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Recently Navarro proposed a strengthening of the unsolved McKay conjecture using Galois automorphisms. We prove that the Navarro conjecture and its blockwise version hold for the alternating groups.

Introduction

Let G be a finite group of order n and p be a prime divisor of n. We denote by Irr(G) the set of irreducible complex characters of G, and by Irr p ′ (G) the subset of irreducible characters with degree prime to p. In 1972, John McKay conjectured that | Irr p ′ (G)| = | Irr p ′ (N G (P ))|, where P is a Sylow p-subgroup of G. Although the conjecture remains open, there is strong evidence in its favor. In 2007, I. M. Isaacs, G. Malle and G. Navarro [START_REF] Isaacs | A reduction theorem for McKay conjecture[END_REF] reduced the problem to a question on finite simple groups. In particular, they assert that if a set of conditions holds for all non abelian finite simple groups, then the original conjecture holds for all finite groups. Using this strategy, Malle and Späth recently proved [START_REF] Malle | Characters of odd degree[END_REF] that McKay conjecture holds at p = 2 for all finite groups.

The McKay conjecture has lead to a family of other conjectures on finite groups. For example, the conjectures of Alperin-McKay, of Dade, of Broué and of Isaacs-Navarro are of a similar flavor. This paper is concerned with a refinement of the McKay conjecture due to Navarro [START_REF] Navarro | The McKay conjecture and Galois automorphisms[END_REF], which posits not only a correspondence between the set of global-and-local irreducible characters of p ′ -degree, but also between their character values.

In order to state the conjecture more precisely, we introduce some notation. Let Q n = Q(ω n ) be the cyclotomic subfield of C, where ω n = e 2iπ/n , and G n = Gal(Q n |Q). For any f ∈ G n , χ ∈ Irr(G) and g ∈ G, we set f χ(g) = f (χ(g)), inducing an action of G n on Irr(G) and then on Irr p ′ (G). Furthermore, if H is a subgroup of G of order d, then d divides n and Q d is a subfield of Q n . Note also that, if f ∈ G n , then f (ω d ) is a primitive d-root of unity, that is, there is some integer r prime to d such that f (ω d ) = ω r d . In particular, f

(Q d ) = Q d and f | Q d ∈ G d . Hence, G n acts on Irr(H) through G n → G d , f → f | Q d .
Even though there cannot exist a bijection Irr p ′ (G) → Irr p ′ (N G (P )) that commutes with G n , Gabriel Navarro observed in [START_REF] Navarro | The McKay conjecture and Galois automorphisms[END_REF] that there should exist a bijection commuting with a special subgroup H n of G n . More precisely, if we write n = p ℓ m with m prime to p, then ω n can be uniquely writen as a product ωδ, where ω has order p ℓ and δ has order m. It follows that G n = K n × J n , where K n and J n are respectively the subgroups of G n fixing δ and ω. Let σ n be the element of J n such that σ n (δ) = δ p . If we set H n = K n × σ n , then K n is isomorphic to Gal(Q p ℓ |Q), and H n is thus the subgroup of G n which acts on the p ′ -roots of unity of Q n by a power of p. In [13, Conjecture A], Navarro conjectured that for any f ∈ H n , there are the same number of characters of Irr p ′ (G) and of Irr p ′ (N G (P )) fixed by f . In the following, elements of H n will be called Navarro automorphisms.

While significant progress has been made on the McKay conjecture, evidence of the veracity of the Navarro refinement has been limited to a handful of cases: groups of odd order by Isaacs [START_REF] Isaacs | Characters of solvable and symplectic groups[END_REF], for solvable groups (E. Dade), for sporadic groups, for symmetric groups (P. Fong), for simple groups of Lie type in defining characteristic (L. Ruhstorfer [START_REF] Ruhstorfer | The Navarro refinement of the McKay conjecture for finite groups of Lie type in defining characteristic[END_REF]), and for alternating groups for p = 2 (by the second author [START_REF] Nath | The Navarro conjecture for the alternating groups, p = 2[END_REF]). A. Turull gave in [START_REF] Turull | Strengthening the McKay conjecture to include local fields and local Schur indices[END_REF] a conjecture which implies the Navarro conjecture. He proved in [START_REF] Turull | Strengthening the McKay conjecture to include local fields and local Schur indices[END_REF] his conjecture for the special linear groups in defining characteristic and in [START_REF] Turull | Above the Glauberman correspondence[END_REF] for p-solvable groups. Recently, Navarro, Spaeth and Vallejo proved a reduction theorem of Navarro refinement to the quasisimple groups [START_REF] Navarro | A reduction theorem for the Galois-McKay conjecture[END_REF].

In this paper, we verify that when p is odd the conjecture holds for an important family of simple groups, the alternating groups. More precisely, we will prove the following general result.

Theorem 1.1. Let n be a positive integer, and 2 < p ≤ n be an odd prime number. Fix a Sylow p-subgroup P of A n . Then there is a natural H n!/2 -equivariant bijection

Φ : Irr p ′ (A n ) → Irr p ′ (N An (P )).
The paper is organized as follows. In Section 2 we discuss the Navarro conjecture for the symmetric groups. It was noted in [START_REF] Navarro | The McKay conjecture and Galois automorphisms[END_REF] that this was checked by Fong. However, since the details will be useful in our work, we supply them for the convenience of the reader.

In Section 3, after studying the representation theory of the alternating subgroup of a direct product of groups contained in some symmetric group, we describe the action of automorphisms on Irr p ′ (N An (P )).

In Section 4, we describe the action of Navarro automorphisms on Irr p ′ (A n ). To this end, we obtain an explicit formula for the diagonal hook lengths of a symmetric partition of n in terms of the diagonal hooks of the p-core and p-quotient. These results are of independent interest : many partition-theoretic questions about Ramanujan-type congruences, monotonicity and the Durfee square can be answered using the relationship between a partition and its p-core and p-quotient (see for example the work of F. Garvan, D. Kim and D. Stanton [START_REF] Garvan | Cranks and t-cores[END_REF]).

Finally, Section 5 and 6 are devoted to the proof of the Navarro conjecture and its blockwise version for the alternating groups with no condition over the prime p.

Verification of the conjecture for the symmetric groups

Let n be a positive integer and p be a prime number. Let P be a Sylow psubgroup of S n , and set N = N Sn (P ). First, following [2, §1 and §2] we describe a parametrization of Irr p ′ (S n ) and of Irr p ′ (N ). The irreducible characters of S n are naturally labeled by the set of partitions of n. For any such partition λ, we denote by χ λ the corresponding character of S n .

For any partition λ of n, we write |λ| = n for the size of λ. We also will denote by Y (λ) for the Young diagram of λ. Using matrix notation, we associate to any (i, j)-box of Y (λ), an (i, j)-hook with hook-length h ij . We denote by D(λ) the set of diagonal hooks of λ, that is, the hooks in positions (i, i). Such a hook will be known as the ith-diagonal hook. We denote by

d(λ) = {|h| | h ∈ D(λ)} (1) 
the set of hook-lengths of the diagonal hooks of λ.

Recall that λ is symmetric if λ = λ * . When λ is symmetric the ith-diagonal hook is uniquely determined by its hook-length.

Recall that any partition λ is completely determined by its p-core Cor p (λ) and its p-quotient Quo p (λ) = (λ 0 , . . . , λ p-1 ); [15, §3]. Write I = {0, . . . , p -1} and I 0 = ∅. Set λ ∅ = λ. Let k be a non-negative integer, and assume λ j is constructed for any j ∈ I k . Then we define λ j = Cor p (λ j ) and for j = (j 1 , . . . , j k+1 ) ∈ I k+1 , we write λ j = Quo p (λ j1,...,j k ) j k+1 . For any k ≥ 0, write Cor (k) p (λ) = {λ j | j ∈ I k }. The set

CT (λ) = k≥0 Cor (k) p (λ) (2) 
is called the p-core tower of λ. For more details, we refer to [15, p. 41].

On the other hand, recall that by [2, Proposition 1.1], χ λ ∈ Irr p ′ (S n ) if and only if 0 ≤ c k (λ) ≤ p -1 for all k ≥ 0, where c k (λ) = j∈I k |λ j |.

Let n = n 0 + n 1 p + n 2 p 2 + n 3 p 3 + • • • be the p-adic expansion of n. Note that the p ′ -irreducible characters of N are exactly the ones that have P ′ in their kernel; that is, the irreducible characters of N which can be lifted from the projection N → N/P ′ . Furthermore, by [2, §2], one has

N/P ′ ≃ S n0 × k≥1 Y k ≀ S n k , (3) 
where X is a Sylow p-subgroup of S p and Y = N Sp (X).

Let k ≥ 1. Write N k = Y k ≀ S n k .
The elements of N k are denoted by (y; σ), where y = (y 1 , . . . , y n k ) ∈ (Y k ) n k and σ ∈ S n k . For any σ ∈ S n k , we denote by C(σ) the set of cycles of σ with respect to its canonical decomposition into cycles with disjoint supports. For τ ∈ C(σ), the corresponding "cycle" of N k is (y τ ; τ ), where (y τ ) j = y j if j ∈ supp(τ ) and (y τ ) j = 1 otherwise. For any τ ∈ C(σ), we also define the cycle product c((y; σ), τ ) = j∈supp(τ ) y j of (y; σ) with respect to τ .

Note that Y = a ⋊ b with a and b of order p and p -1 respectively. Recall that Y has p -1 linear characters obtained by lifting the ones of b through Y → Y / a ≃ b , and one character of degree p -1 obtained by inducing any non-trivial characters of a to Y . Write

Irr(Y ) = {ξ 0 , . . . , ξ p-1 }. (4) 
Then these characters are Q(ω p-1 )-valued by construction.

Let k ≥ 1. For j = (j 1 , . . . , j k ) ∈ I k , we set

ξ j = ξ j1 ⊗ ξ j2 ⊗ • • • ⊗ ξ j k . Then Irr(Y k ) = {ξ j | j ∈ I k }. ( 5 
) Let MP(p k , n k ) be the set of p k -multipartitions of n k that is, multipartitions λ = (λ j ; j ∈ I k ) such that j∈I k |λ j | = n k .
Remark 2.1. In the following, we will always assume that the λ j 's in λ appear in increasing lexicographic order.

By [START_REF] James | The Representation Theory of the Symmetric Group[END_REF], the irreducible characters of N k can be labeled by MP(p k , n k ) as follows. Let λ = (λ j ; j ∈ I k ) be such that j∈I k |λ j | = n k . Consider the irreducible character

ξ λ = j∈I k ξ j ⊗ • • • ⊗ ξ j |λj | times of (Y k ) n k . If we set S λ = j∈I k S |λj | , then the inertial subgroup of ξ λ in N k is N k,λ = (Y k ) n k ⋊ S λ = j∈I k Y k ≀ S |λj | .
We denote by E(ξ λ ) the James-Kerber extension of ξ λ to N k,λ described in [8, §4.3]

. Note that E(ξ λ ) = E(ξ |λj | j
) and [START_REF] James | The Representation Theory of the Symmetric Group[END_REF]Lemma 4.3.9] gives

E(ξ λ )   j∈I k (y j ; σ j )   = j∈I k E(ξ |λj | j )(y j ; σ j ) (6) = j∈I k ,|λj | =0 τ ∈C(σj) ξ j (c((y j ; σ j ), τ )).
Now, write χ λ for the characters j∈I k χ λj ∈ S λ lifted through the canonical

projection N k,λ → N k,λ /(Y k ) n k ≃ S λ ,

and define

ψ λ,k = Ind N k N k,λ E(ξ λ )χ λ . (7) 
Then

Irr(N k ) = ψ λ,k | λ ∈ MP(p k , n k ) .
The following result will be useful.

Lemma 2.2. Let G be a finite group of order n and H a subgroup of G. Let f ∈ G n . Then for any class function φ on H, we have

f Ind G H (φ) = Ind G H ( f φ).
Proposition 2.3. The Navarro conjecture holds for the symmetric groups.

Proof. Let n be a positive integer and p ≤ n be a prime number. Since the characters of S n are rational-valued, they are fixed by any automorphisms of H n! . It remains to show that any p ′ -order irreducible characters of N is also fixed. From (3), it is sufficient to show that for k ≥ 1, the irreducible characters of N k are fixed under any f ∈ H n! . If f ∈ K n! , then f fixes any p ′ -roots of unity. However, the values of the characters of Irr(Y ) lie in Q(ω p-1 ), and are thus fixed by f . Write σ = σ n! . We have σ(x) = x p for any p ′ -root of unity x. Since ω p-1 is a p ′ -root of unity, we deduce that σ(ω p-1 ) = ω p p-1 = ω p-1 , and σ fixes the characters of Irr(Y ). In either case, the irreducible characters of Y are fixed by H n! . Let n = n 0 + n 1 p + • • • be the p-adic expansion of n as above and fix k ≥ 1. Let λ ∈ MP(p k , n k ). From [START_REF] Isaacs | Characters of solvable and symplectic groups[END_REF] and the fact that χ λ is rational-valued, we obtain that E(ξ λ )χ λ is fixed under any f ∈ H n! . Finally, we conclude using Lemma 2.2.

Alternating groups. The local case

For any subgroup G of S n , we set G + = G ∩ A n . In particular, [G : G + ] ≤ 2 and G + is the kernel of the restriction to G of the sign character of S n , also denoted by sgn : G → {-1, 1}. Suppose G + = G. For χ ∈ Irr(G), we write χ * = χ ⊗ sgn. By Clifford theory, if χ = χ * , then χ and χ * restrict to an irreducible character of G + also denoted by χ. If χ = χ * , then the restriction of χ to G + is the sum of two irreducible characters denoted by χ + and χ -. Note that in this case, χ(g) = 0 for all g / ∈ G + , and χ(g) = χ + (g) + χ -(g) for g ∈ G + . All irreducible characters of G + are obtained exactly once by this process. A split class c of G is a conjugacy class of G contained in G + such that c is the union of two G + -classes c + and c -.

Let f be a Galois automorphism and χ ∈ Irr(G) be such that χ = χ * and f χ = χ. Then f acts on {χ + , χ -}. We define ε(χ, f

) ∈ {-1, 1} by setting ε(χ, f ) = 1 if f χ + = χ + and ε(χ, f ) = -1 otherwise. In particular, for η ∈ {-1, 1} we have f χ η = χ ε(χ,f )η . (8) 3.1. Reduction of the problem. Let G 1 , . . . , G r be subgroups of S n such that G = G 1 × • • • × G r ⊆ S n is a direct product and assume G + j = G j for all 1 ≤ j ≤ r. Fix σ j ∈ G j \G + j . Let χ = χ 1 ⊗ • • • ⊗ χ r ∈ Irr(G) be such that χ j ∈ Irr(G j ) for all 1 ≤ j ≤ r. First, we remark that sgn = sgn ⊗ • • • ⊗ sgn ∈ Irr(G), thus χ * = χ ⊗ sgn (9) = (χ 1 ⊗ • • • ⊗ χ r ) ⊗ (sgn ⊗ • • • ⊗ sgn) = (χ 1 ⊗ sgn) ⊗ • • • ⊗ (χ r ⊗ sgn) = χ * 1 ⊗ • • • ⊗ χ * r . In particular χ = χ * ⇐⇒ χ j = χ * j for all 1 ≤ j ≤ r. ( 10 
) Suppose χ = χ * . Write N = G + 1 × • • • × G + r .
Then N is a normal subgroup of G. For ǫ = (ǫ 1 , . . . , ǫ r ) ∈ {-1, 1} r , we set

χ ǫ = χ ǫ1 1 ⊗ • • • ⊗ χ ǫr r . Consider a constituent φ of Res G N (χ). There is α = (α 1 , . . . , α r ) ∈ {-1, 1} r such that φ = χ α . Furthermore, x φ = χ + 1 ⊗ χ + 2 ⊗ • • • ⊗ χ + r , where x = αj =-1 σ j . It follows that the G-orbit of φ is O = {χ ǫ | ǫ ∈ {-1, 1} r },
and Clifford theory gives

Res G N (χ) = ǫ∈{-1,1} r χ ǫ .
On the other hand, N is contained in

G + , thus χ + 1 ⊗χ + 2 ⊗• • •⊗χ +
r is a constituent of the restriction to N of either χ + or χ -. Without loss of generality, we choose it to be a constituent of the restriction of χ + . Now, for η ∈ {-1, 1}, we set

R η = {(ǫ 1 , . . . , ǫ r ) ∈ {-1, 1} r | ǫ 1 • • • ǫ r = η} and O η = {χ ǫ | ǫ ∈ R η }.
Let (ǫ 1 , . . . , ǫ r ) ∈ R + . Define x = ǫj=-1 σ j . Since the number of 1 ≤ j ≤ r with ǫ j = -1 is even, we deduce that x ∈ G + and x (χ

+ 1 ⊗χ + 2 ⊗• • •⊗χ + r ) = χ ǫ1 1 ⊗• • •⊗χ ǫr r .
In particular, the characters of O + lie in the same G + -orbit. By Clifford theory, O decomposes into two G + -orbits of the same size. Since

|O + | = |R + | = |R -| = |O -|,
and O + ⊔ O -= O, we deduce that O + and O -are the two G + -orbits of O. Again, by Clifford theory, we obtain that

Res G + N (χ η ) = ǫ∈R η χ ǫ . ( 11 
) Remark 3.1. Let g = g 1 • • • g r ∈ G + with g j ∈ G j for 1 ≤ j ≤ r.
Then g lies in a split class of G if and only if g j lies in a split class of G j for all 1 ≤ j ≤ r. Indeed, g lies in a split class of G if and only if C G (g) = C G+ (g). Assume some g j does not belong to a split class of G j . If

g j / ∈ G + j , then g j ∈ C G (g)\ C G + (g). If g j ∈ G + j , then there is x ∈ C Gj (g j )\ C G + j (g j ), and x = 1 • • • 1x1 • • • 1 ∈ C G (g)\ C G + (g).
Conversely, suppose that g j lies in a split class of G j for all 1 ≤ j ≤ r. Then

C Gj (g j ) = C G + j (g j ), so that C G (g) = C G1 (g 1 ) • • • C Gr (g r ) = C G + 1 (g 1 ) • • • C G + r (g r ) = C N (g) ≤ C G + (g) ≤ C G (g), and C G (g) = C G + (g), as required. Proposition 3.2. Write G = G 1 × • • • × G r ⊆ S n
as above. Let χ ∈ Irr(G) be such that χ = χ * , and let χ + j and χ - j be as above. For f ∈ G |G| such that f χ = χ, with the notation (8), we have

ε(χ, f ) = r j=1 ε(χ j , f ).
Proof. Let η ∈ {-1, 1}. First, we remark that either f χ η = χ η or f χ η = χ -η because f fixes χ. So, the set O is f -stable, and f acts on {O + , O -}. Furthermore, f χ η = χ η if and only if f (O η ) = O η . However, we have f

(O + ) = O + if and only if f (χ + 1 ⊗ χ + 2 ⊗ • • • ⊗ χ + r ) ∈ O + if
and only if the number of 1 ≤ j ≤ r such that χ + j are not fixed by f is even. The result follows. Note that a and b 2 are subgroups of Y + . By an order argument, we obtain that Y + = a ⋊ b 2 . By Clifford theory, the characters ξ j and ξ p-1-j for 0 ≤ j ≤ p * -1 restrict to the same linear character of Y + , also denoted by ξ j , and ξ p * splits into two irreducible characters ξ + p * and ξ - p * of degree (p -1)/2. Now, we will specify the values of ξ + p * and ξ - p * . For every 0 ≤ j ≤ p -1, set α j : a → C * , a k → ω jk p . Write u for the integer such that bab -1 = a u . Since for all 0

≤ j ≤ p -1, 0 ≤ k ≤ p -1, and 0 ≤ l ≤ p -2 b l α j (a k ) = α j (a u l k ) = ω u l kj p = α u l j (a k ),
we deduce that the b 2 -orbits on Irr( a ) are {α 0 }, {α j | j ∈ S} and {α j | j ∈ S}, where S is the set of square elements of (Z/(p -1)Z) × , and S the non-squares. Then by Clifford theory with respect to the normal subgroup a of Y + , we can choose the labels such that

Res Y + a (ξ + p * ) = j∈S α j and Res Y + a (ξ - p * ) = j∈S α j , (12) 
and the inertial subgroup in Y + of α j with j = 0 is a , hence ξ + p * and ξ - p * are the induced characters to Y + of ξ j with j ∈ S and j ∈ S, respectively. Thus, ξ ± p * vanishes outside a , and using [START_REF] Navarro | Characters and blocks of finite groups[END_REF] and [4, Thm. 1 p.75], we obtain

(ξ + p * -ξ - p * )(a) = j∈S α j (a) - j∈S α j (a) = p j=1 j p ω j p = i (p-1)/2 √ p, (13) 
where j p is the Legendre symbol and i is a complex square root of -1. This in particular proves that Y has only one split class, with representative a. We write a + = a, and a -∈ a for an element conjugate to a in Y but not in Y + .

Let k ≥ 1 be an integer. By Remark 3.1, the group Y k has only one split class with representative a = (a, a, . . . , a). Furthermore, Section §3.1 implies that Y k has only one sgn-stable character

ξ p * (k) = ξ p * ⊗ • • • ⊗ ξ p * , where p * (k) = ((p -1)/2, . . . , (p -1)/2) ∈ I k . (14) 
Set α = ξ + p * (a) and β = ξ - p * (a), and for ǫ ∈ {-1, 1} k , denote by n(ǫ) the number of 1 ≤ j ≤ k such that ǫ j = -1. Now, Equation [START_REF] Nath | The Navarro conjecture for the alternating groups, p = 2[END_REF] gives

(ξ + p * (k) -ξ - p * (k) )(a) = ǫ∈R + χǫ(a) - ǫ∈R - χǫ(a) = 0≤2j≤k n(ǫ)=2j α 2j β k-2j - 0<2j+1≤k n(ǫ)=2j+1 α 2j+1 β k-2j-1 = 0≤2j≤k k 2j (-1) 2j α 2j β k-2j + 0<2j+1≤k k 2j + 1 (-1) 2j+1 α 2j+1 β k-2j-1 = k j=0 k j (-1) j α j β k-j = (α -β) k
by Newton's binomial formula. Finally we deduce from ( 13) that

(ξ + p * (k) -ξ - p * (k) )(a) = i k(p-1)/2 p k . ( 15 
) 3.3. Irreducible characters of (Y k ≀ S w ) + .
Let k and w be two positive integers.

In this section, we set

N = Y k ≀ S w and M = (Y k ) w .
For j = (j 0 , . . . , j k-1 ) ∈ I k , define

π p (j) = j k-1 + j k-2 p + • • • + j 0 p k-1 .
By the uniqueness of the p-adic expansion of a positive integer, we note that the map π p : I k → {0, . . . , p k -1} is a bijection.

We now generalize the Equation ( 14) defining an involution * on I k , by setting

j * = (p -1 -j 0 , . . . , p -1 -j k-1 ) ∈ I k . Lemma 3.3. For j ∈ I k , one has π p (j * ) = p k -1 -π p (j) and ξ * j = ξ j * .
Proof. We have

π p (j * ) = (p -1 -j k-1 ) + (p -1 -j k-2 )p + • • • + (p -1 -j 0 )p k-1 = (p -1)(1 + p + • • • + p k-1 ) -π p (j) = p k -1 -π p (j).
We follow the convention of Remark 2.1 to label Irr(N ). Moreover, for any λ = (λ 0 , . . . , λ p k -1 ) ∈ MP(p k , w), define

λ * = (λ * p k -1 , λ * p k -2 , . . . , λ * 1 , λ * 0 ) ∈ MP(p k , w),
where λ * denotes the conjugate partition of λ. To simplify the notation (7), we set

ψ λ,k = ψ λ . Lemma 3.4. If j ∈ I k and λ = (λ j ; j ∈ I k ) ∈ MP(p k , w), then ψ * λ = ψ λ * .
Proof. Let g = j∈I k (y j ; σ j ) ∈ N k,λ . Then g = j∈I k τ ∈C(σj) (y j,τ , τ ), sgn(g) =

j∈I k τ ∈C(σj)
sgn(y j,τ ) sgn(τ ), because sgn is a group homomorphism, and sgn(y j,τ ) = sgn(c((y j ; σ j ), τ )). Hence

(E(ξ λ )χ λ ) * (g) = sgn(g)E(ξ λ )(g)χ λ (g) = sgn(g) j∈I k τ ∈C(σj) ξ j (c((y j ; σ j ), τ ))χ λ (σ) = sgn(σ) j∈I k τ ∈C(σj)
sgn(c((y j ; σ j ), τ ))ξ j (c((y j ; σ j ), τ ))χ λ (σ)

= sgn(σ)

j∈I k τ ∈C(σj) ξ * j (c((y j ; σ j ), τ ))χ λ (σ) = sgn(σ) j∈I k τ ∈C(σj) ξ j * (c((y j ; σ j ), τ ))χ λ (σ) (by Lemma 3.3) = j∈I k τ ∈C(σj ) ξ j * (c((y j ; σ j ), τ ))χ * λ (σ),
where σ = σ j .

Let w λ ∈ S w be the permutation that sends the support of λ j to that of λ * j * . So, S λ * = w λ S λ , and the decomposition of w λ g with respect to N k,λ * is

w λ g = j∈I k
( w λ y j ; w λ τ j ), and since c((y j ; σ j ), τ ) = c(( w λ y j ; w λ σ j ), w λ τ ), we deduce that

w λ E(ξ λ * )(g) = j∈I k τ ∈C(σj) ξ j * (c(( w λ y j ; w λ σ j ), w λ τ )) = j∈I k τ ∈C(σj) ξ j * (c((y j ; σ j ), τ )). Since w λ χ λ * = χ * λ , we obtain (E(ξ λ )χ λ ) * = w λ (E(ξ λ * )χ λ * ). (16) 
It follows that

ψ * λ = sgn Ind N N k,λ (E(ξ λ )χ λ ) = Ind N N k,λ (sgn E(ξ λ )χ λ ) = Ind N N k,λ (E(ξ λ )χ λ ) * = Ind N w -1 λ N k,λ * w λ w λ (E(ξ λ * )χ λ * ) = Ind N N k,λ * (E(ξ λ * )χ λ * ) = ψ λ * , as required.
Lemma 3.5. Let G be a group, and H and K be subgroups of G. Let x ∈ G be such that x normalizes H and K, and

H ∩ x = K ∩ x = 1. Let t ∈ N K (H).
For every g ∈ tx , write g = g t g x for unique g t ∈ K and g x ∈ x . Assume there is a representation ρ : H → GL(V ) that extends to a representation ρ :

H ⋊ x → GL(V ). If ρ( gt h) = ρ(h) for all h ∈ H and g ∈ tx , then the map ϕ : H ⋊ tx → GL(V ), hg → ρ(hg x ) is a representation of H ⋊ tx .
Proof. First, we remark that if g = tx , then there is an integer j such that g = (tx

) j = t x t • • • x j-1 tx j , so g t = t x t • • • x j-1 t ∈ K and g x = x j because x normalizes K. Furthermore, this expression is unique because K ∩ x = 1. Note also that if g, g ′ ∈ tx , then (gg ′ ) x = g x g ′ x . Now, for h, h ′ ∈ H and g, g ′ ∈ tx , we have hgh ′ g ′ = h g h ′ gg ′ = h g h ′ (gg ′ ) t g x g ′ x . Thus, ϕ(hgh ′ g ′ ) = ρ(h g h ′ g x g ′ x ) = ρ(h)ρ( gt ( gx h ′ )) ρ(g x g ′ x ) = ρ(h)ρ( gx h ′ )ρ(g x g ′ x ) = ρ(h gx h ′ g x g ′ x ) = ρ(hg x h ′ g ′ x ) = ρ(hg x ) ρ(h ′ g ′ x ) = ϕ(hg)ϕ(h ′ g ′ ), as required. A multipartition λ = (λ j ; j ∈ I k ) ∈ MP(p k , w) is called symmetric if λ * = λ.
We denote by SP(p k , w) the set of symmetric multipartitions of MP(p k , w). Let c = (c j ∈ N; j ∈ I k ) be such that j c j = w, and c j = c j * for all j ∈ I k . Define

P c = {λ ∈ SP(p k , w) | ∀j ∈ I k , |λ j | = c j }.
For any λ ∈ P c , the characters ξ λ and their inertial subgroup N k,λ depend only on c. We write ξ c and N c in the following.

Proposition 3.6. Let λ ∈ SP(p k , w) be such that λ p * (k) = ∅. If f ∈ K n!/2 , then ε(ψ λ , f ) = 1. Furthermore, ε(ψ λ , σ n!/2 ) = (-1) (p-1)w 4
.

Proof. Let c = (c j ; j ∈ I k ) be such that c p * (k) = 0. Furthermore, since λ is a symmetric multipartition, c j = c j * and it follows that

w = {j,j * }, j =p * (k) (c j + c j * ) = 2 {j,j * }, j =p * (k) c j ,
hence w is even. By Clifford theory with respect to the normal subgroup M of N , the characters ψ λ for λ ∈ P c are the constituents of Ind N M (ξ c ). Write ϑ c for the restriction of ξ c to M + . Since ξ c is not sgn-stable, we have ϑ c ∈ Irr(M + ) by Clifford theory with respect to M + ✂ M . Furthermore, Mackey's formula gives

Res N N + Ind N M (ξ c ) = Ind N + M + (ϑ c ).
Hence, the irreducible characters ψ + λ and ψ - λ for λ ∈ P c appear in the Clifford theory with respect to M + ✂ N + associated to the character ϑ c . Denote by T c the inertial subgroup of ϑ c with respect to M + ✂ N + .

Let λ ∈ P c . The character ϑ c is M -stable, thus

Ind G + M + (ϑ c ), ψ + λ = Ind G + M + (ϑ c ), ψ - λ .
We also have

Ind M M + (ϑ c ) = ξ c + ξ * c
, and the last two characters are N -conjugate, in particular,

Ind N M (ξ c ) = Ind N M (ξ * c
). Now, we deduce from Frobenius reciprocity that

Ind N + M + (ϑ c ), ψ + λ = 1 2 Ind N + M + (ϑ c ), ψ + λ + ψ - λ = 1 2 Ind N + M + (ϑ c ), Res N N + (ψ λ ) = 1 2 Ind N M + (ϑ c ), ψ λ = 1 2 Ind N M Ind M M + (ϑ c ), ψ λ = 1 2 Ind N M (ξ c + ξ * c ), ψ λ = 1 2 2 Ind N M (ξ c ), ψ λ = Ind N M (ξ c
), ψ λ . Let t and t ′ be the number of N -conjugate characters of ξ c and of N + -conjugate characters of ϑ c , respectively. Then, by Clifford theory, if e = Ind N M (ξ c ), ψ c , then

ψ λ (1) = etξ c (1) ψ λ (1) + = et ′ ϑ c (1) 
.

Hence, 2t ′ = t because ϑ c (1) = ξ c (1) and 2ψ λ (1) + = ψ λ (1). Note that N + c ≤ T c and that N/N c ≃ N + /N + c , and 
t = |N | |N c | = |N + | |N + c | and t ′ = |N + | |T c | .
Then T c is an extension of degree 2 of N + c . Since λ is symmetric and λ p * (k) = ∅, the permutation w λ defined in the proof of Lemma 3.4 is an involution that exchanges the supports of λ j and λ j * for all j ∈ I k . We remark that w λ is the same element for any λ ∈ P c , we will denote it by w c . Denote by θ λ the restriction of

E(ξ λ )χ λ to N + λ,c which is irreducible because E(ξ λ )χ λ = (E(ξ λ )χ λ ) * . Then for all g ∈ N + , θ λ (g) = E(ξ λ )χ λ (g) = (E(ξ λ )χ λ ) * (g) = wc (E(ξ λ )χ λ )(g) = wc θ λ (g) (17) 
by Equation [START_REF] Ruhstorfer | The Navarro refinement of the McKay conjecture for finite groups of Lie type in defining characteristic[END_REF]. Let h ∈ N c \N + c . We set t c = w c if w c ∈ N + , and t c = hw c otherwise. We remark that

sgn(w c ) = (-1) w/2 . ( 18 
)
Now, we define µ as follows. For any j ∈ I k such that π p (j) < (p k -1)/2, set µ j = (c j ) and µ j * = (1 cj ), and µ p * (k) = 0. So, µ ∈ P c , and Res Nc M (θ µ ) = ξ c . In particular, Equation [START_REF] Turull | Above the Glauberman correspondence[END_REF] gives

T c = N + c , t c .
Since T c is a cyclic extension of N + c , by [7, 11.22] we can extend θ µ to a character θ µ of T c . Thus, by Gallagher's theorem (see [7, 6.17]), the constituents of

Ind N + M + (ϑ c ) are ρ α = Ind N + Tc ( θ µ ⊗ α), ( 19 
)
where α is any irreducible characters of

T c /M + lifted through T c → T c /M + . If we write H c = N c , t c , then H + c = T c and H c /M ≃ T c /M + .
However, if we choose h ∈ M \M + , then t 2 c ∈ M and the image of t c in H c /M has order 2, and can be identified with w c . It follows that

H c /M ≃ S c ⋊ w c . Set L = S c ⋊ w c . We now will prove that the irreducible characters of L are integer-valued. Let φ ∈ Irr(S c ). If φ is not L-stable, then φ = Ind L Sc (φ) ∈ Irr(L) and φ(g) = φ(g) + wc φ(g) ∈ Z if g ∈ S c and 0 otherwise.
Assume φ is L-stable. Then φ extends to L (because L is a cyclic extension of S c ) and has exactly two extensions φ and φ ⊗ ε, where ε is the lift of the non-trivial character of w c . Now, for j ∈ I k such that π p (j) < (p k -1)/2, write τ j for the involution that exchanges the supports of c j and c j * . One has w c = τ j . Since c j = c j * , the group L can be viewed as a subgroup of

L ′ = πp(j)<(p k -1)/2 S cj ≀ τ j .
Since φ is L-stable, we must have φ j = φ j * , and φ is τ j stable for all j. Thus, φ is L ′ -stable and can be extend to L ′ because L ′ is a direct product of wreath products isomorphic to S cj ≀ S 2 . Denote by E(φ) the James-Kerber extension as above. By ( 6), E(φ) takes integer values. However, Res L ′ L (E(φ)) is either φ or φ⊗ ε. Thus, φ and φ ⊗ ε also take integer values.

The argument above implies that any α ∈ Irr(T c /M + ) takes integer values. Let f ∈ H n!/2 . By Proposition 2.3, θ µ is f -fixed. The two extensions of θ µ to T c are θ µ and θ µ ⊗ ε. Thus, either f ( θ µ ) = θ µ or f ( θ µ ) = θ µ ⊗ ε. Then (19) and Lemma 2.2 give f (ρ α ) = ρ α in the first case, and f (ρ α ) = ρ α⊗ε in the second case.

On the other hand, f

( θ µ ) = θ µ⊗ε if and only if f ( θ µ (gt c )) = -θ µ (gt c ) for all g ∈ N + c if and only if there exists g 0 ∈ N + c such that θ µ (g 0 t c ) = 0 and f ( θ µ (g 0 t c )) = -θ µ (g 0 t c ). (20) 
We will use this criterion to understand the action of f on

θ µ . Set H = ((Y k ) + ) w and G = H ⋊ w c . For j such that π p (j) < (p k -1)/2, define Y cj = ((Y k ) + ) 2cj
≤ H corresponding to the supports of S cj and S c j * . Then G can be viewed as a subgroup of

G ′ = πp(j)<(p k -1)/2 Y cj ≀ τ j ,
where τ j is defined as before.

The character ξ c is not sgn-stable. It takes non-zero values outside M + , hence outside H, and the restriction η c of ξ c to H is irreducible by Clifford theory with respect to H ✂ M + . Moreover, if we write

η j = Res Y k (Y k ) + (ξ j ), then η j * = η j . In particular, η c = πp(j)<(p k -1)/2 η cj j ⊗ η cj j .
It follows that η c extends to G + , and the James-Kerber extension E(η c ) has integer values. Hence Res G ′ G (E(η c )) takes integer values, and by Gallagher's theorem, the extension of η c to G takes a non-zero and integer value on w c . Suppose w ≡ 0 mod 4. Then by ( 18), we take t c = w c . By the previous discussion,

θ c (w c ) = ± Res G ′ G (E(η c ))(w c ) ∈ Z is a non-zero integer.
We deduce from criterion (20) that the characters of N + are fixed by all f ∈ H n!/2 . Suppose w ≡ 2 mod 4. Let y ∈ M . We label the components of y as follows. For j ∈ I k such that c j = 0, write y j = (y j,1 , . . . , y j,cj ) ∈ (Y k ) cj , where y j,i = (y j1,i , . . . , y j k ,i ) ∈ Y k for all 1 ≤ i ≤ c j . One has

ξ c (y) = j ξ cj j (y j ).
Let u be such that c u = 0. So u = p * (k), and there is u r = 0 with r = (p-1)/2. Let h be the element of M that is trivial on any component of [START_REF] Turull | Strengthening the McKay conjecture to include local fields and local Schur indices[END_REF] we take t c = hw c . Remark that w c normalizes H and M + , w c ∩ H = w c ∩ M + = 1, and h ∈ M + normalizes H.

Y kw except h ur ,1 = b. Set h ′ = wc h, which is the element of M all of whose components are trivial except h ′ u * r ,1 = b. Since h / ∈ N + , by
For any 1 ≤ j ≤ p, denote by X j a representation of Y with character ξ j . Then

R c = j (X j1 ⊗ • • • ⊗ X j k ) cj
is a representation of M with character ξ c . For any positive integer l,

t 2l c = h l h ′l and t 2l+1 c = h l+1 h ′l w c .
Then t c has order 2(p -1) and if g ∈ t c , then g h (see the notation of Lemma 3.5 with t = h) has possibly non zero values only on the components of Y kw labeled by (u r , 1) and (u * r , 1). However, for any x ∈ Y , we have x X ur ,1 = X ur ,1 and x X u * r ,1 = X u * r ,1 because these two representations have dimension 1. Hence, if we denote by ρ c the restriction of R c to H, then g h ρ c = ρ c for all g ∈ t c . Thus, by Lemma 3.5, we can extend ρ c to Q = H ⋊ t c , and the character η c of this extension takes the same values as E(η c ). Moreover, by Gallagher's theorem, every extension of η c to Q is of the form η c ⊗ β, where β is an irreducible character of t c . The irreducible characters of Irr( t c ) are

β j : t c → C * for 0 ≤ j ≤ 2p -3 defined by β j (t l c ) = ω jl 2(p-1) . Since Res Tc Q ( θ c ) is such an extension, there is 0 ≤ s ≤ 2p -3 such that Res Tc Q ( θ c ) = ρ c ⊗ β s . (21) 
We notice that ρ c (t l c ) is equal to E(η c )(1) if l is even, and to E(η c )(t c ) if l is odd. In either case, [START_REF] Isaacs | Characters of solvable and symplectic groups[END_REF] implies that theses values are positive integers.

Recall that t 2 c = hh ′ is the element whose every component is trivial except those labeled (u r , 1) and (u * r , 1) taking the value b. By (6), we have

θ c (t 2 c ) = θ c (t 2 c ) = -ω r p-1 (b) 2 θ c (1) = -ω 2r p-1 η c (1). (22) 
Using (21), we also have

θ c (t 2 c ) = Res Tc Q ( θ c )(t 2 c ) = ρ c (t 2 c )β s (t 2 c ) = ω 2s 2(p-1) η c (1) = ω s p-1 η c (1). Comparing with (22), we obtain ω s-2r p-1 = -1. However, -1 ∈ ω 2 p-1 = ω (p-1)/2
if and only if (p -1)/2 is even. Hence, if p ≡ 1 mod 4, s has to be even, and if p ≡ 3 mod 4, s has to be odd.

On the other hand, (21) gives

θ c (t c ) = E(η c )(t c )β s (t c ) = E(η c )(t c )ω s 2(p-1) . ( 23 
) Since E(η c )(t c
) is fixed by any f ∈ H n!/2 because η c is, and ω s 2(p-1) is fixed by any f ∈ K n!/2 , we deduce from (20) that the characters ψ ± λ are fixed by f ∈ K n!/2 for all λ ∈ P c .

Finally, we remark that

ω p-1 2(p-1) = ω 2 = -1. Thus, ω p 2(p-1) = -ω 2(p-1)
, and

ω 2p 2(p-1) = ω 2 2(p-1) . Then by (23), σ n!/2 fixes θ c (t c ) if s is even, that is when p ≡ 1 mod 4 and σ n!/2 ( θ c (t c )) = -θ c (t c )
if s is odd, that is p ≡ 3 mod 4. The result follows from the criterion (20). [START_REF] James | The Representation Theory of the Symmetric Group[END_REF], and d is the number of diagonal hooks in the Young diagram of λ p * (k) . Moreover,

Since √ p is a root of the polynomial x 2 -p ∈ Q[x], we have f ( √ p) = ± √ p for f ∈ K n! . Denote by ǫ f ∈ {-1, 1} the sign such that f ( √ p) = ǫ f √ p. Proposition 3.7. Let λ ∈ SP(p k , w) be such that λ j = ∅ for all j = p * (k). If f ∈ K n! , then ε(ψ λ , f ) = ǫ kd f • ε(χ λ p * (k) , f ), where ε(χ λ p * (k) , f ) is defined in
ε(ψ λ , σ n!/2 ) = (-1) dk(p-1)/2 • ε(χ λ p * (k) , σ n!/2 ).
Proof. As in the proof of the Proposition 3.7, we consider the group

H = ((Y k ) + ) w . Write ξ = ξ w p * (k) ∈ Irr(M )
. This is the unique split character of M by (10) and §3.2. Denote by ξ + the constituent of

Res M M + (ξ) such that (ξ + p * (k) ) w ∈ Irr(H) is a constituent of Res M + H (ξ + ).
First, we remark that the subgroup U = M + ⋊ A w is a normal subgroup of N + because it has index 2. Moreover, the inertial subgroup in U of ξ + and ξ -is U . Let s ∈ N + \U . Then s = (h; τ ) with h ∈ M \M + and τ ∈ S w \A w , and s ξ + = ξ -. It follows that

s Ind U M + (ξ + ) = Ind U M + (ξ -), because M + ✂ N + and U ✂ N + . Furthermore, Ind U M + (ξ + ) and Ind U M + (ξ -) have no constituents in common by Clifford theory with respect to M + ✂ U . It follows that if χ is a constituent of Ind U M + (ξ + ), then s χ = χ. Hence, Ind N + U (χ) is irreducible
by Clifford theory with respect to U ✂ N + . By the transitivity of induction and Mackey's formula,

Res N N + Ind N M (ξ) = Res N N + Ind N M Ind M M + (ξ + ) = Res N N + Ind N M + (ξ + ) = Ind N + M + (ξ + ). Hence, ψ + λ and ψ - λ restrict to U into two irreducible components. We write ψ ± λ,±
for the constituent of Res N + U (ψ ± λ ) which belongs to Ind U M + (ξ ± ). Now we show how to extend ξ + and ξ -to U . Consider the wreath product V = H ⋊ A w . Denote by ν + = (ξ + p * (k) ) w ∈ Irr(H) and ν -= s ν + . By Clifford theory with respect to H ✂ M + and the previous choice of labeling, we have

Ind M + H (ν + ) = ξ + and Ind M + H (ν -) = ξ -. Write E(ν +
) for the James-Kerber extension of ν + to V . Therefore, Mackey's formula gives

Res U M + Ind U V (E(ν + )) = Ind M + H (ν + ) = ξ + . Thus, V + = Ind U V (E(ν + )
) is an extension of ξ + to U . By Gallagher's theorem [7, Corollary 6.17], the constituents of

Ind U M + (ξ + ) are of the form ζ µ,+ = V + ⊗ χ µ if µ = µ * and ζ ± µ,+ = V + ⊗ χ ± µ if µ = µ * . Here, χ µ and χ ± µ are the irreducible characters of A w . If we set V -= s V + , then V + = V -because it is a constituent of Ind U M + (ξ -). Thus, s ψ ± λ,± = s (V ± ⊗ χ ± λ p * (k) ) = h (V ± ) ⊗ τ (χ ± λ p * (k) ) = V ∓ ⊗ χ ∓ λ p * (k) = ψ ∓ λ,∓ , and 
Res N + U (ψ + λ ) = ψ + λ,+ + ψ - λ,-and Res N + U (ψ - λ ) = ψ - λ,+ + ψ + λ,-. (24) 
Consider the element g = (u, π) such that the cycle lengths of π are the diagonal hook lengths of λ p * (k) , and u is such that every cycle of g has cyclic product equal to a. Then g ∈ U and

V + (g) = Ind U V (E(ν + ))(g) = t∈[U/V ] t g∈V E(ν + )( t g) = t∈[U/V ] t g∈V γ∈C(π)
ν + (c( t g, γ)).

However, U/V ≃ M + /H. Hence, we can take for transversal of U mod V the set

[U/V ] = {t α = (b α1 , . . . , b αw ) | α ∈ {0, 1} w , α 1 + • • • + α w ≡ 0 (mod 2)}. Moreover, tα g ∈ U if and only if b αj u j b -α π -1 (j) ∈ (Y k ) + for all 1 ≤ j ≤ w, if and only if b αj b -α π -1 (j) ∈ (Y k ) + (because b α j u j ∈ (Y k ) + ) if and only if b αj -α π -1 (j) ∈ (Y k ) + , i.e. α j = α π -1 (j)
, that is all α j are equal on the cycles of π. Denote by T the set of elements of [U/V ] that satisfy this property. By [8, 4.2.6], for any γ ∈ C(π) and

t α ∈ T , c( tα g, γ) = b αγ c(g, γ) = b αγ a. Thus V + (g) = tα∈T γ∈C(π) ν + ( b αγ a).
Let γ 0 be the cycle of C(π) whose support contains 1, and define y ∈ M such that

y i = b if i ∈ supp(γ 0 ) and 1 otherwise. Since |γ 0 | is odd, y ∈ M \M + . Using that V -(g) = V + ( y g
), the same computation as above shows that

V -(g) = tα∈T γ∈C(π) ν + ( b αγ a),
where T is the set of t α such that the α i are constant on the cycle of π and

α 1 + • • • + α w ≡ 1 (mod 2)
. Since the lengths of the cycles of π are odd, we have

w j=1 α j ≡ γ∈C(π) α γ (mod 2)
for every t α ∈ T ∪ T . Therefore, by a computation similar to that proving [START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF], we obtain

(V + -V -)(g) = i dk(p-1)/2 p dk , (25) 
where d = |C(π)|. By [8, 2.5.13], we also have

(χ + λ p * (k) -χ - λ p * (k) )(π) = 0. ( 26 
) Let f ∈ G n!/2 . By (24), if f ψ ± λ,± = ψ ± λ,± or f ψ ± λ,± = ψ ∓ λ,∓ , then ε(ψ λ,f ) = 1, and if f ψ ± λ,± = ψ ∓ λ,± , then ε(ψ λ,f ) = -1. However, ψ ± λ,± (g) = V ± (g)χ ± λ p * (k) (π) (27) 
is non-zero, and

f (ψ ± λ,± (g)) = f (V ± (g)) • f (χ ± λ p * (k)
). Thus, by equalities (25),( 26) and ( 27), we have 

f ψ ± λ,± = ψ ∓ λ,± if and only if f (V ± (g)) = V ± (g) and f (χ ± λ p * (k) (π)) = χ ∓ λ p * (k) (π) or f (V ± (g)) = V ∓ (g) and f (χ ± λ p * (k) (π)) = χ ± λ p * (k) (π). Now, if f ∈ K n!/2 , then f (i) = i. Note also that σ n!/2 (i) = (-1) (p-1)/2 i
∈ G n!/2 , ε(ψ λ , f ) = ε(ψ λ ′ , f ) • ε(ψ λ ′′ , f ). Proof. Let λ ∈ SP(p k , w). Assume λ ′ = ∅ and λ ′′ = ∅. Set c = (|λ j |, j ∈ I k ), c ′ = (0, . . . , 0, c p * (k) ,
Res N N + Ind N M (ξ c ) = Ind N + M + (ϑ c
). Thus, ψ + λ and ψ - λ appear in the Clifford theory attached to ϑ c with respect to M + ✂ N + . Moreover, by an argument similar to the one in the proof of Proposition 3.6, the inertial group of ϑ c is an extension of degree 2 of N + c . Let t c ′′ be an element of N + c ′′ as in the proof of Proposition 3.6, and

H c ′′ = N c ′′ , t c ′′ . Consider H c = N w ′ × H c ′′ . ( 28 
)
Then the elements of H + c = (N w ′ ×N c ′′ ) + , t c ′′ fix ϑ c and this group is an extension of degree 2 of (N w ′ × N c ′′ ) + = N c . Thus, the inertial subgroup of ϑ c is H + c .

On the other hand, E(ξ c χ λ ) is not H c -stable. Hence, ψ λ = Ind Hc Nc (E(ξ c )χ λ ) is irreducible and by Mackey's formula

Res Hc H + c ( ψ λ ) = Ind H + c N + c (θ λ ) = θ + λ + θ - λ ,
where θ λ is the restriction of E(ξ c )χ λ to N + c . Again, by Mackey's formula,

ψ + λ + ψ - λ = Res N N + (ψ λ ) (29) = Res N N + Ind N Nc (E(ξ c )χ λ ) = Ind N + N + c (θ λ ) = Ind N + N + c (θ + λ ) + Ind N + N + c (θ - λ ).
In particular, we can choose the label such that

ψ η λ = Ind N + N + c (θ η λ ) for η ∈ {-1, 1}. Let f ∈ H n!/2 . By Lemma 2.2, one has ε(ψ λ , f ) = ε( ψ λ , f ). ( 30 
) Note that E(ξ c )χ λ = E(ξ c ′ )χ λ ′ ⊗ E(ξ c ′′ )χ λ ′′ , hence ψ λ = ψ λ ′ ⊗ ψ λ ′′ , (31) 
where

ψ λ ′′ = Ind H c ′′ N c ′′ (E(ξ c ′′ )χ λ ′′ ) ∈ Irr(H c ′′ ).
We remark that the computations (29) and (30) applied to N k,w ′′ give

ε(ψ λ ′′ , f ) = ε( ψ λ ′′ , f ). (32) 
Now, E(ξ c )χ λ is f -stable, thus ψ λ also is by Lemma 2.2. Applying Proposition 3.2 with respect to the direct product (28), and using (31) and (32) we obtain that

ε( ψ λ , f ) = ε(ψ λ ′ , f ) • ε( ψ λ ′′ , f ) = ε(ψ λ ′ , f ) • ε(ψ λ ′′ , f ). (33) 
The result follows from (30) and (33).

Alternating groups: The global case

Let λ = λ * . Denote by C λ the conjugacy classes of S n of type D(λ), that is, the lengths of the elements of D(λ) are the cycle lengths of any element x ∈ C λ . Recall that the classes C λ of S n split into two classes C + λ and C - λ of A n , and that the restriction to A n of the irreducible character χ λ splits into two constituents χ + λ and χ - λ that take the same (integer) value on every class except on C ± λ , and by [8, 2.5.13] the labeling can be chosen such that for all η, ν ∈ {-1, 1}

χ η λ (x ν λ ) = 1 2   (-1) (n-d λ )/2 + ηνi (n-d λ )/2 h∈D(λ) h   , (34) 
where

x ν λ is a representative of C ν λ and d λ = |D(λ)|. For any field automorphism f , if α is a root of x 2 -q ∈ Q[x], then f (α) is also a root of x 2 -q. We denote by ε(α, f ) ∈ {-1, 1} the sign such that f (α) = ε(α, f )α. ( 35 
)
Note that when λ = λ * and f ∈ H n!/2 ,

ε(χ λ , f ) = ε   i (n-d λ )/2 h∈D(λ) h, f   . (36) 
4.1. Action of Galois automorphisms on square roots. Let m be an odd number. For any integer r, we write r m for the Jacobi symbol. Proposition 4.1. Let m be an odd number, and f be a Galois automorphism. Denote by r an integer prime to m such that f (ω m ) = ω r m . Then

f ( √ m) = ε(i, f ) m-1 2 r m √ m.
Proof. Write m = p a1 1 • • • p as s for the prime factorisation of m. Define by E and F respectively the set of indices 1 ≤ j ≤ s such that p j ≡ 1 or 3 modulo 4.

Suppose m ≡ 1 mod 4. Then j∈F a j is even, and

√ m = j∈E √ p j aj •   η j∈F (i √ p j ) aj   , (37) 
where η = -1 if j∈F a j ≡ 2 mod 4 and η = 1 otherwise. Since f is a field automorphism fixing η, we deduce

ε( √ m, f ) = j∈E ε( √ p j , f ) aj • j∈F ε(i √ p j , f ) aj . (38) 
Now, if we set q j = √ p j if j ∈ E and q j = i √ p j if j ∈ F , then [4, Thm. 1] gives pj -1 t=1 t p j ω t pj = q j Furthermore, one has ω pj = ω m/pj m , so f (ω pj ) = ω r pj , and

f (q j ) = pj -1 t=1 t p j ω rt pj = r p j q j by [4, Prop. 6.3.1]. Hence, ε(q j , f ) = r p j
and the result follows from (38) and the definition of the Jacobi symbol.

Suppose that m ≡ 3 mod 4. Then j∈F a j is odd, and in the formula (37), η is now equal to i up to a sign. When the formula (38) is multiplied by ε(i, f ), the result follows.

Combinatorics of symmetric partitions.

Recall a partition λ is completely determined by the rim of its Young diagram Y (λ), a path constituted of vertical and horizontal dashes of length one. Then λ can, by the association of 0 (resp. 1) to a vertical (resp. horizontal) dash of length one, be expressed by its partition sequence Λ. This is an infinite sequence taking its values in {0, 1} and of the form 0 • • • 1, where 0 and 1 mean an infinite sequence of left-trailing and right-trailing 0s and of 1s, respectively. We refer the reader to Example 4.2. Let Λ be the partition sequence associated to λ. Denote by α and β the numbers of zeroes and ones between the leftmost 1 and the rightmost 0 coming after it when we read the sequence from the left-to-right. Then there are α + β elements in the sequence between 0 and 1. We write

l 0 l 1 l 2 l β-1 1 1 l -α 0 0 0 0 0 l -1 l -2
Λ = 0l -α l -α+1 • • • l -1 l 0 • • • l β-1 1 = (l u ) u∈Z . (39) 
In particular l -α = 1 and l β = 0. If there is no 0 after the first 1, then α = β = 0 and the sequence is 0 1 and corresponds to the empty partition. The bijection between this labeling of partition sequences and partitions can be represented graphically as in Figure 1. The partition sequence of λ is Λ = 0110010101011001. We have α = β = 7, and following the preceding convention, l 0 and l -1 are the numbers directly at the right and the left of the dash 1100101|0101100. Note that in the accompanying figure the partition sequence has been projected to the left-and-top border of the Young diagram.

Furthermore, by [15, Lemma 2.2], the partition sequence of λ * , denoted by Λ * , is obtained from Λ by reading Λ from the right to the left with 0s and 1s interchanged. In other words

Λ * = 0(1 -l β-1 )(1 -l α-2 ) • • • (1 -l -α )1 = (1 -l -u-1 ) u∈Z . ( 40 
) • • • • • • • • • 0 1 p -1 0 1 p -1 -1 p 2p -p

Figure 2. p-abacus of the empty partition

We now describe D(λ) the diagonal hooks of λ using Λ. For δ ∈ {0, 1}, write

H δ = {0 ≤ j ≤ β -1 | l j = δ} and K δ = {-α ≤ j ≤ -1 | l j = δ}. Note that if h = |H 0 |, then |H 1 | = β -h and |K 1 | = β -|H 1 | = β -(β -h) = h. Hence, |H 0 | = |K 1 |.
On the other hand, by [15, p. 9] each hook of λ corresponds to a pair (i, j) such that -α ≤ i < j ≤ β -1 with l i = 1 and l j = 0. Such a hook h (i,j) has length |j -i|. In particular, the longest hook of λ is h -α,β-1 and it has to be the first diagonal hook of λ. When we remove it from λ, we obtain a new partition with the same sequence as λ except that l -α = 0 and l β-1 = 1. Since |H 0 | = |K 1 |, when we iterate this process |H 0 | times, we obtain the empty partition. In fact, we have removed from λ all diagonal hooks one by one. Thus, the diagonal hooks of λ are labeled by H 0 (and K 1 ).

Example 4.3. In Example 4.2, we see that there are four 0s on the horizontal and four 1s on the vertical axe, corresponding to the four diagonal hooks of λ.

Let p be an odd prime. We now consider a p-abacus with p runners, labeled from 0 to p -1 from left-to-right. We choose a position on the first runner and we label it by 0. Then we label positions by integers moving left-to-right to the runner p -1, then wrapping around to runner 0 one row above. In particular, the positions on the runner 0 are labeled by • • • , -3p, -2p, -p, 0, p, 2p • • • . Now, we fill the abacus so that there is a bead at the position labeled by j if and only if l j = 0. For example, Figure 2 is the p-abacus of the empty partition.

We can also read the diagonal hooks D(λ) directly off of the p-abacus: they are parametrized by the beads labeled by a non-negative integer. More precisely, if we set l γ,j = l jp+γ (41) for all j ∈ Z, then the beads on runner γ can be interpreted as the partition sequence (l γ,j ) j∈Z of a partition λ γ .

Remark 4.4. In general, this labeling of the sequence is not compatible with that of (39). Indeed, there is no reason that there should be exactly the same number of 1s below l γ,0 as the number of 0s above it.

We define λ γ as the partition whose partition sequence can be read off the beads on runner γ. That is, the abacus position γ + mp corresponds to a so-called γposition m; that is, if λ has a bead in abacus position γ + mp then λ γ has a bead in position m on runner γ. Then Quo p (λ) is the p-quotient of λ, that is, the sequence (λ 0 , . . . , λ p-1 ). Now, for 0 ≤ γ ≤ p -1, define

X γ = {j ∈ Z | pj + γ ≥ 0 and l γ,j = 0}.
Therefore, each j ∈ X γ labels a diagonal hook of λ. Such hooks will be called diagonal hooks of λ arising from runner γ. Let Cor p (λ) be the p-core of λ, that is, the partition one obtains by removing all the p-hooks of λ. Such a partition is well-defined [8, p. 79]. Then, λ is uniquely determined by Cor p (λ) and Quo p (λ).

Let Cor (0) p (λ) = Cor p (λ). Now consider the p-tuple of p-abaci, one for each of the λ γ ∈ Quo p (λ) above. Then Cor (1) p (λ) will be a p-tuple defined to be the sequence (Cor p (λ γ )) for 0 ≤ γ ≤ p -1. This naturally induces a p 2 -tuple (Quo p (λ 0 ), • • • , Quo p (λ p-1 )), that defines Cor (2) p (λ). Iterating this process we define Cor (k) p (λ) for any non-negative integer k, and obtain at the end the p-core tower CT (λ) of λ as in (2). Then λ has four diagonal hooks corresponding to the beads in positions 0, 2, 5 and 6. We have X 0 = {0, 2}, X 1 = ∅ and X 2 = {0, 1}. By the discussion after Example 4.2, the diagonal hooks arising from the 0-runner have length 1 and 13. The ones arising from the 2-runner have length 5 and 11. The partition sequences of λ 0 , λ 1 and λ 2 are respectively 0110101, 0 1 and 0101001. Thus, λ 0 = (3, 2), λ 1 = ∅ and λ 2 = (2 2 , 1).

Suppose λ = λ * . Then Λ * = Λ, and l -α = 1l α-1 . Since, by definition, α is the number of zeroes before the leftmost 1, and β is the number of ones after the leftmost 0, this switch between 0 and 1 in each position implies that α = β. Moreover, for 0 ≤ u ≤ α -1 and δ ∈ {0, 1}, we have l u = δ if and only if l -u-1 = 1δ. Denote by φ : Z → Z, u → -u -1. We define

Y γ = {j ∈ Z | pj + γ ≤ -1 and l γ,j = 1}.
Lemma 4.6. Suppose φ is as above. Then the following hold.

(1) φ is a bijection from Z to Z.

(2) φ induces a bijection φ| H0 : H 0 → H 1 with inverse map φ| H1 :

H 1 → H 0 . (3) φ 2 = id. (4) φ induces a bijection from X γ to Y p-γ-1 .
Proof. (1) and ( 3) are immediate. For (2), note, in particular, φ and the diagonal hooks of λ are the h u,φ(u) for u ∈ H 0 of length 2u + 1. For u ∈ H 0 , we denote the corresponding diagonal hook-length by

d u = 2u + 1. ( 42 
)
To see ( 4), suppose that u = jp + γ for j ∈ Z and 0

≤ γ ≤ p -1. Then -u -1 = -jp -γ -1 = -(j + 1)p + p -1 -γ with 0 ≤ p -1 -γ ≤ p -1. Since l φ(u) = 1 if
and only if l u = 0, we have

l p-1-γ,j = 1 -l γ,-(j+1) (43) 
which is the partition sequence of the conjugate partition of λ γ .

Assume that γ = (p -1)/2. Since X p-1-γ labels the diagonal hooks of λ arising from runner (p -1γ), Y γ does too. Hence, the diagonal hooks of λ arising from the runners γ and (p -1γ) are parametrized by X γ ∪ Y γ . By (42), for x ∈ X γ and x ′ ∈ Y γ , the corresponding diagonal hook-lengths of λ are

d x = 2(xp + γ) + 1 and d x ′ = 2((-x ′ -1)p + p -1 -γ) + 1. ( 44 
)
Denote by Γ a set of representatives of {γ, p-1-γ} for {0, . . . , j, . . . , p-1}\{(p-1)/2}. By the discussion above, we have the following.

Corollary 4.7. The diagonal hooks of λ are parametrized by the elements of

X (p-1)/2 ∪ γ∈Γ (X γ ∪ Y γ ).
Assume now that λ = λ * with Cor p (λ) = ∅. Furthermore, assume that λ (p-1)/2 = ∅ where λ (p-1) 2 ∈ Quo p (λ). Let 0 ≤ γ ≤ p -1. Consider the partition sequence (l γ,j ) j∈Z as in (41). Since the p-abacus of Figure 2 is the one that we obtain after removing all the p-hooks of λ (because Cor p (λ) is empty), it follows from the construction of the p-quotient that the number of beads above j = 0 is the same as the number of empty positions under and strictly below j = 0. In particular, the sequence (l γ,j ) j∈Z is compatible with the labeling of (39), and the beads over j = 0 correspond to the diagonal hooks of λ γ and are in bijection with the diagonal hooks of λ arising from runner γ. (45)

Hence, if we set w x,x * = xx * , then

d x + d x * = 2pw x,x * . ( 46 
)
Moreover, by (4.7)

d(λ) = γ∈Γ {d x , d x * | x ∈ X γ }, where d(λ) is defined in (1)
Example 4.8. Consider the partition λ = (7 2 , 5, 4, 3, 2 2 ) in Example 4.5. We see from the 3-abacus that Cor 3 (λ) is empty. We also see that

Y 0 = {-2, -1} and Y 2 = {-1, -3}.
The bijection between Y 0 and X 2 is

-2 → φ(-2) = 2 -1 = 1 and -1 → φ(-1) = 1 -1 = 0.
Then d(λ) is given by ( 44)

{d x | x ∈ X 0 } = {d 0 , d 2 } = {1, 13} and {d x | x ∈ Y 0 } = {d -2 , d -1 } = {5, 11}.
In particular, the diagonal hooks of length 1 of λ 0 and λ 2 are associated with 1 ∈ X 0 and -1 ∈ Y 0 . Similarly, the ones of length 4 correspond to 2 ∈ X 0 and -3 ∈ Y 0 . It follows that 1 * = -1 and 2 * = -3.

4.3.

Diagonal hooks of regular partitions. Let p be an odd prime, n an integer divisible by p, and λ = λ * be a partition of n. Let n = n 1 p + n 2 p 2 + • • • + n s p s be its p-adic expansion. Write I = {0, . . . , p -1} as above, and the p-core tower CT (λ) of λ as in [START_REF] Fong | The Isaacs-Navarro conjecture for symmetric groups[END_REF]. We assume that the Cor p (λ) = ∅. We say that λ is a regular partition when c k (λ) = n k and λ p * = ∅ where p * ∈ I k for any 1 ≤ k ≤ s. On the other hand, λ is called singular whenever λ j = ∅, except possibly for j = p * (k) ∈ I k , where p * (k) is defined in Equation ( 14). For λ as above, we also define r(λ) and s(λ) the regular and singular parts (respectively) by giving their p-core towers as follows. For k ≥ 0 and j ∈ I k , if j = p * (k), then we set λ ′ j = λ j and λ ′′ j = ∅. Otherwise, if j = p * (k), then write λ ′ p * (k) = ∅ and λ ′′ p * (k) = λ p * (k) . Therefore, the p-core towers of r(λ) and s(λ) are given by

Cor (k) p (r(λ)) = {λ ′ j | j ∈ I k } and Cor (k) p (s(λ)) = {λ ′′ j | j ∈ I k } for k ≥ 0. (47) Recall p * (k) ∈ I k . Then that c k (s(λ)) = |λ p * (k) | and c k (r(λ)) = c k (λ) -c k (s(λ)) by construction. Hence, if we set n ′ = c k (r(λ))p k and n ′′ = c k (s(λ))p k , then n = n ′ + n ′′
and r(λ) and s(λ) are respectively regular and singular partitions of n ′ and n ′′ in the previous sense. Proposition 4.9. Let n be an integer with p-adic expansion n = n 1 p + n 2 p 2 + • • • + n s p s , where p is an odd prime. Let λ be a regular partition with p-core tower Cor (k) p (λ) = {λ j | j ∈ I k } for k ≥ 0. For any integer 0 ≤ i ≤ s -1, write H i for the set of diagonal hooks lengths of λ which are divisible by p i but not by p i+1 . Then the elements of H i are of the form t u,i = p i u and t * u,i = p i (w u,i pu), where u ∈ U i is an odd integer relatively prime to p, and w u,i ∈ W j is an even integer.

Proof. We proceed by induction on s ≥ 1. Suppose that s = 1. Then n = n 1 p. Note that Cor p (λ) = ∅ by assumption, thus we are in the situation described above. By (45) we set t u,0 = d x and t * u,0 = d x * , and (46) gives that t * u,0 = pw ut u,0 with w u,0 = 2w x,x * . In particular, t u,0 and t * u,0 are odd and prime to p and w u,0 is even. The result is true for s = 1.

Let s ≥ 1. Suppose that the result holds for s. Let n = n 1 p + n 2 p 2 + • • • + n s p s + n s+1 p s+1 , and λ be a partition of n that satisfies the assumption. Consider

λ ′ = λ (p-1)/2 ∈ Quo p (λ) and n ′ = |λ ′ |. One has n = p(n ′ + j =(p-1)/2 |λ j |) because Cor p (λ) = ∅, and n ′ is divisible by p because Cor p (λ ′ ) = ∅, since λ is regular. Thus, the p-adic expansion of n ′ is then of the form n ′ 1 p + • • • + n ′ h p h with h ≤ s.
By induction, the diagonal hooks of λ ′ are as required. Now, there is a bijection f between the diagonal hooks of λ divisible by p and the diagonal hooks of λ (p-1)/2 such that |f (h mm )| = p|h mm |, where h mm is a diagonal hook of λ (p-1)/2 . In particular, for 1 ≤ i ≤ s, we have

H i = f (H ′ i-1 ) where H ′ i-1
is the set of diagonal hooks of λ ′ divisible by p i-1 but not by p i . On the other hand, since Cor p (λ) = ∅, H 0 is the set of diagonal hooks arising from Quo p (λ) = (λ 0 , . . . , λ (p-3)/2 , ∅, λ (p+1)/2 , . . . , λ p-1 ), and ( 45) and ( 46) give the result.

Proposition 4.10. Let λ be a regular partition of n.

If f ∈ K n!/2 then ε(χ λ , f ) = 1. Moreover, ε(χ λ , σ n!/2 ) = (-1) (p-1)n 4
.

Proof. First, we remark that if the p-adic expansion of n is

n 1 p + • • • + n s p s then each n i is even since n i = 2 j |λ j |
, where the sum runs over j = p * (k) and j is a representative of {j, j * }. Here we use that λ is a symmetric partition and that |λ j | = |λ * j | = |λ j * |. Now, by Proposition 4.9, we have

h∈d(λ) h = s-1 i=0 u∈Ui t u,i t * u,i = s-1 i=0 u∈Ui p 2i u(w u,i p -u).
Let f be in H n!/2 . With the notation (35), we have

ε   h∈D(λ) h, f   = ε s-1 i=0 u∈Ui u(w u,i p -u), f (48) 
= s-1 i=0 ε u∈Ui u(w u,i p -u), f .
Note that u and (w u,i pu) are odd. Furthermore,

u(w u,i p -u) = 2 -u 2 ≡ 1 mod 4 if w u,i ≡ 2 mod 4, -u 2 ≡ -1 mod 4 if w u,i ≡ 0 mod 4. (49) 
We also have

n = h∈D(λ) h = s-1 i=0 p i+1 u∈Ui w u,i .
Since w u,i is even, there is an integer w ′ u,i such that w u,i = 2w ′ u,i , and 

n 2 = s-1 i=0 p i+1 u∈Ui w ′ u,i (50) 
≡ s-1 i=0 u∈Ui w ′ u,i mod 2, because p is odd. Now, write A = {w ′ u,i | 0 ≤ i ≤ s -1, u ∈ U i },
 = ε(i, f ) (p-1)(n-d λ ) 4 s-1 i=0 u∈Ui r u r w u,i p -u , (λ) h, f  
where r is such that f (ω m ) = ω r m for m = i,u u(w u,i p-u). Note that if f ∈ K n!/2 , then f acts trivially on i and on ω m , that is r = 1, and (36) implies that ε(χ λ , f ) = 1. Assume that f = σ n!/2 , that is r = p. On the other hand, by quadratic reciprocity, one has

p u p w u,i p -u = (-1) p-1 2 u-1 2 + w u,i p-u-1 2 -1 p (53) = (-1) p-1 2 u-1 2 + w u,i p-u-1 2 +1 = (-1) (p-1)w u,i 4 = (-1) (p-1)w ′ u,i 2 = 1 if w ′ u,i ≡ 0 mod 2, -1 if w ′ u,i ≡ 1 mod 2.
Using (36), it follows that

ε(χ λ , σ n!/2 ) = (-1) (p-1)(n-d λ ) 4 ε   h∈d(λ) h, f   = (-1) (p-1)(n-d λ ) 4 • (-1) (p-1)(n-d λ ) 4 • (-1) (p-1)|A odd | 2 = (-1) (p-1)n 4
, as required.

4.4. Diagonal hooks of partitions with non-empty p-core. For any partition λ, we denote by Q p (λ) the partition with the same p-quotient as λ but with empty p-core. That is,

Quo p (Q p (λ)) = Quo p (λ) but Cor p (Q p (λ)) = ∅. Let λ = λ * . Write M = (m u ) u∈Z , M ′ = (m ′ u )
u∈Z and Λ = (l u ) u∈Z for the partition sequences with the labeling as in (39) associated to λ, Cor p (λ) and Q p (λ) respectively.

Since λ = λ * we have Cor p (λ) = Cor * p (λ) by [START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF]Prop. 3.5]. Let 0 ≤ γ ≤ p -1. By definition of a p-core, if m ′ γ = 0, then there is an integer

δ γ > 0 such that m ′ pj+γ = 0 if and only if j ≤ δ γ -1. Since Cor p (λ) = Cor * p (λ) it follows from §4.2 that m ′ pj+(p-1)-γ = 0 if and only if j < -δ γ . If m ′ γ = 1 and m ′ -p-γ = 0 then m ′ (p-1)-γ = 1 and m ′ -p+(p-1)-γ = 0.
In this last case, we set δ γ = 0. Let γ be such that δ γ > 0. Define ∆ γ = {0 ≤ j ≤ δ γ -1}. Then elements of D(Cor p (λ)) are labeled by the elements of ∪ δγ >0 ∆ γ . In particular Cor p (λ) has δγ >0 δ γ diagonal hooks.

We construct the p-abacus of λ from that of Q p (λ) as follows. If δ γ = 0 then the runners γ and (p -1γ) of Q p (λ) and λ are identical. If δ γ > 0, then runner γ of λ (resp. the runner p -1γ of λ) is obtained by shifting up (resp. down) the corresponding runner of Q p (λ) δ γ positions. It follows that, for all 0 ≤ γ ≤ p -1 such that δ γ ≥ 0, one has

m (j+δγ )p+γ = l jp+γ and m (j-δγ )p+p-1-γ = l jp+p-1-γ for all j ∈ Z. (54) 
We will now describe how to obtain D(λ) from D(Q p (λ)). For γ ∈ Γ∪{(p-1)/2}, we denote by X γ and Y γ (respectively X ′ γ and Y ′ γ ) the sets as in (4.7) that label the diagonal hooks of Q p (λ) (respectively, of λ).

We remark that if δ γ = 0, then X γ = X ′ γ and Y γ = Y ′ γ , that is the hooks of λ and Q p (λ) arising from runner γ are the same. Note that δ (p-1)/2 = 0, since λ = λ * . Suppose δ γ > 0. We introduce four possibilities in passing from the diagonal hooks of Q p (λ) to those of λ.

(i) Any x ∈ X γ corresponds to a hook labeled by x+δ γ ∈ X ′ γ of λ on the γ-runner. More precisely, by (54) we can associate to the hook of length d x of Q p (λ) labeled by x given in (45), a hook of λ of length

c(d x ) = 2((x + δ γ )p + γ) + 1. (55) 
We will call this an increase of the length of an existing hook with respect to γ. (ii) Similarly, for x ∈ Y γ such that x < -δ γ , we have δ γ + x < 0, and δ γ + x ∈ Y ′ γ by (54). By (45), we associate to d x a hook of λ of length

c(d x ) = 2(φ(δ γ + x)p + (p -1) -γ) + 1. (56) 
We will refer to this as an increase of the length of an existing hook with respect to

γ * = p -γ -1. (iii) Let -δ γ ≤ x ≤ -1 be such that x / ∈ Y γ , that is l xp+γ = 0. Then x + δ γ ≥ 0 and by (54), x + δ γ ∈ X ′ γ . Hence, a new diagonal hook of length c x = 2((δ γ + x)p + γ) + 1
appears in λ. This is also a diagonal hook of Cor p (λ). We will call this the appearance of a new hook with respect to γ.

(iv) Finally, let -δ γ ≤ x ≤ -1 be such that x ∈ Y γ , that is l xp+γ = 1. Then x + δ γ / ∈ X ′ γ .
Then the hook of Q p (λ) labeled by x gives no hook of λ. We will call this the disappearance of an existing hook with respect to γ * = pγ -1.

Remark 4.11. Let A γ and B γ be the set of -δ γ ≤ x ≤ -1 such that l px+γ = 0 and l px+γ = 1, respectively. Then A γ ⊔ B γ labels the diagonal hooks of Cor p (λ)) as follows: associate the set of diagonal hooks of Cor p (λ) of length

c x = 2((δ γ + x)p + γ) + 1 (57) 
to A γ ⊔ B γ .

In the next example we use the fact that the p-abacus of Cor p (λ) is obtained from the p-abacus of λ by placing beads in empty positions one position below them on each runner until this is no longer possible, and then reading off the resulting partition from the new p-abacus configuration. by [8, p. 79].

Example 4.12. Let λ = (16, 11, 3, 2 8 , 1 5 ). We find D(λ) using the 3-abaci of Cor 3 (λ) and Q 3 (λ). In particular, the 3-abaci of λ and of Cor 3 (λ) are depicted below:

0 1 2 0 -1 0 1 2 0 -1 λ Cor 3 (λ)
We can obtain Cor 3 (λ) = (7, 5, 3, 2 2 , 1 2 ) from λ by pushing down beads and reading off the resulting bead positions. We have δ 0 = 3 and δ 1 = 0, and λ (3) has three diagonal hooks. Now consider the partition Q 3 (λ) of Example 4.2. More precisely, by the previous discussion, D(λ) can be obtained from the 3-abacus of Q 3 (λ) and the ∆ γ . The 3-abacus of λ is obtained by shifting up the runner 0 of Q 3 (λ) δ 0 positions and by shifting down the runner 2 -δ 0 positions.

+δ 0 -δ 0 0 1 2 0 -1
Consider runner 0 of Q 3 (λ). Since δ 0 = 3, one shifts it up three positions to obtain the 0-runner of λ. However (here we abuse notation) this causes X 0 ∪ Y 0 (λ), to be altered from X ′ 0 ∪ Y ′ 0 (λ), and hence the number of diagonal hooks of λ arising from runner 0 is different the number of diagonal hooks of Q 3 (λ) arising from its runner 0. In particular, the diagonal hooks in Q 3 (λ) corresponding to positions 2 and 5 on runner 2 "disappear" for λ as they shift to new positions -1 and -4, while the bead in position -9 on the 3-abacus of Q p (λ) introduces a new diagonal for λ as it shifts up to position 0.

Recall that the Durfee square of λ is the largest square that can be accommodated inside the Young diagram of λ (see for example [1, §2.3]). Let λ ✷ be the size of the Durfee square of λ, otherwise known as the Durfee number of λ.

Let Y 1 γ = {-δ γ ≥ x ≥ -1 | x ∈ Y γ } and Y 0 γ = {-δ γ ≥ x ≥ -1 | x ∈ Y γ }, and Y ✷ γ = |Y 1 γ | -|Y 0 γ |.
Then steps (i) through (iv) in this section describe how to calculate the size of the Durfee square of a symmetric partition from the Durfee squares of its p-quotient and its p-core. Lemma 4.13. With the above notation, we have

λ ✷ = λγ ∈Quo p (λ) λ ✷ γ + δγ >0 Y ✷ γ .
Proof. We can rewrite the equation in the statement of the theorem as follows:

λ ✷ = λγ ,δγ >0 (λ ✷ γ + Y ✷ γ ) + λγ ,δγ =0 λ ✷ γ .
The second of the two sums counts the contribution to the Durfee number from the runners that are not affected by the introduction of a core. The first of the two sums calculates the original contribution to the Durfee number from the runners on which the core appears, and then corrects it using Y ✷ γ for each δ γ > 0. In particular, Y ✷ γ subtracts the disappearances of existing hooks with respect to γ * = pγ -1 from the appearances of a new hooks with respect to γ.

The following two corollaries are immediate.

Corollary 4.14. If λ is a p-core, that is λ = Cor p (λ), then λ ✷ = δγ >0 δ γ .

Proof. In this case the Durfee number is calculated directly from the the p-core.

Corollary 4.15. If λ has empty p-core, that is, λ = Q p (λ), then

λ ✷ = λγ ∈Quo p (λ) λ ✷ γ .
Proof. In the case the p-core contributes nothing, no diagonal hooks appear, non disappear, and the Durfee number of λ is the the sum of the Durfee numbers of the quotient.

4.5. The sign of the product of the diagonal hooks. Proof. Recall from §4.4 that D(λ) is labeled by X ′ γ and Y ′ γ where γ ∈ Γ. We choose the representative γ ∈ Γ such that δ γ ≥ 0. We also recall that D(Quo p (λ)) is labeled by X γ ∪ Y γ and D(Cor p (λ)) by ∆ γ for γ ∈ Γ. Furthermore, for γ ∈ Γ, if

δ γ = 0, then X ′ γ = X γ , Y ′ γ = Y ′ γ and ∆ γ = ∅.
Otherwise, if δ γ > 0, then with the notation (55), ( 56) and (57)

X ′ γ = {c(d x ) | x ∈ X γ }∪{c x | x ∈ A γ } and Y ′ γ = {c(d x ) | x ∈ Y γ such that x < -δ γ }. Write M = δγ >0 x∈X ′ γ ∪Y ′ γ p d ′ x ,
where d ′ x is the diagonal hook-length of λ corresponding to x. We remark that

p d = M δγ =0 x∈Xγ ∪Yγ p d x .
But for any c(d x ) ∈ Y ′ γ , there is c(d x * ) ∈ X γ , where d x and d x * are diagonal hook lengths of λ as in (45). Furthermore, by ( 46 On the other hand, if The result follows.

x ∈ Y γ is such that -δ γ ≤ x ≤ -1, that is x ∈ B γ ,
We now prove the second part of the statement. Since an odd number is its own inverse modulo 4, we do the same computation as above and obtain that

d ≡ qc δγ >0 x∈Bγ d x d x * c(d x * )c x mod 4.
But by ( 59) and (61), we have

d x d x * c(d x * )c x ≡ (2w x,x ′ -1)(2w x,x ′ + 1) ≡ 4w 2 x,x * -1 ≡ -1 mod 4.
Thus, d ≡ qc(-1) b mod 4.

Theorem 4.17. Let λ = λ * .Then for any

f ∈ H n!/2 , ε(χ λ , f ) = ε(χ Qp(λ) , f )ε(χ Cor p (λ) , f ).
Proof. Write n = pw + r, where r = |Cor p (λ)|.

First, we assume that λ (p-1)/2 = ∅. We define λ, d, q and c as in Theorem 4.16. Since λ (p-1)/2 = ∅, we have ε(χ λ , f ) = ε(χ Qp(λ) , f ) = ε(χ Corp(λ) , f ) = 1 for all f ∈ K n!/2 . We consider the case f = σ n!/2 . In the proof of 4.10, we see that ε(χ λ , σ n!/2 ) = p q . To simplify the notation, set m = d Corp(λ) . By Theorem 4.16, d ≡ (-1) b qc mod 4. Furthermore,

d µ + d λ = γ∈Γ (|X γ | + |X ′ γ | + |Y γ | + |Y ′ γ |) = γ∈Γ (2|X γ | + |A γ | + 2|Y γ | -|B γ |) = 2 γ∈Γ (|X γ )| + |Y γ | even ) + m -2b ≡ m + 2b mod 4.
Now, we derive from the proof of Proposition 4.10 (-1)

n-r+d λ 2 = (-1) n-r-d λ 2 = (-1) pw-d λ 2 = (-1)
q-1 2 . In particular, nr + d λ ≡ q -1 mod 4. Thus,

n -d µ + d -1 -r + m -c + 1 = n -r + m -d µ + d -c ≡ n -r + d λ + 2b + qc(-1) b -c mod 4 ≡ q -1 + 2b + qc(-1) b -c mod 4. If b is even, then n -d µ + d -1 -r + m -c + 1 ≡ q -1 + qc -c ≡ (q -1)(c + 1) ≡ 0 mod 4,
because q and c are odd. If b is odd, then p-1

n -d µ + d -1 -r + m -c + 1 ≡ q -1 + 2 -qc -c mod 4 ≡ (q + 1)(1 -c) mod 4 ≡ 0 mod 4.
4 (n-dµ+d-1-r+m-c+1) ε(χ Qp(λ) , σ n!/2 )ε(χ Corp(λ) , σ n!/2 ) = ε(χ Qp(λ) , σ n!/2 )ε(χ Cor p (λ) , σ n!/2 ).
Assume now that λ (p-1)/2 is non-empty. Since δ (p-1)/2 = ∅, we have X ′ (p-1)/2 = X (p-1)/2 , that is, the diagonal hooks arising from the (p -1)/2-runner of λ and Q p (λ) are the same. Denote by λ ∨ the partition with same p-core and p-quotient

as λ except λ ∨ (p-1)/2 = ∅. Then ε(χ λ , f ) = ε(i, f ) p|λ (p-1)/2 |-|X (p-1)/2 |+d (p-1)/2 -1 2 ε( d (p-1)/2 , f )ε(χ λ ∨ , f ) = ε(i, f ) p|λ (p-1)/2 |-|X (p-1)/2 |+d (p-1)/2 -1 2 ε( d (p-1)/2 , f )ε(χ Qp(λ) ∨ , f )ε(χ Corp(λ) , f ) = ε(χ Qp(λ) , f )ε(χ (Corp(λ) , f ),
where d (p-1)/2 is the product of the diagonal hook lengths arising from the runner (p -1)/2.

Verification of Navarro's conjecture for the alternating groups

We will now prove Theorem 1.1. Let n be a positive integer with p-adic expansion n = n 0 + pn 1 + • • • + n s p s . Let λ be a partition of n with p-core tower Cor (k) p (λ) = {λ j | j ∈ I k } for k ≥ 0 such that c k (λ) = j∈I k |λ j |. We then associate to λ the irreducible character of N Sn (P )

ψ λ = k≥0 ψ λ,k ,
as above, where ψ λ,k ∈ Irr(N k ) as in [START_REF] Isaacs | Character Theory of Finite Groups[END_REF]. If λ is not symmetric, then χ λ and ψ λ restrict irreducibly to A n and N An (P ). As above, we denote the restriction by the same symbol. If λ is symmetric, then the restriction of χ λ to A n has two irreducible constituents χ + λ and χ - λ . Similarly for ψ λ . More precisely, for any k ≥ 0 and λ ∈ MP(p k , n k ), we have λ * = λ and the restriction of 

ψ λ,k to (Y k ≀S n k ) + splits into two irreducible characters ψ + λ,k and ψ - λ,k . Then following §3.1, we label ψ + λ such that k ψ + λ,k is a constituent of Res (Y k ≀Sn k ) + (ψ + λ ). In particular, k ψ - λ,k is a constituent of Res (Y k ≀Sn k ) + (ψ - λ ). Now, define Φ : Irr p ′ (A n ) → Irr p ′ (N An (P )) by setting Φ(χ λ ) = ψ λ if λ = λ * , and Φ(χ ± λ ) = ψ ± λ otherwise. ( 62 
(χ λ , f ) = ε(ψ λ , f ). Proof. Since λ is regular, n = n 1 p + n 2 p 2 + • • • + n s p s with n i even for all 1 ≤ i ≤ s. By Proposition 3.2 ε(ψ λ , f ) = s k=1 ε(ψ λ,k , f ).
Hence, for f ∈ K n!/2 , one has ε(ψ λ , f ) = 1 by Proposition 3.6, and 

ε(ψ λ , σ n!/2 ) = s k=1 ε(ψ λ,k , σ n!/2 ) = s k=1 (-1) (p-1)n k 2 = (-1) p-1 4 s k=1 n k . For 1 ≤ k ≤ s, let n ′ k ∈ Z such that n k = 2n ′ k . We have n 2 = s k=1 n ′ k p k ≡ s k=1 n ′ k mod 2 
∈ H n!/2 , then ε(χ λ , f ) = ε(ψ λ , f ).
Proof. By construction of λ from its p-core tower and §4.4, for all k ≥ 1, we have 

d p k (λ) = {p k h | h ∈ d λ,k },
ε(χ λ , f ) = ε(i, f ) (n-d λ )/2 ε   h∈d(λ) h, f   = s k=1 ε(i, f ) n k p k -d k 2 ε   h∈d p k (λ) h, f   = s k=1 ε(i, f ) n k (-1) k -d k 2 ε   √ p kd k h∈d λ,k (λ) h, f   = s k=1 ε(i, f ) n k (-1) k -d k +n k -d k 2 ε( √ p kd k , f )ε(χ k , f ) = s k=1 ε(i, f ) n k (-1) k -d k +n k -d k +2d k k 2 ε(ψ λ,k , f ) by Prop. 3.7 = ε(i, f ) 1 2 s k=1 (n k (-1) k -d k +n k -d k +2d k k) ε(ψ λ , f
), where the last equality comes from Proposition 3.2. However, if k is even, then

n k (-1) k -d k + n k -d k + 2d k k ≡ 2(n k -d k ) ≡ 0 mod 4 because n k and d k have the same parity. If k is odd, then n k (-1) k -d k + n k -d k + 2d k k ≡ -n k + 2d k + n k -2d k ≡ 0 mod 4.
The result follows.

Lemma 5.3. Let λ be a symmetric partition with empty p-core.

Then for f ∈ H n!/2 ε(χ λ , f ) = ε(χ r(λ) , f )ε(χ s(λ) , f ),
where r(λ) and s(λ) are the regular and the singular parts of λ as in (47).

Proof. By assumption, the p-core of λ is empty. In particular, 

D(λ) = D(r(λ)) ⊔ D(s(λ)). Write d λ = |D(λ)|, d r(λ) = |D(r(λ))| and d s(λ) = |D(s(λ))|. We have d λ = d r(λ) + d s(λ) .
ε(χ λ , f ) = ε   i (|λ|-d λ )/2 h∈D(λ) h, f   = ε   i (|r(λ)|-d r(λ) )/2 h∈D(r(λ)) h, f   ε   i (|s(λ)|-d s(λ) )/2 h∈D(s(λ)) h, f   = ε(χ r(λ) , f )ε(χ s(λ) , f ), as required.
Assume that λ = λ * . Recall Q p (λ) is the partition with the same p-quotient as λ and with empty p-core. Proposition 4.17 and Lemma 5.3 give

ε(χ λ , f ) = ε(χ Corp(λ) , f )ε(χ r(Qp(λ)) , f )ε(χ sQp(λ)) , f ). (63) 
Now, by Theorem 3.8 and Proposition 3.2, we have

ε(ψ λ , f ) = ε(χ Corp(λ) , f ) s k=1 ε(ψ r(Qp(λ)),k , f ) s k=1 ε(ψ s(Qp(λ)),k , f ) (64) = ε(χ Corp(λ) , f )ε(ψ r(Qp(λ)) , f )ε(ψ s(Qp(λ)) , f ).
However, by Lemmas 5.1 and 5.2, we have

ε(χ r(Qp(λ)) , f ) = ε(ψ r(Qp(λ)) , f ) and ε(χ s(Qp(λ)) , f ) = ε(ψ s(Qp(λ)) , f ).
Finally (63) and (64) give that

ε(χ λ , f ) = ε(ψ λ , f ).
Hence, Φ is an H n!/2 -equivariant bijection, as required.

Blockwise Navarro's conjecture for alternating groups

For any finite group G and any prime number p dividing |G|, recall that Irr(G) decomposes into families, the so-called p-blocks of G. Write Bl(G) for the set of p-blocks of G. Furthermore, we attach to any B ∈ Bl(G) its p-defect group D. This is a p-subgroup of G which is well-defined up to conjugation. Now, by Brauer's first main theorem [7, (15.45)], we can associate to any p-block B of G its Brauer correspondent B ′ ∈ Bl(N G (D)). Then the blockwise Navarro's conjecture asserts that the number of height zero characters in B and B ′ fixed by σ ∈ H n is the same. 6.1. Case of p odd. In order to discuss blockwise Navarro's conjecture for alternating groups, we will first recall some some facts about the p-blocks of symmetric and alternating groups.

It is well-know by the Nakayama Conjecture that for any prime p, the p-blocks of S n are labeled by the p-cores of partitions of n. More precisely, two irreducible characters of S n lie in the same p-block if and only if the partitions labeling them have the same p-core; see for example [START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF]Theorem 11.1]. In the following, such a p-core will be called a p-core of n. Note that there is here an abuse of terminology since a p-core of n is not in general a partition of n. For a p-core γ of n, we denote by B γ the corresponding p-block of S n , and we define the p-weight of B γ by setting w = n-|γ| p . We can describe the height zero characters of B γ in term of the p-core tower of partitions labeling characters of the block as follows. By [START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF]Proposition 11 Let λ be a partition of n with p-core γ and with height zero. Write CT (λ) for the p-core tower of λ with the Notation as in [START_REF] Fong | The Isaacs-Navarro conjecture for symmetric groups[END_REF]. In particular, λ ∅ = γ. Write

ψ λ = χ γ ⊗ k≥1 ψ λ,k
for the irreducible character of B ′ γ labeled by λ (which is well-defined since χ λ ∈ B γ is of height zero). Then ψ λ splits into one or two constituents of b ′ γ whenever λ = λ * or λ = λ * . We again write ψ λ for the irreducible restriction in the first case, and we write ψ ± λ for the two irreducible constituents otherwise. Theorem 6.1. Let p be an odd prime. Let γ be a p-core of n. We assume w > 0. Then Φ is a H n!/2 -equivariant bijection. In particular, blockwise Navarro's conjecture holds for the p-blocks of alternating groups.

Proof. First, we remark that the map is well-defined. We only have to consider the case of an irreducible character χ ± λ ∈ b γ for λ = λ * . In particular, Cor p (λ) = γ, and by Equation (63) we have for any f ∈ H n!/2 ε(χ λ , f ) = ε(χ γ , f )ε(χ r(Qp(λ)),f )ε(χ s(Qp(λ)),f ). Now, applying the resuts of Section 3 to pw with the group ( k≥1 Y k ≀ S w k ) + , Proposition 3.2 and Theorem 3.8 give ε( k≥1 ψ λ,k , f ) = ε(ψ r(Qp(λ)) , f )ε(ψ r(Qp(λ)) , f ).

Again using Proposition 3.2, we obtain ε(ψ λ , f ) = ε(χ γ , f )ε(ψ r(Qp(λ)) , f )ε(ψ r(Qp(λ)) , f ), and we conclude by Lemmas 5.1 and 5.2. 6.2. Case of p = 2. First, we will prove that an analogue of Theorem 4.16 holds for p = 2. Theorem 6.2. Assume p = 2. We have

2 d = 2 q 2 c ,
where c, d and q are as in Theorem 4.16.

Proof. Let γ ∈ {0, 1} be such that δ γ ≥ 0. We write X ′ γ , Y ′ γ , X γ , Y γ and ∆ γ for the sets labeling D(λ), D(Quo p (λ)), and D(Cor p (λ)), respectively. If δ γ = 0, then the statement is trivial. Assume δ γ > 0. We also consider the set B γ as in Remark 4.11. Let x ∈ X γ and ε ∈ {1, 3} be such that d x = 4x + ε. Hence, d x * = 4φ(x * ) + ε ′ , where ε ′ = 4ε. Furthermore, with the notation of (55), We remark that (N S2w (D)) + = N A2w (D). By [START_REF] Michler | The Alperin-McKay conjecture holds in the covering groups of symmetric and alternating groups, p = 2[END_REF]Theorem 5.6] applied to the principal 2-block of A 2w , the number of 2 ′ -characters of the principal blocks of A 2w and of N A2w (D) is the same. By [15, Proposition 12.5] P γ labels the set of

3. 2 .

 2 Irreducible characters of Y k and of (Y k ) + . Write I = {0, . . . , p -1} as above. We now describe how to construct the characters of Irr(Y ) in (4). For 0 ≤ j ≤ p -2, define the linear character ζ j : Y → C * by setting ζ j (a u b v ) = ω jv p-1 , and write ζ for the induced character of any non-trivial character of a to Y . In particular, ζ j (1) = 1 for all 0 ≤ j ≤ p-2, and ζ(1) = p-1. Set p * = (p-1)/2. Since sgn is the only linear character of Y of order 2, we have sgn = ζ p * and ζ * j = ζ p * +j . On the other hand, {0, . . . , p -2} = {0, . . . , p * -1} ∪ {p * , p * + 1, . . . , 2p * -1}. So, in (4) we set ξ p * = ζ, ξ j = ζ j and ξ p-1-j = ζ p * +j for all j ∈ {0, . . . , p * -1}.

  and that σ n!/2 fixes √ p. The result then follows from (25). Let λ ∈ SP(p k , w). Let w ′ = |λ p * (k) | and w ′′ = ww ′ . Define λ ′′ ∈ SP(p k , w ′ ) such that each part is empty except λ ′′ p * (k) = λ p * (k) , and λ ′ ∈ SP(p k , w ′′ ) such that λ ′ j = λ j when p = p * (k) and λ p * (k) = ∅. Denote by ψ λ ′ and ψ λ ′′ the corresponding irreducible characters of N k,w ′ and N k,w ′′ , respectively. Theorem 3.8. Let λ ∈ SP(p k , w). Then for any f

  0, . . . , 0) and c ′′ such that the coordinates of c and c ′′ are the same, except c ′′ p * (k) = 0. Since λ ′′ = ∅, one has ξ * c = ξ c , and the restriction ϑ c of ξ c to M + is irreducible. By Mackey's formula,

Figure 1 .

 1 Figure 1. Construction of the rim from the sequence

Example 4 . 2 . 2 , 5

 4225 Consider the partition λ = (7

Example 4 . 5 .

 45 We continue with Example 4.2. Consider p = 3. Then the p-abacus of λ is

  Since λ * p-1-γ = λ γ , they have the same number of diagonal hooks. If d is the length of the jth-diagonal hook of λ γ , then we denote by d * the length of the jth-diagonal hook of λ p-1-γ . Write x ∈ X γ and x * ∈ Y γ such that d = d x and d * = d φ(x * ) . Then (42) gives d x = 2(xp + γ) + 1 and d x * = 2(φ(x * )p + (p -1)γ) + 1.

2 and 1 ≡

 21 and A even and A odd for the subsets of even and odd elements of A, respectively. Then |A| = d λ |A odd | mod 2. Since |A| = |A odd | + |A even |, we deduce from (49) that s-1 i=0 u∈Ui u(w u,i pu) ≡ (-1) |Aeven| ≡ (-1) |A|-|A odd| ≡ (-1)

Theorem 4 . 16 .

 416 Let w and r be non-negative integers, and set n = pw + r. Let λ = λ * be a partition of n such that |Cor p (λ)| = r and Quo p (λ) ∈ MP(p, w), where MP(p, w) is the set of p-multipartitions of w. Assume that λ (p-1)/2 = ∅. b = γ |B γ |, then d ≡ qc(-1) b mod 4, where B γ is the set defined in Remark 4.11.

  ), (55) and (56) we havec(d x ) + c(d * x ) = 2pw x,x * . (58)It follows thatc(d x )c(d x * ) ≡ 2c(d x )pw x,x * -1 ≡ 2pw x,x * -1 ≡ d x d x * mod 4. x )c(d x * ) = (-1)(p-1)(c(dx )c(d x * )-1) 4 c(d x )c(d x * )

4 = 1 + 2 • (- 1 )

 4121 then there is a diagonal hook of µ of length c(dx * ) with x * ∈ X γ . So x )c(d x * ) x∈Bγ p c(d x * ) x∈Aγ By Remark 4.11, recall that d(Cor p (λ)) = {c x | x ∈ A γ ∪ B γ }, where c x is given in (x * c(d x * )c x .Let γ be such that δ γ > 0 and x ∈ B γ . By (55) and (57), we have c x ≡ c(d x * ) mod p. Moreoverc x c(d x * ) ≡ 1 + 2((δ γ + x)p + 1) + 2((δ γ + x * )p + 1) mod 4 (61) ≡ 1 + 2x + 2x * mod 4 ≡ 1 + 2(x + x * ) mod 4 = 1 + 2(xx * ) mod 2w x,x * mod 4.Hence c x c(d x * ) -1 2 ≡ w x,x * mod 2, and we obtain that p c(d x * )c x = x d x * c(d x * )c x = (-1) (p-1)w x,x * (p-1)w x,x * 2 = 1.

Finally, using Propositions 4 .

 4 10 and 4.1, and (36), we obtainε(χ λ , σ n!/2 ) = (-1)

Lemma 5 . 1 .

 51 )We need the following two lemmas. If λ is a regular partition of n and f ∈ H n!/2 , then ε

  where d p k (λ) is the set of diagonal hooklengths of χ λ divisible by p k but not by p k+1 and d λ,k is the set of diagonal hooklengths of χ p * (k) with p * (k) ∈ I k . In the following, we write χ k = χ p * (k) . In particular, if d λ and d k are the number of diagonal hooks of λ and the partition with empty p-core tower except the position p * (k) in the level k, that is equal to λ p * (k) , then d λ = s k=1 d k . Let f ∈ H n!/2 . By (36), we obtain

  Furthermore, we have |λ| = |r(λ)| + |s(λ)| by construction. Hence, for all f ∈ H n! , Equation (36) gives

  .5], an irreducible character χ λ lying in the block B γ has height zero if and only if 0 ≤ c k (λ) ≤ p -1 for all k ≥ 1 with c k (λ) = j∈I k |λ j |, where the Notation is as in[START_REF] Fong | The Isaacs-Navarro conjecture for symmetric groups[END_REF].Furthermore, without loss of generality, we can assume by[START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF] Proposition 11.3] that any Sylow p-subgroup D γ of S pw ⊆ S n is a defect group of B γ . Let pw = w 1 p + w 2 p 2 + • • • denote the p-adic expansion of pw. Then by [2, page 159], we haveN Sn (D γ )/D ′ γ ≃ S |γ| × k≥1 Y k ≀ S w k .Moreover, by [2, page 158 and 159], the set Irr 0 (B ′ γ ) of height zero characters of the Brauer correspondentB ′ γ ∈ N Sn (D γ ) of B γ is Irr 0 k χ γ ∈ Irr(S |γ| ); ψ λ,k ∈ Irr(Y k ≀ S w k ) From now on, assume p is odd. Note that B γ * = {χ λ * ∈ Irr(S n ) | Cor p (λ) = γ} = B * γ .In particular, if γ = γ * , then B γ ∩ B γ * = ∅ and B γ contains no selfconjugate character. Then[12, (9.2)] implies that the two p-blocks B γ and B γ * cover a unique p-block b γ of A n (Note that b γ = b γ * ). Furthermore, if γ = γ * and B γ has non-zero defect, then there is an irreducible character χ λ ∈ B γ with λ = λ * and[12, (9.2)] implies that B γ again covers a unique p-block b γ of A n . Finally, for n ≥ 3, if B γ has defect zero and γ = γ * , then {χ + γ } and {χ - γ } are two p-blocks of A n of defect zero. These two blocks are equal to their Brauer correspondent, and the blockwise Navarro's conjecture is then trivial in this case.We remark that D γ is a defect group of B γ since p is odd, and N An (D γ ) = N Sn (D γ ) + . Assume that B γ has a non-zero defect. Then B ′ γ covers a unique pblock of N Sn (D γ ) + . Indeed, if γ = γ * then the restrictions to N Sn (D γ ) + of the characters of B ′ γ form a p-block b ′ γ (= b ′ γ * ) of N Sn (D γ ) + covered by B ′ γ and B ′ γ * by [12, (9.2)], and if γ = γ * , then B ′ γ has a self-conjugate character (since the block has a non-zero defect) and B ′ γ covers a unique p-block b ′ γ of N Sn (D γ ) + by [12, (9.2)]. Furthermore, by unicity of the covered block, b ′ γ is the Brauer correspondent of b γ by [12, (9.28)]. Therefore, the height zero characters of this block are identified (by lifting) with the set of irreductible characters of N An (D γ )/D γ ≃ (S γ × k≥1 Y k ≀ S w k ) + .

  For a partition λ of n with p-core γ, define Φ :Irr 0 (b γ ) → Irr 0 (b ′ γ ) by setting Φ(χ λ ) = ψ λ if λ = λ * and Φ(χ ± λ ) = ψ ± λ if λ = λ * .

8 = (- 1 )Theorem 6 . 3 .

 8163 c(d x ) = 4(x + δ γ ) + ε and c(d x * ) = 4(φ(x * )δ γ ) + ε ′ , where c(d x * ) "exists" if and only if φ(x * ) ≥ δ γ . Assume φ(x * ) ≥ δ γ . Thenc(d x )c(d x * ) = d x d x * + 4δ γ (d x *d x ) -16d 2 ≡ d x d x * + 4δ γ (d x *d x ) mod 16. Since d x *d x is even, we obtain (c(d x )c(d x * ) 2 ≡ (d x d x * ) 2 mod 16. Hence, (c(d x )c(d x * ) 2 -1)/8 -((d x d x * ) 2 -1)/8 is even, whence 2 c(d x )c(d x * ) = (-1) (c(dx )c(d x * )) 2 -1 (dx d x * ) 2 -1 8 = 2 d x d x * . (65)Assume now that 0 ≤ φ(x * ) ≤ δ γ -1. In particular, x * ∈ B γ , andc x * = 4(δ γ -1φ(x * )) + ε = 4δ γ -4d x * + ε + ε ′ =4 = 4dd x * ,and we again have(c(d x )c x * ) 2 ≡ (d x d x * ) 2 mod 16. Hence, 2 c(d x )c x * = 2 d x d x * .(66)Now, using Equations (65) and (66), like in the proof of Theorem 4.16, we obtain The blockwise Navarro's conjecture holds for alternating groups at p = 2.Proof. Let b γ be a 2-block of A n covered by a 2-block B γ of S n labeled by the 2-core γ. Write r = |γ| and w for the 2-weight of B γ . As above, we denote by χ λ the irreductible character of S n labeled by λ. We also denote the irreducible characters of A n by ϑ + λ for λ = λ * and ϑ ± λ for λ = λ * . We only have to consider the case that γ is self-conjugate and w > 0. Write P γ for the set of partitions µ of 2w such that χ µ has height zero or χ µ is of height 1 and µ is self-conjugate. By[START_REF] Olsson | Combinatorics and Representations of Finite Groups[END_REF] Proposition 12.5], we haveIrr 0 (b γ ) = {ϑ ± λ | Cor 2 (λ) = γ, Q 2 (λ) ∈ P γ }.By [15, (12.2)], B γ covers only the block b γ . Hence, b γ is S n -invariant, and by [12, Theorem 9.17] the defect group of b γ is D = A n ∩ D, where D is the defect group of B γ . Since D is isomorphic to the Sylow 2-subgroup of a S 2w , it follows that D is isomorphic to the Sylow 2-subgroup of A 2w and N An (D) ≃ (S r × N S2w (D)) + .

  Lemma 5.2. If λ is a singular partition of n with empty p-core, and f

	(p-1)n 4	. The
	result now follows from Proposition 4.10.	

, because p is odd. Thus s k=1 n k ≡ n mod 4, and ε(ψ λ , σ n!/2 ) = (-1)

Acknowledgements. The first author acknowledges the support of the ANR grant GeRepMod ANR-16-CE40-0010-01. The second author acknowledges the support of PSC-CUNY TRADA-47-785. The authors would like to thank the Banff International Research Station (BIRS) where conversations on this project began during the 2014 Global/Local Conjectures in Representation Theory of Finite Groups workshop. Part of this work was done at the Centre Interfacultaire Bernoulli (CIB) in the Ecole Polytechnique Federale de Lausanne (Switzerland), during the 2016 Semester Local Representation Theory and Simple Groups. The authors thank the CIB for the financial and logistical support. The authors would also like to thank the IMJ-PRG at the University of Paris Diderot and the Department of Mathematics at the Graduate Center, City University of New York for the financial and logistical support which allowed the completion of this project. The authors sincerely thank Gunter Malle for his precise reading of the paper and his helpful comments. Finally, the authors wish to thank the referee for their careful

2 ′ -characters of the principal block of A 2w . We choose a bijection θ between these two sets, and for µ ∈ P γ , we set ψ ± µ = θ(ϑ ± µ ). Now, the second author proved in [START_REF] Nath | The Navarro conjecture for the alternating groups, p = 2[END_REF] that if w > 3, then for all µ ∈ P γ , ϑ ± µ and θ(ϑ ± µ ) are fixed by all f ∈ H n!/2 . Furthermore, for w = 1 and w = 2, the normalizer of the Sylow 2-subgroup of A 2w is A 2w itself. We can take θ to be the identity, that is automatically

γ by [START_REF] Navarro | Characters and blocks of finite groups[END_REF]Corollary 9.6]. By Clifford Theory, for any µ ∈ P γ , there is ψ µ ∈ Irr(N S2w (D)) such that ψ ± µ appears in its restriction to (N S2w (D)) + with multiplicity one. Hence, for any µ ∈ P γ , we have

On the other hand, by cardinality [10, Theorem 5.6], we deduce that

We remark that Φ is a bijection by construction. If λ = λ * , then ϑ + λ and Φ(ϑ λ ) + are fixed by all f ∈ H n!/2 . Assume that λ = λ * . Write d λ , d Q2(λ) and d γ for the product of diagonal hooks of λ, Q 2 (λ) and γ. Then by [11, Theorem 2.2] and Theorem 6.2, we obtain for any λ labeling a character of b γ

On the other hand, by Proposition 3.2, for any

as required.

reading of the manuscript and for their suggestions that improves the reading of the paper.