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We present a hydrodynamic model of spreading epithelial monolayers as polar viscous fluids, with
active contractility and traction on the substrate. The combination of both active forces generate
an instability that leads to nonlinear traveling waves, which propagate in the direction of polarity
with characteristic time scales that depend on contact forces. We show that a viscous fluid model
explains a variety of observations on the slow dynamics of epithelial monolayers, in particular those
that had been interpreted before as signatures of elasticity. The non-elastic nature of the waves can
be tested on the basis of simple predictions of the model. Our theoretical framework provides new
insights such as the interpretation of plithotaxis as a result of a strong flow-polarity coupling, and
the quantification of collective force-transmission of cells in terms of the non-locality of interactions.
In addition, we study the nonlinear regime of those waves deriving an exact map of the model
into the Complex Ginzburg-Landau equation, which provides a complete classification of possible
nonlinear scenarios. In particular, we predict the transition to different forms of weak turbulence,
which in turn could explain the very unstable and irregular dynamics often observed in epithelia.

I. INTRODUCTION

In recent years, in vitro epithelial cell monolayers have
become a key model system to investigate mechanical
aspects of collective cell migration, a generic situation
that is directly relevant to a variety of biological pro-
cesses in living organisms, including morphogenesis [1–3]
or regeneration [4–6]. In particular, much attention has
been focused on the collective mechanisms by which co-
hesive advancing cell sheets, are capable to transmit and
build up intracellular stresses over distances of hundreds
of microns, [7]. Cells are able to exert actively-driven
forces to the substrate underneath and migrate towards
the maximum principal stress direction, and simultane-
ously the instantaneous monolayer stress maps may trig-
ger signaling pathways that affect the mechanical state
of individual cells [8, 9]. This suggests a strong inter-
play between the physical properties of a tissue and the
internal structure of the constituting cells, [10, 11]. Con-
sequently, it becomes crucial to develop a solid theoreti-
cal framework to interpret the force and kinematic maps
nowadays available for spreading epithelial monolayers.
Form a physical standpoint, a key point is to elucidate
to what extent the phenomena observed, even if strongly
regulated biologically, can be tackled in purely mechan-
ical terms. Within this spirit, in recent years, there has
been an increasing interest in designing experiments in
vitro to probe the mechanics of epithelial tissues in con-
trolled situations [9, 12–16].

One issue that remains a matter of debate on the the-
oretical side is whether a continuum description of a tis-
sue must assume a viscous [17–20] or an elastic [21–24]
constitutive equation at a given range of time scales of
observation, in particular for the long-time regime. This
question is nontrivial for living tissues in particular be-

cause a given type of cells may respond differently in
different environments at the same time scale. For in-
stance, MDCK cells in suspended monolayers under ex-
ternal pulling seem to respond elastically [14] in time
scales for which a freely spreading monolayer on a sub-
strate seems to be flowing like a viscous fluid [25]. In ad-
dition to this intrinsic variations of the mechanical prop-
erties of cells in response to the environment, additional
confusion may arise when comparing the mechanical re-
sponse of the tissue to an external force [14], to the re-
lationship between stress and strain variables when the
stress is autonomously induced by the tissue, implying
that the two observables may be related by some addi-
tional constraint, either biological or otherwise, that pre-
vents from establishing a direct causal, stimulus-response
relationship between both. A clear example of this point
is the observation that both stress and strain at the cen-
tral region of a spreading monolayer have been shown
grow linearly with time in some initial range, as a con-
sequence of the fact that the free end of the tissue ad-
vances at constant speed. This obviously allows to es-
tablish a linear relationship between stress and strain for
some time which would be characteristic of an elastic
medium, as pointed out in Ref. [26]. However, the same
time dependent data are consistent with an assumption
of a purely viscous constitutive equation, once taken into
account that the effective viscosity is time-dependent due
to the narrowing of the cell monolayer as it spreads. This
point has been discussed in detail elsewhere [25].

In this context, the present study is directly motivated
by a series of experiments [12] on spreading epithelia
where ultra-slow elastic-like waves have been reported,
in time scales of several hours, where one could argue
that, on the basis of the times scales of intracellular pro-
cesses (around 1 minute) and cell-cell adhesion kinetics
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(around 10 minutes) one should expect viscous behav-
ior. Independent observations of individual displacement
of cells and their relative sliding also suggests that the
relaxation of stresses is fluid-like. However the same ex-
periments reported a phase lag between stress and strain-
rate measurements that is characteristic of elastic waves.
The different attempts to model these phenomena so far
[12, 23, 24], have assumed an elastic constitutive equa-
tion for the tissue and different additional hypothesis to
account for the emergence of waves.

In this paper we present a continuum model of a ep-
ithelial monolayer spreading on a substrate that is based
on a viscous constitutive equation for the medium and
combines two sources of active stresses: bulk contractil-
ity and traction forces at the contacts with the substrate.
We will elucidate a hydrodynamical instability that can
explain the emergence of elastic-like waves, in particular
in the range of time and length scales of the observation.
The mechanism and the physical scenario that accounts
for the waves is completely different from that of elastic
models, and the waves exhibit distinctive features with
no counterpart in those models. In particular we will
discuss the observations of the experiments from Refs.
[12, 13, 15] in the light of our approach. Our model is
based on the phenomenological continuum approach of
active gels theory [27, 28], where the medium is treated
as polar and the equations are imposed solely by symme-
try considerations and linear thermodynamics. Most of
the phenomenological parameters of the theory can be es-
timated from independent experimental observations and
those with no direct evidence will be indirectly inferred
with the use of the model. In particular the large values
obtained for the flow alignment coefficient will provide
interesting insights into the phenomenon of plithotaxis.

In addition to the basic linear instability mechanism
for polarized tissues under traction and contraction, we
perform a thorough nonlinear study of the problem. We
carry out direct numerical simulations deeply in the non-
linear regime, and pursue a weakly nonlinear analysis
close to the instability threshold. We derive explicitly
the mapping to a Complex Ginzburg-Landau equation,
which allows us to classify the different nonlinear dynam-
ical regimes, and in particular to show that the transition
to different forms of weak turbulence are generic in our
problem. We speculate on the possible relevance of such
scenarios as opposed to a purely stochastic origin of the
strong fluctuations.

The layout of the paper is as follows. In Section II
we present and discuss the continuum model. In Section
III, we discuss the linear stability analysis of a homoge-
neously polarized state, with emphasis on the physical
interpretation of the model predictions. In particular,
we elucidate a new scenario to explain the emergence of
waves in a viscous medium with properties that seem to
evoke elasticity. Section IV is devoted to the nonlinear
regime, and includes both numerical simulations and the
analytical results of the weakly nonlinear theory, with
the mapping of the problem into a Complex Ginzburg-

Landau equation and the discussion of the transition to
different forms of spatio-temporal chaos or weak tur-
bulence. In Section V we revisit some experiments on
MDCK cell monolayers, and interpret their results in the
light of our theoretical framework. We finally sumarize
our results in the concluding section VI.

II. CONTINUUM MODEL

Cells are assumed to have a macroscopic polar order
described by the vector field p. At the free-edges of ex-
panding cell sheets, they tend to develop lamelipodium-
like structures that require a globally oriented actin cy-
toskeleton, although cells that are hundreds of microns
away from the interface extend basal cryptic lamellipo-
dia underneath the neighboring cells [29]. In addition,
epithelial cells exhibit other type of complex nematic
structures, such as stress fibers connecting them. To
mimic the tendency of the polarity field to align with
the neighbors and thus avoid large gradients, we intro-
duce an effective free energy for these degrees of freedom
of the form of the standard free energy of a polar [30],

F =

∫
dr

(
ρ(−p

2

2
+
p4

4
) +

K

2
(∂αpβ)(∂αpβ)

)
. (1)

where we use the Einstein’s summation convention over
Greek indices. The polynomial part favours the emer-
gence of a finite polarity vector pα of modulus p = 1,
while the second term penalizes energetically the forma-
tion of large gradients. The energy scale of the nematic
elasticity is fixed by the parameter ρ > 0, which in our 2d
model have dimensions of stress. The balance between
the two terms defines a characteristic scale of spatial vari-
ation of the polarity, the so-called nematic correlation
length Lc ≡

√
K/ρ. The conjugated field of the polarity,

the so-called molecular field, is given by hα = −δF/δpα.
Cellular traction forces are transmitted across the ep-

ithelial monolayer, through cell-cell adhesion proteins
leading to complex self-organised collective patterns re-
flected in the motion of cells, [12, 13, 15]. We assume a
coarse-grained point of view at scales larger than the cell
size, and propose a continuum description of the system.
Building on previous models [25], we assume that at suf-
ficiently long time scales, the medium can be described as
a viscous fluid. This is consistent with the direct observa-
tion of the fluid-like relative motion of cells, and assumes
that all the processes that control the elastic properties
of the medium (excluding the nematic elasticity) relax
in much shorter time scales. The kinetics of the cell-cell
adhesion, for instance, has a turnover time scale that is
in the range of ∼ 10 min [31], while the time scales of ob-
servation for the phenomena here studied are at least one
order of magnitude larger. Additional fluidization mech-
anisms have been reported that result from cell division
[32]. While this effect will coexist, the rate of division is
not very significant in the experiments that we are mod-
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elling [12], and we will thus neglect the possible active
stresses generated by cell division.

Since the cell monolayer is a quasi-two dimensional
system, we will assume an effective 2d description, ex-
tending the approach of [25]. We thus take the hydro-
dynamic equations describing a 2d (compressible) active
polar fluid, with nematic elasticity, that are consistent
with symmetries and include active and passive contact
forces with the substrate. Our model is completely spec-
ified by the set of equations

∂βσαβ = ξvα − T0pα, (2)

σαβ = 2ηvαβ − ζ(pαpβ −
p2

2
δαβ)

+
(ν + 1)

2
pαhβ +

(ν − 1)

2
pβhα −

ν

2
pγhγδαβ , (3)

∂tpα + vγ∂γpα + ωαβpβ =
1

γ1
hα − νvαβpβ , (4)

hα = ρ(1− p2)pα +K∇2pα. (5)

where σαβ is the traceless stress tensor, and vαβ and ωαβ
are the traceless symmetric and antisymmetric compo-
nents of the velocity gradient tensor, respectively.

Eq. (2) expresses the force balance in the absence of
inertia, with the total external force in the rhs, including
a passive (friction) and active (traction) contributions.
Eq. (3) is the constitutive equation for the total stress
of an active polar liquid. It is assumed that in the time
scales of observation, elastic effects can be neglected. The
first term in the rhs, accounts for viscous stresses with
η being the shear viscosity. The second term accounts
for active stresses, with the activity parameter ζ < 0 for
contractile stress, which is the relevant case for epithe-
lial monolayers. The rest of terms are the usual ones
describing nematic elasticity [30]. Eq. (4) describes the
dynamics of the polarity field. The lhs is the total co-
moving co-rotating derivative, and the rhs describes the
rotational relaxation of the polarity, being γ1 the rota-
tional viscosity. The last term, which couples the polarity
and the flow is the so-called flow-alignment contribution,
and by virtue of the Onsager reciprocity relations, must
be characterized by the same coefficient ν appearing in
Eq. (3). Eq. (5) specifies the molecular field h in terms
of the polarity consistent with Eq. (1).

In addition to the active contractility, we have intro-
duced an additional active term that accounts for trac-
tion forces exerted on the substrate. The proposed form
of this external force has been used before in the context
of cell monolayers [18, 25, 33], as well as for bacterial sus-
pensions [34]. The form is limited by symmetry consid-
erations [35] and can be derived from microscopic models
with linker kinetics [36]. The form of the friction force,
with an effective friction coefficient ξ is standard [37].
The active traction must be related to the consumption
of ATP, as the active contractility term, but the two pa-
rameters T0 and ζ originate at different mechanisms and
can be considered as independent parameters. T0 > 0
defines the scale of the cellular traction forces.

An effective 2d model such as the one proposed can
in principle be derived from a 3d thin layer using the
lubrication approximation and averaging over the mono-
layer thickness, as described in [25] for a 1d reduction.
The 3d incompressibility of the fluid then allows to elim-
inate the pressure from the description. In the reduced
description, however, the fluid is compressible, and for a
reduction to 2d, the constitutive equation for the trace
of the stress tensor σ must be specified. For simplicity
we assume

σ = η̃vγγ −
ζ̃

2
pγpγ +

ν̃

2
pγhγ = 0, (6)

with the three coefficients η̃, ζ̃, ν̃ each being zero. Strictly
speaking, this choice gives up 3d incompressibility, since
these parameters are not free within that condition.
However we may still omit pressure gradients in the force
balance Eq. (2) by assuming that the 2d effective fluid
has a large compressibility, which accounts for the fact
that an in-plane compression offers no significant resis-
tance because it can be accommodated by an expansion
in the third dimension.

The parameters of the problem can be grouped in dif-
ferent useful combinations. In addition to the nematic
correlation length Lc ≡

√
K/ρ, we introduce two fric-

tion lengths defined by Lη ≡
√
η/ξ and Lγ ≡

√
ργ/ξ

(with γ ≡ γ1/ρ). We use the nematic stress scale ρ to
define a dimensionless contractility ζ̄ = ζ/ρ and a di-
mensionless traction T̄0 = T0Lγ/ρ. In addition to ν, ζ̄
and T̄0, the model contains the three length scales Lc, Lη
and Lγ and one time scale γ. Using two of them to scale
length and time, we are left with a set of five independent
dimensionless parameters.

III. LINEAR INSTABILITY OF A
HOMOGENEOUSLY POLARIZED STATE

A. Linear stability analysis

The set of equations (2-5) have trivial homogeneous so-
lution with a uniform polarity field and a uniform velocity
V in the direction of the polarity field, with V = T0/ξ.
The direction of this fields has the continuous degener-
acy of the rotational invariance of the problem, which
is spontaneously broken. Without lack of generality, we
chose the polarity and the velocity to be oriented in the
x-direction so that px = 1, py = 0, vx = V , vy = 0 with
the component of the stress σxx = −ζ/2. In this section
we address the linear stability analysis of this base state,
that is, we will obtain the growth rate ω(q) of sinusoidal
perturbations of the form exp (ω(q)t+ iq · r) under the
linearized dynamics around the base state. We distin-
guish to two types of modes, transverse and longitudinal,
which designate perturbations of the polarity with q par-
allel to the x-direction that are perpendicular (δpx = 0)
and parallel (δpy = 0) respectively, or equivalently, that



4

modify the direction and the modulus, respectively. At
linear level these two types of modes are decoupled, so
we find two branches for the linear growth rate ωL and
ωT , which can be written as

ωL,T (q) = Ω
(
λ±
√
D
)
. (7)

From the anisotropy of the problem, this growth rate
depends on the modulus q2 ≡ q2x + q2x and on terms of
the form qn cosnθ where θ is defined by cos θ = q̂ · x̂.
To make the notation more compact we introduce the
complex wave vector Q ≡ qx + iqy, such that Re[Qn] =
qn cosnθ. Equivalently, we have Re[Q2] = q2x − q2y,

Re[Q3] = qx(q2x − 3q2y), and Re[Q4] = q4x − 6q2xq
2
y + q4y.

We can now split the contributions to the dimensionless
growth rate ω/Ω according to passive, contractility and
traction terms, such that we have

λ = λp + Re[λζ ] + iRe[λT0
] (8)

D = Re[Dp +Dζ +DR
T0

] + iRe[DI
T0

]. (9)

If we adopt the compact notation q2c ≡ L2
cq

2, q2η ≡ L2
ηq

2

and q2γ ≡ L2
γq

2, and Qγ ≡ LγQ, we have

Ω−1 = 4γ(1 + q2η)

λp = νq2cQ
2
γ −

1

γΩ
(1 + q2c )− 1

2
q2γ(2ν2 + q2c (1 + 2ν2))

λζ = ζ̄(Q2
γ − 2νq2γ)

λT0
= −T̄0Qγ(4q2η + 2ν + 3)

and

Dp =
1

γ2Ω2
+

1

γΩ
q2γ(2ν2 − q2c )− ν2q2cQ4

γ

+
1

4
q4γ
(
4ν4 + q4c (1 + 4ν2)

)
− νq2cQ2

γ

(
q2γ(q2c − 2ν2)− 8(1 + q2η)

)
Dζ = ζ̄ν

[
2q2cq

4
γ −Q2

γ

(
q2γ(q2c − 2ν2)− 8(1 + q2η)

)]
+

1

2
ζ̄2(q4γ +Q4

γ)

DR
T0

=
1

2
T̄ 2
0

[
(q2γ −Q2

γ)(2ν + 1)2 − 2q2γ
]

DI
T0

= T̄0Qγ
[(

8(1 + q2η)− q2γ(ζ̄ − q2c )(2ν − 1)
)

+ Q2
γ

(
ζ̄(2ν + 1) + 2ν2

)]
The above expressions contain a wealth of physical in-

formation about the dynamics of the system already at
linear level. The spontaneously broken isotropy is cap-
tured by the terms containing Q. The prefactor Ω(q)
in Eq. (7) is a Lorentzian propagator that expresses the
nonlocal character of the dynamics (see also discussion of
section III.C). In addition, the contributions contained in√
D are also nonlocal, since they involve all orders in q.

Note also that, because of the symmetries of the problem,
the linear growth rate satisfies ω(−q) = ω∗(q), where the
asterisk denotes complex conjugate, ω(−qy) = ω(qy) for

any qx, and, for qx = 0 we have Im[ω] = 0. From a
theoretical point of view, and for further reference it is
interesting to write explicitly the growth rates in the long
wavelength limit, as an expansion up to order q2. These
read

γωL = −2 + q2γ

(
νζ̄

2
+
ν2

2
+
L2
c

L2
γ

+
ν(ν + 1)

8
T̄ 2
0 sin2 θ

)
−iqγ

ν + 2

2
T̄0 cos θ +O(q4), (10)

γωT = −q2γ
(
ζ̄(ν − cos 2θ)

2
+
L2
c

L2
γ

− ν(ν + 1)

8
T̄ 2
0 sin2 θ

)
−iqγ

ν + 1

2
T̄0 cos θ +O(q4). (11)

The hydrodynamic limit q → 0 is fundamentally different
for the two types of modes. The transverse zero-mode is
marginal, i.e. ωT (q = 0) = 0, because of the rotational
invariance of the problem, since this mode accounts for
an infinitesimal homogeneous rotation of the base state,
which has a continuous degeneracy. This soft mode as-
sociated to the rotational symmetry will play an impor-
tant role in the discussion of possible routes to chaos in
this problem in Section. IV. By contrast, the longitudi-
nal modes relax in a time of order one in this limit, and
hence they are not hydrodynamic. The separation of time
scales between the relaxation of the modulus of the po-
larity vector and its direction is often invoked to justify
an adiabatic elimination of the dynamics of the modulus.
In our case, however, the region of interest for the exper-
iments is not in the hydrodynamic limit and longitudinal
modes will be essential to interpret the observations.

B. Bifurcation into travelling waves

We find that, in general, both λ and D are complex
numbers, so the dispersion relations ωL,T contain both
a real and an imaginary part. The condition Re[ω] =
0 defines an instability boundary. If Im[ω] 6= 0 when
Re[ω] = 0, then the instability is oscillatory (i.e. a Hopf
bifurcation) giving rise to travelling waves.

From the explicit expression of the growth rates, we see
that the passive contribution to Re[ω] is always negative,
and the base state is stable. However, if the system is
sufficiently active, there may exist modes with Re[ω] >
0 and thus an instability sets in. Hereinafter we will
restrict to the case ν > 0 which is the one relevant for
the discussion of spreading epithelial monolayers. Then,
for longitudinal modes, the instability can only happen
for contractile active stress (i.e. ζ < 0) and for a band of
modes with finite q around the critical wave number qo

for which Re[ωL(qo)] = 0, excluding the neighborhood
of the mode q = 0, which is always stable. An unstable
band thus exists for |ζ̄| > |ζ̄Lo | where the threshold value
of contractility for the onset of the longitudinal instability
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is given by

|ζ̄Lo | =
2

ν

L2
c

L2
γ

(
1 +

Lη
Lc

√
2 +

ν2

2

L2
γ

L2
η

)2

. (12)

In this case, the onset of instability occurs at a finite
qo. This situation is usually referred as an oscillatory
periodic instability (see [38]). For the 1d case (i.e. qy =
0) the critical mode where the instability sets in is

q2o =
1

LcLη

√√√√ 2

1 +
ν2L2

γ

4L2
η

. (13)

Since Re[ωL(q)] is arbitrarily small close to threshold,
while the frequency Im[ωL(q)] remains finite, slightly
above threshold a localized perturbation is advected
faster than it grows, so the perturbed fields eventually
relax to the unperturbed values, a situation that is re-
ferred to as convective instability. Only over a finite dis-
tance from threshold, the system is said to be absolutely
unstable, that is, that a localized perturbation at a given
location does grow in amplitude at that location. Note
that for the longitudinal modes, the instability requires
a finite value of the flow alignment coefficient ν. Large
values of ν, and small values of friction favour the insta-
bility.

For the transverse modes, the instability is controlled
by both active parameters. The condition for the insta-
bility then reads

ζ̄ − ν

4
T̄ 2
0 < −

2

ν + 1

L2
c

L2
γ

. (14)

Remarkably, in this case, the instability may be driven
solely by traction forces and may occur even for exten-
sile activity (i.e. ζ > 0). The transverse instability is a
long-wave length one, that is with the critical wave vector
qo = 0. At a finite value above threshold, then Re[ωT ] is
peaked at finite q but remains marginal at q = 0, as im-
posed by the rotational invariance of the problem. Note
also that the transverse instability sets in before the lon-
gitudinal one as we increase |ζ|, since the condition (14)
is satisfied for ζ̄Lo < ζ̄, even if T̄0 = 0.

We remark that, for any qx 6= 0, both longitudinal
and transverse modes have a non-zero imaginary part of
ωL,T provided that T0 6= 0. Therefore, the presence of
traction forces is directly associated to oscillatory behav-
ior. In addition, the sign of Im[ω] is always opposite to
that of qx, implying that there will be waves travelling
only in the direction of the polarity p (from negative to
positive x in our case), reflecting the anisotropy of the
base state. Similarly, the fact that for qx = 0 we have
Im[ω] = 0 implies that waves travelling along the y-axis
are not possible.

The linear instability criterion does not exclude that
finite-amplitude nonlinear waves or other type of solu-
tions can exist even in the linearly stable regions, in par-
ticular near the linear stability boundary. This nonlinear

FIG. 1. Linear growth rate of small perturbation of a ho-
mogeneously polarized state. The upper (lower) row displays
the positive real (imaginary) part of the growth rate in the
(qx, qy) plane. The left (right) column represents the growth
rate of the longitudinal (transverse) modes, with color-coded
amplitude. The values of parameters are: η = 106, ξ = 100,
T0 = 10, Lc = 50, γ = 600, ν = 10, ρ = 10 and ζ = −2000, in
units of Pa, µm and s.

instability of the base state, is characteristic of subcriti-
cal bifurcations and implies that sufficiently large finite-
amplitude perturbations of the base state may grow even
if smaller amplitudes do decay. In the analysis of the fol-
lowing sections we will determine exactly the boundaries
where the bifurcation in our model is subcritical.

In Fig. (1) we plot the real and imaginary parts of both
branches ωL,T , for parameter values relevant to MDCK
cells [12, 13, 15]. We observe that the transverse instabil-
ity appears first and the growth rate is peaked at finite
qy and qx = 0. By contrast, the longitudinal instability
peaks at finite qx and qy = 0.

The explicit expressions for the growth rate on the x, y-
axes take a simpler form. For qy = 0 and writing q ≡ qx
and ωx(q) ≡ ω(qx), we have

γωLx = −(2 + q2c )

(
1 +

ν2q2γ
4(1 + q2η)

)
− ζ̄

νq2γ
2(1 + q2η)

−iqγ T̄0
(

1 +
ν

2(1 + q2η)

)
(15)

γωTx = −q2c

(
1 +

(ν − 1)2q2γ
4(1 + q2η)

)
− ζ̄

(ν − 1)q2γ
2(1 + q2η)

−iqγ T̄0
(

1 +
ν − 1

2(1 + q2η)

)
(16)

According to these results, the characteristic frequency
scale of the oscillations wo = |Im[ω(qo)]| is given by ωo ∼
T0qo/ξ. Therefore, the origin of the slow time scale of
oscillations is not intrinsic of the material properties but
depends on the interaction with the substrate, which fixes
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the friction and traction forces. In Section V we will see
that the observed waves in experiments can indeed be
interpreted as those resulting from this instability.

The phase velocity of a wave with wave-vector qx
for the two types of modes are given by vL,T =
|Im[ωL,Tx ]|/qx. Using that the flow velocity of the base
state is V = T0/ξ, we find that

vL

V
= 1 +

ν

2 + q2η
, (17)

vT

V
= 1 +

ν − 1

2 + q2η
. (18)

This result allows us to infer a value of the parameter ν,
which is usually unknown for tissues, just comparing the
wave velocity and the front velocity in the experiments
of Ref. [12] (see Section V).

In the y-axis, qx = 0, we have Im[ω] = 0. The presence
of traction modifies quantitatively the growth rate but
this is qualitatively similar to that the case T0 = 0, which
reads, with q ≡ qy,

γωLy = −(2 + q2c )

(
1 +

ν2q2γ
4(1 + q2η)

)
−

νζ̄q2γ
2(1 + q2η)

(19)

γωTy = −q2c

(
1 +

(ν + 1)2q2γ
4(1 + q2η)

)
−

(ν + 1)ζ̄q2γ
2(1 + q2η)

. (20)

C. Physical origin of waves and phase lag

In most of the subsequent analysis, we will pursue the
study of the 1d-case corresponding to longitudinal modes
with qy = 0 (Eq. (15)). This is the simplest case and at
the same time the most interesting to gain insights into
the physical mechanism behind the waves, to analyze in
depth the nonlinear dynamics of the problem, and to
compare with experiments.

In this case the model equations reduce to

∂xσxx = ξvx − T0px, (21)

σxx = η∂xvx −
1

2
ζp2x −

ν

2
pxhx, (22)

∂tpx + vx∂xpx =
1

ργ
hx −

ν

2
px∂xvx, (23)

hx = ρ(1− p2x)px +K∂2xpx. (24)

We remark that the emergence of elastic-like waves ap-
pears naturally in our model for a purely viscous con-
stitutive equation as long as active traction is present,
without invoking any additional time scale related to
an extra coupling to internal variables, as is usually re-
quired in models based on an elastic constitutive equa-
tions [12, 16, 24]. For the sake of discussion, let us con-
sider the simple case of ν = 0 and ζ = 0. At linear level,
the evolution of a small perturbation δp is coupled to
traction through the advective term,

∂tδp+ V ∂xδp =
1

γ

(
−2δp+ L2

c∂
2
xδp
)
, (25)

with V = T0/ξ, implying that a perturbation of the
polarity proportional to exp (ω(q)t+ iq · r) will decay
but at the same time be advected with the velocity
V = T0/ξ. We thus have a dispersion relation with
Im[ω] = −V q. This is reminiscent of that of elastic
waves (i.e. Im[ω] = ±V |q|), but with the fundamental
difference that we get only one propagation direction,
due to the fact that rotational symmetry (or parity in
the 1d case) are explicitly broken by the base state. The
key observation is that we can close an equation for p
that is of first order in time derivatives. This is in con-
trast to the case where the medium is assumed elastic.
As pointed out in Refs. [16, 23], in that case an effec-
tive inertia must be invoked to obtain elastic waves. In
Ref. [23], this is achieved by introducing an additional
coupling to a slow variable, such that, at linear level, a
wave equation (i.e. with second order time derivatives) is
obtained for the strain field. Note that the resulting elas-
tic waves are apolar, that is, insensitive to the sign of p.
In a purely viscous medium, however, we do obtain prop-
agating waves through the advective coupling, as long as
the force balance equation includes a finite traction T0,
and these waves are polar. The other observables can be
directly related to δp obtained from Eq. (25). Note that
the combination of the force balance equation and the
viscous constitutive equation imply that the relationship
between δp and both δv and δσ are nonlocal with

δv(x) =
V

2Lη

∫
e−|x−x

′|/Lη δp(x′)dx′. (26)

and δσ(x) = η∂xδv(x).
The scenario for the emergence of waves in our model

is thus fundamentally different from that provided by an
elastic medium with an effective inertia. Our scenario
is similar, if we reintroduce non-zero values of ν and ζ.
Then the closed equation for δp becomes nonlocal but
still of first order in time derivatives [39]. The physical
picture in thus essentially the same with two important
additional features. First, the presence of contractility
can reverse the damping and generate the growth of the
wave amplitude, thus allowing for sustained (nonlinear)
waves. Second, the presence of either one of the two
parameters is sufficient to introduce an elastic phase shift
between stress and strain rate. The presence of such
phase lag in the experiments of Ref. [12, 16] has been
widely interpreted as a signature of an elastic constitutive
equation of the medium. Here we show that this inference
is not really justified, since it is also possible to have the
same phase lag in a purely viscous medium, provided that
active traction is present (T0 6= 0), together with at least
one of the two parameters ν or ζ being nonzero.

Solving the linearized equations Eqs. (22-24) in Fourier
space, the relative phase between stress and strain rate
can be found exactly and reads

δσ̂xx
iqηδv̂x

= −
ζ̄ + 2ν(1 + q2c/2)− iqγ T̄0L2

η/L
2
γ

q2η(ζ̄ + 2ν(1 + q2c/2) + iT̄0/qγ)
. (27)
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FIG. 2. Phase-diagram of different nonlinear dynamics in
the ζ-ρ plan. The yellow domain corresponds to the linearly
stable region while the other domains correspond to nonlin-
ear oscillatory solutions displayed in Fig. (3). The boundary
of the yellow domain is given by the longitudinal instabil-
ity threshold ζLo . The other borders are determined by the
Complex-Ginzburg Landau Equation (30). The parameters
are: η = 106, ξ = 100, T0 = 10, Lc = 50, γ = 600 and ν = 20,
in units of Pa, µm and s.

The rhs of Eq. (27) being real would be characteristic of
purely viscous medium. The presence of traction forces
T0, however, introduces an imaginary part that produces
a phase lag that would be characteristic of elastic behav-
ior. Note that the presence of nematic elasticity in the
constitutive equation (i.e. the term proportional to ν in
Eq.(22)) would not be sufficient to introduce the elastic-
like phase shift in the absence of traction.

In the particular case of 2ν(1+q2c/2)� |ζ̄| and |ζ̄|qγ �
T̄0, Eq. (27) takes the simple form

δσ̂xx(q) ≈
(
η + i

ζξ

qT0

)
iq δv̂x(q). (28)

The phase lag in the spatial dependence will produce a
phase lag in the time oscillations of the two observables
at any given location, provided that travelling waves are
sustained, that is, for |ζ| > |ζLo |, and consequently q ∼ qo.
We thus obtain that, if |ζLo | � ωoη = Toqoη/ξ the phase
lag for the observed waves will typically be that of an
elastic medium, even though the rheology of the system
is that of a purely viscous material.

IV. NONLINEAR WAVES

In the previous section we have analyzed the linearized
dynamics around the homogeneously polarized state, and
have identified broad regions of parameters where this
state is unstable. The amplitude of unstable modes will
grow until saturation by nonlinearities occurs. As we will
show, the observed waves in a variety of experiments can

FIG. 3. Representative steady oscillatory nonlinear profiles
for the different domains of the phase diagram of Fig. (2), with
the same set of parameters. In the first column (A) ρ = 0.1
and ζ = −1013 in the second column (B) 10 and −1273 and
in the third column (C) 100 and −3398, both coefficients in
units of Pa. The solid red and dashed blue curve are spaced
by a time lapse of 6 min.

be identified with such nonlinear waves. In this section
we pursue the numerical and analytical study of such
nonlinear waves. We focus most of the nonlinear analysis
on the case of 1d longitudinal waves, and address only
briefly more general situations.

A. Numerical analysis of longitudinal waves

The numerical exploration of the five-dimensional pa-
rameter space of our problem is obviously prohibitive, so
in a first numerical exploration of the deeply nonlinear
regime we will construct a phase diagram ζ − ρ, relat-
ing the main parameter driving the instability and the
stress scale of the nematic elasticity, a phenomenological
parameter which is rather elusive for cell tissues. With
the rest of parameters fixed, we have that ρ ∝ L2

γ .
We have integrated numerically the full nonlinear dy-

namics of the 1d model for longitudinal modes using a
semi-implicit algorithm (Eqs. (21-24)). For parameter
values in the range relevant to experiments, we have iden-
tified different types of solutions resulting in the phase-
diagram plotted in Fig. (2). Beyond the threshold of the
longitudinal oscillatory instability (i.e. |ζ| > |ζLo |) we
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find three classes of nonlinear solutions. In domain A,
we observe that the polarity field, after a random per-
turbation, develops a transient array of equally spaced
localized pulses, which after some time coalesce giving
rise to the formation of an isolated pulse of polarization
propagating through a nonpolarized medium, as shown
in Fig. (3). The maximal value of the polarity field is

of the order of ∼
√
|ζ|/ρν and the transition from the

homogeneously polarized state is discontinuous, that is,
implying that the propagating solutions appear at a finite
amplitude right on threshold (subcritical bifurcation). In
domains B and C, the physical observables exhibit a non-
linear travelling periodic pattern. In both cases, the trav-
elling wave speed is of the order of T0/ξ and the spatial
periodicity is of the order of 1/qo. The transition from
the homogeneous polarized state is continuous (super-
critical) for domain B and discontinuous (subcritical) for
domain C. The rest of the diagram, plotted in yellow,
corresponds to the linearly stable region.

B. Complex Ginzburg-Landau equation

The above solutions correspond to regions arbitrarily
far from the instability threshold and are illustrative of
typical solutions that could be identified with experimen-
tal observations, where both wave trains and solitary
fronts have been reported [12, 13, 15]. However, it is
obviously unpractical to explore numerically the differ-
ent qualitative scenarios of nonlinear dynamics in a five-
dimensional parameter space. Alternatively, one may ex-
ploit the universality of the dynamics of any nonlinear
system close to an instability, to develop a reduced de-
scription of the nonlinear dynamics of our model near
threshold. Such a center-manifold projection does cap-
ture the essential nonlinear features of the problem [38].
The resulting description depends only on symmetries
and the nature of the bifurcation, and thus allows to
classify the nonlinear dynamics regardless of the physi-
cal mechanisms responsible for the instability. This is a
powerful approach that can be carried out analytically in
the framework of a formal expansion on a small param-
eter ε defined by the normalized distance to threshold,
and exploits the separation of length and time scales of
the spatiotemporal variations of the bifurcating modes
with respect to the original scales of the system. In this
framework, the so-called amplitude equation appears as
a solvability condition at lowest nontrivial order within
that expansion. In our case ε ≡ (ζ − ζLo )/ζLo , which is
positive (above threshold) when ζ < ζLo < 0. We define
the complex envelope A that describes the modulus and
phase modulations of the bifurcating mode in the form

δp(x, t) ∼ A(X,T )ei(qox−ωot) (29)

where qo is the critical wave vector and ωo its correspond-
ing frequency and the slow variables denoted by capital
letters are defined as T = εt and X = ε1/2(x + Vgt),
where Vg is the group velocity of the envelope. The

amplitude of the wave modulation of the base state is
δp(x, t) ∼ ε1/2. Since in our case, the symmetry x→ −x
is broken and waves only travel in one direction, we will
have only the amplitude equation for the right-traveling
wave. Accordingly, we can formulate the problem in a
reference frame travelling with the group velocity. The
normal form is then that of the so-called uniform oscil-
latory instability (i.e. ωo 6= 0, qo = 0) [38], even though
we have qo 6= 0. After proper rescaling, the normal form
for the range above threshold is the so-called Complex
Ginzburg-Landau equation CGLE [38, 40],

∂TA = A+ (1 + ib)∂2XA− s(1 + ic)|A|2A. (30)

The parameter in front of the cubic nonlinearity is s =
±1. If s = 1, the equation corresponds to the case of
the bifurcation being supercritical (continuous). For s =
−1 the bifurcation is subcritical (discontinuous) and the
equation must be supplemented by a quintic term.

It is worth remarking that, once an additional param-
eter is eliminated by the condition of being at the in-
stability threshold, the original five-parameter problem
gets reduced to a two-parameter problem. Accordingly,
since the phase diagram of Eq. (30) is well-known [41], to
classify all possible nonlinear scenarios (near threshold)
it suffices to obtain the map of the physical parameters
of the original problem into the parameters of the am-
plitude equation c and b. This mapping always exists
but it may be difficult to obtain in practice. We have
performed this analysis following standard methods and
with the help of the software Mathematica. The extent to
which the results obtained through this weakly nonlinear
analysis apply to situations more deeply in the nonlinear
regime is not guaranteed, but it is plausible to expect
that the qualitative behavior will be similar.

The crucial piece of information is thus the explicit
map that relates c and b to the physical parameters, and
the region of parameters for which s = 1. In terms of the
conveniently redefined set of dimensionless parameters
F ≡ T̄0Lγ/Lη, G ≡ Lc/Lη and H ≡ ν2L2

γ/L
2
η, in the

Appendix A we derive the explicit maps

b = b (ν, F,G,H), (31)

c = c (ν, F,G,H), (32)

s = s (ν, F,G,H). (33)

Note that the dimensionless contractility ζ̄ does not
appear, because it has been eliminated by the addi-
tional constraint of being at the instability threshold
ζ̄ = ζ̄Lo (ν,G,H).

From Eq. (12) we thus have

|ζ̄Lo | =
2ν

H

(
G+

√
2 +

H

2

)2

. (34)

We then find

b =
F

2

(4− 3G
√

8 + 2H)√
G 4
√

8 + 2H(8 +G
√

8 + 2H)2
, (35)
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c = − f2f4 − f1f3
|f1f2 + f3f4|

, (36)

s = −Sign

(
f1f2 + f3f4
f22 + f23

)
, (37)

where fi(ν, F,G,H) are functions given explicitly in the
Appendix A. The parameter b has a much simpler expres-
sion because it depends solely on the linear part of the
dynamics. The genuinely nontrivial part of the dynam-
ics is contained in the parameters c and s. The regions
where the bifurcation is subcritical (s = −1) must be
analyzed separately and will not be addressed here.

In the particular case of T0 = 0, the bifurcation is
of the stationary periodic type [38], with finite qo and
ωo = 0. Then the instability will lead to the formation
of spatial patterns such as in Ref. [42] and the corre-
sponding amplitude equation will be the so-called Real
Ginzburg-Landau Equation, with b = c = 0 [38]. In this
case, the dynamics of the amplitude equation is varia-
tional, that is, a Lyapunov functional L exists such that
∂TA = −δL/δA∗. Interestingly, this is no longer true if at
least one of b and c are nonzero. In this case, the dynam-
ics is said to be persistent and does not relax asymptot-
ically to a specific pattern. This open the way to differ-
ent forms of spatio-temporal chaos. The two-dimensional
phase diagram of the 1d CGLE has been established in
detail [40, 41], and is indeed extremely rich. Different
complex dynamical regimes were identified such as the
so-called phase turbulence, amplitude turbulence, spatio-
temporal intermittency, and bistable chaos, in addition to
regimes with more regular behavior. We may refer gener-
ically to the above classes of irregular persistent dynam-
ics as weak turbulence. The boundaries of the different
dynamical regimes are usually determined numerically.
However, there is an exact boundary that is relevant to
our analysis, which locates the so-called Benjamin-Feir
(BF) instability. This is a long wavelength instability
of the nonlinear travelling-wave solutions of the CGLE

of the form AQ(X,T ) =
√

1−Q2 exp (i(QX − TΩQ)),
with ΩQ = c+ (b− c)Q2. Such waves are unstable when
the Newell criterion 1 + bc < 0 is satisfied. Beyond the
BF line, one possibility is to have phase turbulence, where
the wave phase changes in an irregular manner but pre-
serving the winding number. In that regime, close to
the BF line, the phase dynamics can be approximated
by the Kuramoto-Sivashinsky equation [38, 41]. In other
regions, crossing the BF line may lead to amplitude tur-
bulence where the wave amplitude can reach zero values
giving rise to non-conservation of the winding number.
In the BF-stable side, however, one may also find regions
with spatio-temporal intermittency, where patches of reg-
ular and chaotic behavior coexist. All these qualitative
behaviors will be contained necessarily in our original
model provided that the corresponding values of c and
b can be reached by changing the model parameters. In
Fig. (4) we show an example of phase turbulence for a sit-
uation in the BF-unstable region, obtained from numer-
ical simulations of the original model in the appropriate

FIG. 4. Phase turbulence. Numerical simulation of waves
in the 1d model given by Eqs. (21-24) for a region of the
parameter space beyond the Benjamin-Feir instability line.
The total size of the system is 8 · 104, hence the kymograph
is only representing ∼ 10% of it. The x-axis is the position in
a reference frame moving at the group velocity Vg = 1.41 and
the y-axis is time. Vg has been estimated from the average
of the phase velocity of polarity peaks. The colour bar labels
the modulus of the director field px. The parameters are:
η = 106, ξ = 5, T0 = 40, Lc = 50, γ̄1 = 600, ν1 = 20,
ζ = −662.3 and ρ = 10, in units of Pa, µm and s.

parameter region.
To illustrate the complexity of the phase diagram in

the four-dimensional space of the model projected in the
region close to the instability threshold, we plot it in
Fig. (5) for some ranges of the physical parameters. For
simplicity we only distinguish the subcritical region, and
supercritical region, which is split in the BF-stable and
BF-unstable regions. In the latter, one may find phase
turbulence, amplitude turbulence and bistable chaos. In
the BF-stable region, traveling-waves are linearly stable
to long wavelength modulations, but spatio-temporal in-
termittency can also be found.

We remark that the explicit knowledge of the exact
maps Eqs. (35-37) in a problem with so many parame-
ters and with such a rich variety of complex nonlinear
behavior, is extremely valuable. Indeed, for any set of
physical parameters of the model, one can immediately
find out the expected nonlinear behavior by checking the
corresponding point in the known b − c phase diagram,
which is universal, and determined once for all.

C. Transverse modes and soft-mode turbulence

The weakly nonlinear analysis of the previous section
is suitable for the case where qo 6= 0, implying that
near threshold, there is a narrow band of nearly marginal
modes that excludes q = 0. For transverse modes, how-
ever, qo = 0, and above threshold the band of unsta-
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FIG. 5. Exact subcritical-supercritical and Benjamin-Feir instability boundaries in a 4-dimensional plot of the model parameters,
at onset of the primary instability of the problem. In the yellow region the primary instability is subcritical (discontinuous).
In the red region the primary instability is supercritical and waves are BF-stable (1 + bc > 0). In the blue region, the primary
instability is supercritical and waves are BF-unstable (1 + bc < 0). Each figure represents a cross-section of the 4-dimensional
parameter space in the plane given by Toγ/ξLη and Lc/Lη, which are varied 4 decades each. The dimensionless parameters
γρ/η and ν vary as indicated.

ble modes extends all the way to q = 0, which remains
marginal because of rotational invariance. A 1d ampli-
tude equation for the transverse mode along the y axis
can also be derived, now for a real amplitude field. We
do not address this case here but, as discussed in [38],
we can remark that this scenario also includes the possi-
bility of phase turbulence, in the form of the Kuramoto-
Sivashinsky equation.

In general, for a 2d case the longitudinal and trans-
verse modes will be coupled at nonlinear level. A com-
bined weakly nonlinear analysis of this case is beyond
the scope of this paper. However, there is a particular
case where this coupling may be worked out more eas-
ily. This is the coupling of the longitudinal modes to the
q = 0 transverse mode. The coupling of a finite qo mode
with a Goldstone mode has been discussed in the litera-
ture of liquid crystals electroconvection with homeotropic
alignment, [43]. This case was shown to be a remakable
case of a direct transition to spatio-temporal chaos at on-
set, due to the nonlinear coupling between the Goldstone

mode and the bifurcating mode [43]. The scenario was
called soft-mode turbulence, and was demonstrated for
a stationary periodic instability (i.e. wo = 0, qo 6= 0),
so it would correspond to our case with T0 = 0, for the
nonlinear coupling of the soft transverse mode and the
longitudinal qo mode. We are not aware of any study of
soft-mode turbulence for a periodic oscillatory mode, but
it is again plausible to expect that the dynamics will be
no less chaotic. Consequently, we have every indication
that the behavior of the system in sufficiently extended
2d regions will generically contain different forms of weak
turbulence, possibly in parameter regions where the 1d
modes are not yet turbulent.

V. APPLICATION TO EXPERIMENTS ON
EPITHELIAL MONOLAYERS

We will now discuss the applicability of the present
approach to interpret and even extract quantitative in-
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formation out of existing data, mostly from three series
of experiments on MDCK cells under different confine-
ment conditions, but all exhibiting some kind of slow
oscillatory dynamics, with characteristic periods of sev-
eral hours and wavelengths in the range of hundreds of
micrometers [12, 13, 15].

A. Dynamics of freely spreading epithelia

The present work was directly motivated by the wound
healing in vitro assays described in Ref. [12] where appar-
ently elastic ultraslow waves were reported. Those exper-
iments study a wound-healing assay, where a wide pla-
nar front of the monolayers spreads at an approximately
constant speed and with no significant degree of cell pro-
liferation. The data are averaged over the transversal y-
direction, so the possible structure of the fields along the
y coordinate, if present, is averaged out. More specif-
ically, the transverse modes with finite qy and qx = 0
will be present but averaged out in the data, while the
transverse modes with finite qx and qy = 0 will gener-
ically be present if the instability is sufficiently above
threshold to allow them to be unstable. This implies
that at distances of the order of Lc from the leading
edge, the systems is manifestly polarized. Note, how-
ever, that since the transversal dimension is much larger
than Lc, the monolayer could well be polarized in regions
further apart from the leading edge, but such polariza-
tion be averaged out in the 1d projection. The waves
reported from those experiments seem perfectly compat-
ible with the waves studied here. The origin of the long
period of the waves and their elastic-like phase lag, were
indeed puzzling. Several possible explanations have been
proposed so far, such as the nonlinear viscoelastic spring
model described by [12] where oscillations reflect sequen-
tial fronts of cytoskeletal, or the model by [23], where no
nonlinear elasticity is invoked, but a feedback between lo-
cal strain, polarization, and contractility is postulated to
endow the elastic medium with an effective inertia. Both
cases assume that the medium is constitutively elastic,
at least partially, and that the origin of the phase-lag be-
tween stress and strain-rate is due to the dominance of
the elastic relaxation. By contrast, our result shows that
the elastic-like phase lag can be entirely associated to the
presence of active traction forces, and thus be observed
in a medium with a purely viscous constitutive equa-
tion. This surprising result is along the lines already
suggested in Ref. [25], where a purely viscous contin-
uum model for spreading epithelia was shown to explain
other apparently elastic behavior such as the emergence
of an effective elastic modulus [26]. Furthermore, in both
models [12, 23] the time scale of the oscillations results
from internal processes in the medium. By contrast, in
our model the wave frequency turns out to be extrinsic
to the material properties, since it depends essentially
on the parameters characterizing the contact forces with
the substrate, friction and traction. This is an interest-

ing feature to discriminate the different theories, since
these parameters can be changed easily by modifying the
properties of the substrate or the molecular complexes
that interact with the substrate. Finally, in these ex-
periments the waves seem to propagate in the direction
of the polarization and not backwards, consistently with
our prediction of polar waves.

B. Flow alignment and plithotaxis

In order to fit the data from Ref. [12] with our model,
we can obtain estimates from experimental data of all
parameters of our model except the flow alignment coef-
ficient ν and ρ. The values we obtain are listed in Table
I. The parameter ν which couples the flow and the polar-
ity is difficult to measure in living tissues, and is usually
not known. We are only aware of values inferred from
data for the epithelium of the Drosophila wing, which
are negative with |ν| in the range 3− 10 [45]. The use of
our model to fit the experimental data gives in our case
ν ≈ 10 or larger. Values of |ν| for liquid crystals are only
slightly larger than 1 [30]. The stronger coupling in the
case of tissues may effectively entail an active response
of the cells to the environment that can be encoded in
this parameter. The value of ν follows for instance from
Eq. (17) which relates the underlying tissue velocity V
with the phase velocity vL of the waves. Although the
presence of transverse modes also travelling along x can-
not be ruled out, the presence of the longitudinal mode is
clear because of the phase-lag of the stress vs strain rate,
which would not be present for purely transverse modes.
In any case, for large values of ν the phase velocity pre-
dicted for both types of waves are very similar.

The fact that ν is that large has an interesting interpre-
tation. It is known from the hydrodynamics of nematic
liquid crystals that this parameter sets the orientation
angle θ of the polarity (director) field with respect to a
pure shear flow, such that cos 2θ = 1/ν. This simple rela-
tion implies that, for |ν| � 1 the polarity of cells orients
with an angle of θ ≈ π/4 with the shear. Taking into ac-
count that, for a pure viscous shear, the principal stress
directions are precisely at this angle, we conclude that
the cells in our case tend to reorient along the directions
of maximal principal stress, that is, along the axis where
the shear vanishes. This tendency has been observed in
different situations and has been named plithotaxis [9].
Regardless of whether this response of cells to intercellu-
lar stress is an active, regulated process, we find that it
is naturally encoded in the parameter ν. Consequently,
the phenomenon does not need to be seen as an emergent
collective property, as it can be effectively described as
a passive local hydrodynamic coupling between the flow
and the polarity.
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To[Pa·min] Lc[µm] η[Pa·min] ξ[Pa·min/µm2] ζ[Pa] γ[min] ρ[Pa] ν[-]
10 10 105 − 106 10 103 10 − 100 10 10

TABLE I. Order of magnitud of the model parameters for spreading epithelial monolayers. The parameters To, Lc, η and ξ can
be extracted for instance from Ref. [25]. The coefficient ζ and γ are estimated from Refs. [8, 44], respectively. The coefficient
ρ is extracted from Ref. [33]. The parameter ν is estimated to make our model consistent with the rest of parameters and the
experimental observations.

C. Spreading with lateral confinement

In Ref. [13] epithelial monolayers migrate along adhe-
sive strips with a controllable width. For the most narrow
channels, the problem is the closest experimental situa-
tion to our specific case of 1d, that is purely longitudinal
waves. The modes qy that are present may be limited
to relatively high-q, and therefore the transverse insta-
bility may be suppressed (not averaged out as in [12]).
Similarly, the transverse modes with finite qx and qy = 0
will also be suppressed by the boundary conditions on
the lateral sidewalls that enforce a fixed orientation of
the polarity along them. Consequently, in very narrow
channels only longitudinal modes with qy = 0 are ex-
pected to be relevant. For the narrow channels, we asso-
ciate the contraction-elongation caterpillar-like motion as
a signature of our longitudinal waves. In addition, they
seem to propagate only in one direction, as predicted
by our model. When the channel width is progressively
increased, unstable transverse modes are expected to ap-
pear and yield the progressively more complex dynamic
scenario. The change of behavior for increasing channel
width is thus qualitatively and quantitatively consistent
with the prediction of our linear analysis. As in all the
other cases, the suppressing effect of the treatment bleb-
bistatin is consistent with the instability mechanism that
we propose for the phenomena. Finally, the complexity
of the flow patterns observed for wide channels seems
to be qualitatively consistent with the scenarios of weak
turbulence predicted by our model.

D. Oscillations in totally confined monolayers

Finally, our model can be used to revisit the experi-
ments of Ref. [15] where the monolayers are totally con-
fined in circular islands, but nevertheless exhibit oscilla-
tory collective modes. The fact that the time and length
scales are the same as in the other experiments may sug-
gest that the mechanism behind such collective mode
could be a similar instability adapted to the confined
geometry. Whether our model would yield oscillatory
modes in a confined geometry is an open question that
we do not address here. However, we can show that the
reported linear dependence of the oscillation period with
the tissue radius R is consistent with our linear disper-
sion relation analysis. In fact, the oscillation frequency
is ωo ∼ qT0/ξ, then assuming that the range of wave

numbers allowed by the geometry is such that q > qo,
then increasing the radius set the most unstable mode
available as the minimum qmin ∼ R−1. Consequently,
the period will grow linearly with R as reported.

E. Collective modes and turbulence in epithelia

In the experiments addressed in the previous section,
when the tissue is strongly active, highly disordered
flow patterns are observed, often described as noisy [15].
Noisy data of local measurements are often reflecting in-
herent strong fluctuations of the physical variables. In
particular in experiments with very large monolayers,
simple visual inspection shows an apparently turbulent
behavior [46]. Whether this apparent chaos is the mani-
festation of intrinsic noise in the system, or some form of
collective modes in a turbulent regime is an interesting
open question. In this paper we have seen that secondary
instabilities after a Hopf bifurcation do generically lead
to different forms of spatio-temporal chaos or weak tur-
bulence, in particular in large systems, so scenario of
chaotic collective modes seems plausible. The distinc-
tion between the two possibilities is not only of theoret-
ical interest, but may have practical relevance. Indeed,
if a turbulent state results from an instability, it can be
suppressed or triggered at convenience with just tuning
a single parameter across the appropriate boundary in
the parameter space. In contrast, if the complex dynam-
ics reflects intrinsic noise, this is virtually impossible to
control or regulate.

VI. CONCLUSION

In this paper we present a general framework to ac-
count for the mechanics of epithelial monolayers. The
model is build on the idea that at sufficiently long length
and time scales, a continuum hydrodynamic approach
can capture a large variety of mechanical aspects of such
monolayers, encoding their complex biological regulation
in a set of (possibly time-dependent) physical parame-
ters. Our model includes a polarity field that is not lo-
cally aligned with the velocity but coupled to the flow as
in nematic hydrodynamics The contact forces with the
substrate contain two contributions, a passive friction
force aligned with the velocity, and an active traction
force anti-aligned with the polarity. The material ex-
erts also active contractile stresses, and its constitutive
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equation is taken as that of a viscous fluid for the slow
dynamics. The emergence of an effective elastic modu-
lus, for instance, has been shown to be possible in an
active viscous fluid [25]. Here we show that the presence
of waves with an elastic-like phase lag between stress and
strain rate is not necessarily a signature of elasticity, but
can occur in viscous fluids with active tractions. It is
worth remarking that both the direct observation of the
relative cell movements, and the arguments based on the
turnover time scales of processes that control the short-
time elasticity of the medium suggests that the rheology
of a spreading monolayer should be expected to be that
of a viscous fluid. Indeed, here we show that all long-
time observations in spreading epithelia fit well with the
description in terms of an active viscous polar fluid.

Our framework provides insights into the physics of
collective cell migration. The idea that interacting cells
collectively set the local stress environment and the mo-
tion of individual cells, is incorporated in our physical
picture through the nonlocal character of the interaction,
which establishes that the flow velocity at a given point
is determined by an integration over a region of the size
of the friction length. Similarly, the tendency of cells
to align along the direction of principal stresses (plitho-
taxis), appears in our framework as a consequence of the
large values of the flow alignment coefficient ν, which are
obtained independently to fit observations on the propa-
gating waves. This parameter turns to be crucial to ex-
plain the instability leading to longitudinal waves, which
are distinguished in the experiments by the elastic-like
phase lag.

The test of the quantitative predictions of this type of
continuum model is not simple because of the difficulty to
determine the model parameters and also because these
may be changing with time due to the ongoing biological
regulation, that may change for instance the properties
that are encoded in those parameters. Nevertheless, we
remark that our model is predictive also in qualitative
aspects. For instance, we predict that the stress waves
must be polar, in the sense that they should only propa-
gate along the polarization of the medium and not back-
wards, as opposed to elastic waves. We also predict that
the wave frequency, as well as phase lag are essentially de-
termined by contact forces (friction and traction), which
are in principle easier to control in experiments, rather
than the material parameters.

In addition, we have pursued our study of waves into
the nonlinear regime, and have shown that different forms
of weak turbulence are generically present in the nonlin-
ear waves that emerge in our model. We speculate that
this chaotic dynamics of the waves may be at the root of
the noisy dynamics of tissues. In particular, experiments
in very large spreading monolayers exhibit what could
be loosely described as turbulence [46]. Within this pic-
ture, the dynamic disorder could well be an expression
of highly unstable collective modes, and not a signature
of intrinsic noise. This idea could be tested also qualita-
tively by observing sudden changes between regular and

irregular collective behavior by changing a single param-
eter, which could be interpreted as the transition from a
chaotic to a regular regions in the parameter space.

The model is not expected to apply to epithelial tis-
sues that are not moving on a substrate [14]. It is unclear
to what extent the model can be adapted to situations
where there is no global flow, such as in the fully confined
experiments of Ref. [15]. However, for the slow flow dy-
namics of epithelia on substrates, the physical scenario
here unveiled is expected to be generic. Indeed, even
though the explicit exact calculation here presented for
both linear and nonlinear dynamics refer to a specific
choice of the terms included in the model, which has been
kept as simple as possible, our central results are robust
and do not depend on the model details. The model could
be enriched with more parameters, and new physical in-
gredients, such as effects of cell division or short time
elasticity. However, from the generic nature of the linear
and nonlinear analysis here discussed, which relies to a
large extent on symmetries, it is expected that two basic
results are robust to changes in model details, namely, the
mechanism that controls the traction-driven instability of
an active viscous polar fluid, leading to polar nonlinear
travelling waves, and the nonlinear instabilities that lead
generically to weak turbulence scenarios. The need of
at least two sources of activity, and a coupling between
polarity and flow seem also well established. We expect
that further experimental inquiry will eventually test the
ideas here developed and clarify the appropriate mechan-
ical framework for a continuum description for collective
cell migration in tissues.
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VII. APPENDIX A

Here we provide details of the weakly nonlinear anal-
ysis leading to the CGLE in our physical model for the
case of 1d longitudinal modes. We use the correspond-
ing physical model given by Eqs. (21-24) and assume a
system of units such that γ = η = ξ = 1.

Close to threshold and expanding the linear growth
rate around its maximum at qo, we get

Re[ω(q)] =
2ν
(
ζLo − ζ

)(
4 + Lc

√
8 + 2ρν2

)
− 4

√
2L2

c(4 + ν2ρ)

2
√

2 + Lc
√

4 + ν2ρ
(q − qo)2 + . . . (38)
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Im[ω(q)]

T0q
= 1 +

νLc
√

4 + ν2ρ

2Lc
√

4 + ν2ρ+ 4
√

2
+ . . . (39)

with

ζLo = −2

ν

(
Lc +

√
2 +

ρν2

2

)2

(40)

The weakly nonlinear analysis is a formal expansion on
the small parameter ε ≡ (ζ − ζLo )/ζLo that measures the
normalized distance to threshold. We will refer to ε > 0
as the system being (slighly) above threshold. Then, a
narrow band of size |q−qo| ∼

√
ε are unstable but nearly

marginal, since for them Re[ω] ∼ ε. On the contrary,
modes with |q − qo| ∼ ε0 will relax much faster, with
Re[ω] ∼ ε0. Accordingly, long wavelength spatial modu-
lations of order ε−1/2 with slow relaxation times of order
ε−1 are expected to dominate the dynamics, and slave
the rest of (fast) modes. This separation of time and
length scales is at the root of the universal description in
terms of an amplitude equation for the envelope of the
bifurcating mode.

Consequently, in general the perturbations about the
reference ordered state can be expressed as a superpo-
sition of plane waves with wavenumber multiples of qo
and phase velocity vo = −Im[ω(qo)]/qo plus an envelope
wave with slow spatio-temporal dynamics. In our partic-
ular case the most general solution reads

p = 1 +

∞∑
n=1

n∑
m=−n

ε
n
2 pnm(X,T )eimqc(x−vct) (41)

v = T0 +

∞∑
n=1

n∑
m=−n

ε
n
2 vnm(X,T )eimqc(x−vct) (42)

σ = −ζ
2

+

∞∑
n=1

n∑
m=−n

ε
n
2 σnm(X,T )eimqc(x−vct) (43)

Vg =

∞∑
n=0

ε
n
2 Vn (44)

where the envelope waves of the corresponding physical
fields pnm, vnm and σnm are functions of the long spatial
variable X ≡ ε1/2(x+Vgt) and the slow temporal variable
T ≡ εt. Vg is the travelling speed of the wave envelope
(the group velocity) and in general is a power series in
ε1/2, whose coefficients are treated as unknowns.

The physical solution valid near the vicinity of the
transition (41-44) is inserted into the PDE’s (21-24) and
the different terms are sorted in powers of ε1/2. Note

that the zeroth order leads to the ordered uniform solu-
tion. The first order turns into an undetermined set of
linear equations for σm1 , vm1 and pm1 . As an example these
coefficients solved as a function of the amplitude p11 read

v11 =
2qo
(
iL2
cqo + vo − T0

)
+ 4i

νqo
p11 (45)

Similarly the second order can also be arrange into a lin-
ear set of equations for the coefficients σ2m, v2m, p2m and
V1. Through a solvability condition these second order
coefficients are connected to p1m. These conditions are
often used to construct self-consistent solutions through
perturbative analysis. Lastly, the third order solvability
condition is analogous to the Complex Ginzburg-Landau
equation. Thus after rescaling the variables conveniently,
it can be expressed in the form

∂T p11 = p11 − s(1 + ic)|p11|2p11 + (1 + ib)∂2Xp11, (46)

being s, c and b parameters that in general depend on
the details of the mechanical properties of the system.
The coefficient s is either ±1 and it controls whether the
transition is continuous or discontinuous. With respect
to Eq. (30), we have replaced the variable p11 by A.

The longitudinal mechanical transition in our system
is oscillatory and periodic, meaning that the critical
wavenumber qo is finite and also the travelling speed of
the perturbations vo. As a result, the coefficients of our
amplitude equation (46) are complex. Only in the partic-
ular case of null active traction forces (i.e. T0 = 0) both
coefficients b and c vanishes, reducing Eq. (46) to the Real
Ginzburg-Landau equation for s = 1. This equation is
purely relaxational, that is, it exist a Lyapunov function
that is maximised over time. Except for some particular
cases no such Lyapunov functional can be constructed
for the CGLE, giving rise to a richer phenomenology of
dynamical states: from travelling coherent states to dif-
ferent forms of spatiotemporal chaotic states.

For completeness, we present the analytical form of the
coefficients s, c and b as

b =
F

2

(4− 3G
√

8 + 2H)√
G 4
√

8 + 2H(8 +G
√

8 + 2H)2
, (47)

c = − f2f4 − f1f3
|f1f2 + f3f4|

, (48)

s = −Sign

(
f1f2 + f3f4
f22 + f23

)
, (49)

where the function Sign returns the sign of its argument.
The functions f1, f2, f3 and f4 read

f1 = 16
{

2G5(H + 4)2
[
27ν2 − 42ν − 8

]
+ 16
√

2(H + 4)3/2
[
H2ν2 +Hν − 20

]
−2
√

2G4(H + 4)3/2
[
3(5H − 36)ν2 + (13H + 228)ν + 2(H + 52)

]
−G3(H + 4)

[
H2(65ν2 − 104ν − 4) + 4H(135ν2 − 52ν + 52)− 16(27ν2 − 90ν − 128)

]
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+2
√

2G2
√
H + 4

[
2H3ν(ν + 11)− 3H2(35ν2 − 96ν + 4)− 12H(51ν2 − 62ν + 44)− 32(3ν + 76)

]
+8G(H + 4)

[
H(H2 + 6H − 48)ν2 + (23H2 + 100H + 48)ν − 4(9H + 88)

]}
−F 2(H + 4)ν2

{√
2G2
√
H + 4(ν + 2)

[
H(ν + 2) + 52ν − 88

]
−8G

[
4(H + 4)ν2 + (13H + 4)ν + 2(5H + 68)

]
− 96

√
2
√
H + 4(ν + 4)

}
(50)

f2 = 36G(H + 4)2ν2
(
G
√
H + 4 + 2

√
2
)2

(51)

f3 = −24
4
√

2F
√
G(H + 4)7/4ν3

(
G
√
H + 4 + 2

√
2
)

(52)

f4 = 3
4
√

2F
√
G 4
√
H + 4ν

{
− 4G3(H + 4)

[
(9H + 68)ν2 + 4(H − 12)ν − 28(H + 4)

]
+
√

2G2
√
H + 4

[
5H2

(
3ν2 + 10ν + 8

)
+ 32H

(
ν2 + 7ν + 26

)
− 368ν2 + 608ν + 2688

]
+4G(H + 4)

[ (
2H2 + 63H + 44

)
ν2 + 4

(
H2 + 8H + 28

)
ν + 96(H + 7)

]
+16
√

2(H + 4)3/2
(
3Hν2 + (7− 4H)ν + 28

)}
(53)

and only depends on the dimensionless physical parame- ters F = T0γ/ξLη, H = ργν2/η and G = Lc/Lη.
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and F. Jülicher, Proceedings of the National Academy of
Sciences 107, 20863 (2010).

[33] P. Lee and C. W. Wolgemuth, PLoS Comput Biol 7,
e1002007 (2011).

[34] I. S. Aranson, A. Sokolov, J. O. Kessler, and R. E. Gold-
stein, Phys. Rev. E 75, 040901 (2007).
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