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INVARIANCE OF THE GERSTENHABER ALGEBRA STRUCTURE

ON TATE-HOCHSCHILD COHOMOLOGY

ZHENGFANG WANG

Abstract. Keller proved in 1999 that the Gerstenhaber algebra structure on the
Hochschild cohomology of an algebra is an invariant of the derived category. In this
paper, we adapt his approach to show that the Gerstenhaber algebra structure on the
Tate-Hochschild cohomology of an algebra is preserved under singular equivalences of
Morita type with level, a notion introduced by the author in previous work.

Keywords. Gerstenhaber algebra, Singularity category, Tate-Hochschild cohomology.

1. Introduction

In [Wan15a, Wan18], we constructed a Gerstenhaber algebra structure on the Tate-
Hochschild cohomology ring HH∗

sg(A,A) implicit in Buchweitz’ work [Buc] for an algebra
A projective over a commutative ring k and such that A and the enveloping algebra
A ⊗k A

op are Noetherian. The cup product is given by the Yoneda product in the
singularity category of the enveloping algebra A ⊗k A

op. Recall that the singularity
category Dsg(A) (cf. [Buc, Orl]) of a Noetherian algebra A is defined as the Verdier
quotient of the bounded derived category Db(A) of finitely generated (left) A-modules
by the full subcategory Perf(A) consisting of complexes quasi-isomorphic to bounded
complexes of finitely generated projective A-modules. The Lie bracket on HH∗

sg(A,A)
was defined in [Wan15a, Wan18] as the graded commutator of a certain circle product
◦ extending naturally the Gerstenhaber circle product on Hochschild cohomology. In
particular, for a self-injective algebra, in positive degrees, this Lie bracket coincides with
the Gerstenhaber bracket in Hochschild cohomology. In [Wan15a, Wan18], we also proved
that the natural morphism, induced by the quotient functor from the bounded derived
category to the singularity category of A ⊗k A

op, from the Hochschild cohomology ring
HH∗(A,A) to HH∗

sg(A,A) is a morphism of Gerstenhaber algebras. By the very recent
work of Keller [Kel18], the Tate-Hochschild cohomology of an algebra A is isomorphic,
as graded algebras, to the Hochschild cohomology of the dg singularity category (i.e.
the canonical dg enhancement of the singularity category) of A. This yields a second
Gerstenhaber algebra structure on Tate-Hochschild cohomology, which is conjectured to
coincide with the one introduced in [Wan15a, Wan18]. For more details, we refer to
Keller’s conjecture [Kel18, Conjecture 1.2].

Keller proved in [Kel99] that the Gerstenhaber algebra structures on Hochschild coho-
mology rings are preserved under derived equivalences of standard type. That is, let X
be a complex of A-B-bimodules such that the total derived tensor product by X is an
equivalence between the derived categories of two k-algebras A and B. Then X yields
a natural isomorphism of Gerstenhaber algebras from HH∗(A,A) to HH∗(B,B). In this
paper, we will show that the Gerstenhaber algebra structure on the Tate-Hochschild co-
homology ring is also preserved under derived equivalences of standard type. In fact, we
will prove a stronger result. Namely, the Gerstenhaber algebra structure on the Tate-
Hochschild cohomology ring is preserved under singular equivalences of Morita type with
level (cf. [Wan15b] and Section 6 below). Recall that a derived equivalence of standard
type induces a singular equivalence of Morita type with level (cf. [Wan15b]).
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2 ZHENGFANG WANG

The paper is organized as follows. In Section 2, we recall the construction of the
normalized bar resolution of an algebra A and provide some natural liftings of ele-
ments in HH∗

sg(A,A) along the normalized bar resolution. In Section 3, we introduce
the bullet product • and the circle product ◦. Using these two products, we construct
two dg modules CL(f, g) and CR(f, g) associated to the cohomology classes f and g in
HH∗(A,Ω∗

sy(A)). These two dg modules play a crucial role in the proof of our main result.
In Section 4, we recall the notions of R-relative derived categories and R-relative derived
tensor products. In Section 5, we develop the singular infinitesimal deformation theory of
the identity bimodule in analogy with the infinitesimal deformation theory of [Kel99]. As
a result, we give an interpretation of the Gerstenhaber bracket on the Tate-Hochschild
cohomology ring from the point of view of the singular infinitesimal deformation theory.
In Section 6, we prove our main result.

Theorem 1.1 (=Theorem 6.2 and Corollary 6.3). Let k be a field. Let A and B be two
Noetherian (not necessarily commutative) k-algebras such that the enveloping algebras
A ⊗ Aop and B ⊗ Bop are Noetherian. Suppose that (AMB,B NA) defines a singular
equivalence of Morita type with level l ∈ Z≥0. Then the functor

Σl(M ⊗B −⊗B N) : Dsg(B ⊗k B
op) → Dsg(A⊗k A

op)

induces an isomorphism of Gerstenhaber algebras between the Tate-Hochschild cohomology
rings HH∗

sg(A,A) and HH∗
sg(B,B). In particular, the Gerstenhaber algebra structure on

the Tate-Hochschild cohomology ring is invariant under derived equivalences.

Remark 1.2. Let k be an algebraically closed field. Let A and B be two (finite dimen-
sional) symmetric k-algebras which are related by a stable equivalence of Morita type.
Then the authors in [KLZ, Theorem 10. 7] proved that there is an isomorphism of Ger-
stenhaber algebras (more generally, BV algebras) between HH≥0

sg (A,A) and HH≥0
sg (B,B).

Throughout this paper, we fix a field k. The unadorned tensor product ⊗ and Hom
represent the tensor product ⊗k and Homk over the field k, respectively. We write the
composition g ◦ f of two maps f : X → Y and g : Y → Z as gf . We write the identity
map IdX : X → X simply as Id when no confusion can arise. We will follow the Koszul
sign rule for the tensor product: (f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y) where |g| is the
degree of the homogeneous map g and |x| is the degree of the element x ∈ X .

The notions of differential graded (dg) algebras and relative tensor products are fre-
quently used in this paper. For more details, we refer to [Kel99, Kel98, BeLu], and to
[KeVo, Ric, Wei, Zim] for the notions of triangulated categories and derived categories.

Acknowledgement

This paper is part of the author’s Ph. D. thesis, the author would like to thank
his supervisor Alexander Zimmermann for introducing him to this interesting topic and
for many valuable suggestions for improvement. He is very grateful to Bernhard Keller
for many useful discussions and suggestions on relative derived categories and relative
singularity categories. He would like to thank Gufang Zhao for many useful discussions
at the very beginning of this project. He is also very grateful to Yu Wang for reading a
preliminary version of this paper and for giving many helpful suggestions.

The author would like to thank the referee for valuable suggestions and comments,
which have led to significant improvement on the presentation of this paper.

2. Normalized bar resolution
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2.1. The definition. Let A be an associative algebra over a field k. The normalized bar
resolution (cf. e.g. [Lod]) is defined as the dg A-A-bimodule Bar∗(A) :=

⊕
p≥0Barp(A),

with Barp(A) := A⊗ (ΣA)⊗p ⊗ A (p ≥ 0) in degree p and the differential of degree −1

dp(a0 ⊗ a1,p ⊗ ap+1) =a0a1 ⊗ a2,p ⊗ ap+1+

p−1∑

i=1

(−1)ia0 ⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,p ⊗ ap+1+

(−1)pa0 ⊗ a1,p−1 ⊗ apap+1.

Let us explain the notations appeared above: We denote by ΣA the graded k-module
concentrated in degree 1 with (ΣA)1 = A/(k · 1); Let π : A → (ΣA) be the natural
projection of degree 1. Then we denote a = π(a) for any a ∈ A. The degree of a
is |a| = 1; We simply write ai ⊗ ai+1 ⊗ · · · ⊗ aj ∈ (ΣA)⊗(j−i+1) as ai,j. It is well-
known that Bar∗(A) is a projective bimodule resolution of A with the augmentation map
τ0 = d0 : A⊗A→ A, a⊗ b 7→ ab. For convenience, we set Bar−1(A) = A.

For any p ∈ Z>0, we denote the kernel of the differential dp−1 : Barp−1(A) → Barp−2(A)
by Ωpsy(A). In particular, we set Ω0

sy(A) = A. It is clear that Ωpsy(A) is an A-A-bimodule.
For convenience, we view Ωpsy(A) as a dg bimodule concentrated in degree p. For p ≥ 0,
we denote by Bar≥p(A) the ‘p-truncated’ dg A-A-bimodule with Bar≥p(A)i = Bari(A)
if i ≥ p and Bar≥p(A)i = 0 if i < p. Recall that, for a chain complex (X, d) and
p ∈ Z, the p-shifted complex (ΣpX,Σpd) is defined as (ΣpX)n = Xn−p with the differential
(Σpd)n = (−1)pdn−p for any n ∈ Z.

Remark 2.1. Note that the ‘p-truncated’ augmented normalized bar resolution

B̂ar≥p(A) : · · · → Barp+1(A)
dp+1
−−→ Barp(A)

τp=dp
−−−→ Σ−1Ωpsy(A) → 0

is exact for any fixed p ∈ Z≥0. For this, we define a k-linear map for any r ≥ 0,

sLr : Barr(A) → Barr+1(A), a0 ⊗ a1,r ⊗ ar+1 7→ (−1)r+1a0 ⊗ a1,r+1 ⊗ 1.

· · · // Barp+1(A)

Id

��

dp+1 // Barp(A)

sLp
yyrrr

r
r
r
r
r
r
r
r
r
r
r
r
r
r

dp //

Id

��

Σ−1Ωpsy(A)
//

Id

��
sLp−1|Σ−1Ω

p
sy(A)

yyrrr
r
r
r
r
r
r
r
r
r
r
r
r
r
r

0

· · · // Barp+1(A)
dp+1

// Barp(A)
dp

// Σ−1Ωpsy(A) // 0

It is straightforward to verify that sLd + dsL = IdB̂ar≥p(A)
. This yields the exactness of

B̂ar≥p(A). Note that sL is a morphism of left graded A-modules (but not a morphism of
graded A⊗ Aop-modules). Similarly, if we define

sRr : Barr(A) → Barr+1(A), a0 ⊗ a1,r ⊗ ar+1 7→ 1⊗ a0,r ⊗ ar+1,

then we have that sRd+dsR = IdB̂ar≥p(A)
and sR is a morphism of right graded A-modules.

For any p, q ∈ Z≥0, we will construct a morphism of dg A-A-bimodules between
Bar≥p+q(A) and Bar≥p(A)⊗A Bar≥q(A). We define

∆p,q : Bar≥p+q(A) → Bar≥p(A)⊗A Bar≥q(A)

as follows. For a0 ⊗ a1,p+q+r ⊗ ap+q+r+1 ∈ Barp+q+r(A), where r ≥ 0,

∆p,q(a0 ⊗ a1,p+q+r ⊗ ap+q+r+1) =

r∑

i=0

(a0 ⊗ a1,p+i ⊗ 1)⊗A (1⊗ ap+i+1,p+q+r ⊗ ap+q+r+1).
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It is a routine computation to verify that ∆p,q is a morphism of dg A-A-bimodules.

Lemma 2.2. For any p, q ∈ Z≥0, ∆p,q is an isomorphism in the homotopy category
K(A⊗ Aop-Mod) of dg A-A-bimodules.

Proof. For p = 0 or q = 0, we have a natural isomorphism µp,q : Ωpsy(A) ⊗A Ωqsy(A)
∼=
−→

Ωp+qsy (A) since Ω0
sy(A) = A. For p, q > 0, consider the following composition of maps

µp,q : Ω
p
sy(A)⊗AΩ

q
sy(A) →֒ A⊗(ΣA)⊗p−1⊗A⊗(ΣA)⊗q−1⊗A

Id⊗p ⊗π⊗Id⊗q

−−−−−−−−→ A⊗(ΣA)⊗p+q−1⊗A,

where the first map is given by the tensor product of the natural inclusions

Ωpsy(A) →֒ Barp−1(A), Ωqsy(A) →֒ Barq−1(A),

and where π : A → ΣA is the natural projection of degree 1. More concretely, let
x :=

∑
i a

i
0 ⊗ ai1,p−1 ⊗ aip ∈ Ωpsy(A) and y :=

∑
j b

j
0 ⊗ bj1,q−1 ⊗ bjq ∈ Ωqsy(A). Then

µp,q(x⊗A y) =
∑

i,j

ai0 ⊗ ai1,p−1 ⊗ aipb
j
0 ⊗ bj1,q−1 ⊗ bjq.

Notice that the image of µp,q lies in Ωp+qsy (A) since dp+q−1µp,q(x ⊗A y) = 0. This induces
an A-A-bimodule homomorphism µp,q : Ωpsy(A) ⊗A Ωqsy(A) → Ωp+qsy (A). We claim that

µp,q is a bijection and its inverse µ−1
p,q : Ωp+qsy (A) → Ωpsy(A) ⊗A Ωqsy(A) sends an element

x :=
∑

i a
i
0 ⊗ ai1,p+q−1 ⊗ aip+q ∈ Ωp+qsy (A) to

µ−1
p,q(x) = (−1)p+q

∑

i

dp(a
i
0 ⊗ ai1,p ⊗ 1)⊗A dq(1⊗ aip+1,p+q ⊗ 1).

Indeed, we have

µp,qµ
−1
p,q(x) =(−1)p+q

∑

i

ai0a
i
1 ⊗ ai2,p+q ⊗ 1+

∑

i

p+q−1∑

j=1

(−1)p+q+jai0 ⊗ ai1,j−1 ⊗ aija
i
j+1 ⊗ aij+2,p+q ⊗ 1+

∑

i

ai0 ⊗ ai1,p+q−1 ⊗ aip+q

=(Id⊗p+q−2⊗π)(dx)⊗ 1 + x

=x,

where the third identity comes from the identity dx = 0 (since x ∈ Ωp+qsy (A)). Similarly,

for x :=
∑

i a
i
0 ⊗ ai1,p−1 ⊗ aip ∈ Ωpsy(A) and y :=

∑
j b

j
0 ⊗ bj1,q−1 ⊗ bjq ∈ Ωqsy(A), we have

µ−1
p,qµp,q(x⊗A y) =µ

−1
p,q

(∑

i,j

ai0 ⊗ ai1,p−1 ⊗ aipb
j
0 ⊗ bj1,q−1 ⊗ bjq

)

=(−1)p+q
∑

i,j

dp(a
i
0 ⊗ ai1,p−1 ⊗ aipb

j
0 ⊗ 1)⊗A dq(1⊗ bj1,q ⊗ 1)

=x⊗A y

where the third identity comes from the identities dx = 0 and dy = 0. This proves the
claim. It is clear that µp,q is a morphism of A-A-bimodules. Hence so is µ−1

p,q. Since

(τp ⊗A τq)∆p,q = µ−1
p,qτp+q, we get that ∆p,q is a lifting of the isomorphism µ−1

p,q between
the resolutions Bar≥p+q(A) and Bar≥p(A) ⊗A Bar≥q(A). Hence it is an isomorphism in
the homotopy category K(A⊗ Aop-Mod) of dg A-A-bimodules. �
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For p ≥ 0, we define the dg A-A-bimodule of left noncommutative differential p-forms
as ΩL,pnc (A) = A ⊗ (ΣA)⊗p. Clearly, ΩL,pnc (A) is concentrated in degree p. The bimodule
structure is given by

a(a0 ⊗ a1,p) ◭ b = −(Id⊗p⊗π)dp(aa0 ⊗ a1,p ⊗ b)

for a, b ∈ A and a0 ⊗ a1,p ∈ A⊗ (ΣA)⊗p. Here when (Id⊗p⊗π) is applied to the element
dp(aa0 ⊗ a1,p ⊗ b), additional signs will appear because of the Koszul sign rule since π is
a map of degree 1. More explicitly, we have

a(a0 ⊗ a1,p) ◭ b =(−1)paa0a1 ⊗ a2,p ⊗ b+

p−1∑

i=1

(−1)p+iaa0 ⊗ a1,i−1 ⊗ aiai+1 ⊗ ai+2,p ⊗ b

+ aa0 ⊗ a1,p−1 ⊗ apb.

Similarly, the dg A-A-bimodule of right noncommutative differential p-forms is defined
as ΩR,pnc (A) = (ΣA)⊗p ⊗ A. The bimodule structure is given by

a ◮ (a1,p ⊗ ap+1)b = (π ⊗ Id⊗p)dp(a⊗ a1,p ⊗ ap+1b).

The following lemma is very useful throughout the present paper.

Lemma 2.3. We have two isomorphisms of dg A-A-bimodules

αLp : ΩL,pnc (A)
∼=
−→ Ωpsy(A), a0 ⊗ a1,p 7→ −dp(a0 ⊗ a1,p ⊗ 1);

αRp : ΩR,pnc (A)
∼=
−→ Ωpsy(A), a1,p ⊗ a0 7→ dp(1⊗ a1,p ⊗ a0).

Proof. First, we claim that both αLp and αRp are bijective. Indeed, the inverse of αLp is
given by

(αLp )
−1(x) = (−1)p−1

∑

i

ai0 ⊗ ai1,p

for x :=
∑

i a
i
0 ⊗ ai1,p−1 ⊗ aip ∈ Ωpsy(A). That is, (α

L
p )

−1 is the composition of maps

(αLp )
−1 : Ωpsy(A) →֒ A⊗ (ΣA)⊗p−1 ⊗A

Id⊗p ⊗π
−−−−→ ΩL,pnc (A).

Here the sign (−1)p−1 is hidden in the Koszul sign rule. From a straightforward compu-
tation, we get that αLp (α

L
p )

−1 = Id and (αLp )
−1αLp = Id . Similarly, the inverse of αRp is

given by

(αRp )
−1(x) =

∑

i

ai0,p−1 ⊗ aip

for x :=
∑

i a
i
0 ⊗ ai1,p−1 ⊗ aip ∈ Ωpsy(A). That is, (α

R
p )

−1 is the composition of maps

(αRp )
−1 : Ωpsy(A) →֒ A⊗ (ΣA)⊗p−1 ⊗A

π⊗Id⊗p

−−−−→ ΩR,pnc (A).

This proves the claim. It remains to check that αLp and αRp are morphisms of A-A-

bimodules. For this, given a0 ⊗ a1,p ∈ A⊗ (ΣA)⊗p, we have

αLp (a(a0 ⊗ a1,p) ◭ b) =− dp((Id
⊗p⊗π)dp(aa0 ⊗ a1,p ⊗ b)⊗ 1)

=dp(aa0 ⊗ a1,p ⊗ b)

=aαLp (a0 ⊗ a1,p)b,

where the second identity follows from dpdp+1(aa0 ⊗ a1,p ⊗ b ⊗ 1) = 0. This shows that
αLp is a morphism of A-A-bimodules. By a similar computation, we get that αRp is a
morphism of A-A-bimodules. This proves the lemma. �
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2.2. Two liftings. Let M be a graded A-A-bimodule. Recall that the Hochschild coho-
mology HH∗(A,M) with coefficients inM is computed by the Hochschild cochain complex
(C∗(A,M), δ) with

Cm(A,M) =
∏

i≥0

Hom−m((ΣA)⊗i,M), for m ∈ Z,

where (ΣA)⊗0 = k and Hom−m((ΣA)⊗i,M) is the set of k-linear maps of degree −m
from chain complexes (ΣA)⊗i to M . Recall that a k-linear map f : X → Y between two
chain complexes X and Y is of degree m if f(Xi) ⊂ Yi+m for any i ∈ Z. The differential
δ (of degree one) is given by, for f ∈ Cm(A,M),

δm(f)(a1,i+1) =a1f(a2,i+1) +

i∑

j=1

(−1)jf(a1,j−1 ⊗ ajaj+1 ⊗ aj+2,i+1)+

(−1)i+1f(a1,i)ai+1.

Let m, p ∈ Z≥0 and f ∈ HHm−p(A,Ωpsy(A)). Recall that Ωpsy(A) is a graded A-A-
bimodule concentrated in degree p. Then f can be represented by an element f ∈
Cm−p(A,Ωpsy(A)) = Hom((ΣA)⊗m,Ωpsy(A)) such that δ(f) = 0. Denote

fL : (ΣA)⊗m
f
−→ Ωpsy(A)

(αL
p )

−1

−−−−→ ΩL,pnc (A) = A⊗ (ΣA)⊗p;

fR : (ΣA)⊗m
f
−→ Ωpsy(A)

(αR
p )−1

−−−−→ ΩR,pnc (A) = (ΣA)⊗p ⊗ A,

where (αLp )
−1 and (αRp )

−1 are defined in Lemma 2.3. These two maps induce two liftings

ϑL(f), ϑR(f) : Bar∗(A) → Σm−p Bar≥p(A)

in the following way. Let x := a0 ⊗ a1,r ⊗ ar+1 ∈ Barr(A). If r < m, we define

ϑL(f)(x) = ϑR(f)(x) = 0.

If r ≥ m, we define

ϑL(f)(x) = a0f
L(a1,m)⊗ am+1,r ⊗ ar+1,

ϑR(f)(x) = (−1)(m−p)(r−m)a0 ⊗ a1,r−m ⊗ fR(ar−m+1,r)ar+1.

It follows from δ(f) = 0 that ϑL(f) and ϑR(f) are indeed morphisms of dg A-A-bimodules.
It is well-known from homological algebra (cf. e.g. [Wei, Comparison Theorem 2.2.6]) that
ϑL(f) is homotopy equivalent to ϑR(f). In fact, there exists a specific chain homotopy

(1) h(f) : Bar∗(A) → Σm−p−1 Bar≥p(A)

from ϑL(f) to ϑR(f) defined as follows. For any r ∈ Z≥0,

hr(f)(a0 ⊗ a1,r ⊗ ar+1)

=




0 for r ≤ m− 1,
r−m∑
i=0

(−1)i(m−p−1)a0 ⊗ a1,i ⊗ f(ai+1,i+m)⊗ ai+m+1,r ⊗ ar+1 for r ≥ m,

where

f : (ΣA)⊗m
f
−→ Ωpsy(A) →֒ Barp−1(A)

π⊗Id⊗p−1 ⊗π
−−−−−−−−→ (ΣA)p+1.

Indeed, it is easy to verify that ϑL(f) − ϑR(f) = h(f)d + dh(f). Notice that h(f) is
a morphism of graded A-A-bimodules. It follows that ϑL(f) is isomorphic to ϑR(f)
in the homotopy category K−(A⊗Aop-Mod). Therefore, both ϑL(f) and ϑR(f) are
representatives of f ∈ HomDb(A⊗Aop)(A,Σ

m−pΩpsy(A)) in K−(A⊗Aop-Mod).
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From f ∈ HHm−p(A,Ωpsy(A)), we may get an element Ωrsy(f) ∈ HHm−p(A,Ωp+rsy (A)) for
any r ≥ 0, which is represented by the element

ΩL,rsy (f) : Barm+r(A) → Σm−pΩp+rsy (A)
a0 ⊗ a1,m+r ⊗ am+r+1 7→ dp+r(a0f

L(a1,m)⊗ am+1,m+r ⊗ am+r+1).

Similarly, Ωrsy(f) may also be represented by the element

ΩR,rsy (f) : Barm+r(A) → Σm−pΩp+rsy (A)
a0 ⊗ a1,m+r ⊗ am+r+1 7→ (−1)(m−p)rdp+r(a0 ⊗ a1,r ⊗ fR(ar+1,m+r)am+r+1).

Remark 2.4. The above homotopy h(f) induces a homotopy hL,Rr (f) := dp+rhm+r−1(f)
such that hL,Rr (f)dm+r = ΩL,rsy (f) − ΩR,rsy (f). For any f ∈ Cm−p(A,Ωpsy(A)) such that
δ(f) = 0, we have the following identities

µr,p+s(dr ⊗A ΩR,ssy (f))∆r,m+s = ΩR,r+ssy (f),

µp+s,r(Ω
L,s
sy (f)⊗A dr)∆m+s,r = ΩL,r+ssy (f),

which can be verified by straightforward computation.

Therefore, we have a map for any r > 0,

Ωrsy : HH
m−p(A,Ωpsy(A)) → HHm−p(A,Ωp+rsy (A)), f 7→ ΩL,rsy (f) = ΩR,rsy (f).

Notice that Ωrsy(Ω
s
sy(f)) = Ωr+ssy (f) for r, s ≥ 0 since ΩR,rsy (ΩR,ssy (f)) = ΩR,r+ssy (f). This

induces an inductive system

· · · → HHm−p(A,Ωpsy(A)) → HHm−p(A,Ωp+1
sy (A)) → · · · → HHm−p(A,Ωp+rsy (A)) → · · · .

It follows from [Wan15a, Proposition 3.1] that if A is a Noetherian algebra over a field
k such that the enveloping algebra A⊗ Aop is Noetherian, then the colimit of the above
inductive system is isomorphic to the (m− p)-th Tate-Hochschild cohomology group

HHm−p
sg (A,A) := HomDsg(A⊗Aop)(A,Σ

m−pA), m− p ∈ Z,

where Dsg(A⊗Aop) is the singularity category of the enveloping algebra A⊗Aop. Recall
that the singularity category Dsg(A) (cf. [Buc, Orl]) of a Noetherian algebra A is defined
as the Verdier quotient of the bounded derived category Db(A-mod) of finitely generated
(left) A-modules by the full subcategory Perf(A) consisting of complexes quasi-isomorphic
to bounded complexes of finitely generated projective A-modules.

3. Dg k[ǫi]/(ǫ
2
i )-modules

3.1. A construction of dg k[ǫi]/(ǫ
2
i )-modules. Let A be a Noetherian algebra over a

field k such that the enveloping algebra A⊗ Aop is Noetherian. For i ∈ Z, we denote by
Ri the commutative dg algebra k[ǫi]/(ǫ

2
i ) with trivial differential, where ǫi is of degree i.

With a slight abuse of notation, we denote by ǫi the kernel of the augmentation Ri → k.
Clearly, ǫi is the one-dimensional graded k-vector space concentrated in degree i. For a
chain complex X of (left) A-modules, there is a natural isomorphism of chain complexes
between ΣiX and the tensor product ǫi ⊗ X . In what follows, we will not distinguish
between them.

Let α : X → Y be a morphism (of degree zero) of chain complexes. Recall that the
mapping cone of α is defined as the chain complex Cone(α) = ΣX ⊕ Y with differential
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(
ΣdX 0
α dY

)
. We set C(α) = Cone(Σ−1α). Clearly, C(α) is the chain complex X ⊕ Σ−1Y

with differential
(
dX 0
α Σ−1dY

)
. The complex C(α) may be depicted as

X

α

""

⊕ Σ−1Y.

The following lemma can be used to construct dg Ri-modules.

Lemma 3.1. Let β : X → Y be a morphism of dg A-modules. Let α : X → Σi+1Y be
another morphism of dg A-modules. Then there is a dg Ri⊗A-module structure on C(α)
induced by α and β.

Proof. By definition, the complex C(α) is equal to (X ⊕ ΣiY,
(
d 0
α Σid

)
). The graded Ri-

module structure on C(α) is given as follows: For x + Σiy ∈ X ⊕ ΣiY , the action of
λ+ µǫi ∈ Ri (λ, µ ∈ k) is

(λ+ µǫi)(x+ Σiy) = λx+ Σi(λy + µβ(x)).

It is clear that this action is compatible with the differential
(
d 0
α Σid

)
. This proves the

lemma. �

Let m, p ∈ Z≥0 and f ∈ HHm−p(A,Ωpsy(A)). In Section 2.2 we have defined two liftings

ϑL(f) and ϑR(f) associated to f . It follows from Lemma 3.1 that C(ϑL(f)) and C(ϑR(f))
are dg Rm−p−1⊗A⊗Aop-modules. To see this, we take the map β in Lemma 3.1 to be the
natural projection Bar∗(A) → Bar≥p(A) and α = ϑL(f)(resp. α = ϑR(f)). In particular,
as graded Rm−p−1 ⊗ A⊗ Aop-modules, we have

C(ϑL(f)) ∼=

p−1⊕

i=0

(k ⊗ Bari(A))
⊕

Rm−p−1 ⊗ Bar≥p(A) ∼= C(ϑR(f)),

where k is viewed as the Rm−p−1-module concentrated in degree zero and thus k ⊗
Bari(A) is an Rm−p−1 ⊗ A ⊗ Aop-module concentrated in degree i. In Section 2.2 we
have also defined two cocycles ΩL,rsy (f) and ΩR,rsy (f) representing the element Ωrsy(f) ∈

HHm−p(A,Ωp+rsy (A)) for r ≥ 0. We note that both C(ΩL,rsy (f)) and C(ΩR,rsy (f)) are dg
Rm−p−1 ⊗ A ⊗ Aop-modules. For this, we take the map β in Lemma 3.1 to be the pro-
jection Bar∗(A) → Ωp+rsy (A) induced by the natural map Barp+r(A) ։ Ωp+rsy (A) and

α = ΩL,rsy (f) (resp. α = ΩR,rsy (f)). In particular, as graded Rm−p−1 ⊗ A ⊗ Aop-modules,
we have

C(ΩL,rsy (f)) ∼=
⊕

i 6=p+r

(k ⊗ Bari(A))
⊕

(Barp+r(A)⊕ Σm−p−1Ωp+rsy (A)) ∼= C(ΩR,rsy (f)),

where (Barp+r(A)⊕Σm−p−1Ωp+rsy (A)) is the graded Rm−p−1⊗A⊗Aop-module determined
by the action

ǫm−p−1 · x := (−1)m−p−1dp+r(x) ∈ Σm−p−1Ωp+rsy (A)

for any x ∈ Barp+r(A). When r = 0, we get that C(f) is a dg Rm−p−1⊗A⊗Aop-module.

Remark 3.2. Let f1 and f2 be two different cocycles representing f ∈ HHm−p(A,Ωpsy(A)).

Then there exists α ∈ Hom((ΣA)⊗m−1,Ωpsy(A)) such that f1 − f2 = δ(α). Define a map

ϑL(α) : Bar∗(A) → Σm−p−1 Bar≥p(A)

as follows. Let x = a0 ⊗ a1,r ⊗ ar+1 ∈ Barr(A). If r < m− 1, we define ϑL(α)(x) = 0. If
r ≥ m− 1, we define

ϑL(α)(x) = a0α
L(a1,m−1)⊗ am,r ⊗ ar+1,
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where αL is defined as in Section 2.2. Notice that the identity f1 − f2 = δ(α) yields

ϑL(α)d+ dϑL(α) = ϑL(f1)− ϑL(f2). Thus the map
(

Id 0
ϑL(α) Id

)
: C(ϑL(f2)) → C(ϑL(f1))

is an isomorphism of dg Rm−p−1⊗A⊗A
op-modules with inverse

(
Id 0

−ϑL(α) Id

)
: C(ϑL(f1)) →

C(ϑL(f2)). This shows that C(ϑ
L(f)) does not depend, up to isomorphism of dg Rm−p−1⊗

A ⊗ Aop-modules, on the choice of the representatives of f . Similar arguments are used
to prove that C(ϑR(f)), C(ΩL,rsy (f)) and C(ΩR,rsy (f)) are independent of the choice of the
representatives of f .

Lemma 3.3. Let m ∈ Z>0 and p ∈ Z≥0. For f ∈ HHm−p(A,Ωpsy(A)), the following
assertions hold.

(i) C(ϑL(f)) is isomorphic to C(ϑR(f)) as dg Rm−p−1 ⊗A⊗Aop-modules.
(ii) The morphism of dg Rm−p−1 ⊗ A⊗ Aop-modules

σ̂p =
(
Id 0
0 σp

)
: C(ϑL(f)) → C(f)

is an isomorphism in the homotopy category K(Rm−p−1⊗A) and inK(Rm−p−1⊗A
op),

where σp : ǫm−p−1 ⊗ Barp(A) → ǫm−p−1 ⊗ Ωpsy(A) is the surjection induced by the
augmentation τp : Barp(A) ։ Ωpsy(A).

Proof. Let us prove assertion (i). Consider the morphism of chain complexes
(

Id 0
h(f) Id

)
:

C(ϑL(f)) → C(ϑR(f)), where h(f) is the chain homotopy defined in (1). Note that(
Id 0
h(f) Id

)
is a morphism of dg Rm−p−1 ⊗A⊗Aop-modules since h(f) is a morphism of dg

A⊗Aop-modules and is compatible with the action of ǫm−p−1. In fact, it is an isomorphism

with inverse
(

Id 0
−h(f) Id

)
: C(ϑR(f)) → C(ϑL(f)). This proves assertion (i).

Let us prove assertion (ii). We claim that C(ϑL(f)) is isomorphism to

C(ϑL(0)) = Bar∗(A)⊕ ǫm−p−1 ⊗ Bar≥p(A)

as dg Rm−p−1 ⊗A-modules. Indeed, we define a morphism of graded A-modules

f̃ : Bar∗(A) → ǫm−p−1 ⊗ Bar≥p(A)

as f̃(x) = ϑL(f)(a0⊗a1⊗· · ·⊗ai+1⊗1) for x = a0⊗a1⊗· · ·⊗ai⊗ai+1 ∈ Bari(A) and i > 0.

Notice that we have ϑL(f) = df̃− f̃d. This yields a morphism of dg Rm−p−1⊗A-modules

φ(f) =
(

Id 0
f̃ Id

)
: C(ϑL(f)) → C(ϑL(0))

since φ(f) is compatible with the action of ǫm−p−1 and we have

( d 0
0 d )

(
Id 0
f̃ Id

)
=
(

Id 0
f̃ Id

)(
d 0

ϑL(f) d

)
.

It is clear that φ(f) is an isomorphism with inverse
(

Id 0
−f̃ Id

)
: C(ϑL(0)) → C(ϑL(f)).

This proves the claim. Similarly, we have an isomorphism of dg Rm−p−1 ⊗ A-modules

ψ(f) =
(

Id 0
σpf̃ Id

)
: C(f) → C(0) = Bar∗(A)⊕ ǫm−p−1 ⊗ Ωpsy(A),

where σpf̃ is the following composition of maps

Bar∗(A)
f̃
−→ ǫm−p−1 ⊗ Bar≥p(A)

σp
−→ ǫm−p−1 ⊗ Ωpsy(A).
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Note that the following diagram commutes

C(ϑL(f))
σ̂p //

∼=φ(f)
��

C(f)

∼= ψ(f)

��
C(ϑL(0))

σ̂p // C(0).

To prove that σ̂p : C(ϑ
L(f)) → C(f) is an isomorphism in K(Rm−p−1⊗A), it is equivalent

to prove that σ̂p : C(ϑL(0)) → C(0) is an isomorphism in K(Rm−p−1 ⊗ A). We have a
commutative diagram of distinguished triangles in K(Rm−p−1 ⊗ A)

Bar<p(A) //

=

��

C(ϑL(0))

σ̂p

��

// Bar≥p(A)⊕ ǫm−p−1 ⊗ Bar≥p(A) //

(
Id 0
0 σp

)

��

ΣBar<p(A)

=

��
Bar<p(A) // C(0) // Bar≥p(A)⊕ ǫm−p−1 ⊗ Ωpsy(A) // ΣBar<p(A).

It is clear that
(
Id 0
0 σp

)
is an isomorphism in K(Rm−p−1 ⊗ A) since we have the following

commutative diagram

Bar≥p(A)⊕ ǫm−p−1 ⊗ Bar≥p(A)
∼=

(
τp 0
0 σp

)
**❱❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

(
Id 0
0 σp

)

// Bar≥p(A)⊕ ǫm−p−1 ⊗ Ωpsy(A)
∼=

(
τp 0
0 Id

)
tt✐✐✐✐

✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

Ωpsy(A)⊕ ǫm−p−1 ⊗ Ωpsy(A)

where
(
τp 0
0 Id

)
and

(
τp 0
0 σp

)
are isomorphisms in K(Rm−p−1 ⊗ A). This implies that σ̂p is

an isomorphism in K(Rm−p−1 ⊗ A). By a similar argument, we can prove that σ̂p is an
isomorphism in K(Rm−p−1 ⊗Aop). This proves assertion (ii). The proof is complete. �

3.2. Dg modules arising from the bullet and circle products. From Section 2.2,
we have a map Ωrsy : HH∗(A,Ωpsy(A)) → HH∗(A,Ωp+rsy (A)) for p, r ≥ 0. Recall that the
Tate-Hochschild cohomology HH∗

sg(A,A) is isomorphic to the colimit of the inductive
system

HH∗(A,A)
Ω1

sy
−−→ HH∗(A,Ω1

sy(A))
Ω1

sy
−−→ · · ·

Ω1
sy

−−→ HH∗(A,Ωpsy(A)) → · · · .

Let us recall the Lie bracket [·, ·] on HH∗
sg(A,A) constructed in [Wan15a, Wan18].

The notations in the present paper are slightly different from those in [Wan18] since we
are using the dg bimodules ΩR,∗nc (A) instead of ΩL,∗nc (A). For f ∈ Cm−p(A,Ωpsy(A)) and
g ∈ Cn−q(A,Ωqsy(A)), set

f •i g :=

{
(Id⊗q⊗fR)(Id⊗i−1⊗g ⊗ Id⊗m−i) if 1 ≤ i ≤ m,

(Id⊗q+i⊗f ⊗ Id⊗−i)(Id⊗m−1⊗gR) if − q ≤ i ≤ −1,

where f, fL and fR are defined as in Section 2.2, namely

f : (ΣA)⊗m
f
−→ Ωpsy(A) →֒ Barp−1(A)

π⊗Id⊗p−1 ⊗π
−−−−−−−−→ (ΣA)p+1;

fL : (ΣA)⊗m
f
−→ Ωpsy(A)

(αL
p )

−1

−−−−→ ΩL,pnc (A) = A⊗ (ΣA)⊗p;

fR : (ΣA)⊗m
f
−→ Ωpsy(A)

(αR
p )−1

−−−−→ ΩR,pnc (A) = (ΣA)⊗p ⊗ A.
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Clearly, we have f •i g ∈ Cm+n−p−q−1(A,ΩR,p+qnc (A)). For instance, f •i g (i > 0) is the
composition of maps

(ΣA)⊗m+n−1 Id⊗i−1 ⊗g⊗Id⊗m−i

−−−−−−−−−−−→ (ΣA)⊗m+q Id⊗q ⊗fR

−−−−−→ (ΣA)⊗p+q ⊗A = ΩR,p+qnc (A).

Since the isomorphism αRp : ΩR,pnc (A)
∼=
−→ Ωpsy(A) (cf. Lemma 2.3) induces an isomorphism

αRp : C∗(A,ΩR,pnc (A))
∼=
−→ C∗(A,Ωpsy(A)), we have αRp+q(f •i g) ∈ Cm+n−p−q−1(A,Ωp+qsy (A)).

We define

f ◦ g :=

m∑

i=1

αRp+q(f •i g)− (−1)(m−p−1)(n−q−1)

p∑

i=1

αRp+q(g •−i f);

f • g :=

m∑

i=1

αRp+q(f •i g) +

q∑

i=1

αRp+q(f •−i g);

[f, g] :=f • g − (−1)(m−p−1)(n−q−1)g • f

=f ◦ g − (−1)(m−p−1)(n−q−1)g ◦ f.

We remark that when these formulas are applied to elements, additional signs will
appear because of the Koszul sign rule. When p = q = 0, f ◦ g = f • g is the usual
Gerstenhaber circle product and [·, ·] is the usual Gerstenhaber bracket onC∗(A,A). Then
from [Wan18, Section 4.2], we get that [·, ·] respects the map Ωrsy : HH∗(A,Ωpsy(A)) →
HH∗(A,Ωp+rsy (A)). Thus it induces a well-defined Lie bracket (still denoted by [·, ·]) on
HH∗

sg(A,A). We have the following very important observation.

Lemma 3.4. For two cocycles f ∈ Cm−p(A,Ωpsy(A)) and g ∈ Cn−q(A,Ωqsy(A)), the fol-

lowing identities hold in Cm+n−p−q−1(A,Ωp+qsy (A))

g • f = ΩR,psy (g)h(f)− hL,Rp (g)ϑR(f),

g ◦ f = ΩR,psy (g)h(f) + hL,Rq (f)ϑR(g),

where h(f) is defined in (1) and hL,Rq (f) is defined in Remark 2.4.

Proof. This follows from the following identities

ΩR,psy (g)h(f) =
n∑

i=1

αRp+q(g •i f), hL,Rp (g)ϑR(f) =

p∑

i=1

αRp+q(g •−i f).

Let us verify these two identities. For this, we have

ΩR,psy (g)h(f)(a1,m+n−1)

=
n∑

i=1

(−1)(m−p−1)(i−1)ΩR,psy (g)(a1,i−1 ⊗ f(ai,i+m−1)⊗ ai+m,m+n−1)

=

n∑

i=1

(−1)(m−p−1)(i−1)αRp+q(Id
⊗p⊗gR)(a1,i−1 ⊗ f(ai,i+m−1)⊗ ai+m,m+n−1)

=

n∑

i=1

αRp+q(g •i f)(α1,m+n−1).
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Similarly, we have

hL,Rp (g)ϑR(f)(a1,m+n−1)

=(−1)(m−p)(n−1)hL,Rp (g)(a1,n−1 ⊗ fR(an,m+n−1))

=(−1)(m−p)(n−1)

p∑

i=1

αRp+q(Id
⊗p−i⊗g ⊗ Id⊗i)(a1,n−1 ⊗ fR(an,m+n−1))

=

p∑

i=1

αRp+q(g •−i f)(α1,m+n−1).

This proves the lemma. �

The Yoneda product

∪′ : HHm−p(A,Ωpsy(A))⊗HHn−q(A,Ωqsy(A)) → HHm+n−p−q(A,Ωp+qsy (A))

is given by the composition

HHm−p(A,Ωpsy)⊗HHn−q(A,Ωqsy) → HHm+n−p−q(A,Ωpsy ⊗A Ωqsy) → HHm+n−p−q(A,Ωp+qsy ),

where we simply write Ωpsy for Ωpsy(A); and the second morphism is the isomorphism

induced by µp,q : Ωpsy(A) ⊗A Ωqsy(A)
∼=
−→ Ωp+qsy (A) (cf. the proof of Lemma 2.2). At the

complex level, ∪′ is given as follows: For f ∈ Cm−p(A,Ωpsy(A)) and g ∈ Cn−q(A,Ωqsy(A)),

f ∪′ g(a1,m+n) = µp,q(f(a1,m)⊗A g(am+1,m+n)).

We defined another cup product ∪ in [Wan18, Section 4]:

f ∪ g = αRp+q(Id
⊗p+q⊗µ)(Id⊗q ⊗fR ⊗ Id)(Id⊗m⊗gR).

More precisely, f ∪ g is the composition of maps

A
⊗m+n Id⊗m ⊗gR

−−−−−−→ A
⊗m+q

⊗A
Id⊗q ⊗fR⊗Id
−−−−−−−→ A

⊗p+q
⊗A⊗A

Id⊗p+q ⊗µ
−−−−−−→ ΩR,p+qnc (A)

αR
p+q

−−−→ Ωp+qsy (A),

where we simply write A for ΣA. At the cohomology level, the cup product ∪′ is equal
to ∪ (cf. [Wan18, Section 4]). We note that ∪ is compatible with the map Ωrsy. Thus, it
induces a well-defined cup product ∪′ = ∪ : HH∗

sg(A,A)⊗HH∗
sg(A,A) → HH∗

sg(A,A).

Remark 3.5. It is clear that the two products ∪′ and ∪ at the complex level are not
(graded-)commutative. But we have the following identity

f ∪′ g − (−1)(m−p)(n−q)g ∪′ f =(−1)m−pδ(g • f),

f ∪ g − (−1)(m−p)(n−q)g ∪ f =(−1)m−pδ(g ◦ f),
(2)

for any f ∈ Cm−p(A,Ωpsy(A)) and g ∈ Cn−q(A,Ωqsy(A)) such that δ(f) = 0 = δ(g)
(cf. [Wan18, Proposition 4.4]). This shows that ∪′ = ∪ is graded-commutative at the
cohomology level.

In the following, we will use the identities in (2) to construct two dg Rm−p−1⊗Rn−q−1⊗
A⊗Aop-modules CL(f, g) and CR(f, g) (see below), which are independent (up to isomor-
phism) of the choice of representatives in the cohomology classes of f and g (cf. Lemma
3.8). We stress that these two dg modules play a crucial role in the proof of Proposition
5.9, a key step in proving our main Theorem 6.2.

Let f ∈ HHm−p(A,Ωpsy(A)) and g ∈ HHn−q(A,Ωqsy(A)), which are represented by the
cocycles f ∈ Cm−p(A,Ωpsy(A)) and g ∈ Cn−q(A,Ωqsy(A)) respectively. Let us consider the
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following three chain complexes associated to f and g. For simplicity, we set r := m−p−1
and s := n− q − 1. The first complex is C(f, g) defined as

Bar∗(A)
ϑL(f) %%

ϑR(g)

##
⊕ ǫr ⊗ Bar≥p(A)

Idǫr ⊗ΩR,p
sy (g)

<<
⊕ ǫs ⊗ Bar≥q(A)

Idǫs ⊗ΩL,q
sy (f)

;;
⊕ ǫr+s ⊗ Ωp+qsy (A).

The identity ΩL,qsy (f)ϑR(g) = ΩR,psy (g)ϑL(f) implies that C(f, g) is a well-defined complex.

The second one is CL(f, g) defined as

Bar∗(A)
ϑR(f) %%

ϑR(g)

##

g•f

;;
⊕ ǫr ⊗ Bar≥p(A)

Idǫr ⊗ΩL,p
sy (g)

::
⊕ ǫs ⊗ Bar≥q(A)

Idǫs ⊗ΩL,q
sy (f)

88
⊕ ǫr+s ⊗ Ωp+qsy (A).

The first identity in (2) ensures that CL(f, g) is a complex. The third one is CR(f, g)
defined as

Bar∗(A)
ϑR(f) %%

ϑR(g)

##

g◦f

;;
⊕ ǫr ⊗ Bar≥p(A)

Idǫr ⊗ΩR,p
sy (g)

::
⊕ ǫs ⊗ Bar≥q(A)

Idǫs ⊗ΩR,q
sy (f)

88
⊕ ǫr+s ⊗ Ωp+qsy (A),

The second identity in (2) yields that CR(f, g) is a complex.

Lemma 3.6. For any f ∈ HHm−p(A,Ωpsy(A)) and g ∈ HHn−q(A,Ωqsy(A)), we have iso-
morphisms of complexes

C(f, g) ∼= CL(f, g) ∼= CR(f, g).

Proof. Let us define a map sL(f, g) : CL(f, g) → C(f, g) as

sL(f, g) :=

(
Id 0 0 0
h(f) Id 0 0
0 0 Id 0
0 h

L,R
p (g) 0 Id

)

where hL,Rp (g) is defined in Remark 2.4 and h(f) is defined in (1). We have the following
identity
(

Id 0 0 0
h(f) Id 0 0
0 0 Id 0
0 h

L,R
p (g) 0 Id

)( d 0 0 0
ϑR(f) d 0 0

ϑR(g) 0 d 0

g•f ΩL,p
sy (g) ΩL,q

sy (f) 0

)
=

( d 0 0 0
ϑL(f) d 0 0

ϑR(g) 0 d 0

0 ΩR,p
sy (g) ΩL,q

sy (f) 0

)(
Id 0 0 0
h(f) Id 0 0
0 0 Id 0
0 h

L,R
p (g) 0 Id

)
,
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since g • f = ΩR,psy (g)h(f) − hL,Rp (g)ϑR(f) (cf. Lemma 3.4). Here, we simply write

Idǫr ⊗ΩR,psy (g) (resp. Idǫs ⊗ΩR,qsy (f)) as ΩR,psy (g) (resp. ΩR,qsy (f)). It follows that sL(f, g) is

a morphism of complexes. Note that sL(f, g) is an isomorphism with inverse

sL(f, g)−1 =

(
Id 0 0 0

−h(f) Id 0 0
0 0 Id 0

h
L,R
p (g)h(f) −hL,R

p (g) 0 Id

)
.

Let us prove CL(f, g) ∼= CR(f, g). Consider the following map s′(f, g) : CL(f, g) →
CR(f, g) given by

s′(f, g) :=

(
Id 0 0 0
0 Id 0 0
0 0 Id 0
0 h

L,R
p (g) hL,R

q (f) Id

)
.

Note that the following identity holds

s′(f, g)

( d 0 0 0
ϑR(f) d 0 0

ϑR(g) 0 d 0

g•f ΩL,p
sy (g) ΩL,q

sy (f) 0

)
=

( d 0 0 0
ϑR(f) d 0 0

ϑR(g) 0 d 0

g◦f ΩR,p
sy (g) ΩR,q

sy (f) 0

)
s′(f, g),

since by Lemma 3.4, we have g •f +hL,Rp (g)ϑR(f)+hL,Rq (f)ϑR(g) = g ◦f and by Remark
2.4, we have

hL,Rq (f)d = ΩL,qsy (f)− ΩR,qsy (f), hL,Rp (g)d = ΩL,psy (g)− ΩR,psy (g).

This implies that s′(f, g) is a morphism of complexes. It is clear s′(f, g) is an isomorphism
with inverse

s′(f, g)−1 =

(
Id 0 0 0
0 Id 0 0
0 0 Id 0
0 −hL,R

p (g) −hL,R
q (f) Id

)
.

This proves the lemma. �

Remark 3.7. It is clear that C(f, g) has a natural dg R ⊗ A ⊗ Aop-module structure,
where R := Rm−p−1⊗Rn−q−1 is the tensor product of the dg algebras Rm−p−1 and Rn−q−1.
Then, via the above isomorphisms in Lemma 3.6, the complexes CL(f, g) and CR(f, g)
inherit the structure of a dg R ⊗ A ⊗ Aop-module from C(f, g). Hence all the three dg
R⊗A⊗Aop-modules are isomorphic. The tensor product C(f)⊗A C(g) is endowed with
a natural dg R⊗ A⊗ Aop-module structure.

Lemma 3.8. Letm,n ∈ Z>0. For any f ∈ HHm−p(A,Ωpsy(A)) and g ∈ HHn−q(A,Ωqsy(A)),
we have a morphism of dg R⊗ A⊗ Aop-modules

Φ(f, g) : C(f, g) → C(f)⊗A C(g)

such that Φ(f, g) is an isomorphism in K(R⊗ A) and in K(R⊗Aop).

Proof. Set r := m−p−1 and s := n−q−1. Let us write down the complex C(f)⊗AC(g).
Recall that C(f) is the following complex

C(f) = Bar∗(A)

f

&&
⊕ ΣrΩpsy(A).
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Then C(f)⊗A C(g) is depicted by the following diagram

B∗ ⊗A B∗

f⊗AId
##

Id⊗Ag

""
⊕ ΣrΩp ⊗A B∗

Id⊗Ag

;;
⊕ B∗ ⊗A ΣsΩq

f⊗AId

99
⊕ ΣrΩp ⊗A ΣsΩq,

where, for simplicity, we write B∗ = Bar∗(A) and Ωp = Ωpsy(A). Note that there is a
natural isomorphism of dg A⊗ Aop-modules

µ̃p : Σ
rΩpsy(A)⊗A Bar∗(A)

∼=
−→ Σr Bar≥p(A)

defined as the composition of maps

ΣrΩpsy(A)⊗A Bar∗(A)
Σr(αL

p )
−1⊗AId

−−−−−−−−→ ΣrΩL,pnc (A)⊗A Bar∗(A)
∼=
−→ Σr Bar≥p(A),

where (αLp )
−1 is defined in Lemma 2.3 and the second isomorphism is given by

ΣrΩL,pnc (A)⊗A (A⊗ (ΣA)⊗i ⊗ A)
∼=
−→ ΣrA⊗ (ΣA)⊗p+i ⊗ A

∼=
−→ Σr Barp+i(A).

Similarly, we have an isomorphism of dg A⊗Aop-modules

µ̃q : Bar∗(A)⊗A ΣsΩqsy(A)
∼=
−→ Σs Bar≥q(A).

Recall that we also have an isomorphism µp,q : Ωpsy(A) ⊗A Ωqsy(A)
∼=
−→ Ωp+qsy (A) from

Lemma 2.2. Using the above isomorphisms, we get that C(f)⊗A C(g) is isomorphic to

the following complex (denoted by C̃1(f, g))

Bar∗(A)⊗A Bar∗(A)

µ̃p(f⊗AId) &&

µ̃q(Id⊗Ag)

$$
⊕ Σr Bar≥p(A)

µp,q(Id⊗Ag)(µ̃p)
−1

>>
⊕ Σs Bar≥q(A)

µp,q(f⊗AId)(µ̃q)−1

99
⊕ Σr+sΩp+qsy (A).

Here the isomorphism C(f) ⊗A C(g)
∼=
−→ C̃1(f, g) is given by t1(f, g) :=

(
Id 0 0 0
0 µ̃p 0 0
0 0 µ̃q 0
0 0 0 µp,q

)
.

Via this isomorphism, the complex C̃1(f, g) inherits the structure of a dg R ⊗ A ⊗ Aop-
module from C(f)⊗A C(g). We construct a morphism of graded R⊗ A⊗ Aop-modules

t(f, g) =

(
∆0,0 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id

)
: C(f, g) → C̃1(f, g),

where ∆0,0 is defined in Section 2.1. We claim that t(f, g) commutes with differentials.
Indeed, it is sufficient to verify the following identity

t(f, g)

( d 0 0 0
ϑL(f) d 0 0

ϑR(g) 0 d 0

0 ΩR,p
sy (g) ΩL,q

sy (f) 0

)
=

(
d 0 0 0

µ̃p(f⊗AId) d 0 0
µ̃q(Id⊗Ag) 0 d 0

0 µp,q(Id⊗Ag)(µ̃p)
−1 µp,q(f⊗AId)(µ̃q)−1 0

)
t(f, g).

The above identity holds since we have

ϑL(f) = µ̃p(f ⊗A Id)∆0,0, ϑR(g) = µ̃q(Id⊗Ag)∆0,0;
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ΩR,psy (g)µ̃p = µp,q(Id⊗Ag), ΩL,qsy (f)µ̃q = µp,q(f ⊗A Id).

This proves the claim. Therefore, we get a morphism of dg R⊗ A⊗Aop-modules

Φ(f, g) = t1(f, g)
−1t(f, g) : C(f, g) → C(f)⊗A C(g).

It remains to show that Φ(f, g) is an isomorphism in K(R ⊗ A) and in K(R ⊗ Aop).
For this, it follows from the proof of Lemma 3.3 that there is an isomorphism of dg
R⊗ A-modules (

Id 0 0 0
f̃ Id 0 0
g̃ 0 Id 0

0 dp+qΩ
R,p
sy (g̃) dp+qΩ

L,q
sy (f̃) Id

)
: C(f, g) → C(0, 0),

where g̃(x) = ϑR(g)(x ⊗ 1) and f̃(x) = ϑL(f)(x ⊗ 1). Here we leave it to the reader to
check that the above map is indeed a morphism of dg R⊗A-modules. Similarly, we have

an isomorphism of dg R ⊗ A-modules C(f) ⊗A C(g)
∼=
−→ C(0) ⊗A C(0). Moreover, the

following diagram commutes in the category of dg R⊗ A-modules

C(f, g)
Φ(f,g)

//

∼=
��

C(f)⊗A C(g)

∼=
��

C(0, 0)
Φ(0,0)

// C(0)⊗A C(0).

Thus, to prove that Φ(f, g) is an isomorphism in K(R⊗A), it is equivalent to prove that
Φ(0, 0) is an isomorphism in K(R⊗A). For this, consider the distinguished triangle

B<p → C(0) → Rr ⊗ Ωpsy(A) → ΣB<p

in K(Rr ⊗ A). Applying the tensor functor −⊗A C(0), we get the triangle

B<p ⊗A C(0) → C(0)⊗A C(0) → Rr ⊗ (B≥p(A)⊕ ΣsΩp+qsy (A)) → ΣB<p

in K(R⊗ A). Moreover, we have the following commutative diagram

B<p ⊗A B∗ ⊕ ΣsB<p+q
// C(0)⊗A C(0) // Rr ⊗ (B≥p(A)⊕ ΣsΩp+qsy (A)) //

B<p ⊕ ΣsB<p+q

∼=(∆ 0
0 Id )

OO

// C(0, 0)

Φ(0,0)

OO

// Rr ⊗ (B≥p(A)⊕ ΣsΩp+qsy (A)) //

=

OO

.

Notice that the morphism (∆ 0
0 Id ) is an isomorphism in K(R ⊗ A), it follows that Φ(0, 0)

is an isomorphism and thus Φ(f, g) is an isomorphism in K(R⊗A). Similarly, Φ(f, g) is
an isomorphism in K(R ⊗Aop). This proves the lemma. �

4. R-relative derived tensor product

Let us start with the general setting. Let k be a field. Let R be a commutative dg
k-algebra and E be a dg R-algebra. The R-relative (unbounded) derived category DR(E)
is a k-linear category with objects being dg E-modules. The morphisms of DR(E) are ob-
tained from morphisms of dg E-modules by the localization with respect to all R-relative
quasi-isomorphisms, i.e. all morphisms s : L→ M of dg E-modules whose restriction to
R is a homotopy equivalence. For instance, the k-relative derived category Dk(E) of the
dg k-algebra E coincides with the usual derived category D(E). The R-relative derived
category DR(R) is the homotopy category K(R) of R. We also consider the R-relative
bounded derived category Db

R(E), which is by definition the full subcategory of DR(E)
consisting of those objects X such that there are only finitely many integers i such that
Hi(X) 6= 0. For more details on R-relative derived categories, we refer to [Kel98, Kel99].
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Let A and B be two associative k-algebras. Let X be a dg R ⊗ A ⊗ Bop-module.
Then we have the R-relative derived tensor product induced by X , in the sense of [Del],

X ⊗L,R
R⊗B − : DR(R⊗ B) → DR(R⊗ A).

Remark 4.1. From [Kel98, Section 7], it follows that X⊗L,R
R⊗B− ∼= prelX⊗R⊗B−, where

the dg R⊗A⊗Bop-module prelX is R-relatively quasi-isomorphic to X and R-relatively
closed as a dg R ⊗ Bop-module, i.e. HomK(R⊗Bop)(prelX,M) ∼= HomDR(R⊗Bop)(prelX,M)
for any dg R⊗Bop-moduleM . For instance, we have the isomorphism HomK(R⊗Bop)(R⊗
B,M) ∼= HomDR(R⊗Bop)(R ⊗ B,M) for any dg R ⊗ Bop-module M , and hence (R ⊗

B)⊗L,R
R⊗B − ∼= (R⊗ B)⊗R⊗B − (cf. [Kel98, Section 7.4]).

Lemma 4.2. Let X be a dg R-module and P be a (k-relatively) closed dg Bop-module.
Then X ⊗ P is R-relatively closed as a dg R⊗ Bop-module, namely, we have

(3) HomK(R⊗Bop)(X ⊗ P,M) ∼= HomDR(R⊗Bop)(X ⊗ P,M),

for any dg R⊗Bop-module M . As a consequence, (X⊗P )⊗L,R
B⊗kR

− ∼= (X⊗P )⊗B⊗kR−.

Proof. It suffices to show that HomK(R⊗Bop)(X⊗P,M) = 0 whenM is an Rop-contractible
(i.e. M ∼= 0 in K(Rop)) dg R ⊗ Bop-module. For this, let us write Hom for the Hom-
complexes. Equivalently, we need to show that the complex HomR⊗Bop(X ⊗ P,M) is
acyclic when M is R-contractible. Since we have

HomR⊗Bop(X ⊗ P,M) ∼= HomR(X,HomBop(P,M)),

to prove that HomR⊗Bop(X ⊗ P,M) is acyclic, it suffices to prove that HomBop(P,M)
is R-contractible. Clearly, this holds for P = B and is inherited by shifts and arbitrary
coproducts (because products of R-contractible dg R-modules are still R-contractible).
This is also inherited by extensions that split in the category of graded Bop-modules.
Therefore, it holds for any closed dg Bop-modules. This proves the lemma. �

Remark 4.3. We would like to thank the referee for providing a shorter proof of Lemma
4.2 and thank Keller for pointing out that this lemma holds for any closed dg Bop-module
P .

Proposition 4.4. Let m > 0. For a cocycle f ∈ Cm−p(A,Ωpsy(A)) (i.e. δ(f) = 0), all

the three dg modules C(f), C(ϑL(f)) and C(ϑR(f)) are Rm−p−1-relatively closed as dg
Rm−p−1 ⊗A-modules and as dg Rm−p−1 ⊗ Aop-modules.

Proof. It follows from Lemma 3.3 that all the three modules are isomorphic inK(Rm−p−1⊗
A) and in K(Rm−p−1⊗Aop). Therefore, it is sufficient to prove that C(ϑL(f)) is Rm−p−1-
relatively closed as a dg Rm−p−1 ⊗ A-module and as a dg Rm−p−1 ⊗ Aop-module. From
the proof of Lemma 3.3, we have an isomorphism of dg Rm−p−1 ⊗A-modules

φ(f) : C(ϑL(f))
∼=
−→ C(ϑL(0)) = Bar∗(A)⊕ ǫm−p−1 ⊗ Bar≥p(A).

Let us prove that C(ϑL(0)) is Rm−p−1-relatively closed in K(Rm−p−1 ⊗ A). For this, we
have a distinguished triangle in K(Rm−p−1 ⊗ A)

Bar0,p−1(A) → C(ϑL(0)) → Rm−p−1 ⊗ Bar≥p(A) → ΣBar0,p−1(A).

By Lemma 4.2 both Bar0,p−1(A) and Rm−p−1 ⊗Bar≥p(A) are Rm−p−1-relatively closed in
K(Rm−p−1 ⊗ A). Hence so is C(ϑL(0)). This proves that C(ϑL(f)) is Rm−p−1-relatively
closed in K(Rm−p−1⊗A). Similarly, we can prove that it is also Rm−p−1-relatively closed
in K(Rm−p−1 ⊗ Aop). This prove the proposition. �



18 ZHENGFANG WANG

Proposition 4.5. Let m > 0 and p ≥ 0. Let f, g ∈ HHm−p(A,Ωpsy(A)). Then we have a
morphism of dg Rm−p−1 ⊗ A⊗ Aop-modules

Ψ(f, g) : C(f)⊗Rm−p−1⊗A C(g)
∼=
−→ C(Ωpsy(f + g))

such that Ψ(f, g) is an isomorphism in K(Rm−p−1 ⊗ A) and in K(Rm−p−1 ⊗ Aop). Here
the map Ωpsy : HH

m−p(A,Ωpsy(A)) → HHm−p(A,Ω2p
sy(A)) is defined in Section 2.2.

Proof. For simplicity, we write Bar∗(A) as B∗ throughout this proof. Then the dg module
C(f)⊗Rm−p−1⊗A C(g) is illustrated as follows

(B∗

f

##

⊕ Σm−p−1Ωpsy(A))
⊗

Rm−p−1⊗A
(B∗

g

##

⊕ Σm−p−1Ωpsy(A)).

We claim that C(f)⊗Rm−p−1⊗AC(g) is isomorphic to the following dg Rm−p−1⊗A⊗Aop-
module C1(f, g)

B∗ ⊗A B∗

f⊗Adp+dp⊗Ag

((

⊕ Σm−p−1Ωpsy(A)⊗A Ωpsy(A).

Indeed, as graded Rm−p−1 ⊗ A⊗ Aop-modules, we have

C(f) ∼=
⊕

i 6=p

(k ⊗ Bi)
⊕

(Bp ⊕ Σm−p−1Ωpsy(A)).

Thus, as graded Rm−p−1 ⊗ A⊗ Aop-modules, we have

C(f)⊗Rm−p−1⊗A C(g)

∼=

(⊕

i 6=p

(k ⊗ Bi)
⊕

(Bp ⊕ Σm−p−1Ωpsy(A))

) ⊗

Rm−p−1⊗A(⊕

i 6=p

(k ⊗ Bi)
⊕

(Bp ⊕ Σm−p−1Ωpsy(A))

)

∼=

(⊕

i 6=p

Bi ⊗A

⊕

i 6=p

Bi

)⊕(⊕

i 6=p

Bi ⊗A Bp

)⊕

(
Bp ⊗A

⊕

i 6=p

Bi

)⊕(
Bp ⊗A Bp ⊕ Σm−p−1Ωpsy(A)⊗A Ωpsy(A)

)

∼= B∗ ⊗A B∗

⊕
Σm−p−1Ωpsy(A)⊗A Ωpsy(A)

∼= C1(f, g),

where the second isomorphism comes from the following isomorphisms

(k ⊗ Bi)⊗Rm−p−1⊗A (k ⊗ Bj) ∼=Bi ⊗A Bj;

Xp ⊗Rm−p−1⊗A
Xp

∼=Bp ⊗A Bp ⊕ Σm−p−1Ωpsy(A)⊗A Ωpsy(A);

Xp ⊗Rm−p−1⊗A (k ⊗Bi) ∼=Bp ⊗A Bi, (k ⊗ Bi)⊗Rm−p−1⊗A Xp
∼= Bi ⊗A Bp;

(4)

where Xp := Bp ⊕ Σm−p−1Ωpsy(A). The first isomorphism in (4) is due to the fact that
k ⊗Rm−p−1 k

∼= k. Let us prove the second isomorphism in (4). For this, we have a short
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exact sequence of dg Rm−p−1 ⊗A⊗Aop-modules

(5) 0 → ǫm−p−1 ⊗ Σ−1Ωp+1
sy (A) → Rm−p−1 ⊗Bp → Xp → 0.

Applying the tensor functor−⊗Rm−p−1⊗AXp to (5), we obtain the following exact sequence

0 → Σ−1Ωp+1
sy (A)⊗A ǫm−p−1Xp → Bp ⊗A Xp → Xp ⊗Rm−p−1⊗A Xp → 0.

This implies that

Xp ⊗Rm−p−1⊗A Xp
∼=(Bp ⊗A Xp)/(Σ

−1Ωp+1
sy (A)⊗A ǫm−p−1Xp)

∼=(Bp ⊗A Xp)/((Σ
−1Ωp+1

sy (A)⊗A Σm−p−1Ωpsy(A))

∼=Bp ⊗A Bp ⊕ Σm−p−1Ωpsy(A)⊗A Ωpsy(A).

This shows the second isomorphism in (4). Similarly, applying the functor −⊗Rm−p−1⊗A

(k ⊗ Bi) (resp. (k ⊗ Bi) ⊗Rm−p−1⊗A −) to (5), we may get the third isomorphism (resp.
the forth isomorphism) in (4). Then, from the construction of the tensor product of dg
modules, we see that the differential is exactly given by that of C1(f, g). This proves the
claim.

We identity C(f) ⊗Rm−p−1⊗A C(g) with C1(f, g) via the above isomorphism. Let us
denote by C ′

1(f, g) the following dg Rm−p−1 ⊗A⊗Aop-module

B∗

µp,q(f⊗Adp+dp⊗Ag)∆0,0

��

⊕ Σm−p−1Ω2p
sy(A),

where the coproduct ∆0,0 : B∗ → B∗ ⊗A B∗ and the isomorphism µp,q : Ωpsy(A) ⊗A

Ωqsy(A)
∼=
−→ Ωp+qsy (A) are defined in Section 2.1. Note that we have a morphism of dg

Rm−p−1 ⊗A⊗ Aop-modules

Ψ′ =
(

∆0,0 0

0 µ−1
p,q

)
: C ′

1(f, g) → C1(f, g) = C(f)⊗Rm−p−1⊗A C(g).

By Remark 2.4, we have that

µp,p(f ⊗A dp + dp ⊗A g)∆0,0 = ΩL,psy (f) + ΩR,psy (g) = ΩL,psy (f) + ΩL,psy (g) = Ωpsy(f + g)

in HHm−p(A,Ω2p
sy(A)). Thus C

′
1(f, g) is isomorphic to C(Ωpsy(f + g)) since C(Ωpsy(f + g))

does not depend on the choice of the representatives (cf. Remark 3.2). This yields a
morphism of dg Rm−p−1 ⊗ A⊗Aop-modules

Ψ(f, g) : C(Ωpsy(f + g)) → C(f)⊗Rm−p−1⊗A C(g).

It remains to prove that Ψ is an isomorphism in K(Rm−p−1⊗A) and in K(Rm−p−1⊗A
op).

From the proof of Lemma 3.3, it follows that we have the following commutative diagram

C(Ωpsy(f + g))

∼=ψ(Ωp
sy(g))

��

Ψ(f,g)
// C(f)⊗Rm−p−1⊗A C(g)

∼= Id⊗Rm−p−1⊗Aψ(g)

��
C(Ωpsy(f))

Ψ(f,0)
//

∼=ψ(Ωp
sy(f))

��

C(f)⊗Rm−p−1⊗A C(0)
= // C1(f, 0)

∼=
(

Id 0
ψ(f)⊗Id Id

)

��
C(0)

Ψ(0,0)
// C(0)⊗Rm−p−1⊗A C(0)

= // C1(0, 0)

in K(Rm−p−1 ⊗A). Thus, to prove that Ψ(f, g) is an isomorphism in K(Rm−p−1 ⊗A), it
is equivalent to prove that Ψ(0, 0) is an isomorphism. Note that the latter follows from
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the following commutative diagram of distinguished triangles in K(Rm−p−1 ⊗ A)

B<2p
//

∼= ∆

��

C(0) //

Ψ(0,0)

��

Bar≥2p⊕Σm−p−1Ω2p
sy(A) //

∼= (∆ 0
0 Id )

��

ΣB<2p

∼= Σ∆

��
(B∗ ⊗ B∗)<2p

// C1(0, 0) // (B∗ ⊗B∗)≥2p ⊕ Σm−p−1Ω2p
sy(A) // Σ(B∗ ⊗ B∗)<2p.

Similarly, we can prove that Ψ(f, g) is an isomorphism in K(Rm−p−1 ⊗Aop). This proves
the proposition. �

5. Singular infinitesimal deformation theory

In this section, we follow [Kel99] and develop the singular infinitesimal deformation
theory of the identity bimodule. Let k be a field and R be an augmented commutative dg
k-algebra. We denote by n the kernel of the augmentation R → k. We always suppose
that dimk n <∞.

Let A be a Noetherian k-algebra such that the enveloping algebra A⊗Aop is Noetherian.
Let Db,Proj(A⊗Aop) be the full subcategory of Db(A⊗Aop) formed by all the complexes
quasi-isomorphic to bounded complexes X of (not necessarily finitely generated) A-A-
bimodules such that each component Xi of X is projective as a left A-module and as a
right A-module. For instance, A ∈ D

b,Proj(A⊗ Aop).
LetD−

R(R⊗A⊗A
op) be the R-relative right bounded derived category of dg R⊗A⊗Aop-

modules (cf. Section 4). We consider its full subcategory D
−
R,cl(R ⊗ A⊗ Aop) formed by

all the objects X ∈ D
−
R(R⊗A⊗Aop) satisfying the following two conditions

(i) X is R-relatively closed as a dg R⊗ A-module and as a dg R⊗Aop-module,
(ii) k ⊗R X ∈ D

b,Proj(A⊗ Aop).

Denote by P(R ⊗ A ⊗ Aop) the thick triangulated subcategory of D−
R,cl(R ⊗ A ⊗ Aop)

generated by all the objects P such that k⊗RP is quasi-isomorphic to bounded complexes
of projective A⊗Aop-modules. We define the R-relative monoidal singularity category of
A as

Dsg,R(A⊗Aop) :=
D

−
R,cl(R⊗ A⊗Aop)

P(R⊗A⊗Aop)
.

In particular, the k-relative monoidal singularity category Dsg,k(A ⊗ Aop) coincides

with
D

−
cl
(A⊗Aop)

P(A⊗Aop)
, where D

−
cl(A ⊗ Aop) is the full subcategory of D−(A ⊗ Aop) formed by

all the objects X such that each component Xi is projective as a left A-module and as
a right A-module. Thus it is a full triangulated subcategory of the (partially) completed

singularity category Ŝg(A⊗Aop) := D
−(A⊗Aop)/P(A⊗Aop) defined in [Kel18, Section

2.1]. It follows from Lemma 2.2 in loc. cit. that the singularity category Dsg(A ⊗ Aop)

(in the sense of Buchweitz and Orlov) is a full subcategory of Ŝg(A⊗ Aop) and is also a
full subcategory of Dsg,k(A⊗Aop). As a consequence, we have

HHi
sg(A,A) := HomDsg(A⊗Aop)(A,Σ

iA) ∼= HomDsg,k(A⊗Aop)(A,Σ
iA), for any i ∈ Z.

Lemma 5.1. The R-relative monoidal singularity category Dsg,R(A⊗Aop) endowed with

the R-relative tensor product ⊗L,R
R⊗A is a monoidal category with the unit object R⊗A.

Proof. Let us first prove that D
−
R,cl(R ⊗ A ⊗ Aop) is a monoidal category. Since all the

objects inD
−
R,cl(R⊗A⊗A

op) areR-relatively closed as dg R⊗A-modules and as dg R⊗Aop-

modules, we have ⊗L,R
R⊗A

∼= ⊗R⊗A. Let X and Y be two objects in D
−
R,cl(R ⊗ A ⊗ Aop).

Then we claim that the object X ⊗R⊗A Y is in D
−
R,cl(R ⊗ A⊗ Aop). Indeed, X ⊗R⊗A Y

satisfies the condition (i). That is, X⊗R⊗A Y is R-relatively closed as a dg R⊗A-module
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and as a dg R ⊗ Aop-module. The reason is as follows. Recall from [Kel98, Section 7]
that Y is R-relatively closed as a dg R⊗A-module if and only if Y admits a filtration of
dg R ⊗A-modules

0 = Y−1 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Yp ⊂ · · · ⊂ Y

such that

• Y is the union of the Yp, p ∈ Z≥0,
• the inclusion Yp ⊂ Yp+1 splits in the category of graded R⊗A-modules, p ∈ Z≥0,
• each quotient Yp/Yp−1 is isomorphic as dg R ⊗ A-modules to a direct summand
of a direct sum of dg modules M ⊗ A, where M is dg R-module.

This induces a filtration of X ⊗R⊗A Y in the category of dg R⊗ A-modules

0 = X ⊗R⊗A Y−1 ⊂ X ⊗R⊗A Y0 ⊂ · · · ⊂ X ⊗R⊗A Yp ⊂ · · · ⊂ X ⊗R⊗A Y.

It follows that X⊗R⊗A Y is R-relatively closed as a dg R⊗A-module, since each quotient

(X ⊗R⊗A Yp)/(X ⊗R⊗A Yp−1) ∼= X ⊗R⊗A Yp/Yp−1

is R-relatively closed as a dg R⊗A-module. The same argument shows that X ⊗R⊗A Y
is also R-relatively closed as a dg R⊗Aop-module. This proves that X ⊗R⊗A Y satisfies
the condition (i). It remains to prove that X ⊗R⊗A Y satisfies the condition (ii). This
follows from the following isomorphisms

(6) k ⊗R (X ⊗R⊗A Y ) ∼= (k ⊗R k)⊗R (X ⊗R⊗A Y ) ∼= (k ⊗R X)⊗A (k ⊗R Y ).

The proof of the claim is complete. Therefore, D−
R,cl(R⊗A⊗Aop) is a monoidal category.

The above isomorphisms (6) also implies that P(R ⊗A⊗ Aop) is a tensor ideal, thus we

have that ⊗L,R
R⊗A = ⊗R⊗A is well-defined in Dsg,R(A⊗ Aop). This proves the lemma. �

Remark 5.2. Let f : R → S be a morphism of commutative dg k-algebras. Then we
have a well-defined functor S ⊗R − : Dsg,R(A⊗ Aop) → Dsg,S(A⊗ Aop) since S ⊗R X ∈
P(S ⊗A⊗Aop) for any X ∈ P(R⊗ A⊗ Aop).

5.1. Singular infinitesimal deformations. Let k be a field and A be a Noetherian
k-algebra such that the enveloping algebra A ⊗ Aop is Noetherian. Let R be an aug-
mented commutative dg k-algebra such that dimk R < ∞. Let n be the kernel of the
augmentation R → k with n2 = 0. For example, R = Rm(:= k[ǫm]/ǫ

2
m).

Define a singular infinitesimal deformation of A as the pair (L, u), where L is an object
in D

−
R,cl(A⊗Aop) such that the canonical projection n⊗R L → nL is an isomorphism in

Dsg,k(A⊗Aop); and u : k⊗RL→ A is an isomorphism in Dsg,k(A⊗Aop). We also define F
as the category whose objects are the singular infinitesimal deformations (L, u) of A and
morphisms from (L, u) to (L′, u′) are given by morphisms v : L → L′ of Dsg,R(A ⊗ Aop)
such that u′ ◦ (Idk⊗Rv) = u in Dsg,k(A⊗ Aop). That is, the following diagram

k ⊗R L
u //

Idk ⊗Rv

��

A

k ⊗R L
′

u′

;;
✇
✇
✇
✇
✇
✇
✇
✇
✇

commutes in Dsg,k(A ⊗ Aop). We denote by sgDefo(A,R → k) the set of isomorphism
classes of objects of F and denote by sgDefo′(A,R → k) the set of isomorphism classes of

weak singular deformations of A, i.e. objects L in Dsg,R(A⊗Aop) such that n⊗RL
∼=
−→ nL

and k ⊗R L ∼= A in Dsg,k(A⊗ Aop).
Let (L, u) be an object of F . Since L is a dg R ⊗ A ⊗ Aop-module, we have the

exact sequence 0 → nL → L → k ⊗R L → 0 of dg A ⊗ Aop-modules, which splits as a
sequence of dg k-modules (since k is a field). Thus, it gives rise to a distinguished triangle
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nL→ L→ k⊗RL→ ΣnL in Db(A⊗Aop). Since n⊗RL ∼= nL in Dsg,k(A⊗Aop), we have

the distinguished triangle n⊗R L // L // k ⊗R L
ǫ′ // Σn⊗R L in Dsg,k(A⊗Aop).

From n2 = 0, it follows that n⊗RL ∼= n⊗(k⊗RL) as dg modules. We define a morphism
ǫ(L, u) : A→ Σn⊗ A of Dsg,k(A⊗ Aop) by the following diagram

k ⊗R L
ǫ′ //

∼= u

��

Σn⊗R L
∼= // Σn⊗ (k ⊗R L)

∼= Σn⊗u
��

A
ǫ(L,u)

// Σn⊗ A.

We claim that the morphism ǫ(L, u) only depends on the isomorphism class of (L, u) in the
category F . Indeed, let (L′, u′) ∈ F be such that there exists an isomorphism v : (L, u) →
(L′, u′) in F . To simplify the notational burden, we denote by k⊗v the morphism Idk⊗v,
etc. Then we have the following commutative diagram in Dsg,k(A⊗ Aop).

k ⊗R L

u ∼=

''

ǫ′ //

∼= k⊗Rv

��

Σn⊗R L

∼=Σn⊗Rv

��

∼= // Σn⊗ (k ⊗R L)

∼=Σn⊗(k⊗Rv)
��

Σn⊗u∼=

uu

k ⊗R L
′ ǫ′′ //

u′∼=
��

Σn⊗R L
′

∼= // Σn⊗ (k ⊗R L
′)

Σn⊗u′ ∼=
��

A
ǫ(L′,u′)

ǫ(L,u)
// Σn⊗ A

We claim that the morphism k⊗Rv : k⊗RL→ k⊗RL
′ is an isomorphism inDsg,k(A⊗A

op).
Indeed, it suffices to prove that Cone(k ⊗R v) = 0 in Dsg,k(A ⊗ Aop). Since v : L → L′

is an isomorphism in Dsg,R(A ⊗ Aop), we have that Cone(v) is in P(R ⊗ A ⊗ Aop).
Thus, Cone(k ⊗R v) ∼= k ⊗R Cone(v) ∈ P(A ⊗ Aop). This proves the claim. The
above commutative diagram implies that ǫ(L, u) = ǫ(L′, u′). Therefore we obtain a map
Φ : sgDefo(A,R→ k) → HomDsg,k(A⊗Aop)(A,Σn⊗A) which sends (L, u) to ǫ(L, u).

We will construct the map Ψ : HomDsg,k(A⊗Aop)(A,Σǫm ⊗ A) → sgDefo(A,Rm → k)
in the case of R = Rm for m ∈ Z as follows. Let f : A → Σǫm ⊗ A be a morphism in
Dsg,k(A⊗A

op). Take a representative f ′ ∈ HHm+1(A,Ωpsy(A)). It follows from Proposition

4.4 that the dg Rm⊗A⊗Aop-module C(f ′) lies in D
−
Rm,cl

(Rm⊗A⊗Aop). We claim that
the canonical morphism ǫm ⊗Rm

C(f ′) → ǫmC(f
′) is an isomorphism in Dsg,k(A⊗ Aop).

Indeed, since ǫ2m = 0, we have that

ǫm ⊗Rm
C(f ′) ∼= ǫm ⊗ (k ⊗Rm

C(f ′)) ∼= ǫm ⊗ Bar∗(A),

where the second isomorphism comes from the fact that k⊗Rm
M ∼=M/ǫmM for any dg

Rm-module M . Then the canonical morphism ǫm ⊗Rm
C(f ′) → ǫmC(f

′) is given by the
following commutative diagram in Dsg,k(A⊗ Aop):

ǫm ⊗Rm
C(f ′)

∼=
��

// ǫmC(f
′)

∼=
��

ǫm ⊗ Bar∗(A) ∼=

ρ // ǫm ⊗ Ωpsy(A),

where ρ is induced by the natural projection dp : Barp(A) → Ωpsy(A) which is an isomor-
phism in Dsg,k(A⊗ Aop). Hence the canonical morphism ǫm ⊗Rm

C(f ′) → ǫmC(f
′) is an

isomorphism in Dsg,k(A⊗Aop). This proves the claim. Consider the canonical morphism

of complexes of A-A-bimodules u′ : k ⊗Rm
C(f ′)

∼=
−→ Bar∗(A)

d0−→ A. Clearly, it is an
isomorphism in Dsg,k(A⊗ Aop). By definition, we obtain that (C(f ′), u′) ∈ F .
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Let us define Ψ(f) = (C(f ′), u′). The following claim ensures that Ψ(f) is well-defined.

Claim 5.3. Ψ(f) is independent of the choice of the representatives of f ∈ HHm+1
sg (A,A).

Proof. Indeed, let f ′′ ∈ Cm+1(A,Ωqsy(A)) be another representative of f . Without loss of
the generality, we may assume q ≥ p. Since both f ′ and f ′′ represent the same element f ,
we have Ωq−psy (f ′) = f ′′ in HHm+1(A,Ωqsy(A)), where the map Ωq−psy : HH∗(A,Ωpsy(A)) →
HH∗(A,Ωqsy(A)) is defined in Section 2.2. Equivalently, there exists h ∈ Cm(A,Ωqsy(A))
such that Ωq−psy (f ′)− f ′′ = δ(h). Now we prove that

(C(f ′), u′) = (C(f ′′), u′′) in sgDefo(A,Rm → k).

For this, let us define a morphism ρ : C(f ′) → C(f ′′) of Dsg,Rm
(A⊗Aop) as follows

(7) C(f ′)
ρ //

σ̂−1
p

∼=

��

C(f ′′)

C(ϑL(f ′))
φ // C(ϑL(ΩL,q−psy (f ′)))

= // C(ϑL(f ′′ + δ(h)))

(
Id 0

−ϑL(h) Id

)

∼=
// C(ϑL(f ′′)).

σ̂q∼=

OO

Let us explain the above morphisms: The morphism σ̂p : C(ϑL(f ′)) → C(f ′) defined
in Lemma 3.3 is an isomorphism in Db(Rm ⊗ A ⊗ Aop), thus it is an isomorphism in
Dsg,Rm

(A ⊗ Aop); The morphism φ is induced by the natural projection Bar≥p(A) →

Bar≥q(A); The morphism
(

Id 0
−ϑL(h) Id

)
is an isomorphism with inverse

(
Id 0

ϑL(h) Id

)
, where

ϑL(h) is defined in Remark 3.2. Let us prove that φ is an isomorphism in Dsg,Rm
(A⊗Aop).

For this, it suffices to prove that Cone(φ) ∈ P(Rm⊗A⊗Aop), namely both Cone(φ) and
k⊗RCone(φ) are quasi-isomorphic to bounded complexes of projective A⊗Aop-modules.
Since φ is surjective, there is a short exact sequence of dg Rm ⊗A⊗Aop-modules

0 → Bp,q−1 → C(ϑL(f ′))
φ
−→ C(ϑL(ΩL,q−psy (f ′)) → 0,

where Bp,q−1 is the truncated complex

Bp,q−1 : 0 // Barq−1(A)
dq−2 // Barq−1(A)

dq−1 // // · · ·
dp+1 // Barp(A) // 0.

This induces a distinguished triangle in D(A⊗Aop)

Bp,q−1 → C(ϑL(f ′))
φ
−→ C(ϑL(ΩL,q−psy (f ′)) → ΣBp,q−1.

It follows that Cone(φ) ∼= ΣBp,q−1 in D(A⊗ Aop) and thus Cone(φ) is quasi-isomorphic
to a bounded complex of projective A⊗Aop-modules. Since

k ⊗R Cone(φ) ∼= Cone(φ)/ǫm−p−1Cone(φ) ∼= Cone(Id : Bar∗(A) → Bar∗(A)),

we get that k⊗RCone(φ) ∼= 0 in D(A⊗Aop). This prove that Cone(φ) ∈ P(Rm⊗A⊗A
op).

Thus the morphism ρ : C(f ′) → C(f ′′) is an isomorphism of Dsg,Rm
(A⊗ Aop).

Applying the tensor functor k ⊗Rm
− to the above diagram (7), we have the following

commutative diagram in Dsg,k(A⊗ Aop)

k ⊗Rm
C(f ′)

Id⊗ρ //

u′

��

k ⊗Rm
C(f ′′)

u′′vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

A

since u′ is the following composition of maps

u′ : k ⊗Rm
C(f ′) → Bar∗(A)

d0−→ A.
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This yields (C(f ′), u′) = (C(f ′′), u′′) in sgDefo(A,Rm → k). Therefore, Ψ(f) is indepen-
dent of the choice of the representative of f . This proves the claim. �

As a consequence, we get a map Ψ : HomDsg(A⊗Aop)(A,Σǫm⊗A) → sgDefo(A,Rm → k).

Proposition 5.4. The map Ψ : HomDsg(A⊗Aop)(A,Σǫm ⊗ A) → sgDefo(A,Rm → k) is
injective for any m ∈ Z.

Proof. It is sufficient to prove that ΦΨ = Id. For this, let f ′ ∈ HHm+1(A,Ωpsy(A)) be

a representative of f ∈ HHm+1
sg (A,A). Then we have ΦΨ(f) = Φ(C(f ′), u′) = f ′. This

proves the proposition. �

Note that the group AutDsg(A⊗Aop)(A) of automorphisms of A in Dsg(A⊗Aop) acts on
HomDsg(A⊗Aop)(A,Σǫm ⊗ A) via

s · f := (Σǫm ⊗ s−1)fs

for s ∈ AutDsg(A⊗Aop)(A) and f ∈ HomDsg(A⊗Aop)(A,Σǫm⊗A). The group AutDsg(A⊗Aop)(A)
acts on sgDefo(A,Rm → k) via

s · (L, u) := (L, su).

Clearly, the forgetful map induces a bijection

sgDefo(A,Rm → k)/AutDsg(A⊗Aop)(A) ∼= sgDefo′(A,Rm → k).

Recall that sgDefo′(A,Rm → k) is the set of isomorphism classes of weak singular defor-
mations (cf. the second paragraph of Section 5.1). The map Ψ induces an injection

(8) Ψ′ : HomDsg(A⊗Aop)(A,Σǫm ⊗ A)/AutDsg(A⊗Aop)(A) →֒ sgDefo′(A,Rm → k).

Lemma 5.5. For any m ∈ Z, AutDsg(A⊗Aop)(A) acts trivially on HomDsg(A⊗Aop)(A,Σǫm⊗
A). As a consequence, the following natural map is bijective.

HomDsg(A⊗Aop)(A,Σǫm ⊗ A) → HomDsg(A⊗Aop)(A,Σǫm ⊗ A)/AutDsg(A⊗Aop)(A).

Proof. For s ∈ AutDsg(A⊗Aop)(A) and f ∈ HomDsg(A⊗Aop)(A,Σǫm ⊗ A), we need to show
that (Σǫm ⊗ s−1)fs = f. Since the Yoneda product in Dsg(A ⊗ Aop) corresponds to the
cup product in HH∗

sg(A,A), we have

(Σǫm ⊗ s−1)fs = s−1 ∪ f ∪ s = f ∪ s−1 ∪ s = f,

where the second identity comes from the fact that the cup product is graded com-
mutative. This shows that the action of AutDsg(A⊗Aop)(A) is trivial. Hence the map
HomDsg(A⊗Aop)(A,Σ

mA) → HomDsg(A⊗Aop)(A,Σ
mA)/AutDsg(A⊗Aop)(A) is bijective. �

Remark 5.6. By Proposition 5.4 and Lemma 5.5, we obtain a natural embedding Ψ′ :
HomDsg(A⊗Aop)(A,Σǫm ⊗ A) →֒ sgDefo′(A,Rm → k) for any m ∈ Z. We set

GA(ǫm) = Im
(
Ψ′ : HomDsg(A⊗Aop)(A,Σǫm ⊗ A) →֒ sgDefo′(A,Rm → k)

)
.

Lemma 5.7. The isomorphism Ψ′ : HomDsg(A⊗Aop)(A,Σǫm ⊗ A)
∼=
−→ GA(ǫm) is a monoid

isomorphism, where the monoid structure on HomDsg(A⊗Aop)(A,Σǫm ⊗ A) is the additive

structure; and the monoid structure on GA(ǫm) is given by ⊗L,Rm

Rm⊗A.

Proof. Let f, g ∈ HomDsg(A⊗Aop)(A,Σǫm ⊗ A), which are represented by two elements

f1, g1 ∈ HHm+1(A,Ωpsy(A)) respectively. From Proposition 4.5, it follows that

Ψ′(f)⊗L,Rm

Rm⊗A Ψ′(g) ∼= C(f1)⊗
L,Rm

Rm⊗A C(g1)
∼= C(Ω2p

sy(f1 + g1)).

Since C(Ω2p
sy(f1 + g1)) = C(f1 + g1) = Ψ′(f + g) in sgDefo′(A,Rm → k) (cf. Claim 5.3),

we get that Ψ′ is a monoid morphism. This proves the lemma. �
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5.2. The generalized Lie algebra of a group-valued functor. Let k be a field.
Let A be a Noetherian k-algebra such that the enveloping algebra A⊗Aop is Noetherian.
Denote by cdgk the category of finite-dimensional augmented commutative dg k-algebras
and by grp the category of groups. We define the functor sgDPicA : cdgk → grp sending
R ∈ cdgk to the R-relative singular derived Picard group

sgDPicA(R) :={L ∈ Dsg,R(A⊗ Aop) | there exists L′ ∈ Dsg,R(A⊗Aop) such that

L⊗L,R
R⊗A L

′ ∼= L′ ⊗L,R
R⊗A L

∼= R⊗A in Dsg,R(A⊗ Aop)}/ ∼ .

where ∼ means isomorphisms in Dsg,R(A ⊗ Aop). A morphism f : R → S in cdgk
induces the group homomorphism sgDPicA(f) : sgDPicA(R) → sgDPicA(S) sending L ∈
sgDPicA(R) to S ⊗R L ∈ sgDPicA(S) (cf. Remark 5.2). Then the generalized Lie algebra
Lie sgDPic∗A associated to the group-valued functor sgDPicA is given by (m ∈ Z)

Lie sgDPicmA :=Ker(sgDPicA(Rm) → sgDPicA(k))

={L ∈ sgDPicA(Rm) | k ⊗Rm
L ∼= A in Dsg,k(A⊗ Aop)}.

Remark 5.8. Recall from Remark 5.6 that we denote

GA(ǫm) = Im
(
Ψ′ : HomDsg(A⊗Aop)(A,Σǫm ⊗ A) →֒ sgDefo′(A,Rm → k)

)
.

By Proposition 5.4, we have GA(ǫm) →֒ Lie sgDPicmA for any m ∈ Z since

C(f)⊗L,Rm

Rm⊗A C(−f)
∼= C(−f)⊗L,Rm

Rm⊗A C(f)
∼= Rm ⊗ A

in Dsg,Rm
(A⊗ Aop) and k ⊗Rm

C(f) ∼= A in Dsg,k(A⊗Aop).

It follows from Lemma 5.7 that Ψ′ is a monoid isomorphism. Hence GA(ǫm) has a k-
vector space structure inherited from that of HomDsg(A⊗Aop)(A,Σǫm ⊗A). We will define
a Lie bracket on GA :=

⊕
m∈ZGA(ǫm) as follows. Let L1 and L2 represent elements of

GA(ǫm) and GA(ǫn), respectively. Let Ui be the image of Li in Dsg,R(A ⊗ Aop) where
R = Rm ⊗ Rn (i = 1, 2). Note that Ui are invertible objects of the monoidal category
Dsg,R(A⊗Aop) (cf. Lemma 5.7), namely Ui ∈ sgDPicA(R). Let V be the commutator of
U1 with U2, namely V = U1U2U

−1
1 U−1

2 ∈ sgDPicA(R). Then Proposition 5.9 below shows
that V lies in GA(ǫm+n) under the morphism sgDPicA(Rm+n) → sgDPicA(R) induced by
the natural embedding Rm+n →֒ R. Let us define [L1, L2] := V ∈ GA(ǫm+n).

Proposition 5.9. Let f ∈ HHm+1
sg (A,A) and g ∈ HHn+1

sg (A,A). Then the commutator

[Ψ′(f),Ψ′(g)] := Ψ̂′(f) ⊗L,Rm⊗Rn

Rm⊗Rn⊗An
Ψ̂′(g) ⊗L,Rm⊗Rn

Rm⊗Rn⊗A
Ψ̂′(−f) ⊗L,Rm⊗Rn

Rm⊗Rn⊗A
Ψ̂′(−g) equals to

̂Ψ′([f, g]) in GA(ǫm ⊗ ǫn), where we write

Ψ̂′(f) :=Rn ⊗Ψ′(f), Ψ̂′(g) := Rm ⊗Ψ′(g),

̂Ψ′([f, g]) :=(Rm ⊗ Rn)⊗Rm+n
Ψ′([f, g]).

Here [f, g] is the Lie bracket in HH∗
sg(A,A) (cf. Section 3.2).

Proof. Note that Ψ′(f) = C(f). Then from Lemma 5.7, it follows that to verify the

identity [Ψ′(f),Ψ′(g)] = ̂Ψ′([f, g]) in sgDefo′(A,Rm+n → k) is equivalent to verify the
following isomorphism in Dsg,Rm⊗Rn

(A⊗ Aop)

(9) Ψ̂′(f)⊗L,Rm⊗Rn

Rm⊗Rn⊗A
Ψ̂′(g) ∼= ̂Ψ′([f, g])⊗L,Rm⊗Rn

Rm⊗Rn⊗A
Ψ̂′(g)⊗L,Rm⊗Rn

Rm⊗Rn⊗A
Ψ̂′(f).
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By Lemma 3.8, the left hand side of (9) is isomorphic to CR(f, g). The right hand side is

RHS ∼= ((Rm ⊗ Rn)⊗Rm+n
C([f, g]))⊗L,Rm⊗Rn

Rm⊗Rn⊗A
CL(g, f)

∼= ((Rm ⊗ Rn)⊗Rm+n
C([f, g]))⊗A⊗Rm⊗Rn

CL(g, f)

∼= C([f, g])⊗Rm+n⊗A C
L(g, f),

where the first isomorphism follows from Lemma 3.8 and the second one is because of the
fact that ((Rm⊗Rn)⊗Rm+n

C([f, g])) is (Rm⊗Rn)-relatively closed. Now let us compute
C([f, g])⊗Rm+n⊗A C

L(g, f) which is illustrated as follows

(B∗

[f,g]

##
⊕ ǫm+n ⊗ Ωp+qsy (A))

⊗
Rm+n⊗A

B∗

ϑR(g) $$

ϑR(f)

$$

f•g

;;
⊕ ǫn ⊗ B≥q

ΩL,p+q
sy (f)

99
⊕ ǫm ⊗B≥p

ΩL,p+q
sy (g)

99
⊕ ǫm+n ⊗ Ωp+qsy (A),

where, for simplicity, we write Bar∗(A) as B∗. As graded modules, we have

C([f, g])⊗Rm+n⊗A C
L(g, f)

∼=B∗ ⊗A (B∗ ⊕ ΣnB≥q ⊕ ΣmB≥p)⊕ Σm+nΩp+qsy (A)⊗A Ωp+qsy (A)

∼=B∗ ⊗A B∗ ⊕ B∗ ⊗A ΣnB≥q ⊕ B∗ ⊗ ΣmB≥p ⊕ Σm+nΩp+qsy (A)⊗A Ωp+qsy (A),

where in the first identity we use the following two isomorphisms

(k ⊗Bi)⊗Rm+n⊗AM
∼= Bi ⊗A (M/ǫm+nM)

(Bp+q ⊕ Σm+nΩp+qsy (A))⊗Rm+n⊗AM
∼= (Bp+q ⊗AM)/(Σ−1Ωp+q+1

sy (A)⊗A ǫm+nM)

for any dg Rm+n ⊗ A-module M . The proofs of the above two isomorphisms are similar
to the ones of the isomorphisms in (4). From the construction of the tensor product of
dg modules, we obtain the differential illustrated as follows

B∗ ⊗A B∗

Id⊗Aϑ
R(g) &&

Id⊗Aϑ
R(f)

##

[f,g]⊗Adp+q+dp+q⊗A(f•g)

<<
⊕ B∗ ⊗A ΣnB≥q

dp+q⊗AΩL,p+q
sy (f)

;;
⊕ B∗ ⊗A ΣmB≥p

dp+q⊗AΩL,p+q
sy (g)

::
⊕ Σm+nΩp+qsy ⊗A Ωp+qsy .



INVARIANCE OF THE GERSTENHABER STRUCTURE ON TATE-HOCHSCHILD 27

Using the quasi-isomorphism ∆ = ∆p,q : B≥p+q → B≥p ⊗A B≥q and the isomorphism

µ = µp+q,p+q : Ωp+qsy (A) ⊗A Ωp+qsy (A)
∼=
−→ Ω

2(p+q)
sy (A), the above dg Rm ⊗ Rn ⊗ A ⊗ Aop-

module is Rm⊗Rn-relatively quasi-isomorphic to the following one (denoted by C2(f, g))

B∗

ϑR(g) $$

ϑR(f)

""

H

;;
⊕ ǫn ⊗ B≥q

f̃

::
⊕ ǫm ⊗ B≥p

g̃

77
⊕ ǫm+n ⊗ Ω

2(p+q)
sy (A)

where we take

(i) g̃ = µ(dp+q ⊗A ΩL,p+qsy (g))∆;

(ii) f̃ = µ(dp+q ⊗A ΩL,p+qsy (f))∆;
(iii) H = µ([f, g]⊗A dp+q + dp+q ⊗A (f • g))∆.

From Remark 2.4, we have

H = ΩL,p+qsy ([f, g]) + ΩR,p+qsy (f • g).

We claim that C2(f, g) is isomorphic to the following dg Rm ⊗ Rn ⊗ A ⊗ Aop-module
(denoted by C ′

2(f, g))

B∗

ϑR(g) $$

ϑR(f)

""

ΩR,p+q
sy (g◦f)

;;
⊕ ǫn ⊗ B≥q

ΩR,p+2q
sy (f)

::
⊕ ǫm ⊗ B≥p

ΩR,2p+q
sy (g)

77
⊕ ǫm+n ⊗ Ω

2(p+q)
sy (A).

Indeed, since both g̃ and ΩR,2p+qsy (g) represent the cocycle Ω2p+q
sy (g), there is a coboundary

g1 : Barn+2p+q−1 → Ω
2(p+q)
sy (A) such that g1dn+2p+q = ΩR,2p+qsy (g)− g̃. Note that

g̃ − ΩR,2p+qsy (g) = µ(dp+q ⊗A (ΩL,p+qsy (g)− ΩR,p+qsy (g)))∆,

it follows from Remark 2.4 that we may choose g1 = −µ(dp+q ⊗A h
L,R
p+q(g))∆ . Similarly,

we take

f1 = −µ(dp+q ⊗A h
L,R
p+q(f))∆ : Barm+2q+p−1(A) → Ω2(p+q)

sy (A).

Then we have f1dm+2q+p = ΩR,p+2q
sy (f)− f̃ . Since [f, g] is a cocycle, there is a homotopy

h = hL,Rp+q([f, g]) : Barm+n+p+q−2(A) → Ω2(p+q)
sy (A)

such that hdm+n+p+q−1 = ΩL,p+qsy ([f, g])− ΩR,p+qsy ([f, g]). Let us construct a morphism of
graded A⊗ Aop-modules

ρ =

(
Id 0 0 0
0 Id 0 0
0 0 Id 0
h f1 g1 Id

)
: C2(f, g) → C ′

2(f, g).
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The following identity holds

(
Id 0 0 0
0 Id 0 0
0 0 Id 0
h f1 g1 Id

)( d 0 0 0
ϑR(g) d 0 0

ϑR(f) 0 d 0

H f̃ g̃ 0

)
=

( d 0 0 0
ϑR(g) d 0 0

ϑR(f) 0 d 0

ΩR,p+q
sy (g◦f) ΩR,p+2q

sy (f) ΩR,2p+q
sy (g) 0

)(
Id 0 0 0
0 Id 0 0
0 0 Id 0
h f1 g1 Id

)
,

since we have

f1ϑ
R(g) + g1ϑ

R(f) =µ(dp+q ⊗A h
L,R
p+q(f)ϑ

R(g))∆ + µ(dp+q ⊗A h
L,R
p+q(g)ϑ

R(f))∆

=µ(dp+q ⊗A (g ◦ f − g • f))∆

=ΩR,p+qsy (g ◦ f − g • f),

where the first identity is due to the definition of ∆; the second identity is because of
Lemma 3.4; and the third identity follows from Remark 2.4. This implies that ρ is a
morphism of dg Rm ⊗ Rn ⊗ A ⊗ Aop-modules. It is clear that ρ is bijective with inverse

ρ−1 =

(
Id 0 0 0
0 Id 0 0
0 0 Id 0
−h −f1 −g1 Id

)
. This proves the claim. In conclusion, the right hand side of (9)

is isomorphic to C ′
2(f, g) in Dsg,Rm⊗Rn

(A⊗Aop).
In order to prove (9), now it remains to prove that C ′

2(f, g) is isomorphic to CR(f, g) in
Dsg,Rm⊗Rn

(A⊗Aop). From Lemma 3.8 and Claim 5.3, it follows that CR(f, g) as an object
of Dsg,Rm⊗Rn

(A⊗Aop) does not depend on the choice of the representatives of f and g in
HH∗

sg(A,A). Thus C
R(f, g) is isomorphic to CR(ΩR,qsy (f),ΩR,psy (g)) in Dsg,Rm⊗Rn

(A⊗Aop).

It suffices to show that C ′
2(f, g) is isomorphic to CR(ΩR,qsy (f),ΩR,psy (g)). For this, since

ΩR,p+qsy (g ◦ f) = ΩR,psy (g) ◦ ΩR,qsy (f), ΩR,2p+qsy (g) = ΩR,p+qsy (ΩR,psy (g))

in C∗(A,Ω
2(p+q)
sy (A)), we have a short exact sequence

0 → Bq,p+q−1 ⊕ Bp,p+q−1 → C ′
2(f, g)

π
−→ CR(ΩR,qsy (f),ΩR,psy (g)) → 0,

where π is the natural projection; and Bp,q denotes

0 // Barq(A)
dq // Barq−1(A)

dq−1 // // · · ·
dp+1 // Barp(A) // 0.

Notice that k ⊗Rm⊗Rn
C ′

2(f, g)
∼= Bar∗(A) ∼= k ⊗Rm⊗Rn

CR(ΩR,qsy (f),ΩR,psy (g)), we obtain
that

k ⊗Rm⊗Rn
Cone(π) ∼= Cone(k ⊗Rm⊗Rn

π) ∼= 0

in D(A⊗Aop) and thus Cone(π) ∈ P(Rm⊗Rn⊗A⊗Aop). So we obtain that C ′
2(f, g) is

isomorphic to CR(ΩR,qsy (f),ΩR,psy (g)) in Dsg,Rm⊗Rn
(A⊗Aop). This proves the isomorphism

(9). The proof is complete. �

Corollary 5.10. Let k be a field. Let A be a Noetherian k-algebra such that the enveloping
algebra A⊗Aop is Noetherian. Then the isomorphisms Ψ′

m : HomDsg(A⊗Aop)(A,A⊗Σǫm) →

GA(ǫm) induce an isomorphism of graded Lie algebras between HH∗+1
sg (A,A) and GA.

Proof. This is a direct consequence of Proposition 5.9. �

Remark 5.11. We do not know whether the generalized Lie algebra Lie sgDPic∗A is a
graded Lie algebra since if two elements L1 and L2 in Lie sgDPic∗A do not lie in the
subspace GA, then it is not clear whether their commutator lies in Lie sgDPic∗A. But
however, it follows from Corollary 5.10 that the graded subspace GA ⊂ Lie sgDPic∗A
is indeed a graded Lie algebra. Keller in [Kel99] proved the identity [Ψ′(f),Ψ′(g)] =
Ψ′([f, g]) for any f, g ∈ HH∗+1(A,A) in a quite different way, where he used the intrinsic
interpretation of the Gerstenhaber bracket by Stasheff [Sta].



INVARIANCE OF THE GERSTENHABER STRUCTURE ON TATE-HOCHSCHILD 29

6. The invariance under singular equivalence of Morita type with level

Let k be a field. Let A and B be two Noetherian k-algebras such that the enveloping
algebras A⊗Aop and B⊗Bop are Noetherian. Let AMB and BNA be an A-B-bimodule and
a B-A-bimodule, respectively. Recall from [Wan15b] that (AMB,B NA) defines a singular
equivalence of Morita type with level l ∈ Z≥0 if the following conditions are satisfied:

(1) M is finitely generated projective as a left A-module and as a right B-module,
(2) N is finitely generated projective as a left B-module and as a right A-module,
(3) there exist isomorphisms M ⊗B N ∼= Ωlsy(A) in (A ⊗ Aop)-mod, and N ⊗A M ∼=

Ωlsy(B) in (B⊗Bop)-mod, where A⊗Aop-mod denotes the stable module category
of A-A-bimodules.

Remark 6.1. Note that the tensor product M ⊗B − : Dsg(B) → Dsg(A) is an equiva-
lence of triangulated categories with the quasi-inverse Σl(N ⊗A −) : Dsg(A) → Dsg(B).
Similarly, we have the following equivalence of triangulated categories

Σl(M ⊗B −⊗B N) : Dsg(B ⊗ Bop) → Dsg(A⊗Aop).

Let us now prove the main result of this paper.

Theorem 6.2. Let A and B be two Noetherian algebras over a field k such that the
enveloping algebras A⊗Aop and B⊗Bop are Noetherian. Suppose that (AMB,B NA) defines
a singular equivalence of Morita type with level l ∈ Z≥0. Then the functor Σl(M⊗B−⊗B

N) induces an isomorphism of Gerstenhaber algebras between Tate-Hochschild cohomology
rings HH∗

sg(A,A) and HH∗
sg(B,B).

Proof. First from the facts that the functor Σl(M ⊗B − ⊗B N) induces an equivalence
between Dsg(B ⊗ Bop) and Dsg(A ⊗ Aop) and that the cup product ∪ in HH∗

sg(A,A)

coincides with the Yoneda product inDsg(A⊗A
op), it follows that Σl(M⊗B−⊗BN) yields

an isomorphism of graded-commutative algebras between HH∗(B,B) and HH∗(A,A). It
remains to prove that Σl(M ⊗B −⊗B N) induces an isomorphism of graded Lie algebras.
For this, Σl(M ⊗B −⊗B N) induces an isomorphism between sgDPicB and sgDPicA and
thus induces an isomorphism between Lie sgDPicB and Lie sgDPicA . In particular, this
restricts to an isomorphism of graded Lie algebras Σl(M ⊗B −⊗B N) : GB → GA, where
we denote GA :=

⊕
m∈ZGA(ǫm). Consider the following commutative diagram

GB ∼=

Σl(M⊗B−⊗BN)
// GA

HH∗+1
sg (B,B)

∼=

OO

∼=

Σl(M⊗B−⊗BN)
// HH∗+1

sg (A,A).

∼=

OO

Since it follows from Corollary 5.10 that the vertical morphisms are isomorphisms of
graded Lie algebras, the bottom horizontal map induces an isomorphism of Gerstenhaber
algebras between HH∗

sg(B,B) and HH∗
sg(A,A). This proves the theorem. �

Corollary 6.3. Let A and B be two Noetherian k-algebras such that the enveloping
algebras A⊗Aop and B ⊗Bop are Noetherian. Assume that the derived categories D(A)
and D(B) are equivalent as triangulated categories. Then there exists an isomorphism of
Gerstenhaber algebras between HH∗

sg(A,A) and HH∗
sg(B,B).

Proof. This comes from Theorem 6.2 and the fact that two derived equivalent algebras
induce a singular equivalence of Morita type with some level l ∈ Z≥0 (cf. [Wan15b]). �
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Université Paris Diderot-Paris 7, Institut de Mathématiques de Jussieu-Paris Rive
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