures the asymmetry

of PDF. For β̃ = 1 and α < 1, one obtains a one-sided
PDF with support on R+ only. Stable PDFs are known to
occur for velocity and velocity difference statistics in 2-D
vortex flows in particular [62]. The fact that the PDF of
γk shows power-law tails in our model can be understood
as a consequence of this property of 2-D vortex flows.

If γk is interpreted as noise, then equation (10) is a
stochastic differential equation with multiplicative Lévy
noise whose parameters depend on the 2-D flow temper-
ature. The dense and dilute cases described above, for
which the γk PDF has power law ranges with exponents
−5/3 and −2, respectively, correspond to noise parame-

100 101 102
2/

10 2

10 1

100

ac

FIG. 7. Log-log plot of the auto-correlation time τac of the
growth rate γ (see text for the definition of τac) in a pas-
sive, linear simulation at β = −1/16, non-dimensionalized by
the mean growth rate, versus the squared amplitude of the
noise acting on 3-D perturbations, non-dimensionalized by
the r.m.s. vortex circulation.

ters α = 2/3 and α = 1, respectively, and β̃ = 1 since the
linear growth rate γk is positive definite in the model by
construction.

The theory of systems with multiplicative Gaussian
white noise has found a plethora of applications, in par-
ticular to noise-induced transitions [63] and the phe-
nomenon of on-off intermittency [64–66]. While the role
of long-time correlated noise in on-off intermittency has
been considered before [67–70], the case of on-off inter-
mittency with heavy-tailed noise has not previously been
studied explicitly, to our knowledge. Our companion pa-
per [71] is devoted to this topic. Here we summarize only
the relevant results. It is shown in [71] that in the case

α < 1 and β̃ = 1, which applies here, the system (10),
with γk interpreted as white Lévy noise, is unstable for
all values of ν: since the mean value of 〈γk〉 → +∞, vis-
cosity ν, no matter how large, cannot stop the growth
of Ak. If, however, the possible values γk are restricted
(“truncated”) to be below some maximum, so that a fi-
nite value of 〈γk〉 exists, then there is a critical value of
viscosity νc above which all trajectories converge to zero
Ak → 0. However, this critical value depends on the
truncation value of γk, which implies that the threshold
νc will depend on the regularization cut-off ε. At long
time scales the system displays on-off intermittency.

B. The passive nonlinear regime

We solve the model equations for Np = 32 passive non-
linear dipole ergophages evolving on a highly condensed
background flow of Nv = 32 point vortices at tempera-
ture β = −1/8, fixing the nonlinear damping coefficient
at δ = 1. For a given ν, we initialize the ergophages
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FIG. 8. Bifurcation diagram for Np = 32 passive nonlinear
(i.e. independent) dipole ergophages on the background flow
at β = −1/8, δ = 1. The values of 〈X〉n is averaged over the
statistically steady state. Error bars are given by the sample
standard deviation of the time series in steady state. The
dashed lines show the scalings from the Gaussian noise case.

at random positions and with small amplitudes. We
let the system evolve for long times, such that the per-
turbation amplitude either decays or reaches a statisti-
cally steady state. We then measure the steady-state
time average of the moments Mn = 〈An〉, in terms of

〈f(A)〉 = limT→∞
1

TNp

∫ T
0

∑Np

k=1 f(Ak)dt. We also define

the “zeroth” moment as M0 = exp(〈log(A)〉), By the in-
equality of arithmetic and geometric means the moments

are ordered M0 ≤ M1 ≤ M
1/2
2 ≤ M

1/3
3 ≤ . . . . The re-

sulting bifurcation diagram of M0,M1,M2 as a function
of ν is shown in figure 8.

On-off intermittency predicts that all non-zero mo-
ments scale linearly with νc − ν, Mn ∝ (νc − ν), while
the zeroth moment scales as M0 ∝ exp(−cst./(νc − ν)).
Comparing this with the bifurcation diagram shown in
figure 8, where the scalings from the Gaussian case are
shown by dashed lines, one sees that the time-averaged
moments and the Gaussian scalings agree well within the
errorbars. This is a consequence of the truncation in the
model, which subjects the statistics to a convergence to
the Gaussian case, albeit “ultraslow” [72], by the central
limit theorem after the sample averaging and/or long-
time averaging procedures.

Another prediction of on-off intermittency is that the
PDF of the unstable field shows an integrable powerlaw
divergence at zero amplitude with an exponent that ap-
proaches the value -1 from above as ν → νc, while an
exponential cut-off is expected for large values of Ak.
Figure 9 shows the PDF of Ak. At small values of A
the PDF displays a power law Aκ with κ approaching -1
as ν → νc in agreement with the Gaussian on-off pre-
diction. At large A the PDF shows a steeper power-law
scaling. In the companion paper [71], the asymptotics

10−3 10−2 10−1 100 101 102 103
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ν/νc =0.3

ν/νc =0.45
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FIG. 9. Steady state PDF of ergophage amplitudes from
the numerical solution of the model in the passive nonlin-
ear regime for δ = 1, ν/νc = 0.15 on the background flow at
β = −1/8.
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(〈A
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log2/3(〈A〉)

nsample =32

nsample =16

nsample =8

nsample =4

nsample =2

nsample =1

FIG. 10. PDF of sample mean 〈A〉, over nsample realizations
(independent ergophages) from the passive nonlinear point-
vortex model with parameters δ = 1, ν/νc = 0.15. For
nsample = 1, the PDF is close to the theoretical prediction
for the non-truncated system, and converges to a Gaussian
PDF (thin dashed line) as nsample is increased.

P (A) ∝ A−3 log−2/3(A) at large values of A are derived
analytically from a fractional Fokker-Planck equation as-
sociated with eq. (10) for non-truncated multiplicative
Lévy noise with parameters α = 2/3, β = 1 (in the
Stratonovich interpretation), which fits the present data
well. Since A−1 log−α(A) is only integrable at A → ∞
for α > 1, the scaling P (A) ∝ A−3 log−2/3(A) implies
that without a cut-off, only the mean is finite, while the
variance and all higher moments diverge. With a cut-off
at length ε, all moments are finite, but only the mean is of
order one, while all higher moments depend on the cut-off
value ε, increasing as the latter is decreased. This is an
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important difference from the Gaussian noise case. We
note, however, that this difference is diminished as larger
samples are used due to the imposed truncation and the
law of large numbers. This is demonstrated in figure 10
which focuses on this power-law tail far from threshold
ν/νc = 0.15, and averaging A over independent samples
leads to a convergence towards a Gaussian distribution.
For a single realization, however, we observe a form close
to the theoretical prediction for the non-truncated Lévy
process.

C. The fully nonlinear regime

We now enable ergophages to feed back on the point-
vortex flow and include the driving velocity uf . Ini-
tialising a simulation at a condensed vortex state with
β = −1/8, Nv = 32 vortices, Np = 32 ergophages at ran-
dom locations with small initial amplitudes Ak for given
values of ν, δ and using a forcing temperature βf = −1/8,
we let the system evolve in time and measure the mean
energy around which the energy fluctuates at late times.
The choice β = βf for the initial condition is arbitrary,
the system will relax to the same stationary state at late
times, independently of what initial condition is chosen.
However, since we are interested in the stability of con-
densate flows, it is a natural initial condition.

Figure 11 shows time series of the 2-D energy H in the
fully nonlinear regime for ν/νc = 0.15 for different val-
ues of δ. For large δ = 106, the 3-D instabilities cannot
grow to large amplitudes and therefore do not disrupt
the highly energetic condensate. For δ = 105, a slightly
less energetic condensate persists, but is disrupted at ran-
dom times by catastrophic events which reduce the 2-D
flow energy significantly, just to rebuild again thanks to
the driving. These are the traces of the jumps associ-
ated with Lévy flight dynamics which remain present in
the nonlinear regime. Disruptive events occur when an
ergophage comes very close to the point-vortex clusters
shown in the top panel of figure 4, extracting the clus-
ter’s energy by partially breaking it up. With decreasing
values of δ, the ergophages disrupt the condensate fur-
ther and further until they reduce its energy to close to
zero, driving all point vortices apart. The snapshots of
the point-vortex configurations for different δ at a fixed
time are shown in figure 12. They illustrate the grad-
ual disruption of the condensate as δ is decreased from
δ = 106 to δ = 10−2.

For each simulation, we use the correspondence be-
tween mean energy and inverse temperature visualized
in figure 2 to assign a vortex temperature based on the
measured average point-vortex energy at late times. We
repeat this procedure for several values of ν and δ to
obtain the diagram shown in figure 13.

For ν/νc > 1, 3-D perturbations decay and the 2-D
condensate is stable for all values of δ. As discussed below
equation (13), where the driving mechanism is defined,
the forced system converges to a finite average energy at

FIG. 11. Time series of the 2-D energy H, normalized by the
equilibrium energy E(βf ) at temperature β−1

f , in the fully

nonlinear regime at ν/νc = 0.15 for different values of δ. At
δ = 105, the flow is close to a 2-D condensate, up to abrupt
events when the condensate is disrupted. For decreasing val-
ues of δ, ergophages grow to larger amplitudes and lower the
energy of the 2-D flow further. The vertical dashed line indi-
cates the time at which the snapshots in fig. 12 are taken.

FIG. 12. Snapshots of the point-vortex configuration corre-
sponding to the time indicated by the vertical dashed line in
fig. 11. As δ is decreased, the 3-D perturbations are allowed
to grow stronger and disrupt the condensate more and more.

late times in the absence of ergophages. In other words,
the forcing does not inject a constant energy, but acts
rather like a thermostat that aims to maintain the sys-
tem at a fixed temperature. For ν/νc < 1, β increases
with decreasing δ. This is the onset three-dimensionality,
which we characterized in detail in the passive nonlinear
regime. For smaller values of δ, the perturbation ampli-
tudes saturate at larger values, thus disrupting the 2-D
condensate more strongly. When δ is small enough, the
2-D flow reaches β = 0, which corresponds to a total
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FIG. 13. Plot of mean temperature of the point-vortex
flow in a fully nonlinear regime in the presence of Np = 32
perturbations for varying δ, different curves show different
ν. At ν/νc > 1, the flow temperature is exactly that of the
forcing, i.e. β = βf = −1/8, since all 3-D perturbations
decay.

disruption of the condensate. For ν = 0, this occurs at
δ = 1. Since the energy-β curve shown in figure 2 is
very steep at small energies, small deviations in the en-
ergy do not necessarily correspond to vanishing β. Fur-
thermore we note that positive values of β induced by
the ergophagues were never observed. Since such states
would correspond to flows comprised of long-lived bound
vortex-antivortex pairs, the absence thereof is consistent
with DNS and experiments of turbulent quasi-2-D flows,
where such configurations do not arise spontaneously.

The role of the remaining parameters βf , ε,Nv, Np,
which do not vary in Fig. 13, is discussed now. Chang-
ing βf would alter the 2-D background flow. Decreasing
βf would give a more condensed background flow, reduc-
ing the surface area of the vortex clusters and thus the
chances that an ergophage comes close enough to a clus-
ter to disrupt it. This would require longer simulations
and/or larger Np to obtain reliable statistics. At larger
βf , the background state ceases to be a condensate, which
is undesirable given our focus on condensed base flows.
Changing ε would affect the minimum inter-vortex dis-
tance in the clusters. Decreasing ε, the required time step
decreases rapidly according to (15), which is numerically
challenging, while larger ε would be incompatible with
the strong localization of 3-D perturbations. Changing ε
also affects the mean growth rate and thus νc. Finally,
we do not expect Nv, Np to qualitatively change the sys-
tem behavior. A larger number of vortices making up
the condensate implies more 2-D energy for ergophages
to extract. More ergophages, in turn, are more likely
to approach the vortex clusters and thus deplete them.
Based on the above discussion, while we did not under-
take a systematic parameter study, we expect the quali-
tative model behavior to be robust to parameter changes

within appropriate bounds.
In summary, above the onset of three-dimensionality,

studied in detail in the passive nonlinear case, the 2-D
vortex temperatures depend on the linear and nonlin-
ear damping coefficients of the 3-D flow, ranging from
a stable condensate to a complete disruption of the lat-
ter. The jump-like Lévy flight dynamics discussed for of
the linear and weakly nonlinear regimes traces through
to the nonlinear regime, and shows in the time series in
figure 11 by a random disruption of the 2-D condensate
followed by a rapid subsequent rebuilding of the latter
due to the driving.

VI. CONCLUSIONS

We have formulated and analyzed a point-vortex model
of localized 3-D instabilities on 2-D flows. Although the
coupling of the 3-D perturbations to the 2-D flow in the
model is ad-hoc and does not stem directly from the
Navier-Stokes equations, it has some attractive proper-
ties, being energy conserving and reducing to the classical
point-vortex model in certain limits. Most importantly,
the model has led to some very interesting behaviors and
predictions that could apply to more realistic quasi-2-D
systems exhibiting spectral condensation.

First of all the model predicts fluctuating growth rates
with power-law tails, which lead to a Lévy flight in (log-
arithmic) perturbation amplitude. This may be related
to recent DNS results [43], where abrupt, jump-like 3-D
instabilities were observed on a strongly condensed, tur-
bulent 2-D background flow. We point out that in [43],
despite the fact that modern GPU computing power was
harnessed and after integrating for long times, the time
series in their Fig. 1 only contains a few abrupt growth
events, far too few to deduce reliable statistical informa-
tion about the growth rate. This underscores the need
for a simplified model like the one presented here, where
such information is more readily accessible. Furthermore
the model suggests that the onset of the instability de-
pends on the regularization cut-off ε. In realisitic flows,
a small-scale cut-off is provided by viscosity.

A new type of intermittency near the onset of an insta-
bility was discovered. The corresponding situation of on-
off intermittency in the presence of ideal, non-truncated
Lévy noise, is discussed in the companion paper [71].

In the passive nonlinear regime of the model, we ob-
served a continuous transition from finite to vanishing
3-D amplitudes, with on-off intermittent behavior close
to onset. However, a deviation from the predictions for
Gaussian noise was observed at large values of the 3-D
amplitude, in the form of a power-law tail whose expo-
nent matches theoretical predictions derived from a frac-
tional Fokker-Planck equation in the companion paper
[71]. This exponent also implies that the saturation am-
plitude of the second and higher moments would depend
on the regularization cut-off ε, but not the mean.

In the fully nonlinear, strongly coupled regime, where
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the vortex temperature is affected by the presence
of perturbations, we characterized the dependence of
vortex temperature on the ergophage damping coeffi-
cients and showed that at large amplitude of the 3-D
perturbations this temperature reduces to zero. We also
showed that at intermediate values of the parameters δ
and ν, a highly energetic condensate, present when 3-D
perturbations are small, is disrupted at random times by
catastrophic events where 3-D perturbations grow and
the condensate amplitude is reduced significantly, after
which it recovers. Such events have also been observed
in simulations of thin-layer and rotating flows [15, 43, 73].

In view of the limitations of existing theories, our
model provides a new perspective on 3-D instabilities
growing on 2-D flows, which will be useful in analysing
and understanding the much more complex results of
DNS and potentially guide further theoretical develop-
ments.
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Appendix A: The model equations for periodic
boundary conditions

In the main text, the model is presented in infinite
space for clarity. Here, we describe the case of 2-D
doubly periodic domain [0, 2πL] × [0, 2πL], in which an
overall neutral set of an even number Nv of point vor-
tices with circulations Γn = (−1)nΓ, located at posi-

tions x
(i)
v =

(
x
(i)
v , y

(i)
v

)
move due to their mutual ad-

vection. We describe this configuration using the Weiss-
McWilliams formalism introduced in [55]. In addition, as
in the main text, we introduce to Np localized 3-D per-
turbations (“ergophages”), idealized as being point-like,

at positions x
(k)
p =

(
x
(k)
p , y

(k)
p

)
, which are advected by

the 2-D point-vortex motions through the 2-D domain,

and whose amplitude Ak may grow by extracting energy
from the 2-D flow.

1. Equations of motion and Hamiltonian

The equations of motion of the point vortices and er-
gophages in the periodic domain are given by the same
equations as in the infinite space, (2) and (3) along with
(4). The Hamiltonian in the periodic domain differs from
that in the infinite plane, and is given by

H({x(i)
v − x(j)

v }) = −1

2

Nv∑
i,j=1
i6=j

ΓiΓjh(x(i)
v − x(j)

v ), (A1)

with xijvv ≡ x
(i)
v − x

(j)
v ≡ (xijvv, y

ij
vv) and the vortex-pair

energy function in the periodic domain given by

h(x, y) =

∞∑
m=−∞

ln

(
cosh(x/L− 2πm)− cos(y/L)

cosh(2πm)

)
− x2

2πL2
,

(A2)
where the infinite sum over m stems from the sum over all
copies of the periodic domain, as shown in [55]. A useful
alternative notation for the 2-D point-vortex advection
is given in [55] as

Γ−1i

(
+∂

y
(i)
v
H

−∂
x
(i)
v
H

)
=

Nv∑
j=1
j 6=i

Γj

(
−S

(
yijvv, x

ij
vv

)
+S

(
xijvv, y

ij
vv

)) , (A3)

in terms of the rapidly converging series

S(x, y) =
1

L

∞∑
m=−∞

sin(x/L)

cosh(y/L− 2πm)− cos(x/L)
. (A4)

Equation (A3) relies on the identities ∂h/∂x(x, y) =
S(x, y) = ∂h/∂y(y, x). We note that at small distances,
the periodic copies are negligible and one recovers the
results valid in the infinite plane. In particular, for
x, y � 1, S(x, y) ≈ xL/(x2 + y2). This enables us to
transfer all results pertaining to small distances in the
infinite plane to the periodic case.

2. Interactions

As in the main text, each of the localized 3-D pertur-
bations is assigned an amplitude Ak ≥ 0, k = 1, . . . , Np,
with an associated energy A2

k/2, such that the total en-
ergy is again given by (12), with H given by (A1). For

the velocity U
(i)
p induced by the ergophages on the point

vortices, we choose again the form given in equation (6).
The expression for the dipole field given in equations (7)
and (8) must be adapted to satisfy the periodic boundary
conditions. This is done by tiling R2 with infinitely many
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copies of the domain [0, 2πL]×[0, 2πL] and summing over
all copies. For a periodic monopole, one obtains

u
(k)
p,monopole(x) = ∇φk(x), (A5)

where the potential φk, is given by

φk(x) = h
(
x− x(k)p , y − y(k)p

)
, (A6)

in terms of the vortex-pair energy function h(x, y) defined
in (A2). The dipole field arises from the difference be-
tween two monopoles at small distances, and it is there-
fore equal to the derivative of the monopole field along

the dipole moment d̂k = (cos(ϕk), sin(ϕk)),

u(k)
p (x) = (d̂ · ∇x)u

(k)
p,monopole(x) (A7)

As in the main text, if the Ak obey (10) with γk given
by (11), then the total energy is conserved in time for
arbitrary ûp, provided that µ = δ = 0 (no dissipation),
and uf = 0.

The dipole phase ϕk is an important degree of freedom,
which can be adjusted for sustained growth of ergophage
amplitude. Indeed, one can rewrite the growth rate as

γk = Θk cos(ϕk) + Σk sin(ϕk), (A8)

with

Θk =−
Nv∑
i=1

∂2φk(x
(i)
v )(

∂x
(i)
v

)2 ∂H

∂x
(i)
v

+
∂2φk(x

(i)
v )

∂x
(i)
v ∂y

(i)
v

∂H

∂y
(i)
v


(A9)

and

Σk =−
Nv∑
i=1

∂2φk(x
(i)
v )

∂x
(i)
v ∂y

(i)
v

∂H

∂x
(i)
v

+
∂2φk(x

(i)
v )(

∂y
(i)
v

)2 ∂H

∂y
(i)
v

 .

(A10)

The form of (A8) implies that for any vortex configu-
ration, there is an optimum value of the phases ϕk, for
which the growth rate γk is at its (positive) maximum,
is given by

ϕ∗k = arctan (|Σk/Ωk|) , (A11)

The above formulae also apply to dipole ergophages in
the infinite domain with the potential (8). We let ϕk =
ϕ∗k for all k at every instant, implying growth of 3-D
instabilities in the inviscid case.

3. Numerical implementation of the model

We implemented the equations corresponding to (2,
3, 10) with (A7) and (A11) in a fully MPI-parallelized

Fortran program using a fourth-order Runge-Kutta time
stepper. For the numerical implementation, a regulariza-
tion was introduced at distances smaller than ε � 2πL,
for ε > 0, in a manner inspired by [34]. Specifically, we
replace

h(x, y)→
∞∑

m=−∞
ln

(
cosh

(
x−2πmL

L

)
− cos

(
y
L

)
+ ε2

cosh(2πm)

)
− x2

2πL2

(A12)
and

S(x, y)→ 1

L

∞∑
m=−∞

sin(x/L)

cosh(y/L− 2πm)− cos(y/L) + ε2
.

(A13)
As mentioned in the main text, the parallelization is
implemented straightforwardly by splitting up the sums
over vortex-vortex pairs and vortex-parasite pairs into
chunks, each of which is assigned to one processor. The
choice of the time step is discussed in the main text.

Appendix B: Method for generating point-vortex
configurations at a given temperature

Consider N point vortices located at positions (xi, yi),
i = 1, . . . , N in a given finite domain, with associated
Hamiltonian H. Pick a positive or negative temperature
T ∈ R. Consider the stochastic gradient dynamics de-
fined by

dxi
dt

= −sgn(T )
∂H

∂xi
+
√
kB |T |η(1)i (t), (B1)

dyi
dt

= −sgn(T )
∂H

∂yi
+
√
kB |T |η(2)i (t). (B2)

where η
(1)
i (t) and η

(2)
i (t) are pairwise independent delta

correlated Gaussian noise terms, i.e. 〈η(1)i 〉 = 〈η(2)i 〉 = 0

and 〈η(j)i (t)η
(j′)
i′ (t′)〉 = 2δ(t − t′)δi,i′δj,j′ , in terms of the

ensemble average 〈·〉. Denote by X the state vector with
entries X2n−1 = xn, X2n = yn for n = 1, . . . , N . Fur-
ther, let ∇X denote the 2N -dimensional gradient opera-
tor with respect to X, then the Fokker-Planck equation
for the probability density P (X, t) associated with the
given gradient dynamics reads

∂tP = ∇X·F, where F = sgn(T )(∇XH)P+kB |T |∇XP.
(B3)

In steady state, the flux of probability vanishes if there
is no absorption or injection of probability at the bound-
aries. Solving the zero-flux condition gives the stationary
probability density Ps(X)

Ps(X) =
1

Z
exp

(
−H(X)

kBT

)
, (B4)

which is the Boltzmann equilibrium distribution of the
system at temperature T . Thus, solving equations (B1,
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B2) numerically, the system reaches a steady state which
is precisely the equilibrium at temperature T . Impor-

tantly, adding the Hamiltonian advection term U
(i)
v as in

(2) does not change this equilibrium, since the associated
terms in the Fokker-Planck equation cancel for every in-
dex i (being the divergence of a curl).

Appendix C: Conservaton of energy

For the evolution equations (2, 10, 11), for µ = δ = 0
and no forcing, one finds that the total energy is con-
served, since

dEtot
dt

=
dH

dt
+

Np∑
k=1

Ak
dAk
dt

(C1)

=

Nv∑
i=1

U(i)
p · ∇x

(i)
v
H +

Np∑
k=1

Ak(γkAk) (C2)

=

Nv∑
i=1

Np∑
k=1

A2
ku

(k)
p (x(i)

v ) · ∇
x
(i)
v
H

−
Np∑
k=1

Nv∑
i=1

A2
ku

(k)
p (x(i)

v ) · ∇
x
(i)
v
H (C3)

=0 (C4)

This conservation of energy is independent of the mod-
elling choice of the velocity field up and of the particular
form of the Hamiltonian. Hence the conservation holds
for arbitrary boundary conditions.

Appendix D: Vanishing mean growth rate for
monopole 3-D perturbations and derivation of

dipole formulas

The simplest possible choice for the velocity induced by
3-D perturbations, up(x), in infinite space is an isotropic
radial profile,

u(k)
p (x) =

x− x
(k)
p

|x− x
(k)
p |2

, (D1)

i.e. a monopole profile. Since it decays at infinity, it is
admissible in the infinite plane. In a periodic domain,
however, it needs to be adapted to the boundary condi-
tions by summing over an infinite grid of images:

up(x)(k) =

∞∑
n,m=−∞

x− x
(k)
p −

(
2πn
2πm

)
∣∣∣∣x− x

(k)
p −

(
2πnL
2πmL

)∣∣∣∣2
=

(
S(x− x(k)p , y − y(k)p )

S(y − y(k)p , x− x(k)p )

)
, (D2)

where S(x, y) is as defined by the rapidly converging se-
ries given in (A4) and regularized in (A13). Equation
(D2) provides an alternative expression for the periodic
monopole field, equivalent to that in (A6). We note that
the infinite sum is exactly the double series calculated by
Weiss and McWilliams in [55]. The corresponding growth
rate of perturbation k given in (11) can be rewritten as

γk =
c

2

Np∑
i,j=1
i6=j

ΓiΓj∇h|xij
vv
·
(
∇h|xik

vp
− ∇h|xjk

vp

)
(D3)

with xijvv = x
(i)
v − x

(j)
v and xikvp = x

(i)
v − x

(k)
p . It has been

used that from eq. (A4) that ∂h/∂x(x, y) = S(x, y) =
∂h/∂y(y, x). For simplicity, since the sum is over vortex
pairs, consider a single such pair with circulations Γ1,Γ2

at arbitrary positions x1,x2. Place a single ergophage
at position (x, y). The sum over i, j in (D3) reduces to
a single term. Applying the averaging operator over er-
gophage positions,

F ≡ 1

4π2L2

∫ 2πL

0

∫ 2πL

0

F (x, y)dxdy,

to the growth rate gives zero, since h is 2πL-periodic in
both the x and y directions. We conclude that the mean
growth rate of a monopole ergophage due to a single vor-
tex pair vanishes, for arbitrary vortex positions. Thus the
mean total ergophage growth rate, being the sum of pair
contributions, also vanishes. Assuming that for a given
vortex configuration, all ergophage positions are equally
likely, then the resulting mean growth rate vanishes in
the absence of dissipation. When dissipation is added,
then 3-D perturbations must decay at long times. This
is illustrated by a long run with Np = 32 passive non-
linear monopole ergophages and Nv = 32 point vortices
in figure 14. Therefore, the monopole model is insuffi-
cient and the dipole model suggests itself as having the
minimal complexity to capture mean growth of 3-D per-
turbations.

Appendix E: Power laws in growth rate probability
density

For the dipole parasites introduced in the main text,
consider the growth rate of the amplitude of a given er-
gophage at location xp, associated with a vortex pair
of circulation Γ1,Γ2 at positions x1 = (`/2, 0),x2 =
(−`/2, 0). We are interested in the tails of the prob-
ability density function (PDF), where the ergophage is
very close to one or several point vortices, hence bound-
ary conditions are irrelevant and we perform the analysis
in the infinite plane. The localized perturbation has a

dipole moment d̂ = (cos(ϕ), sin(ϕ)) attached to it as well
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FIG. 14. Lin-log plot of the time series of the first mo-
ment M1 = 〈A〉 and the zeroth moment M0 = exp(〈log(A)〉)
of ergophage amplitude, in terms of the sample average
〈f(A)〉 = 1

Np

∑
k f(Ak), from a passive nonlinear simulation

with Np = 32 ergophages inducing a monopole field, experi-
encing disspation ν, δ > 0. The zeroth moment decays expo-
nentially, indicating that the mean growth rate is negative.
Both moments clearly decay at late times as predicted theo-
retically.

as an amplitude A, whose growth rate is given by

γ =
Γ1Γ2

`

[
cos(ϕ)

(x− `
2 )2 + y2

− 2[( `2 − x) cos(ϕ)− y sin(ϕ)]( `2 − x)

[(x− `
2 )2 + y2]2

− cos(ϕ)

(x+ `
2 )2 + y2

+
2[( `2 + x) cos(ϕ) + y sin(ϕ)]( `2 + x)

[( `2 + x)2 + y2]2

]
.

(E1)

There are two limits of interest to be considered, namely
the dilute limit corresponding to small inverse vortex
temperatures |β| � 1 and the dense limit correspond-
ing to large(-magnitude) inverse vortex temperatures, i.e.
pairs of opposite-sign vortices for β > 0 and clusters of
same-sign vortices for β < 0.

1. The dilute limit

In this case, the tails of the PDF of γ are generated
by events in which the perturbation is closer to a single
point vortex than to any other vortices, i.e. xp = x1 +
r(cos(φ), sin(φ)), r � `. In this case,

γ ∼ Γ1Γ2

`r2
[sin(ϕ) sin(2θ)− cos(ϕ) cos(2θ)]

= −Γ1Γ2

`r2
cos(2θ + ϕ). (E2)

Since we consider the case where ϕ is optimal at every
position, one finds ϕ = −2θ + nπ, n ∈ N and

γ ∼ |Γ1Γ2|
`r2

⇔ r(γ) ∼
√

γ`

|Γ1Γ2|
(E3)

Assuming that all ergophage positions are equally prob-
able, then the probability of of being at distance between
r and r+ dr is proportional to the ring area 2πrdr. This
can be inverted using (E3) to obtain a prediction for the
PDF of γ, namely

P (γ) = r(γ)
dr(γ)

dγ
∝ 1

γ2
(E4)

2. The dense limit

In this case, the tails of the PDF of the growth rate
stem from encounters of the localized perturbation with
pairs of vortices, i.e. xp = r(cos(θ), sin(θ)), r � `. Then,
one finds at leading order in ` that

γ ∼Γ1Γ2

`

(
−2`

cos(ϕ) cos(θ)

r3

+2`
y sin(ϕ)(y2 − 3x2)− 2x cos(ϕ)(x2 − x2)

r6

)
∼ −2Γ1Γ2

r3
cos(3θ − ϕ)

Again assuming that ϕ is optimal, then ϕ = −3θ + nπ,
n ∈ N, such that

γ ∼ 2|Γ1Γ2|
r3

,

which leads to the growth rate PDF, again under the as-
sumption that all ergophage positions are equally prob-
able

P (γ) = r(γ)
dr(γ)

dγ
∝ 1

γ
1
3+

4
3

=
1

γ5/3
,

with an exponent −5/3, whose magnitude is less than
2. For both cases (dense and dilute), the PDF has nei-
ther a finite mean, nor a finite variance. We note that
the exponent −5/3 found here bears no relation to Kol-
mogorov’s spectral exponent, it is merely a consequence
of the modelling choices made.
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lévy flight, Physical Review Letters 73, 2946 (1994).

[73] A. van Kan, T. Nemoto, and A. Alexakis, Rare tran-
sitions to thin-layer turbulent condensates, Journal of
Fluid Mechanics 878, 356 (2019).

https://arxiv.org/abs/2102.08832
https://arxiv.org/abs/2102.08832

	Intermittency of three-dimensional perturbations in a point-vortex model
	Abstract
	I Introduction
	II Background: Temperature of point-vortex states
	III The model
	IV Numerical implementation
	V Simulation results
	A The passive linear regime
	B The passive nonlinear regime
	C The fully nonlinear regime

	VI Conclusions
	 Acknowledgments
	A The model equations for periodic boundary conditions
	1 Equations of motion and Hamiltonian
	2 Interactions
	3 Numerical implementation of the model

	B Method for generating point-vortex configurations at a given temperature
	C Conservaton of energy
	D Vanishing mean growth rate for monopole 3-D perturbations and derivation of dipole formulas
	E Power laws in growth rate probability density
	1 The dilute limit
	2 The dense limit

	 References


