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Sorbonne Université, CNRS, Laboratoire de Physique Théorique de

la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France

F. Bresme and A. Kornyshev
Department of Chemistry, Molecular Sciences Research Hub,

Imperial College London, W12 0BZ 2AZ London, United Kingdom

Recent experiments reporting a very low dielectric permittivity for nanoconfined water have re-
newed the interest to the structure and dielectric properties of water in narrow gaps. Here, we
describe such systems with a minimal Landau-Ginzburg field-theory composed of a nonlocal bulk-
determined term and a local water-surface interaction term. We show how the interplay between the
boundary conditions and intrinsic bulk correlations encodes dielectric properties of confined water.
Our theoretical analysis is supported by molecular dynamics simulations and comparison with the
experimental data.

Introduction - Interest in the dielectric properties
of confined water has been boosted by the remarked
measurement of the dielectric permittivity of nanomet-
ric water layer confined between hydrophobic surfaces
[1]. Fumagali et al. reported an anomalously low di-
electric constant in the direction perpendicular to the
surface. [2] Water permittivity in the vicinity of a sur-
face is inhomogeneous[3, 4] leading to a significant in-
crease of the electrostatic interactions, as postulated in
the 1950’s by Schellman,[5] and observed experimentally
and in simulations [6–8]. The stability of emulsions and
colloidal solutions [9, 10], ion transport and reactivity
in channels of proteins,[11], in subsystems of geologi-
cal interest [12] or in nanotechnologic devices [13] are
strongly influenced by electrostatic properties of confined
water. However, a fundamental analytic theory connect-
ing the dielectric response to the properties of the con-
fining surfaces, namely chemical composition, degree and
geometry of confinement, is still outstanding.[14] At the
molecular scale, the relative dielectric permittivity ten-
sor εα,β(~r − ~r′) of bulk water is non local.[15–17] The
structuration in the fluid at an interface induced by this
nonlocality has been widely studied at the atomic scale
using molecular dynamics (MD) simulations [18–22]. At
a coarse-grained scale, continuum nonlocal electrostat-
ics provide a useful framework to quantify the dielectric
properties of confined correlated fluids. [19] This can be
based on phenomenological energy functionals that are
written in terms of the polarization field ~m. They are
the sum of the electrostatic energy depending on the dis-
placement field ~D0 and of a correlation term [23–26]. It
reads

Ubulk[~m, ~D0] =
1

2ε0

∫
d~r
(
~D0 − ~m(~r)

)2

+
1

2ε0

∫
d~rd~r′mα(~r)Kα,β(~r, ~r′)mβ(~r′), (1)

where ε0 is the vacuum dielectric permittivity.

We specify the kernel Kα,β(~r, ~r′) to mimic the simu-
lated nonlocal dielectric properties of bulk water. We fur-
ther introduce a phenomenological interaction energy be-
tween the surface and the fluid as a sum of harmonic po-
tentials. We show that this framework reproduces both
MD simulations for two hydrophobic surfaces, graphene
and hexagonal boron nitride (hBN), and an experimental
data.[1] In addition, it formalizes the effect of the con-
fining material on the dielectric properties of ’interfacial
water’.

Bulk water - The dielectric properties of bulk water are
encoded in the two-points susceptibility tensor χα,β(~r −
~r′) = δα,β(~r− ~r′)− ε−1

α,β(~r− ~r′). This nonlocal kernel can
be expressed through the correlations of the polarization
~m using the classical approximation for the fluctuation-
dissipation theorem[27],

χα,β(~r − ~r′) =
〈mα(~r)mβ(~r′)〉

ε0kBT
. (2)

The correlations 〈mα(~r)mβ(~r′)〉 can be written in terms
of the experimentally measured partial HH, OH, OO
structure factors of water[28] under the assumption
of simple point charges localized at the atoms of
molecules.[17] The q−dependence of longitudinal part
of the susceptibility in the Fourier space χ̂‖(q) illus-
trates the nonlocal nature of dielectric properties wa-
ter (see Fig. 1). The main peak of χ̂‖(q) (centered
at q = 30 nm−1) exceeds 1, corresponding to a range
of wavelengths associated with a negative permittivity
ε‖(q) = 1/(1− χ‖(q)). This overscreening zone is a con-
sequence of the H-bonding network in water[17].

To model these properties, we follow a Landau-
Ginzburg (LG) approach which proved its value in the
study of critical surface phenomena.[29] We choose the
following form of the second item in Eq.(1),

Um[~m] =

∫
d~r

2ε0

(
K~m2 +Kl

(
~∇~m

)2

+ β
(
~∇
(
~∇~m

))2
)
,

(3)
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FIG. 1. Dielectric susceptibility of bulk water. Black
dots are recovered from inelastic neutron scattering data
for oxygen-oxygen, hydrogen-hydrogen, and oxygen-hydrogen
structure factors.[17, 28] Red curve has been computed from
Eq. (4) with K = 1/70, Kl = −2.01 × 10−3 nm−2, β =
1.12 × 10−6 nm−4. The inset shows the susceptibility which
has not been normalized to 1.

which includes terms up to second spacial derivative of
the field and leads to the longitudinal susceptibility,

χ̂‖(q) =
1

1 +K +Klq2 + βq4
. (4)

For derivation and discussion see the supporting material
(SM). The model parameters (K, Kl and β) are chosen
to capture: (i) the permittivity of bulk water at q = 0,
(ii) the position of the first peak and (iii) its width at
half height of the simulated or experimentally recovered
χ‖(q). The theoretical susceptibility is plotted in red in
Fig. 1.

Its poles define a decay length λd and a period λo,

λd =
2
√
β√

2
√

(β(1 +K) +Kl

, λo =
4π
√
β√

2
√
β(1 +K)−Kl

,

(5)
characterizing the polarization correlations in bulk. They
are equal to λd = 2.1 �A and λo = 2.1 �A for the chosen
parametrization.

Theoretical model for interfacial water - We consider
water delimited by a planar interface infinite in the xy
plane and located at z=0 (See Fig. 2a). A static ho-

mogeneous external field ~D0 = D0~uz is applied in the
z-direction. According to the symmetry of the problem,
this field excites exclusively the longitudinal polarization
that depends on z: ~m(~r) = m(z)~uz. We write the energy
of the system per unit area U [m,D0] = Ubulk + Us, the
sum of the bulk-determined term, Ubulk, derived from
(Eqs. 1,3), and a surface term Us as

Ubulk =

∫ ∞

z=0

dz

2ε0

[
(D0 −m)

2
+Km2 +Klṁ

2 + βm̈2
]

Us =
km
2

(m(0)−m0))
2

+
kρ
2

(ρ(0)− ρ0))
2

(6)

where the upper dot stands for the spatial derivation
along z. In the spirit of the LG development used to ex-
press the kernel K (Eq. (1)), Us is written as an expansion
of elastic energies[29, 30] depending on the polarization
field and its derivative ṁ(z), equal to minus the bound
charge, ρ(z).[31] The major contribution promotes a sur-
face polarization m0 and the corrective second term fa-
vors a water charge density ρ0 at the interface. The stiff-
nesses km and kρ quantify the strength of the boundary
conditions. In the strong interaction limit (km, kρ)→∞,
the surface fixes both polarization and charge density at
interface.

The partition function of the system, Z[D0] =∫
D[mz] exp [− (Ubulk[m,D0] + Us) /kBT ], can be split in

the form

Z[D0] =

∫
dm̄dρ̄ exp

[
1

kBT

(
km
2

(m̄−m0)2 +
kρ
2

(ρ̄− ρ0)2

)]∫ m(z→∞)=0
ṁ(z→∞)=0

m(0)=m̄
ṁ(0)=−ρ̄

D[m] exp

[
− 1

kBT
Ubulk[m,D0]

]
. (7)

This includes a partition of the fields m(z) satisfying the
boundary conditions (right integral), then a sampling of
the z = 0 boundary conditions (m̄, ρ̄) (left integral). We
find the mean field solution, m1(z), by first minimizing
Ubulk[m,D0] with respect to m(z) leading to

(1 +K)m(z)−Klm
(2)(z) + βm(4)(z) = D0, (8)

with m(0) = m̄, ṁ(0) = −ρ̄, m(z → ∞) = 0, ṁ(z →

∞) = 0. The solution of which is

m1(z) =
D0

1 +K

(
1− e−

z
λd

(
cos(qoz) +

qd
qo

sin(qoz)

))

+ e
− z
λd

(
m̄

(
cos(qoz) +

qd
qo

sin(qoz)

)
− ρ̄

q0
sin(qoz)

)
. (9)

with qo = 2π/λo and qd = 1/λd, the wavenumbers of the
bulk correlations. Second, we extremalize the total en-
ergy of the system, U = Ubulk+Us, with respect to (m̄, ρ̄)
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obtained by injecting m1(z) in Eqs. (6) and performing
the integral over z (see SM). The nature of the extremum
depends on the dimensionless stiffness constants (k̃m, k̃ρ),

given in the SM. U(m̄, ρ̄) admits a minimum for k̃m and
k̃ρ belonging to the pointed zone represented in Fig. 2b,
to which we restrict our study in the following. The
mean field polarization m2(z) is given by Eq. (9) for
m̄ = ms, ρ̄ = ρs, the boundary conditions minimizing
U(m̄, ρ̄). Their expressions are given in SM.

To study the dielectric properties of interfacial wa-
ter, we introduce the real space susceptibility, χ(z) =
dm2(z)/dD0 derived from Eq. (9). It quantifies the re-
sponse to a homogeneous external field D0 and is con-
stant and equal to χb = χ̂(0) for bulk water.

Fig. 2c, d show typical mean field polarization m2(z)
and susceptibility χ(z) in the interfacial water. We ob-
serve a nonvanishing polarization and a nonconstant χ(z)
that are oscillating functions of period λo in an exponen-
tially decaying envelope of range λd. The surface induces
a layering of the fluid that extends over about 1 nm, a
lengthscale consistent with many previous simulations of
interfacial water[3, 32]. The susceptibility shows alterna-
tion of underresponding (χ(z) � χb) and overrespond-
ing layers (χ(z) � χb), typical for overscreening effect.
Whereas the amplitude of m2(z) is a non-trivial function
of the bulk properties, the four parameters of the surface
interaction and D0, the amplitude of χ(z) does not de-
pend on (m0, ρ0, D0). The interface affects the dielectric
properties of water only through the stiffnesses (k̃m, k̃ρ).

We first study the case of vanishing k̃ρ for which
χ(z)k̃ρ=0 can be written as

χ(z)k̃ρ=0

χb
= 1 +

k̃me
−qdz

1− k̃m

(
cos(qoz) +

q2
d − q2

o

2qdqo
sin(qoz)

)
.

(10)
The amplitude of χ(z)k̃ρ=0 decreases with k̃m and tends

to a finite value for k̃m � 1. This case is represented in
Fig. 2e (blue curve).[33] Then we consider the corrective
effect of k̃ρ in the limit of a large k̃m by studying

χ(z)k̃m�1

χb
=
χ(z)k̃m�1,k̃ρ=0

χb
− q2

d + q2
o

2qdqo

k̃ρe
−qdz

1 + k̃ρ
sin(qoz).

(11)
An increasing k̃ρ induces a dephasing and an amplitude
decrease up to a factor 2 of χ(z) (See 2e). The behavior
of χ(z) as a function of (k̃m, k̃ρ) illustrates that differ-
ent surfaces, having stronger or weaker influence on po-
larization and partial charge, induce different dielectric
properties of interfacial water.

Comparison with MD simulations - We performed MD
simulations of pure water confined in a slab geometry us-
ing the GROMACS MD simulation package.[34] Water
molecules are described with the SPC/E model and the
walls are made up of atoms of frozen positions. We con-
sidered graphene and hBN surfaces ( details in the SM).
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FIG. 2. Dielectric properties of water in the vicinity of a
surface. a. Sketch of the system. b. Diagram presenting the
zone of finite minimum (dotted zone) as a function of k̃m and

k̃ρ. Profile of the polarization m(z) (c) and the normalized

susceptibility χ(z) (d) computed for (k̃m = 9, k̃ρ = 1) and
(m0 = −10 V/nm, ρ0/qo = −10 V/nm). e. Susceptibility
normalized to the bulk susceptibility computed from Eq. (11)

with different values of k̃ρ.

We analyze the polarization, mMD(z) =
−
∫ z

0
dzρMD(z)dz, with ρMD the charge den-

sity of water, and the susceptibility χMD(z) =
(mMD(z,D0 + δD0) − mMD(z,D0))/δD0 [3] with
δD0 = 0.5V/nm, in the vicinity of the surfaces. The
profiles are similar for both surfaces (Fig. 3): first, a
vacuum layer (mMD(z) = 0, χMD(z) = 0) between the
surface and the liquid, due to the repulsive part of
the surface-fluid Lennard-Jones (LJ) interaction, then
decaying oscillations over about 1 nm before reaching the
bulk value. The theoretical decay λd and the period λo
are in very good agreement with the simulated ones (see
SM). This validates the derivation of the characteristic
lengths of interfacial water from the bulk dielectric
susceptibility, χ̂(q).

In MD simulations, the position of the interfaces is not
as clear-cut as in theory due to thermal capillary fluctua-
tions and the non-infinitly sharp repulsion of the surface-
fluid LJ interaction.[35] This is taken into account by
applying a smearing to the theoretical predictions,

f̃(z) = (G ∗ (θf)) (z + z0), G(z) =
e−z

2/2η2

η
√

2π
, (12)

with θ being the Heaviside function and f standing for
m or χ. The position z0 and the standard deviation η
are determined for each surface by fitting the first oxy-
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FIG. 3. Comparison between model (in red) and MD simula-
tions (in black) for a graphene layer (left panels) and a hBN
layer (right panels). Top (respectively bottom) panels show
the polarization (respectively the susceptibility). Simulation
curves for z ≤ z0 are represented with dotted lines.

gen density peak with a Gaussian G(z) which position
and width define z0 and η (see SM for details). The
hBN surface is characterized by a deeper LJ potential and
consequently a smaller dispersion η than the graphene.
Correspondly, mMD(z) amplitude is smaller in interfacial
water for graphene than for hBN Figs. 3a-b.

We validate the theoretical model in three steps. First,
we adjust the simulated susceptibilities with χ̃(z) defined
in Eq. (12). If we choose (k̃m � 1, k̃ρ = 0) for graphene

and (k̃m � 1, k̃ρ = 0.2) for hBN, we obtain a good agree-
ment between the calculated and the simulated value of
the susceptibilities as shown in figures 3c-d. Next, we
fit the simulated polarization for graphene surface with
m̃(z) by fixing m0, the single left unknown parameter for
graphene as k̃ρ = 0. Finally, we fit the simulated polar-
ization for a hBN surface. Taking the surface polarization
m0 previously determined in the case of graphene, we fix
ρ0. The comparison between theoretical and simulated
polarization are presented in Figs. 3a-b. The dotted part
of the simulated curves correspond to the vacuum gap
and the contribution of hydrogen located in z < z0. The
theoretical model describes this zone as a vacuum gap
(see Eq. (12)).

Graphene and hBN surfaces are parametrized by k̃m �
1, thus both surfaces freeze the interfacial polarization to
m(z0) = m0 which does respond to D0. At the micro-
scopic scale, this result can be interpreted as the effect of
the vacuum gap on the organization in the first layer of
water which optimizes the number of H-bonds.[36] Most
likely, k̃m is very large for a wide variety of surfaces, both
hydrophobic and hydrophilic, as they impose a layout in
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FIG. 4. Effective dielectric permittivity εeff of water nanocon-
fined in a channel of width L. Comparison between exper-
imental measurements reproduced from [1] and theoretical
model.

the first hydration layer.[3, 37] For a non-vanishing cor-
rective term k̃ρ, the surface has an effect on the interfacial
charge, ρs(z0), and its variation under D0. We investi-
gate the microscopic origin of this effect by performing
MD simulations for artificial surfaces associated with hy-
brid properties between graphene and hBN surfaces (see
SM). We find out that it is induced by a large mean depth
of the LJ minimum. A non-vanishing k̃ρ is related with
important variations of the interaction energy between
the surface and a water molecule in the (xy) plane for
z = z0 that constrains the position of water molecules in
this plane.

Nanoconfined water - We use now this theoretical
model to derive the dielectric properties of a confined
water layer. The experimental measurements report an
effective dielectric permittivity up to εeff = 2 for a chan-
nel of about 1 nm.[1] (reported on Fig. 4). The authors
suggest the existence in the channel of three water lay-
ers of homogeneous dielectric properties: two interfacial
layers (ε = 2.1, thickness: 0.7 nm) and a layer of bulk
water (ε = 78). We compute the effective permittiv-

ity εeff = L/
∫ L

0
(1 − χ(z))dz as a function of L for two

graphene surfaces. Our model can be seen as two vacuum
gaps and an inhomogeneous water layer. This inhomo-
geneity is not implemented ad hoc but is the signature
of the nonlocal dielectric properties of water, revealed
by the boundary conditions. The results are presented in
Fig. 4. The model reproduces the experimental measures
and catches in particular a non-homogenous behavior of
the permittivity as a function of L for small L as shown
in the insert that cannot be described by a three homo-
geneous layer model.[1, 4, 38]

Conclusion - Nanoconfined water is a non-
homogeneous dielectric material which properties differ
dramatically from the bulk. Water-surface interaction
and the bulk properties of the fluid combine to induce
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specific dielectric profiles. The complexity of this system
is captured by a minimal phenomenological Hamiltonian
depending on the polarization field and composed of (i) a
LG forth order development for a bulk-determined term
and (ii) a harmonic surface-water term. We show that
the dielectric susceptibility of interfacial water may be
strongly affected by the coarse-grained parameters (k̃m,
k̃ρ, η) characterizing local surface-water interaction. It
gives a framework to compare graphene and hBN that
could be predictive for other surfaces and also to derive
the dielectric properties confined water in other geome-
tries, such as nanotubes.[39]

This work was supported by Sorbonne Sciences under
grant Emergences-193256. HB and GM thank B. Delam-
otte for fruitful discussions.
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THE THEORETICAL MODEL

Bulk water

The functional energy Ubulk of the dielectric medium modeling bulk water is written as

Ubulk[m,D0] =
1

2ε0

∫
dr (D0(r)−m(r))

2
+

1

2ε0

∫
drdr′mα(r)Kα,β(r, r′)mβ(r′) (S1)

=
1

2ε0

∫
dr
(
D2

0(r)− 2D0(r) ·m(r)
)

+
1

2ε0

∫
drdr′mα(r) (δα,β(r− r′) +Kα,β(r, r′))mβ(r′),

(S2)

where we use the Einstein summation convention over repeated indices.
The dielectric material is homogeneous and isotropic so Kα,β(r, r′) = Kα,β(|r′ − r|) and we can write the non-

local contribution of the functional energy (Eq. (S1)) as function of the Fourier transform of the polarization field
m̂(q) = 1

(2π)3/2

∫
dr m(r)e−iqr and introduce the dielectric susceptibility tensor χ̂−1

α,β(q) :

∫
drdr′mα(r) (δα,β(r− r′) +Kα,β(r, r′))mβ(r′) =

1

(2π)3/2

∫
dqm̂α(q)χ̂−1

α,β(q)m̂β(−q). (S3)
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2

We then write the functional of bulk energy Ubulk in Fourier space:

Ubulk[m̂, D̂0] =
1

2ε0

1

(2π)3/2

∫
dq
[
D̂0(q)D̂0(−q)− 2m̂(−q)D̂0(q) + m̂α(q)χ̂−1

α,β(q)m̂β(−q)
]
. (S4)

The mean field polarization, m̂MF, is defined as the minimum of the functional energy:

δUbulk

δm̂
[m̂MF] = 0. (S5)

By performing the functional derivative of the equation S4, we show:

D̂0(q) = χ̂−1(q)m̂MF(q)⇔ m̂MF(q) = χ̂(q)D̂0(q) (S6)

Since the dielectric material is homogeneous and isotropic, the dielectric susceptibility tensor χ̂−1 has two compo-
nents :

χ̂−1
α,β(q) = χ̂−1

‖ (q)
qαqβ
q2

+ χ̂−1
⊥ (q)

(
δα,β −

qαqβ
q2

)
, (S7)

where χ̂−1
‖ is the longitudinal component and χ̂−1

⊥ , the transverse one. It can be seen that developing the longitudinal

component to the fourth order,

χ̂−1
‖ (q) = 1 +K +Klq

2 + βq4 (S8)

χ̂−1
⊥ (q) = K, (S9)

is equivalent to the Landau Ginzburg approach used in the main article:

Ubulk[m,D0] =
1

2ε0

∫
dr (D0 −m(r))

2
+

1

2ε0

∫
dr
(
Km2 +Kl (∇ ·m)

2
+ β (∇ (∇ ·m))

2
)
. (S10)

Polarization for one-wall geometry system

0.0 0.5 1.0 1.5z [nm]

m(z) Water

In
te

rf
ac

e

FIG. S1. System with water close to a wall. The polarization field is schematically shown with the blue curve (computed from
Eq. S11).

As stated in the main text, there is a polarization field m1(z) that minimizes the bulk part of the functional of the
energy Ubulk defined in equation 8 :

m1(z) =
D0

1 +K

(
1− e−

z
λd

(
cos(qoz) +

qd
qo

sin(qoz)

))

+ m̄e
− z
λd

(
cos(qoz) +

qd
qo

sin(qoz)

)
− λoρ̄e−

z
λd sin(qoz). (S11)

with m(0) = m̄ and ṁ(0) = −ρ̄. We introduce this expression of polarization into the total functional of energy

U = Ubulk + Us =
1

2ε0

∫ +∞

z=0

dz (D0 −m(z))
2

+
1

2ε0

∫ +∞

z=0

dzKm(z)2 +Kl(ṁ(z))2 + β(m̈(z))2

+
km
2

(m̄−m0)2 +
kρ
2

(ρ̄− ρ0)2,

(S12)
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where dots stand for d/dz. Performing the integral over z in Ubulk, we express U as a function of the boundary
constants (m̄, ρ̄):

U(m̄, ρ̄) =
km
2

(m̄−m0)2 +
kρ
2

(ρ̄− ρ0)2 +
qdD0

(q2
d + q2

o)(1 +K)ε0

+
D0

(q2
d + q2

o)ε0
ρ̄+

qd(1 +K)

(q2
d + q2

o)2ε0
ρ̄2

− 2qdD0

(q2
d + q2

o)ε0
m̄+

qd(1 +K)

(q2
d + q2

o)ε0
m̄2 − 1 +K

(q2
d + q2

o)ε0
ρ̄m̄.

(S13)

We find the stationary point of the energy U(m̄, ρ̄) by cancelling its gradient:





∂U

∂m̄
(ms, ρs) = 0

∂U

∂ρ̄
(ms, ρs) = 0

⇒





−
(
q2
d + q2

o

)

2qd

(
ms −

D0

1 +K

)
+ ρs + k̃ρ(ρs − ρ0) = 0

2qd

(
ms −

D0

1 +K

)
− ρs −

3q2
d − q2

o

2qd
k̃m(ms −m0) = 0

(S14)

where k̃m = km/km,bulk and k̃ρ = kρ/kρ,bulk are dimensionless stiffness constants with

km,bulk = −
(
3q2
d − q2

o

)
(1 +K)

2qd (q2
d + q2

o) ε0
(S15)

kρ,bulk =
2qd(1 +K)

(q2
d + q2

o)
2
ε0
. (S16)

The expression of the stationary point (ms, ρs) is linear function of the external field D0 and be written as

ρs(D0) = aρ
D0

1 +K
+ bρ (S17)

ms(D0) = am
D0

1 +K
+ bm, (S18)

with

aρ = −
(
3q2
d − q2

o

) (
q2
d + q2

o

)
k̃m

2qd

(
(3q2

d − q2
o)
(
k̃m

(
1 + k̃ρ

)
− 1
)
− 4q2

dk̃ρ

) (S19)

am = −
(
3q2
d − q2

o

)
+ 4q2

dk̃ρ

(3q2
d − q2

o)
(
k̃m

(
1 + k̃ρ

)
− 1
)
− 4q2

dk̃ρ
(S20)

and

bρ =

(
3q2
d − q2

o

)
k̃m

((
q2
d + q2

o

)
m0 + 2qdρ0k̃ρ

)
− 8q3

dρ0k̃ρ

2qd

(
(3q2

d − q2
o)
(
k̃m

(
1 + k̃ρ

)
− 1
)
− 4q2

dk̃ρ

) (S21)

bm =

(
3q2
d − q2

o

)
m0k̃m

(
1 + k̃ρ

)
− 2qdρ0k̃ρ

(3q2
d − q2

o)
(
k̃m

(
1 + k̃ρ

)
− 1
)
− 4q2

dk̃ρ
. (S22)

The stationary point (ms, ρs) is not always a minimum as evidenced by the determinant Det(H Uw) of the Hessian
matrix,

H =

(
∂2Ubulk

∂m̄∂m̄
∂2Ubulk

∂ρ̄∂m̄
∂2Ubulk

∂ρ̄∂m̄
∂2Ubulk

∂ρ̄∂ρ̄

)
. (S23)

We find that

Det(H)(k̃m, k̃ρ) =
(q2
o − 3q2

d)(1 +K)2

ε2 (q2
d + q2

o)
3

(
k̃m

(
1 + k̃ρ

)
− 4q2

d

3q2
d − q2

o

k̃ρ − 1

)
(S24)
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can be negative for given values of (k̃m, k̃ρ). Under these conditions, the functional energy U(m̄, ρ̄) extremum is a

saddle point. This saddle point is actually shown in figure S2a for a non-interaction surface (k̃m = 0, k̃ρ = 0) and a
vanishing value of D0. The polarization and the layering of the fluid by a non-interacting interface, i.e. by a pure
geometrical constraint, is a consequence of the pronounced overscreening associated with specific wavelengths. This
non-physical limit could be avoided by adding a non-linear term in m4 in Eq. (S10) that would ensure a saturation
effect in the fluid. In Figure 2a of the main article and Figure S2b, the gray curve separating the region for which the
extremum of the energy functional U(m̄, ρ̄) is a minimum (gray dotted area) and that for which this extremum is a
saddle point (white area) is computed by cancelling equation S24.

−2 −1 0 1 2

m̄ [V/nm]

−2

−1

0

1

2

ρ̄
/q
o

[V
/n

m
]

a
k̃m = k̃ρ = 0

−4

−2

0

2

4

U
/k
B
T

[n
m
−

2
]

×107

0.0 0.5 1.0 1.5
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2
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k̃
ρ Minimum
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b

FIG. S2. a. Function U(m̄, ρ̄) for (k̃m = 0, k̃ρ = 0) and a vanishing value of D0. b. The dotted area represents a zone of

parameters k̃m and k̃ρ for which the function U(m̄, ρ̄) possesses a minimum for finite value of m̄ and ρ̄. Outside this area the
functional energy shows a saddle point as depicted in the left panel.

Water confined in between two surfaces : a slab geometry

-L/2 0 L/2

m(z)
Water

In
te

rf
a
ce

1

In
te

rf
a
ce

2

z [nm]

FIG. S3. System with water confined between two walls separated by a length L. The blue curve is a schematic representation
of the polarization highlighting the oddity of this function for vanishing D0.

We now consider a system composed of two identical surfaces, located in z = −L/2 and z = L/2 as represented in
Figure S3. In this case, the functional energy writes is

U = Ubulk + Us, (S25)

the sum of the electrostatic energy of water Ubulk and the interaction energy Us with

Ubulk[m] =
1

2ε0

∫ L/2

−L/2
(m(z)−D0)2dz +

1

2ε0

∫ L/2

−L/2

(
Km2(z) +Klṁ

2(z) + βm̈2(z)
)
dz (S26)

Us =
kρ
2

(ρ̄− − ρ0)
2

+
kρ
2

(ρ̄+ − ρ0)
2

+
km
2

(m̄− −m0)
2

+
km
2

(m̄+ +m0)
2

(S27)
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and

ρ̄− = ρ(z = −L/2) ρ̄+ = ρ(z = +L/2)

m̄− = m(z = −L/2) m̄+ = m(z = +L/2).
(S28)

As one sees, the confinement induces an interaction term Us composed of two contributions, one in z = −L/2 and
one in L/2. Minimizing the total energy with respect to the polarization field still leads to a fourth order differential
equation :

(1 +K)m(z)−Klm
(2)(z) + βm(4)(z) = D0. (S29)

The solutions of this differential equation are written in the following form:

m1(z) =
D0

1 +K
+ C̄1 cos (qoz) cosh (qdz) + C̄2 sin (qoz) cosh (qdz)

+ C̄3 cos (qoz) sinh (qdz) + C̄4 sin (qoz) sinh (qdz).

(S30)

Written in this manner, we underline the fact that the polarization m(z) is odd (and the bound charge ρ(z) = −ṁ(z)
is even) for a vanishing D0.

Following the approach presented in the previous section, the solution of the differential equation (Eq. S30)
is introduced into the functional energy U . One then gets an energy U(C̄1, C̄2, C̄3, C̄4) which stationary point
(C1s, C2s, C3s, C4s) can be determined by cancelling its gradient. Results are given in the appendix. Note that
in the case where the external field D0 = 0, the problem is much simpler. Indeed, the system is then symmetrical
according to z: m(z) = −m(−z) which leads to having C̄1 = C̄4 = 0. The energy U(C̄2, C̄3) is then a function of two
variables which nature of the extremum can be assessed by studying the sign of the determinant of the associated
Hessian matrix. Figure S4 shows that as soon as the distance between the two walls is greater than ∼ 1 nm, one
gets the same condition for the existence of a finite minimum as in the case where there is only one wall. We do not
consider cases where L < 1 nm as the continuous approximation of the confined water would then be unreasonable.
Thus the addition of the second wall has no significant effect on the nature of the extremum.

0 0.5 1.0 1.5

k̃ρ

0

2

4

6

8

10

k̃
m

10−1

100

101
L

[n
m

]

FIG. S4. The curves are plotted for a null-Hessian matrix determinant of the functional energy and for D0 = 0. The color of
the curves is related to the distance L between the two walls given on the colorbar. The black curve is drawn for a system with
only one wall.

THE DETAILS OF MOLECULAR DYNAMICS SIMULATIONS

We performed molecular dynamics simulations using GROMACS 2019.6 package.[1] Dispersion interactions are
modelled using effective Lennard-Jones (LJ) potentials truncated at 1.2 nm using a Verlet cutoff scheme. The truncated
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Lennard-Jones potential between two atoms separated by a distance rij is

VLJ(rij) =





4εij

((
σij
rij

)12

−
(
σij
rij

)6
)

for rij ≤ 1.2 nm

0 for rij > 1.2 nm
, (S31)

where εij is the depth of the potential well (or dispersive energy) and σij is the distance at which the particle-particle
potential energy is zero (or size of the particle). Only atom pairs involving an oxygen atom interact through the
Lennard-Jones potential. Associated parameters, εX−O and σX−O, are given in the following Table I.

X Partial charge [e] σX−O [nm] εX−O [kJ/mol] Source
H 0.4238 0 0
O -0.8476 0.3166 0.650
C 0 0.319 0.392 Werder et al.[2]
B 0.37 0.331 0.508 Won and Aluru[3]
N -0.37 0.326 0.628 Won and Aluru[3]

TABLE I. Partial charges and Lennard-Jones parameters for the interaction between the atoms of the wall X and the oxygen
of the water molecules.

The Coulomb force is treated using a real-space cutoff at 1.2 nm and particle mesh Ewald summation (pseudo-2D
particle mesh Ewald summation for slab geometry[4]). We use the three-site model SPC/E for water molecules.
Simulations performed in the NVT ensemble are thermalized at 300 K with the v-rescale thermostat [5] (relaxation
time τ = 0.5 ps). Furthermore, all MD simulations have performed with a time step equal to 2 fs.

Periodic water box

5 nm
5 nm

5 
nm

FIG. S5. The simulated system after the thermalization in NVT ensemble: a 5 nm side cube, periodic along the 3 directions of
space and filled with 4055 SPC/E water molecules.

The simulated system is a 5×5×5 nm3 cube containing 4055 SPC/E water molecules and with periodicity following
the 3 directions of space. A first simulation carried out in an NVT canonical ensemble and of short duration allows
to ensure the thermalization of the system. Then we let the system adjust the volume of the box at constant pressure
equal to 1 bar with a Berendsen barostat [6] (τ = 2.0 ps) in order to reach a density close to bulk water (∼ 998 kg/m3)
thanks to a second simulation performed in a NPT ensemble with a long range dispersion corrections for energy and
pressure. At the end of this relaxation, the side of the box is slightly different and equal to 4.963 nm. Finally, we
carry out long-term simulations (2 ns) in a canonical ensemble from which we compute H-H, O-H and O-O structure
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factors and deduce the susceptibility χ̂‖(q) with the classical approximation for the fluctuation dissipation theorem
(see black curves on Figure S8).[7]

Figure S8 shows the two strategies to fit the dielectric susceptibility of bulk water with a 4 order model:

χ̂‖(q) =
1

1 +K +Klq2 + βq4
. (S32)

The first one aims at fitting the maximum of the susceptibility while the second one focuses on fitting the width of
the susceptibility normalized to 1 (the aspect ratio) bearing in mind that in both cases χ̂‖(q = 0) is set by the value
of the relative dielectric permittivity of the water SPC/E εr = (1− χ̂‖(q = 0))−1 ∼ 71.

10 20 30 40 50 60 70

q [nm−1]

0

10

20

30

40

50

χ̂
‖(
q)

a SPCE water

Max fitting

Aspect ratio fitting

10 20 30 40 50 60 70

q [nm−1]

0.0

0.5

1.0

χ̂
‖(
q)
/χ̂
‖,

m
a
x

b

FIG. S6. Susceptibility χ(q) (a) and normalized susceptibility χ(q)/χmax (b) computed from pure SPC/E water molecular
dynamic simulation (black curve). The blue curve arises from the fit of the maximum of the first component of the susceptibility
while the orange curve shows the result of the fit of the aspect ratio.

Water confined in slab geometry

L

3.
23

 n
m

3.44 nm

FIG. S7. The simulated system after the thermalization in NVT ensemble: SPC/E water molecules confined between two
graphene sheets.
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We performed molecular dynamics simulations of SPC/E water confined in a slab geometry. The walls, perpendic-
ular to the z direction, are made up of atoms which positions are fixed and arranged in a hexagonal lattice. L is the
distance between the two walls. The simulation box is extended in the z-direction until it reaches a length equal to
3L. Thus, even if we considered a periodic system in the 3 directions of space, the periodized slab system is separated
by a 2L-thick void layer along the z axis.

In our study we considered two types of hydrophobic walls: graphene and a hBN wall. The dispersion interactions
between the wall and the water molecules are modelled using the truncated Lennard-Jones potential between the
atoms of the wall and the oxygen atoms of the water molecules. We recall that the parameters of this potential are
given in the Table I. The walls are electrically neutral overall but, in the case of hBN, the atoms carry partial charges
leading to an electrostatic interaction with the water molecules.

As for the previous system, we conducted a first simulation in a NVT canonical ensemble and of short duration that
allows to ensure the thermalization of the system. Then, we check that the number N of water molecules introduced
between the two walls, separated by a distance L, leads to a density close to bulk water (∼ 1000 kg/m3) with a second
simulation performed in a NPT ensemble with a semi-isotropic Parrinello-Rahman barostat [8] (τ = 2.0 ps). Finally,
we carry out several long-term simulations (60 ns) in a canonical ensemble with homogeneous external electric fields
aligned along the z direction. This procedure was performed for (i) graphene/graphene slab and (ii) hBN/graphene
slab (see Figure S9) In both case, the two walls are separated by 5 nm and an electric field intensity ranging from 0
to 2 V/nm. Besides, we have computed simulations with two separated graphene walls with a length L ranging from
1 to 10 nm with Eext = 0 and 0.5 V/nm.

From the molecular trajectories, we compute the charge density ρ(z) as a histogram of the point charge distribution
with a step of 0.01 nm along z. Then, the polarization field m(z) calculate by performing a numerical derivative
of the charge density, m(z) = −dρ(z)/dz. Finally, the susceptibility is computed from the polarization field of two
simulations in which the amplitude of the external field is different by a value δD0 = 0.5 V/nm :

χ(z,D0) =
m(z,D0 + δD0)−m(z,D0)

δD0
(S33)

Validation of the fitting strategy of the bulk susceptibility χ̂‖(q)

0.0 0.5 1.0 1.5 2.0

z [nm]

10−4

10−3

10−2

10−1

100

101

lo
g
|m

(z
)|

Simulation

Max fitting

Aspect ratio fitting

FIG. S8. The black curve is the polarisation field computed from MD simulation of water in the vicinity of graphene layer at
vanishing D0. Color curves have the equation m(z) = Ae−qdz where qd is computed from the fitting of the bulk susceptibility
χ̂(q). The blue one arises from the fit of the maximum of the first component of the susceptibility while the orange curve shows
the result of the fit of the aspect ratio. The parameter A is chosen to match the back curve.
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Electrostatic field for large slab geometry

The simulations for which the results are shown in figures S9 were performed with a 5 nm distance between the two
graphene walls. This value is much larger than the characteristic decay length λd. Therefore, the water structuration
in the vicinity of one wall is not affected by the presence of the second wall. We then choose to display the results for
the left wall only.

Figure S9 shows the polarization and susceptibility in such a system for increasing values of the external field D0

up to 2 V/nm. Considering the variations in amplitude of the susceptibility for interfacial water, one can estimate
that the regime is linear up to D0 ∼ 2 V/nm. This value is however lower than the one reported in previous work.[9]
(HB: Cette valeur a aussi été estimée dans les Si de ... ???)
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FIG. S9. Polarization m(z) (top panel) and susceptibility χ(z) (bottom panel) from molecular dynamics simulations of water
near a graphene (left panel) or hBN layer (right panel) for different external field strengths (see color code). The part of the
curves for z < z0 are shown as dotted lines.

Smearing the surface

The Figure S10 represents the density of Oxygen ρO and Hydrogen ρH in the vicinity of graphene (green curve) and
hBN (red curve) layers. The surface induces a layering of the fluid that is more pronounced for hBN as for graphene
which is indicated by a higher and narrower first hydration peak for this surface. In order to take into account that
the numerical interface is not 2D but is associated with a small width, we convolute the theoretical expressions of
polarization and susceptibility with a Gaussian

G(z − z0) =
e−z

2/2η2

η
√

2π
. (S34)

The position z0 and the width η of the Gaussian are determined for each surface by fitting the first peak of the Oxygen
density with G(z − z0). The inset of Fig S11 shows the Gaussian G (full red zone) and the simulated density for
oxygen in the vicinity of graphene. The parameters η and z0 do not vary with the application of an excitation field
D0 as shown in Fig S11.
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FIG. S10. Oxygen ρO(z) (top panel) and Hydrogen ρH(z) density near a graphene or a hBN layer.
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FIG. S11. Smearing parameters z0 (a) and the associated standard deviation η (b) as a function of the external field and for
different types of walls: graphene (blue), hBN (orange) and hBN without partial charges (green). The inset illustrates the
Gaussian fit of the first oxygen layer from which the parameters z0 and η are derived.

Molecular dynamics simulations as function of the slab width L

The theoretical model that we have developed can be used to determine the profile of the polarization and the
susceptibility of a nanometric water layer of varying thickness between graphene surfaces. The Figure S12 shows m(z)
(a) and χ(z) for water thickness going from 5 nm to 1 nm. The theoretical model allows to retrieve the organization
in successive layers of over (χ(z)� χb) and underresponding (χ(z)� χb) region in interfacial water.
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FIG. S12. Polarization m(z) (a) and susceptibility χ(z) (b) from molecular dynamics simulations of water in a slab geometry
with graphene on both sides of the system and without external field. The width L of the geometry is given on the right side
of the figure. The colored curves, coming from MD simulations, are shown as dashed line for z < −L/2 + z0 and z > L/2− z0.
Curves have been shifted for sake of clarity.

Physical origin of a non-zero k̃ρ

In this section, we probe the influence of partial charge q and dispersion energy ε of the surface’s atoms on the
dielectric properties of interfacial water. We consider artificial surfaces for which one of these parameters has been
modified with respect to graphene or hBN.

Impact of partial charges First, we study the influence of partial charge of surface’s atoms by considering a ’charged’
graphene as well as ’non-charged’ hBN. The parameters of these two surfaces are given in tables S13a and S13b. From
those custom MD simulation, we show that the dielectric susceptibility of interfacial water is the same for ’charged’
graphene and graphene. It is also the same for ’non-charged’ hBN and hBN. We conclude that it is not the partial
charge of the surface’s atoms that trigger the differences of the dielectric susceptibility of graphene and hBN interfacial
water.
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FIG. S13. Dielectric susceptibility of water in the vicinity of graphene (a) or hBN (b) layer without and with partial charges
q. σ is given in nm, ε in kJ/mol and the partial charge q in eV. The curves are made transparent for z < 0.33 nm.

Impact of heterogeneity Secondly, we evaluate the impact of the bi-atomic nature of hBN on the susceptibility. To
do so, we consider a ’bi-atomic’ like graphene surface associated with LJ parameters given in Table S14a. The two
artificial atoms have the same size σ as carbon’s in graphene and do not carry partial charges. However, they are
associated with two different ε which average is equal to the carbon’s dispersion energy in graphene. In contrast, we
simulate a ’mono-atomic’ like hBN surface (see Table S14b). This surface is composed of two atoms carrying opposite
partial charges equal to ±0.37 e. These two atoms are associated with the same LJ parameter set. The size and the
dispersion energy are equal to the average of those for Boron and Nitride. From those custom MD simulations, we
show that the dielectric susceptibility of interfacial water is the same for ’bi-atomic’ like graphene and graphene as
well as ’mono-atomic’ like hBN and hBN. This aspect has no influence on the dielectric susceptibility of interfacial
water.
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FIG. S14. Focus on the impact of a bi-atomic wall on the dielectric susceptibility of water. The orange curves are derived from
a mono-atomic wall while the black dashed curves result from a bi-atomic wall. σ is given in nm, ε in kJ/mol and the partial
charge q in eV. The curves are made transparent for z < 0.33 nm.

Average dispersion energy influence Finally, we increase the dispersion energy of carbon atoms in the graphene
surface (see Table S15a). In contrast, we decrease the average dispersion energy for hBN by keeping the ratio
between the two atoms (see Table S15b). We can see that the greater the average dispersion energy, the smaller the
susceptibility amplitude.



13

A

B

A

B

σ ε q

0.319 0.392 0

0.319 0.570 0

G
ra

p
h
e
n
e

a

A

B

A

B

σ ε q

0.330

0.326

0.300

0.500

0.370

-0.370

0.330

0.326

0.508

0.629

0.370

-0.370h
B

N

b

0.0 0.5 1.0

z [nm]

0.0

0.5

1.0

1.5

2.0
χ

(z
)

0.0 0.5 1.0

z [nm]

0.0

0.5

1.0

1.5

2.0

χ
(z

)

FIG. S15. Dielectric susceptibility of water in the vicinity of a surface when the Lennard-Jones interaction between the water
and this surface is deeper (from orange curves to black dashed curves). σ is given in nm, ε in kJ/mol and the partial charge q
in eV. The curves are made transparent for z < 0.33 nm.

The susceptibility of interfacial water for graphene surface shows a higher amplitude than the one for hBN surface.
Thanks to this investigation, we conclude that this difference is triggered by the average dispersion energy which is
smaller for graphene.

Appendix : Stationary point in the case of a slab geometry

C1s =

(
m0 −

D0

1 +K

)
a1

b+ c
(S35)

C2s = ρ0
a2

b− c (S36)

C3s = ρ0
a3

b− c (S37)

C4s =

(
m0 −

D0

1 +K

)
a4

b+ c
(S38)
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