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THE NAVARRO CONJECTURE FOR THE ALTERNATING

GROUPS

OLIVIER BRUNAT AND RISHI NATH

Abstract. Recently Navarro proposed a strengthening of the unsolved McKay
conjecture using Galois automorphisms. We prove that the Navarro conjecture
and its blockwise version hold for the alternating groups.

1. Introduction

Let G be a finite group of order n and p be a prime divisor of n. We denote by
Irr(G) the set of irreducible complex characters of G, and by Irrp′(G) the subset of
irreducible characters with degree prime to p. In 1972, John McKay conjectured
that | Irrp′(G)| = | Irrp′(NG(P ))|, where P is a Sylow p-subgroup of G. Although
the conjecture remains open, there is strong evidence in its favor. In 2007, I. M.
Isaacs, G. Malle and G. Navarro [5] reduced the problem to a question on finite
simple groups. In particular, they assert that if a set of conditions holds for all non
abelian finite simple groups, then the original conjecture holds for all finite groups.
Using this strategy, Malle and Späth recently proved [9] that McKay conjecture
holds at p = 2 for all finite groups.

The McKay conjecture has lead to a family of other conjectures on finite groups.
For example, the conjectures of Alperin-McKay, of Dade, of Broué and of Isaacs-
Navarro are of a similar flavor. This paper is concerned with a refinement of the
McKay conjecture due to Navarro [13], which posits not only a correspondence
between the set of global-and-local irreducible characters of p′-degree, but also
between their character values.

In order to state the conjecture more precisely, we introduce some notation.
Let Qn = Q(ωn) be the cyclotomic subfield of C, where ωn = e2iπ/n, and Gn =
Gal(Qn|Q). For any f ∈ Gn, χ ∈ Irr(G) and g ∈ G, we set fχ(g) = f(χ(g)),
inducing an action of Gn on Irr(G) and then on Irrp′(G). Furthermore, if H is
a subgroup of G of order d, then d divides n and Qd is a subfield of Qn. Note
also that, if f ∈ Gn, then f(ωd) is a primitive d-root of unity, that is, there is
some integer r prime to d such that f(ωd) = ωr

d. In particular, f(Qd) = Qd and
f |Qd

∈ Gd. Hence, Gn acts on Irr(H) through Gn → Gd, f 7→ f |Qd
.

Even though there cannot exist a bijection Irrp′(G) → Irrp′(NG(P )) that com-
mutes with Gn, Gabriel Navarro observed in [13] that there should exist a bijection
commuting with a special subgroup Hn of Gn. More precisely, if we write n = pℓm
with m prime to p, then ωn can be uniquely writen as a product ωδ, where ω has
order pℓ and δ has order m. It follows that Gn = Kn × Jn, where Kn and Jn are
respectively the subgroups of Gn fixing δ and ω. Let σn be the element of Jn such
that σn(δ) = δp. If we set Hn = Kn × 〈σn〉, then Kn is isomorphic to Gal(Qpℓ |Q),
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and Hn is thus the subgroup of Gn which acts on the p′-roots of unity of Qn by a
power of p. In [13, Conjecture A], Navarro conjectured that for any f ∈ Hn, there
are the same number of characters of Irrp′(G) and of Irrp′(NG(P )) fixed by f . In
the following, elements of Hn will be called Navarro automorphisms.

While significant progress has been made on the McKay conjecture, evidence
of the veracity of the Navarro refinement has been limited to a handful of cases:
groups of odd order by Isaacs [6], for solvable groups (E. Dade), for sporadic groups,
for symmetric groups (P. Fong), for simple groups of Lie type in defining charac-
teristic (L. Ruhstorfer [16]), and for alternating groups for p = 2 (by the second
author [11]). A. Turull gave in [18] a conjecture which implies the Navarro conjec-
ture. He proved in [18] his conjecture for the special linear groups in defining char-
acteristic and in [17] for p-solvable groups. Recently, Navarro, Spaeth and Vallejo
proved a reduction theorem of Navarro refinement to the quasisimple groups [14].

In this paper, we verify that when p is odd the conjecture holds for an important
family of simple groups, the alternating groups. More precisely, we will prove the
following general result.

Theorem 1.1. Let n be a positive integer, and 2 < p ≤ n be an odd prime number.
Fix a Sylow p-subgroup P of An. Then there is a natural Hn!/2-equivariant bijection

Φ : Irrp′(An) → Irrp′(NAn(P )).

The paper is organized as follows. In Section 2 we discuss the Navarro conjecture
for the symmetric groups. It was noted in [13] that this was checked by Fong.
However, since the details will be useful in our work, we supply them for the
convenience of the reader.

In Section 3, after studying the representation theory of the alternating subgroup
of a direct product of groups contained in some symmetric group, we describe the
action of automorphisms on Irrp′(NAn(P )).

In Section 4, we describe the action of Navarro automorphisms on Irrp′(An). To
this end, we obtain an explicit formula for the diagonal hook lengths of a sym-
metric partition of n in terms of the diagonal hooks of the p-core and p-quotient.
These results are of independent interest : many partition-theoretic questions about
Ramanujan-type congruences, monotonicity and the Durfee square can be answered
using the relationship between a partition and its p-core and p-quotient (see for ex-
ample the work of F. Garvan, D. Kim and D. Stanton [3]).

Finally, Section 5 and 6 are devoted to the proof of the Navarro conjecture and
its blockwise version for the alternating groups with no condition over the prime p.

2. Verification of the conjecture for the symmetric groups

Let n be a positive integer and p be a prime number. Let P be a Sylow p-
subgroup of Sn, and set N = NSn(P ). First, following [2, §1 and §2] we describe a
parametrization of Irrp′(Sn) and of Irrp′(N). The irreducible characters of Sn are
naturally labeled by the set of partitions of n. For any such partition λ, we denote
by χλ the corresponding character of Sn.

For any partition λ of n, we write |λ| = n for the size of λ. We also will denote
by Y (λ) for the Young diagram of λ. Using matrix notation, we associate to any
(i, j)-box of Y (λ), an (i, j)-hook with hook-length hij . We denote by D(λ) the set
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of diagonal hooks of λ, that is, the hooks in positions (i, i). Such a hook will be
known as the ith-diagonal hook. We denote by

d(λ) = {|h| | h ∈ D(λ)} (1)

the set of hook-lengths of the diagonal hooks of λ.
Recall that λ is symmetric if λ = λ∗. When λ is symmetric the ith-diagonal

hook is uniquely determined by its hook-length.
Recall that any partition λ is completely determined by its p-core Corp(λ) and

its p-quotient Quop(λ) = (λ0, . . . , λp−1); [15, §3]. Write I = {0, . . . , p − 1} and

I0 = ∅. Set λ∅ = λ. Let k be a non-negative integer, and assume λj is constructed
for any j ∈ Ik. Then we define λj = Corp(λj) and for j = (j1, . . . , jk+1) ∈ Ik+1, we

write λj = Quop(λj1,...,jk)jk+1
. For any k ≥ 0, write Cor(k)p (λ) = {λj | j ∈ Ik}. The

set
CT (λ) =

⋃

k≥0

Cor(k)p (λ) (2)

is called the p-core tower of λ. For more details, we refer to [15, p. 41].

On the other hand, recall that by [2, Proposition 1.1], χλ ∈ Irrp′(Sn) if and only
if 0 ≤ ck(λ) ≤ p− 1 for all k ≥ 0, where ck(λ) =

∑
j∈Ik |λj |.

Let n = n0 + n1p + n2p
2 + n3p

3 + · · · be the p-adic expansion of n. Note that
the p′-irreducible characters of N are exactly the ones that have P ′ in their kernel;
that is, the irreducible characters of N which can be lifted from the projection
N → N/P ′. Furthermore, by [2, §2], one has

N/P ′ ≃ Sn0 ×
∏

k≥1

Y k ≀Snk
, (3)

where X is a Sylow p-subgroup of Sp and Y = NSp(X).

Let k ≥ 1. Write Nk = Y k ≀ Snk
. The elements of Nk are denoted by (y;σ),

where y = (y1, . . . , ynk
) ∈ (Y k)nk and σ ∈ Snk

. For any σ ∈ Snk
, we denote by

C(σ) the set of cycles of σ with respect to its canonical decomposition into cycles
with disjoint supports. For τ ∈ C(σ), the corresponding “cycle” of Nk is (yτ ; τ),
where (yτ )j = yj if j ∈ supp(τ) and (yτ )j = 1 otherwise. For any τ ∈ C(σ), we
also define the cycle product c((y;σ), τ) =

∏
j∈supp(τ) yj of (y;σ) with respect to τ .

Note that Y = 〈a〉 ⋊ 〈b〉 with a and b of order p and p − 1 respectively. Recall
that Y has p − 1 linear characters obtained by lifting the ones of 〈b〉 through
Y → Y/〈a〉 ≃ 〈b〉, and one character of degree p − 1 obtained by inducing any
non-trivial characters of 〈a〉 to Y . Write

Irr(Y ) = {ξ0, . . . , ξp−1}. (4)

Then these characters are Q(ωp−1)-valued by construction.

Let k ≥ 1. For j = (j1, . . . , jk) ∈ Ik, we set ξj = ξj1 ⊗ ξj2 ⊗ · · · ⊗ ξjk . Then

Irr(Y k) = {ξj | j ∈ Ik}. (5)

Let MP(pk, nk) be the set of pk-multipartitions of nk that is, multipartitions
λ = (λj ; j ∈ Ik) such that

∑
j∈Ik |λj | = nk.

Remark 2.1. In the following, we will always assume that the λj ’s in λ appear in

increasing lexicographic order.
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By [8], the irreducible characters of Nk can be labeled by MP(pk, nk) as follows.
Let λ = (λj ; j ∈ Ik) be such that

∑
j∈Ik |λj | = nk. Consider the irreducible

character

ξλ =
⊗

j∈Ik

ξj ⊗ · · · ⊗ ξj
︸ ︷︷ ︸

|λj | times

of (Y k)nk . If we set Sλ =
∏

j∈Ik S|λj |, then the inertial subgroup of ξλ in Nk is

Nk,λ = (Y k)nk ⋊Sλ =
∏

j∈Ik

Y k ≀S|λj |.

We denote by E(ξλ) the James-Kerber extension of ξλ to Nk,λ described in [8,

§4.3]. Note that E(ξλ) =
⊗
E(ξ

|λj |

j ) and [8, Lemma 4.3.9] gives

E(ξλ)



∏

j∈Ik

(yj ;σj)


 =

∏

j∈Ik

E(ξ
|λj |

j )(yj ;σj) (6)

=
∏

j∈Ik,|λj |6=0

∏

τ∈C(σj)

ξj(c((yj ;σj), τ)).

Now, write χλ for the characters
∏

j∈Ik χλj ∈ Sλ lifted through the canonical

projection Nk,λ → Nk,λ/(Y
k)nk ≃ Sλ, and define

ψλ,k = IndNk

Nk,λ

(
E(ξλ)χλ

)
. (7)

Then

Irr(Nk) =
{
ψλ,k |λ ∈ MP(pk, nk)

}
.

The following result will be useful.

Lemma 2.2. Let G be a finite group of order n and H a subgroup of G. Let f ∈ Gn.
Then for any class function φ on H, we have

f IndGH(φ) = IndGH(fφ).

Proposition 2.3. The Navarro conjecture holds for the symmetric groups.

Proof. Let n be a positive integer and p ≤ n be a prime number. Since the char-
acters of Sn are rational-valued, they are fixed by any automorphisms of Hn!. It
remains to show that any p′-order irreducible characters ofN is also fixed. From (3),
it is sufficient to show that for k ≥ 1, the irreducible characters of Nk are fixed un-
der any f ∈ Hn!. If f ∈ Kn!, then f fixes any p′-roots of unity. However, the values
of the characters of Irr(Y ) lie in Q(ωp−1), and are thus fixed by f . Write σ = σn!.
We have σ(x) = xp for any p′-root of unity x. Since ωp−1 is a p′-root of unity, we
deduce that σ(ωp−1) = ωp

p−1 = ωp−1, and σ fixes the characters of Irr(Y ). In either
case, the irreducible characters of Y are fixed by Hn!. Let n = n0 + n1p + · · · be
the p-adic expansion of n as above and fix k ≥ 1. Let λ ∈ MP(pk, nk). From (6)
and the fact that χλ is rational-valued, we obtain that E(ξλ)χλ is fixed under any
f ∈ Hn!. Finally, we conclude using Lemma 2.2. �
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3. Alternating groups. The local case

For any subgroup G of Sn, we set G+ = G∩An. In particular, [G : G+] ≤ 2 and
G+ is the kernel of the restriction to G of the sign character of Sn, also denoted
by sgn : G → {−1, 1}. Suppose G+ 6= G. For χ ∈ Irr(G), we write χ∗ = χ ⊗ sgn.
By Clifford theory, if χ 6= χ∗, then χ and χ∗ restrict to an irreducible character of
G+ also denoted by χ. If χ = χ∗, then the restriction of χ to G+ is the sum of two
irreducible characters denoted by χ+ and χ−. Note that in this case, χ(g) = 0 for
all g /∈ G+, and χ(g) = χ+(g)+χ−(g) for g ∈ G+. All irreducible characters of G+

are obtained exactly once by this process. A split class c of G is a conjugacy class
of G contained in G+ such that c is the union of two G+-classes c+ and c−.

Let f be a Galois automorphism and χ ∈ Irr(G) be such that χ = χ∗ and fχ = χ.
Then f acts on {χ+, χ−}. We define ε(χ, f) ∈ {−1, 1} by setting ε(χ, f) = 1 if
fχ+ = χ+ and ε(χ, f) = −1 otherwise. In particular, for η ∈ {−1, 1} we have

fχη = χε(χ,f)η. (8)

3.1. Reduction of the problem. Let G1, . . . , Gr be subgroups of Sn such that
G = G1×· · ·×Gr ⊆ Sn is a direct product and assume G+

j 6= Gj for all 1 ≤ j ≤ r.

Fix σj ∈ Gj\G+
j . Let χ = χ1 ⊗ · · · ⊗ χr ∈ Irr(G) be such that χj ∈ Irr(Gj) for all

1 ≤ j ≤ r. First, we remark that sgn = sgn⊗ · · · ⊗ sgn ∈ Irr(G), thus

χ∗ = χ⊗ sgn (9)

= (χ1 ⊗ · · · ⊗ χr)⊗ (sgn⊗ · · · ⊗ sgn)

= (χ1 ⊗ sgn)⊗ · · · ⊗ (χr ⊗ sgn)

= χ∗
1 ⊗ · · · ⊗ χ∗

r .

In particular
χ = χ∗ ⇐⇒ χj = χ∗

j for all 1 ≤ j ≤ r. (10)

Suppose χ = χ∗. Write N = G+
1 × · · · × G+

r . Then N is a normal subgroup of
G. For ǫ = (ǫ1, . . . , ǫr) ∈ {−1, 1}r, we set

χǫ = χǫ1
1 ⊗ · · · ⊗ χǫr

r .

Consider a constituent φ of ResGN (χ). There is α = (α1, . . . , αr) ∈ {−1, 1}r such
that φ = χα. Furthermore,

xφ = χ+
1 ⊗ χ+

2 ⊗ · · · ⊗ χ+
r ,

where x =
∏

αj=−1 σj . It follows that the G-orbit of φ is O = {χǫ | ǫ ∈ {−1, 1}r},
and Clifford theory gives

ResGN (χ) =
∑

ǫ∈{−1,1}r

χǫ.

On the other hand, N is contained in G+, thus χ+
1 ⊗χ+

2 ⊗· · ·⊗χ+
r is a constituent

of the restriction to N of either χ+ or χ−. Without loss of generality, we choose it
to be a constituent of the restriction of χ+. Now, for η ∈ {−1, 1}, we set

Rη = {(ǫ1, . . . , ǫr) ∈ {−1, 1}r | ǫ1 · · · ǫr = η} and Oη = {χǫ | ǫ ∈ Rη}.
Let (ǫ1, . . . , ǫr) ∈ R+. Define x =

∏
ǫj=−1 σj . Since the number of 1 ≤ j ≤ r with

ǫj = −1 is even, we deduce that x ∈ G+ and x(χ+
1 ⊗χ+

2 ⊗· · ·⊗χ+
r ) = χǫ1

1 ⊗· · ·⊗χǫr
r .

In particular, the characters of O+ lie in the same G+-orbit. By Clifford theory, O
decomposes into two G+-orbits of the same size. Since |O+| = |R+| = |R−| = |O−|,
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and O+⊔O− = O, we deduce that O+ and O− are the two G+-orbits of O. Again,
by Clifford theory, we obtain that

ResG
+

N (χη) =
∑

ǫ∈Rη

χǫ. (11)

Remark 3.1. Let g = g1 · · · gr ∈ G+ with gj ∈ Gj for 1 ≤ j ≤ r. Then g lies in a
split class of G if and only if gj lies in a split class of Gj for all 1 ≤ j ≤ r. Indeed,
g lies in a split class of G if and only if CG(g) = CG+(g). Assume some gj does not
belong to a split class of Gj . If gj /∈ G+

j , then gj ∈ CG(g)\CG+(g). If gj ∈ G+
j ,

then there is x ∈ CGj (gj)\CG+
j
(gj), and x = 1 · · · 1x1 · · · 1 ∈ CG(g)\CG+(g).

Conversely, suppose that gj lies in a split class of Gj for all 1 ≤ j ≤ r. Then
CGj(gj) = CG+

j
(gj), so that

CG(g) = CG1(g1) · · ·CGr (gr) = CG+
1
(g1) · · ·CG+

r
(gr) = CN (g) ≤ CG+(g) ≤ CG(g),

and CG(g) = CG+(g), as required.

Proposition 3.2. Write G = G1×· · ·×Gr ⊆ Sn as above. Let χ ∈ Irr(G) be such
that χ = χ∗, and let χ+

j and χ−
j be as above. For f ∈ G|G| such that fχ = χ, with

the notation (8), we have

ε(χ, f) =
r∏

j=1

ε(χj , f).

Proof. Let η ∈ {−1, 1}. First, we remark that either fχη = χη or fχη = χ−η

because f fixes χ. So, the set O is f -stable, and f acts on {O+,O−}. Furthermore,
fχη = χη if and only if f(Oη) = Oη. However, we have f(O+) = O+ if and only if
f(χ+

1 ⊗ χ+
2 ⊗ · · · ⊗ χ+

r ) ∈ O+ if and only if the number of 1 ≤ j ≤ r such that χ+
j

are not fixed by f is even. The result follows. �

3.2. Irreducible characters of Y k and of (Y k)+. Write I = {0, . . . , p − 1} as
above. We now describe how to construct the characters of Irr(Y ) in (4). For

0 ≤ j ≤ p− 2, define the linear character ζj : Y → C∗ by setting ζj(a
ubv) = ωjv

p−1,

and write ζ for the induced character of any non-trivial character of 〈a〉 to Y . In
particular, ζj(1) = 1 for all 0 ≤ j ≤ p−2, and ζ(1) = p−1. Set p∗ = (p−1)/2. Since
sgn is the only linear character of Y of order 2, we have sgn = ζp∗ and ζ∗j = ζp∗+j .
On the other hand, {0, . . . , p− 2} = {0, . . . , p∗ − 1} ∪ {p∗, p∗ + 1, . . . , 2p∗ − 1}. So,
in (4) we set ξp∗ = ζ, ξj = ζj and ξp−1−j = ζp∗+j for all j ∈ {0, . . . , p∗ − 1}.

Note that 〈a〉 and 〈b2〉 are subgroups of Y +. By an order argument, we obtain
that Y + = 〈a〉⋊ 〈b2〉. By Clifford theory, the characters ξj and ξp−1−j for 0 ≤ j ≤
p∗−1 restrict to the same linear character of Y +, also denoted by ξj , and ξp∗ splits
into two irreducible characters ξ+p∗ and ξ−p∗ of degree (p−1)/2. Now, we will specify

the values of ξ+p∗ and ξ−p∗ . For every 0 ≤ j ≤ p − 1, set αj : 〈a〉 → C∗, ak 7→ ωjk
p .

Write u for the integer such that bab−1 = au. Since for all 0 ≤ j ≤ p− 1, 0 ≤ k ≤
p− 1, and 0 ≤ l ≤ p− 2

blαj(a
k) = αj(a

ulk) = ωulkj
p = αulj(a

k),

we deduce that the 〈b2〉-orbits on Irr(〈a〉) are

{α0}, {αj | j ∈ S} and {αj | j ∈ S},
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where S is the set of square elements of (Z/(p − 1)Z)×, and S the non-squares.
Then by Clifford theory with respect to the normal subgroup 〈a〉 of Y +, we can
choose the labels such that

ResY
+

〈a〉 (ξ
+
p∗) =

∑

j∈S

αj and ResY
+

〈a〉 (ξ
−
p∗) =

∑

j∈S

αj , (12)

and the inertial subgroup in Y + of αj with j 6= 0 is 〈a〉, hence ξ+p∗ and ξ−p∗ are

the induced characters to Y + of ξj with j ∈ S and j ∈ S, respectively. Thus, ξ±p∗

vanishes outside 〈a〉, and using (12) and [4, Thm. 1 p.75], we obtain

(ξ+p∗ − ξ−p∗)(a) =
∑

j∈S

αj(a)−
∑

j∈S

αj(a) =

p∑

j=1

(
j

p

)
ωj
p = i(p−1)/2√p, (13)

where
(

j
p

)
is the Legendre symbol and i is a complex square root of −1. This in

particular proves that Y has only one split class, with representative a. We write
a+ = a, and a− ∈ 〈a〉 for an element conjugate to a in Y but not in Y +.

Let k ≥ 1 be an integer. By Remark 3.1, the group Y k has only one split class
with representative a = (a, a, . . . , a). Furthermore, Section §3.1 implies that Y k

has only one sgn-stable character ξp∗(k) = ξp∗ ⊗ · · · ⊗ ξp∗ , where

p∗(k) = ((p− 1)/2, . . . , (p− 1)/2) ∈ Ik. (14)

Set α = ξ+p∗(a) and β = ξ−p∗(a), and for ǫ ∈ {−1, 1}k, denote by n(ǫ) the number of
1 ≤ j ≤ k such that ǫj = −1. Now, Equation (11) gives

(ξ+p∗(k) − ξ
−

p∗(k))(a) =
∑

ǫ∈R+

χǫ(a)−
∑

ǫ∈R−

χǫ(a)

=
∑

0≤2j≤k

∑

n(ǫ)=2j

α
2j
β
k−2j

−

∑

0<2j+1≤k

∑

n(ǫ)=2j+1

α
2j+1

β
k−2j−1

=
∑

0≤2j≤k

(

k

2j

)

(−1)2jα2j
β
k−2j +

∑

0<2j+1≤k

(

k

2j + 1

)

(−1)2j+1
α
2j+1

β
k−2j−1

=

k
∑

j=0

(

k

j

)

(−1)jαj
β
k−j

= (α− β)k

by Newton’s binomial formula. Finally we deduce from (13) that

(ξ+p∗(k) − ξ−p∗(k))(a) = ik(p−1)/2
√
pk. (15)

3.3. Irreducible characters of (Y k ≀Sw)
+. Let k and w be two positive integers.

In this section, we set

N = Y k ≀Sw and M = (Y k)w.

For j = (j0, . . . , jk−1) ∈ Ik, define

πp(j) = jk−1 + jk−2p+ · · ·+ j0p
k−1.

By the uniqueness of the p-adic expansion of a positive integer, we note that the
map πp : Ik → {0, . . . , pk − 1} is a bijection.
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We now generalize the Equation (14) defining an involution ∗ on Ik, by setting

j∗ = (p− 1− j0, . . . , p− 1− jk−1) ∈ Ik.

Lemma 3.3. For j ∈ Ik, one has

πp(j
∗) = pk − 1− πp(j) and ξ∗j = ξj∗ .

Proof. We have

πp(j
∗) = (p− 1− jk−1) + (p− 1− jk−2)p+ · · ·+ (p− 1− j0)p

k−1

= (p− 1)(1 + p+ · · ·+ pk−1)− πp(j)

= pk − 1− πp(j).

�

We follow the convention of Remark 2.1 to label Irr(N). Moreover, for any
λ = (λ0, . . . , λpk−1) ∈ MP(pk, w), define

λ∗ = (λ∗pk−1, λ
∗
pk−2, . . . , λ

∗
1, λ

∗
0) ∈ MP(pk, w),

where λ∗ denotes the conjugate partition of λ. To simplify the notation (7), we set
ψλ,k = ψλ.

Lemma 3.4. If j ∈ Ik and λ = (λj ; j ∈ Ik) ∈ MP(pk, w), then

ψ∗
λ = ψλ∗ .

Proof. Let g =
∏

j∈Ik(yj ;σj) ∈ Nk,λ. Then g =
∏

j∈Ik

∏
τ∈C(σj)

(yj,τ , τ),

sgn(g) =
∏

j∈Ik

∏

τ∈C(σj)

sgn(yj,τ ) sgn(τ),

because sgn is a group homomorphism, and sgn(yj,τ ) = sgn(c((yj ;σj), τ)). Hence

(E(ξλ)χλ)
∗(g) = sgn(g)E(ξλ)(g)χλ(g)

= sgn(g)
∏

j∈Ik

∏

τ∈C(σj)

ξj(c((yj ;σj), τ))χλ(σ)

= sgn(σ)
∏

j∈Ik

∏

τ∈C(σj)

sgn(c((yj ;σj), τ))ξj(c((yj ;σj), τ))χλ(σ)

= sgn(σ)
∏

j∈Ik

∏

τ∈C(σj)

ξ∗j (c((yj ;σj), τ))χλ(σ)

= sgn(σ)
∏

j∈Ik

∏

τ∈C(σj)

ξj∗(c((yj ;σj), τ))χλ(σ) (by Lemma 3.3)

=
∏

j∈Ik

∏

τ∈C(σj)

ξj∗(c((yj ;σj), τ))χ
∗
λ(σ),

where σ =
∏
σj .
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Let wλ ∈ Sw be the permutation that sends the support of λj to that of λ∗j∗ .

So, Sλ∗ = wλSλ, and the decomposition of wλg with respect to Nk,λ∗ is

wλg =
∏

j∈Ik

(wλyj;
wλτj),

and since c((yj ;σj), τ) = c((wλyj ;
wλσj),

wλτ), we deduce that

wλE(ξλ∗)(g) =
∏

j∈Ik

∏

τ∈C(σj)

ξj∗(c((
wλyj ;

wλσj),
wλτ))

=
∏

j∈Ik

∏

τ∈C(σj)

ξj∗(c((yj ;σj), τ)).

Since wλχλ∗ = χ∗
λ, we obtain

(E(ξλ)χλ)
∗ = wλ(E(ξλ∗)χλ∗). (16)

It follows that

ψ∗
λ = sgn IndNNk,λ

(E(ξλ)χλ)

= IndN
Nk,λ

(sgnE(ξλ)χλ)

= IndN
Nk,λ

(E(ξλ)χλ)
∗

= IndN
w−1

λ Nk,λ∗wλ

wλ(E(ξλ∗)χλ∗)

= IndN
Nk,λ∗(E(ξλ∗)χλ∗)

= ψλ∗ ,

as required. �

Lemma 3.5. Let G be a group, and H and K be subgroups of G. Let x ∈ G be
such that x normalizes H and K, and H ∩ 〈x〉 = K ∩ 〈x〉 = 1. Let t ∈ NK(H).
For every g ∈ 〈tx〉, write g = gtgx for unique gt ∈ K and gx ∈ 〈x〉. Assume there
is a representation ρ : H → GL(V ) that extends to a representation ρ̃ : H ⋊ 〈x〉 7→
GL(V ). If ρ(gth) = ρ(h) for all h ∈ H and g ∈ 〈tx〉, then the map

ϕ : H ⋊ 〈tx〉 → GL(V ), hg 7→ ρ̃(hgx)

is a representation of H ⋊ 〈tx〉.

Proof. First, we remark that if g = 〈tx〉, then there is an integer j such that

g = (tx)j = txt · · · xj−1

txj , so gt = txt · · · xj−1

t ∈ K and gx = xj because x
normalizes K. Furthermore, this expression is unique because K ∩ 〈x〉 = 1. Note
also that if g, g′ ∈ 〈tx〉, then (gg′)x = gxg

′
x. Now, for h, h′ ∈ H and g, g′ ∈ 〈tx〉,
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we have hgh′g′ = hgh′gg′ = hgh′(gg′)tgxg
′
x. Thus,

ϕ(hgh′g′) = ρ̃(hgh′gxg
′
x)

= ρ(h)ρ(gt(gxh′))ρ̃(gxg
′
x)

= ρ(h)ρ(gxh′)ρ(gxg
′
x)

= ρ̃(hgxh′gxg
′
x)

= ρ̃(hgxh
′g′x)

= ρ̃(hgx)ρ̃(h
′g′x)

= ϕ(hg)ϕ(h′g′),

as required. �

A multipartition λ = (λj ; j ∈ Ik) ∈ MP(pk, w) is called symmetric if λ∗ = λ.

We denote by SP(pk, w) the set of symmetric multipartitions of MP(pk, w). Let
c = (cj ∈ N; j ∈ Ik) be such that

∑
j cj = w, and cj = cj∗ for all j ∈ Ik. Define

Pc = {λ ∈ SP(pk, w) | ∀j ∈ Ik, |λj | = cj}.

For any λ ∈ Pc, the characters ξλ and their inertial subgroup Nk,λ depend only
on c. We write ξc and Nc in the following.

Proposition 3.6. Let λ ∈ SP(pk, w) be such that λp∗(k) = ∅. If f ∈ Kn!/2, then

ε(ψλ, f) = 1. Furthermore,

ε(ψλ, σn!/2) = (−1)
(p−1)w

4 .

Proof. Let c = (cj ; j ∈ Ik) be such that cp∗(k) = 0. Furthermore, since λ is a

symmetric multipartition, cj = cj∗ and it follows that

w =
∑

{j,j∗}, j 6=p∗(k)

(cj + cj∗) = 2
∑

{j,j∗}, j 6=p∗(k)

cj ,

hence w is even. By Clifford theory with respect to the normal subgroup M of
N , the characters ψλ for λ ∈ Pc are the constituents of IndNM (ξc). Write ϑc for
the restriction of ξc to M+. Since ξc is not sgn-stable, we have ϑc ∈ Irr(M+) by
Clifford theory with respect to M+ ✂M . Furthermore, Mackey’s formula gives

ResNN+ IndNM (ξc) = IndN
+

M+(ϑc).

Hence, the irreducible characters ψ+
λ and ψ−

λ for λ ∈ Pc appear in the Clifford

theory with respect to M+ ✂N+ associated to the character ϑc. Denote by Tc the
inertial subgroup of ϑc with respect to M+ ✂N+.

Let λ ∈ Pc. The character ϑc is M -stable, thus

〈IndG+

M+(ϑc), ψ
+
λ 〉 = 〈IndG+

M+(ϑc), ψ
−
λ 〉.
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We also have IndMM+(ϑc) = ξc+ ξ∗c , and the last two characters are N -conjugate, in

particular, IndN
M (ξc) = IndNM (ξ∗c ). Now, we deduce from Frobenius reciprocity that

〈IndN+

M+(ϑc), ψ
+
λ 〉 =

1

2
〈IndN+

M+(ϑc), ψ
+
λ + ψ−

λ 〉

=
1

2
〈IndN+

M+(ϑc),Res
N
N+(ψλ)〉

=
1

2
〈IndNM+(ϑc), ψλ〉

=
1

2
〈IndNM IndMM+(ϑc), ψλ〉

=
1

2
〈IndNM (ξc + ξ∗c ), ψλ〉

=
1

2
〈2 IndNM (ξc), ψλ〉

= 〈IndN
M (ξc), ψλ〉.

Let t and t′ be the number of N -conjugate characters of ξc and of N+-conjugate

characters of ϑc, respectively. Then, by Clifford theory, if e = 〈IndNM (ξc), ψc〉, then

ψλ(1) = etξc(1) ψλ(1)
+ = et′ϑc(1).

Hence, 2t′ = t because ϑc(1) = ξc(1) and 2ψλ(1)
+ = ψλ(1).

Note that N+
c ≤ Tc and that N/Nc ≃ N+/N+

c , and

t =
|N |
|Nc|

=
|N+|
|N+

c | and t′ =
|N+|
|Tc|

.

Then Tc is an extension of degree 2 of N+
c . Since λ is symmetric and λp∗(k) = ∅, the

permutation wλ defined in the proof of Lemma 3.4 is an involution that exchanges

the supports of λj and λj∗ for all j ∈ Ik. We remark that wλ is the same element

for any λ ∈ Pc, we will denote it by wc. Denote by θλ the restriction of E(ξλ)χλ

to N+
λ,c which is irreducible because E(ξλ)χλ 6= (E(ξλ)χλ)

∗. Then for all g ∈ N+,

θλ(g) = E(ξλ)χλ(g) = (E(ξλ)χλ)
∗(g) = wc(E(ξλ)χλ)(g) =

wcθλ(g) (17)

by Equation (16). Let h ∈ Nc\N+
c . We set tc = wc if wc ∈ N+, and tc = hwc

otherwise. We remark that

sgn(wc) = (−1)w/2. (18)

Now, we define µ as follows. For any j ∈ Ik such that πp(j) < (pk − 1)/2, set

µj = (cj) and µj∗ = (1cj ), and µp∗(k) = 0. So, µ ∈ Pc, and Res
Nc

M (θµ) = ξc. In

particular, Equation (17) gives

Tc = 〈N+
c , tc〉.

Since Tc is a cyclic extension of N+
c , by [7, 11.22] we can extend θµ to a character θ̃µ

of Tc. Thus, by Gallagher’s theorem (see [7, 6.17]), the constituents of IndN
+

M+(ϑc)
are

ρα = IndN+

Tc
(θ̃µ ⊗ α), (19)

where α is any irreducible characters of Tc/M
+ lifted through Tc → Tc/M

+.
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If we write Hc = 〈Nc, tc〉, then H+
c = Tc and

Hc/M ≃ Tc/M
+.

However, if we choose h ∈M\M+, then t2c ∈M and the image of tc in Hc/M has
order 2, and can be identified with wc. It follows that

Hc/M ≃ Sc ⋊ 〈wc〉.
Set L = Sc ⋊ 〈wc〉. We now will prove that the irreducible characters of L are

integer-valued. Let φ ∈ Irr(Sc). If φ is not L-stable, then φ̃ = IndLSc
(φ) ∈ Irr(L)

and φ̃(g) = φ(g) + wcφ(g) ∈ Z if g ∈ Sc and 0 otherwise.
Assume φ is L-stable. Then φ extends to L (because L is a cyclic extension of

Sc) and has exactly two extensions φ̃ and φ̃⊗ε, where ε is the lift of the non-trivial

character of 〈wc〉. Now, for j ∈ Ik such that πp(j) < (pk − 1)/2, write τj for the

involution that exchanges the supports of cj and cj∗ . One has wc =
∏
τj . Since

cj = cj∗ , the group L can be viewed as a subgroup of

L′ =
∏

πp(j)<(pk−1)/2

Scj ≀ 〈τj〉.

Since φ is L-stable, we must have φj = φj∗ , and φ is τj stable for all j. Thus,

φ is L′-stable and can be extend to L′ because L′ is a direct product of wreath
products isomorphic to Scj ≀ S2. Denote by E(φ) the James-Kerber extension as

above. By (6), E(φ) takes integer values. However, ResL
′

L (E(φ)) is either φ̃ or φ̃⊗ε.
Thus, φ̃ and φ̃⊗ ε also take integer values.

The argument above implies that any α ∈ Irr(Tc/M
+) takes integer values. Let

f ∈ Hn!/2. By Proposition 2.3, θµ is f -fixed. The two extensions of θµ to Tc are θ̃µ

and θ̃µ ⊗ ε. Thus, either f(θ̃µ) = θ̃µ or f(θ̃µ) = θ̃µ ⊗ ε. Then (19) and Lemma 2.2

give f(ρα) = ρα in the first case, and f(ρα) = ρα⊗ε in the second case.

On the other hand, f(θ̃µ) = θ̃µ⊗ε if and only if f(θ̃µ(gtc)) = −θ̃µ(gtc) for all

g ∈ N+
c if and only if there exists g0 ∈ N+

c such that

θ̃µ(g0tc) 6= 0 and f(θ̃µ(g0tc)) = −θ̃µ(g0tc). (20)

We will use this criterion to understand the action of f on θ̃µ. Set H = ((Y k)+)w

and

G = H ⋊ 〈wc〉.
For j such that πp(j) < (pk − 1)/2, define Ycj = ((Y k)+)2cj ≤ H corresponding to

the supports of Scj and Scj∗ . Then G can be viewed as a subgroup of

G′ =
∏

πp(j)<(pk−1)/2

Ycj ≀ 〈τj〉,

where τj is defined as before.

The character ξc is not sgn-stable. It takes non-zero values outside M+, hence
outside H , and the restriction ηc of ξc to H is irreducible by Clifford theory with

respect to H ✂M+. Moreover, if we write ηj = ResY
k

(Y k)+(ξj), then ηj∗ = ηj . In
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particular,

ηc =
∏

πp(j)<(pk−1)/2

η
cj
j ⊗ η

cj
j .

It follows that ηc extends to G+, and the James-Kerber extension E(ηc) has integer

values. Hence ResG
′

G (E(ηc)) takes integer values, and by Gallagher’s theorem, the
extension of ηc to G takes a non-zero and integer value on wc.

Suppose w ≡ 0 mod 4. Then by (18), we take tc = wc. By the previous
discussion,

θc(wc) = ±ResG
′

G (E(ηc))(wc) ∈ Z

is a non-zero integer. We deduce from criterion (20) that the characters of N+ are
fixed by all f ∈ Hn!/2.

Suppose w ≡ 2 mod 4. Let y ∈ M . We label the components of y as follows.
For j ∈ Ik such that cj 6= 0, write yj = (yj,1, . . . , yj,cj) ∈ (Y k)cj , where yj,i =

(yj1,i, . . . , yjk,i) ∈ Y k for all 1 ≤ i ≤ cj . One has

ξc(y) =
∏

j

ξ
cj
j (yj).

Let u be such that cu 6= 0. So u 6= p∗(k), and there is ur 6= 0 with r 6= (p−1)/2. Let

h be the element of M that is trivial on any component of Y kw except hur ,1 = b.
Set h′ = wch, which is the element of M all of whose components are trivial except
h′u∗

r ,1
= b. Since h /∈ N+, by (18) we take tc = hwc. Remark that wc normalizes H

and M+, 〈wc〉 ∩H = 〈wc〉 ∩M+ = 1, and h ∈M+ normalizes H .
For any 1 ≤ j ≤ p, denote by Xj a representation of Y with character ξj . Then

Rc =
∏

j

(Xj1 ⊗ · · · ⊗ Xjk)
cj

is a representation of M with character ξc. For any positive integer l,

t2lc = hlh′l and t2l+1
c = hl+1h′lwc.

Then tc has order 2(p− 1) and if g ∈ 〈tc〉, then gh (see the notation of Lemma 3.5

with t = h) has possibly non zero values only on the components of Y kw labeled
by (ur, 1) and (u∗r , 1).

However, for any x ∈ Y , we have xXur ,1 = Xur ,1 and xXu∗
r ,1 = Xu∗

r ,1 because
these two representations have dimension 1. Hence, if we denote by ρc the restriction
of Rc to H , then ghρc = ρc for all g ∈ 〈tc〉. Thus, by Lemma 3.5, we can extend
ρc to Q = H ⋊ 〈tc〉, and the character η̃c of this extension takes the same values
as E(ηc). Moreover, by Gallagher’s theorem, every extension of ηc to Q is of the
form η̃c ⊗ β, where β is an irreducible character of 〈tc〉. The irreducible characters

of Irr(〈tc〉) are βj : 〈tc〉 → C∗ for 0 ≤ j ≤ 2p− 3 defined by βj(t
l
c) = ωjl

2(p−1). Since

Res
Tc

Q (θ̃c) is such an extension, there is 0 ≤ s ≤ 2p− 3 such that

Res
Tc

Q (θ̃c) = ρ̃c ⊗ βs. (21)

We notice that ρ̃c(t
l
c) is equal to E(ηc)(1) if l is even, and to E(ηc)(tc) if l is odd.

In either case, (6) implies that theses values are positive integers.
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Recall that t2c = hh′ is the element whose every component is trivial except those

labeled (ur, 1) and (u∗r , 1) taking the value b. By (6), we have

θ̃c(t
2
c) = θc(t

2
c) = −ωr

p−1(b)
2θc(1) = −ω2r

p−1ηc(1). (22)

Using (21), we also have

θ̃c(t
2
c) = Res

Tc

Q (θ̃c)(t
2
c) = ρ̃c(t

2
c)βs(t

2
c) = ω2s

2(p−1)ηc(1) = ωs
p−1ηc(1).

Comparing with (22), we obtain

ωs−2r
p−1 = −1.

However, −1 ∈ 〈ω2
p−1〉 = 〈ω(p−1)/2〉 if and only if (p− 1)/2 is even. Hence, if p ≡ 1

mod 4, s has to be even, and if p ≡ 3 mod 4, s has to be odd.
On the other hand, (21) gives

θ̃c(tc) = E(ηc)(tc)βs(tc) = E(ηc)(tc)ω
s
2(p−1). (23)

Since E(ηc)(tc) is fixed by any f ∈ Hn!/2 because ηc is, and ωs
2(p−1) is fixed by any

f ∈ Kn!/2, we deduce from (20) that the characters ψ±
λ are fixed by f ∈ Kn!/2 for

all λ ∈ Pc.

Finally, we remark that ωp−1
2(p−1) = ω2 = −1. Thus, ωp

2(p−1) = −ω2(p−1), and

ω2p
2(p−1) = ω2

2(p−1). Then by (23), σn!/2 fixes θ̃c(tc) if s is even, that is when p ≡ 1

mod 4 and

σn!/2(θ̃c(tc)) = −θ̃c(tc)
if s is odd, that is p ≡ 3 mod 4. The result follows from the criterion (20). �

Since
√
p is a root of the polynomial x2 − p ∈ Q[x], we have f(

√
p) = ±√

p for
f ∈ Kn!. Denote by ǫf ∈ {−1, 1} the sign such that f(

√
p) = ǫf

√
p.

Proposition 3.7. Let λ ∈ SP(pk, w) be such that λj = ∅ for all j 6= p∗(k). If

f ∈ Kn!, then

ε(ψλ, f) = ǫkdf · ε(χλp∗(k)
, f),

where ε(χλp∗(k)
, f) is defined in (8), and d is the number of diagonal hooks in the

Young diagram of λp∗(k). Moreover,

ε(ψλ, σn!/2) = (−1)dk(p−1)/2 · ε(χλp∗(k)
, σn!/2).

Proof. As in the proof of the Proposition 3.7, we consider the groupH = ((Y k)+)w.
Write ξ = ξwp∗(k) ∈ Irr(M). This is the unique split character of M by (10) and

§3.2. Denote by ξ+ the constituent of ResMM+(ξ) such that (ξ+p∗(k))
w ∈ Irr(H) is a

constituent of ResM
+

H (ξ+). First, we remark that the subgroup U = M+ ⋊ Aw is
a normal subgroup of N+ because it has index 2. Moreover, the inertial subgroup
in U of ξ+ and ξ− is U . Let s ∈ N+\U . Then s = (h; τ) with h ∈ M\M+ and
τ ∈ Sw\Aw, and sξ+ = ξ−. It follows that

s IndUM+(ξ+) = IndUM+(ξ−),

because M+✂N+ and U ✂N+. Furthermore, IndUM+(ξ+) and IndU
M+(ξ−) have no

constituents in common by Clifford theory with respect to M+✂U . It follows that

if χ is a constituent of IndUM+(ξ+), then sχ 6= χ. Hence, IndN
+

U (χ) is irreducible
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by Clifford theory with respect to U ✂ N+. By the transitivity of induction and
Mackey’s formula,

ResNN+ IndNM (ξ) = ResNN+ IndNM IndMM+(ξ+) = ResNN+ IndN
M+(ξ+) = IndN

+

M+(ξ+).

Hence, ψ+
λ and ψ−

λ restrict to U into two irreducible components. We write ψ±
λ,±

for the constituent of ResN
+

U (ψ±
λ ) which belongs to IndU

M+(ξ±).

Now we show how to extend ξ+ and ξ− to U . Consider the wreath product
V = H ⋊ Aw. Denote by ν+ = (ξ+p∗(k))

w ∈ Irr(H) and ν− = sν+. By Clifford

theory with respect to H ✂M+ and the previous choice of labeling, we have

IndM
+

H (ν+) = ξ+ and IndM+

H (ν−) = ξ−.

Write E(ν+) for the James-Kerber extension of ν+ to V . Therefore, Mackey’s
formula gives

ResUM+ IndUV (E(ν+)) = IndM+

H (ν+) = ξ+.

Thus, V+ = IndU
V (E(ν+)) is an extension of ξ+ to U . By Gallagher’s theorem [7,

Corollary 6.17], the constituents of IndUM+(ξ+) are of the form ζµ,+ = V+ ⊗ χµ

if µ 6= µ∗ and ζ±µ,+ = V+ ⊗ χ±
µ if µ = µ∗. Here, χµ and χ±

µ are the irreducible

characters of Aw. If we set V− = sV+, then V+ 6= V− because it is a constituent of
IndUM+(ξ−). Thus,

sψ±
λ,± = s(V± ⊗ χ±

λp∗(k)
) = h(V±)⊗ τ (χ±

λp∗(k)
) = V∓ ⊗ χ∓

λp∗(k)
= ψ∓

λ,∓,

and
ResN

+

U (ψ+
λ ) = ψ+

λ,+ + ψ−
λ,− and ResN

+

U (ψ−
λ ) = ψ−

λ,+ + ψ+
λ,−. (24)

Consider the element g = (u, π) such that the cycle lengths of π are the diagonal
hook lengths of λp∗(k), and u is such that every cycle of g has cyclic product equal

to a. Then g ∈ U and

V+(g) = IndUV (E(ν+))(g) =
∑

t∈[U/V ]
tg∈V

E(ν+)(tg) =
∑

t∈[U/V ]
tg∈V

∏

γ∈C(π)

ν+(c(tg, γ)).

However, U/V ≃M+/H . Hence, we can take for transversal of U mod V the set

[U/V ] = {tα = (bα1 , . . . , bαw) |α ∈ {0, 1}w, α1 + · · ·+ αw ≡ 0 (mod 2)}.
Moreover, tαg ∈ U if and only if bαjujb

−απ−1(j) ∈ (Y k)+ for all 1 ≤ j ≤ w, if and

only if bαjb−απ−1(j) ∈ (Y k)+ (because bαj
uj ∈ (Y k)+) if and only if bαj−απ−1(j) ∈

(Y k)+, i.e. αj = απ−1(j), that is all αj are equal on the cycles of π. Denote by
T the set of elements of [U/V ] that satisfy this property. By [8, 4.2.6], for any
γ ∈ C(π) and tα ∈ T ,

c(tαg, γ) = bαγ

c(g, γ) = bαγ

a.

Thus
V+(g) =

∑

tα∈T

∏

γ∈C(π)

ν+(b
αγ
a).

Let γ0 be the cycle of C(π) whose support contains 1, and define y ∈M such that
yi = b if i ∈ supp(γ0) and 1 otherwise. Since |γ0| is odd, y ∈ M\M+. Using that
V−(g) = V+(yg), the same computation as above shows that

V−(g) =
∑

tα∈T

∏

γ∈C(π)

ν+(b
αγ

a),
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where T is the set of tα such that the αi are constant on the cycle of π and
α1 + · · ·+ αw ≡ 1 (mod 2). Since the lengths of the cycles of π are odd, we have

w∑

j=1

αj ≡
∑

γ∈C(π)

αγ (mod 2)

for every tα ∈ T ∪ T . Therefore, by a computation similar to that proving (15), we
obtain

(V+ − V−)(g) = idk(p−1)/2
√
pdk, (25)

where d = |C(π)|. By [8, 2.5.13], we also have

(χ+
λp∗(k)

− χ−
λp∗(k)

)(π) 6= 0. (26)

Let f ∈ Gn!/2. By (24), if fψ±
λ,± = ψ±

λ,± or fψ±
λ,± = ψ∓

λ,∓, then ε(ψλ,f ) = 1, and

if fψ±
λ,± = ψ∓

λ,±, then ε(ψλ,f ) = −1. However,

ψ±
λ,±(g) = V±(g)χ±

λp∗(k)
(π) (27)

is non-zero, and f(ψ±
λ,±(g)) = f(V±(g)) · f(χ±

λp∗(k)
). Thus, by equalities (25),(26)

and (27), we have fψ±
λ,± = ψ∓

λ,± if and only if f(V±(g)) = V±(g) and f(χ±
λp∗(k)

(π)) =

χ∓
λp∗(k)

(π) or f(V±(g)) = V∓(g) and f(χ±
λp∗(k)

(π)) = χ±
λp∗(k)

(π).

Now, if f ∈ Kn!/2, then f(i) = i. Note also that σn!/2(i) = (−1)(p−1)/2i and that
σn!/2 fixes

√
p. The result then follows from (25). �

Let λ ∈ SP(pk, w). Let w′ = |λp∗(k)| and w′′ = w − w′. Define λ′′ ∈ SP(pk, w′)

such that each part is empty except λ′′p∗(k) = λp∗(k), and λ′ ∈ SP(pk, w′′) such that

λ′j = λj when p 6= p∗(k) and λp∗(k) = ∅. Denote by ψλ′ and ψλ′′ the corresponding

irreducible characters of Nk,w′ and Nk,w′′ , respectively.

Theorem 3.8. Let λ ∈ SP(pk, w). Then for any f ∈ Gn!/2,

ε(ψλ, f) = ε(ψλ′ , f) · ε(ψλ′′ , f).

Proof. Let λ ∈ SP(pk, w). Assume λ′ 6= ∅ and λ′′ 6= ∅. Set c = (|λj |, j ∈ Ik),

c′ = (0, . . . , 0, cp∗(k), 0, . . . , 0) and c′′ such that the coordinates of c and c′′ are the

same, except c′′p∗(k) = 0. Since λ′′ 6= ∅, one has ξ∗c 6= ξc, and the restriction ϑc of ξc

to M+ is irreducible. By Mackey’s formula,

ResNN+ IndNM (ξc) = IndN
+

M+(ϑc).

Thus, ψ+
λ and ψ−

λ appear in the Clifford theory attached to ϑc with respect to M+✂

N+. Moreover, by an argument similar to the one in the proof of Proposition 3.6,
the inertial group of ϑc is an extension of degree 2 of N+

c . Let tc′′ be an element of

N+
c′′ as in the proof of Proposition 3.6, and Hc′′ = 〈Nc′′ , tc′′〉. Consider

Hc = Nw′ ×Hc′′ . (28)

Then the elements of H+
c = 〈(Nw′×Nc′′)

+, tc′′〉 fix ϑc and this group is an extension

of degree 2 of (Nw′ ×Nc′′)
+ = Nc. Thus, the inertial subgroup of ϑc is H+

c .
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On the other hand, E(ξcχλ) is not Hc-stable. Hence, ψ̃λ = Ind
Hc

Nc
(E(ξc)χλ) is

irreducible and by Mackey’s formula

Res
Hc

H+
c
(ψ̃λ) = Ind

H+
c

N+
c
(θλ) = θ+λ + θ−λ ,

where θλ is the restriction of E(ξc)χλ to N+
c . Again, by Mackey’s formula,

ψ+
λ + ψ−

λ = ResNN+(ψλ) (29)

= ResNN+ IndN
Nc

(E(ξc)χλ)

= IndN
+

N+
c
(θλ)

= IndN
+

N+
c
(θ+λ ) + IndN+

N+
c
(θ−λ ).

In particular, we can choose the label such that ψη
λ = IndN

+

N+
c
(θηλ) for η ∈ {−1, 1}.

Let f ∈ Hn!/2. By Lemma 2.2, one has

ε(ψλ, f) = ε(ψ̃λ, f). (30)

Note that E(ξc)χλ = E(ξc′)χλ′ ⊗ E(ξc′′)χλ′′ , hence

ψ̃λ = ψλ′ ⊗ ψ̃λ′′ , (31)

where ψ̃λ′′ = Ind
Hc′′

Nc′′
(E(ξc′′)χλ′′) ∈ Irr(Hc′′). We remark that the computa-

tions (29) and (30) applied to Nk,w′′ give

ε(ψλ′′ , f) = ε(ψ̃λ′′ , f). (32)

Now, E(ξc)χλ is f -stable, thus ψ̃λ also is by Lemma 2.2. Applying Proposi-
tion 3.2 with respect to the direct product (28), and using (31) and (32) we obtain
that

ε(ψ̃λ, f) = ε(ψλ′ , f) · ε(ψ̃λ′′ , f) = ε(ψλ′ , f) · ε(ψλ′′ , f). (33)

The result follows from (30) and (33). �

4. Alternating groups: The global case

Let λ = λ∗. Denote by Cλ the conjugacy classes of Sn of type D(λ), that is,
the lengths of the elements of D(λ) are the cycle lengths of any element x ∈ Cλ.
Recall that the classes Cλ of Sn split into two classes C+

λ and C−
λ of An, and that

the restriction to An of the irreducible character χλ splits into two constituents χ+
λ

and χ−
λ that take the same (integer) value on every class except on C±

λ , and by [8,
2.5.13] the labeling can be chosen such that for all η, ν ∈ {−1, 1}

χη
λ(x

ν
λ) =

1

2



(−1)(n−dλ)/2 + ηνi(n−dλ)/2

√ ∏

h∈D(λ)

h



 , (34)

where xνλ is a representative of Cν
λ and dλ = |D(λ)|.

For any field automorphism f , if α is a root of x2 − q ∈ Q[x], then f(α) is also
a root of x2 − q. We denote by ε(α, f) ∈ {−1, 1} the sign such that

f(α) = ε(α, f)α. (35)
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Note that when λ = λ∗ and f ∈ Hn!/2,

ε(χλ, f) = ε


i(n−dλ)/2

√ ∏

h∈D(λ)

h, f


 . (36)

4.1. Action of Galois automorphisms on square roots. Let m be an odd
number. For any integer r, we write

(
r
m

)
for the Jacobi symbol.

Proposition 4.1. Let m be an odd number, and f be a Galois automorphism.
Denote by r an integer prime to m such that f(ωm) = ωr

m. Then

f(
√
m) = ε(i, f)

m−1
2

( r
m

)√
m.

Proof. Write m = pa1
1 · · · pas

s for the prime factorisation of m. Define by E and F
respectively the set of indices 1 ≤ j ≤ s such that pj ≡ 1 or 3 modulo 4.

Suppose m ≡ 1 mod 4. Then
∑

j∈F aj is even, and

√
m =

∏

j∈E

√
pj

aj ·


η

∏

j∈F

(i
√
pj)

aj


 , (37)

where η = −1 if
∑

j∈F aj ≡ 2 mod 4 and η = 1 otherwise. Since f is a field
automorphism fixing η, we deduce

ε(
√
m, f) =

∏

j∈E

ε(
√
pj , f)

aj ·
∏

j∈F

ε(i
√
pj , f)

aj . (38)

Now, if we set qj =
√
pj if j ∈ E and qj = i

√
pj if j ∈ F , then [4, Thm. 1] gives

pj−1∑

t=1

(
t

p j

)
ωt
pj

= qj

Furthermore, one has ωpj = ω
m/pj
m , so f(ωpj ) = ωr

pj
, and

f(qj) =

pj−1∑

t=1

(
t

p j

)
ωrt
pj

=

(
r

p j

)
qj

by [4, Prop. 6.3.1]. Hence, ε(qj , f) =
(

r
p j

)
and the result follows from (38) and

the definition of the Jacobi symbol.
Suppose that m ≡ 3 mod 4. Then

∑
j∈F aj is odd, and in the formula (37), η

is now equal to i up to a sign. When the formula (38) is multiplied by ε(i, f), the
result follows. �

4.2. Combinatorics of symmetric partitions. Recall a partition λ is com-
pletely determined by the rim of its Young diagram Y (λ), a path constituted of
vertical and horizontal dashes of length one. Then λ can, by the association of 0
(resp. 1) to a vertical (resp. horizontal) dash of length one, be expressed by its
partition sequence Λ. This is an infinite sequence taking its values in {0, 1} and
of the form 0 · · · 1, where 0 and 1 mean an infinite sequence of left-trailing and
right-trailing 0s and of 1s, respectively. We refer the reader to Example 4.2.
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l0 l1 l2 lβ−1 1 1

l−α

0

0

0

0

0

l−1

l−2

Figure 1. Construction of the rim from the sequence

Let Λ be the partition sequence associated to λ. Denote by α and β the numbers
of zeroes and ones between the leftmost 1 and the rightmost 0 coming after it when
we read the sequence from the left-to-right. Then there are α + β elements in the
sequence between 0 and 1. We write

Λ = 0l−αl−α+1 · · · l−1l0 · · · lβ−11 = (lu)u∈Z. (39)

In particular l−α = 1 and lβ = 0. If there is no 0 after the first 1, then α = β = 0 and
the sequence is 0 1 and corresponds to the empty partition. The bijection between
this labeling of partition sequences and partitions can be represented graphically
as in Figure 1.

Example 4.2. Consider the partition λ = (72, 5, 4, 3, 22).

0

0

1

1

0

0

1

0

1

0 1 0 1 1 0 0 1 1

The partition sequence of λ is Λ = 0110010101011001. We have α = β = 7, and
following the preceding convention, l0 and l−1 are the numbers directly at the right
and the left of the dash 1100101|0101100. Note that in the accompanying figure
the partition sequence has been projected to the left-and-top border of the Young
diagram.

Furthermore, by [15, Lemma 2.2], the partition sequence of λ∗, denoted by Λ∗, is
obtained from Λ by reading Λ from the right to the left with 0s and 1s interchanged.
In other words

Λ∗ = 0(1− lβ−1)(1 − lα−2) · · · (1 − l−α)1 = (1− l−u−1)u∈Z. (40)
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· · ·

· · ·

· · ·

0 1 p− 1

0 1 p− 1

−1

p

2p

−p

Figure 2. p-abacus of the empty partition

We now describe D(λ) the diagonal hooks of λ using Λ. For δ ∈ {0, 1}, write

Hδ = {0 ≤ j ≤ β − 1 | lj = δ} and Kδ = {−α ≤ j ≤ −1 | lj = δ}.
Note that if h = |H0|, then |H1| = β − h and |K1| = β − |H1| = β − (β − h) = h.

Hence, |H0| = |K1|. On the other hand, by [15, p. 9] each hook of λ corresponds to
a pair (i, j) such that −α ≤ i < j ≤ β−1 with li = 1 and lj = 0. Such a hook h(i,j)
has length |j − i|. In particular, the longest hook of λ is h−α,β−1 and it has to be
the first diagonal hook of λ. When we remove it from λ, we obtain a new partition
with the same sequence as λ except that l−α = 0 and lβ−1 = 1. Since |H0| = |K1|,
when we iterate this process |H0| times, we obtain the empty partition. In fact, we
have removed from λ all diagonal hooks one by one. Thus, the diagonal hooks of λ
are labeled by H0 (and K1).

Example 4.3. In Example 4.2, we see that there are four 0s on the horizontal and
four 1s on the vertical axe, corresponding to the four diagonal hooks of λ.

Let p be an odd prime. We now consider a p-abacus with p runners, labeled
from 0 to p − 1 from left-to-right. We choose a position on the first runner and
we label it by 0. Then we label positions by integers moving left-to-right to the
runner p− 1, then wrapping around to runner 0 one row above. In particular, the
positions on the runner 0 are labeled by · · · ,−3p, −2p, −p, 0, p, 2p · · · . Now, we
fill the abacus so that there is a bead at the position labeled by j if and only if
lj = 0. For example, Figure 2 is the p-abacus of the empty partition.

We can also read the diagonal hooks D(λ) directly off of the p-abacus: they are
parametrized by the beads labeled by a non-negative integer. More precisely, if we
set

lγ,j = ljp+γ (41)

for all j ∈ Z, then the beads on runner γ can be interpreted as the partition sequence
(lγ,j)j∈Z of a partition λγ .
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Remark 4.4. In general, this labeling of the sequence is not compatible with that
of (39). Indeed, there is no reason that there should be exactly the same number
of 1s below lγ,0 as the number of 0s above it.

We define λγ as the partition whose partition sequence can be read off the beads
on runner γ. That is, the abacus position γ + mp corresponds to a so-called γ-
position m; that is, if λ has a bead in abacus position γ+mp then λγ has a bead in
position m on runner γ. Then Quop(λ) is the p-quotient of λ, that is, the sequence
(λ0, . . . , λp−1).

Now, for 0 ≤ γ ≤ p− 1, define

Xγ = {j ∈ Z | pj + γ ≥ 0 and lγ,j = 0}.
Therefore, each j ∈ Xγ labels a diagonal hook of λ. Such hooks will be called

diagonal hooks of λ arising from runner γ. Let Corp(λ) be the p-core of λ, that
is, the partition one obtains by removing all the p-hooks of λ. Such a partition is
well-defined [8, p. 79]. Then, λ is uniquely determined by Corp(λ) and Quop(λ).

Let Cor(0)p (λ) = Corp(λ). Now consider the p-tuple of p-abaci, one for each

of the λγ ∈ Quop(λ) above. Then Cor(1)p (λ) will be a p-tuple defined to be

the sequence (Corp(λγ)) for 0 ≤ γ ≤ p − 1. This naturally induces a p2-tuple

(Quop(λ0), · · · ,Quop(λp−1)), that defines Cor(2)p (λ). Iterating this process we de-

fine Cor(k)p (λ) for any non-negative integer k, and obtain at the end the p-core tower
CT (λ) of λ as in (2).

Example 4.5. We continue with Example 4.2. Consider p = 3. Then the p-abacus
of λ is

0 1 2

0

3

1

4

2

5

−1

−4

1

−2

6

−3

Then λ has four diagonal hooks corresponding to the beads in positions 0, 2, 5 and
6. We have

X0 = {0, 2}, X1 = ∅ and X2 = {0, 1}.
By the discussion after Example 4.2, the diagonal hooks arising from the 0-runner
have length 1 and 13. The ones arising from the 2-runner have length 5 and 11.
The partition sequences of λ0, λ1 and λ2 are respectively 0110101, 0 1 and 0101001.
Thus,

λ0 = (3, 2), λ1 = ∅ and λ2 = (22, 1).

Suppose λ = λ∗. Then Λ∗ = Λ, and l−α = 1− lα−1. Since, by definition, α is the
number of zeroes before the leftmost 1, and β is the number of ones after the leftmost
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0, this switch between 0 and 1 in each position implies that α = β. Moreover, for
0 ≤ u ≤ α − 1 and δ ∈ {0, 1}, we have lu = δ if and only if l−u−1 = 1− δ. Denote
by φ : Z 7→ Z, u→ −u− 1. We define

Yγ = {j ∈ Z | pj + γ ≤ −1 and lγ,j = 1}.
Lemma 4.6. Suppose φ is as above. Then the following hold.

(1) φ is a bijection from Z to Z.
(2) φ induces a bijection φ|H0 : H0 → H1 with inverse map φ|H1 : H1 → H0.
(3) φ2 = id.
(4) φ induces a bijection from Xγ to Yp−γ−1.

Proof. (1) and (3) are immediate. For (2), note, in particular, φ and the diagonal
hooks of λ are the hu,φ(u) for u ∈ H0 of length 2u + 1. For u ∈ H0, we denote the
corresponding diagonal hook-length by

du = 2u+ 1. (42)

To see (4), suppose that u = jp+ γ for j ∈ Z and 0 ≤ γ ≤ p− 1. Then −u− 1 =
−jp− γ − 1 = −(j + 1)p+ p− 1− γ with 0 ≤ p− 1− γ ≤ p− 1. Since lφ(u) = 1 if
and only if lu = 0, we have

lp−1−γ,j = 1− lγ,−(j+1) (43)

which is the partition sequence of the conjugate partition of λγ . �

Assume that γ 6= (p− 1)/2. Since Xp−1−γ labels the diagonal hooks of λ arising
from runner (p− 1− γ), Yγ does too. Hence, the diagonal hooks of λ arising from
the runners γ and (p − 1 − γ) are parametrized by Xγ ∪ Yγ . By (42), for x ∈ Xγ

and x′ ∈ Yγ , the corresponding diagonal hook-lengths of λ are

dx = 2(xp+ γ) + 1 and dx′ = 2((−x′ − 1)p+ p− 1− γ) + 1. (44)

Denote by Γ a set of representatives of {γ, p−1−γ} for {0, . . . , j, . . . , p−1}\{(p−
1)/2}. By the discussion above, we have the following.

Corollary 4.7. The diagonal hooks of λ are parametrized by the elements of

X(p−1)/2 ∪
⋃

γ∈Γ

(Xγ ∪ Yγ).

Assume now that λ = λ∗ with Corp(λ) = ∅. Furthermore, assume that λ(p−1)/2 =
∅ where λ (p−1)

2

∈ Quop(λ). Let 0 ≤ γ ≤ p − 1. Consider the partition sequence

(lγ,j)j∈Z as in (41). Since the p-abacus of Figure 2 is the one that we obtain af-
ter removing all the p-hooks of λ (because Corp(λ) is empty), it follows from the
construction of the p-quotient that the number of beads above j = 0 is the same
as the number of empty positions under and strictly below j = 0. In particular,
the sequence (lγ,j)j∈Z is compatible with the labeling of (39), and the beads over
j = 0 correspond to the diagonal hooks of λγ and are in bijection with the diagonal
hooks of λ arising from runner γ.

Since λ∗p−1−γ = λγ , they have the same number of diagonal hooks. If d is the
length of the jth-diagonal hook of λγ , then we denote by d∗ the length of the
jth-diagonal hook of λp−1−γ . Write x ∈ Xγ and x∗ ∈ Yγ such that d = dx and
d∗ = dφ(x∗). Then (42) gives

dx = 2(xp+ γ) + 1 and dx∗ = 2(φ(x∗)p+ (p− 1)− γ) + 1. (45)
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Hence, if we set wx,x∗ = x− x∗, then

dx + dx∗ = 2pwx,x∗. (46)

Moreover, by (4.7)

d(λ) =
⋃

γ∈Γ

{dx, dx∗ |x ∈ Xγ},

where d(λ) is defined in (1)

Example 4.8. Consider the partition λ = (72, 5, 4, 3, 22) in Example 4.5. We see
from the 3-abacus that Cor3(λ) is empty. We also see that

Y0 = {−2,−1} and Y2 = {−1,−3}.
The bijection between Y0 and X2 is

−2 7→ φ(−2) = 2− 1 = 1 and − 1 7→ φ(−1) = 1− 1 = 0.

Then d(λ) is given by (44)

{dx | x ∈ X0} = {d0, d2} = {1, 13} and {dx | x ∈ Y0} = {d−2, d−1} = {5, 11}.
In particular, the diagonal hooks of length 1 of λ0 and λ2 are associated with 1 ∈ X0

and −1 ∈ Y0. Similarly, the ones of length 4 correspond to 2 ∈ X0 and −3 ∈ Y0.
It follows that

1∗ = −1 and 2∗ = −3.

4.3. Diagonal hooks of regular partitions. Let p be an odd prime, n an integer
divisible by p, and λ = λ∗ be a partition of n. Let n = n1p+n2p

2+ · · ·+nsp
s be its

p-adic expansion. Write I = {0, . . . , p− 1} as above, and the p-core tower CT (λ) of
λ as in (2). We assume that the Corp(λ) = ∅. We say that λ is a regular partition
when ck(λ) = nk and λp∗ = ∅ where p∗ ∈ Ik for any 1 ≤ k ≤ s. On the other hand,

λ is called singular whenever λj = ∅, except possibly for j = p∗(k) ∈ Ik, where

p∗(k) is defined in Equation (14).
For λ as above, we also define r(λ) and s(λ) the regular and singular parts

(respectively) by giving their p-core towers as follows. For k ≥ 0 and j ∈ Ik, if

j 6= p∗(k), then we set λ′j = λj and λ′′j = ∅. Otherwise, if j = p∗(k), then write

λ′p∗(k) = ∅ and λ′′p∗(k) = λp∗(k).

Therefore, the p-core towers of r(λ) and s(λ) are given by

Cor(k)p (r(λ)) = {λ′j | j ∈ Ik} and Cor(k)p (s(λ)) = {λ′′j | j ∈ Ik} for k ≥ 0. (47)

Recall p∗(k) ∈ Ik. Then that ck(s(λ)) = |λp∗(k)| and ck(r(λ)) = ck(λ) − ck(s(λ))

by construction. Hence, if we set n′ =
∑
ck(r(λ))p

k and n′′ =
∑
ck(s(λ))p

k, then
n = n′ +n′′ and r(λ) and s(λ) are respectively regular and singular partitions of n′

and n′′ in the previous sense.

Proposition 4.9. Let n be an integer with p-adic expansion n = n1p + n2p
2 +

· · ·+ nsp
s, where p is an odd prime. Let λ be a regular partition with p-core tower

Cor(k)p (λ) = {λj | j ∈ Ik} for k ≥ 0. For any integer 0 ≤ i ≤ s− 1, write Hi for the

set of diagonal hooks lengths of λ which are divisible by pi but not by pi+1. Then
the elements of Hi are of the form tu,i = piu and t∗u,i = pi(wu,ip−u), where u ∈ Ui

is an odd integer relatively prime to p, and wu,i ∈Wj is an even integer.
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Proof. We proceed by induction on s ≥ 1. Suppose that s = 1. Then n = n1p.
Note that Corp(λ) = ∅ by assumption, thus we are in the situation described above.
By (45) we set tu,0 = dx and t∗u,0 = dx∗ , and (46) gives that t∗u,0 = pwu − tu,0 with
wu,0 = 2wx,x∗ . In particular, tu,0 and t∗u,0 are odd and prime to p and wu,0 is even.
The result is true for s = 1.

Let s ≥ 1. Suppose that the result holds for s. Let n = n1p + n2p
2 + · · · +

nsp
s + ns+1p

s+1, and λ be a partition of n that satisfies the assumption. Consider
λ′ = λ(p−1)/2 ∈ Quop(λ) and n′ = |λ′|. One has n = p(n′ +

∑
j 6=(p−1)/2 |λj |)

because Corp(λ) = ∅, and n′ is divisible by p because Corp(λ′) = ∅, since λ is
regular. Thus, the p-adic expansion of n′ is then of the form n′

1p + · · · + n′
hp

h

with h ≤ s. By induction, the diagonal hooks of λ′ are as required. Now, there
is a bijection f between the diagonal hooks of λ divisible by p and the diagonal
hooks of λ(p−1)/2 such that |f(hmm)| = p|hmm|, where hmm is a diagonal hook
of λ(p−1)/2. In particular, for 1 ≤ i ≤ s, we have Hi = f(H ′

i−1) where H ′
i−1

is the set of diagonal hooks of λ′ divisible by pi−1 but not by pi. On the other
hand, since Corp(λ) = ∅, H0 is the set of diagonal hooks arising from Quop(λ) =
(λ0, . . . , λ(p−3)/2, ∅, λ(p+1)/2, . . . , λp−1), and (45) and (46) give the result. �

Proposition 4.10. Let λ be a regular partition of n. If f ∈ Kn!/2 then ε(χλ, f) = 1.
Moreover,

ε(χλ, σn!/2) = (−1)
(p−1)n

4 .

Proof. First, we remark that if the p-adic expansion of n is n1p + · · · + nsp
s then

each ni is even since ni = 2
∑

j |λj |, where the sum runs over j 6= p∗(k) and j is

a representative of {j, j∗}. Here we use that λ is a symmetric partition and that

|λj | = |λ∗j | = |λj∗ |. Now, by Proposition 4.9, we have

∏

h∈d(λ)

h =

s−1∏

i=0

∏

u∈Ui

tu,it
∗
u,i

=

s−1∏

i=0

∏

u∈Ui

p2iu(wu,ip− u).

Let f be in Hn!/2. With the notation (35), we have

ε



√ ∏

h∈D(λ)

h, f


 = ε

(
s−1∏

i=0

∏

u∈Ui

√
u(wu,ip− u), f

)
(48)

=

s−1∏

i=0

ε

(
∏

u∈Ui

√
u(wu,ip− u), f

)
.

Note that u and (wu,ip− u) are odd. Furthermore,

u(wu,ip− u) =

{
2− u2 ≡ 1 mod 4 if wu,i ≡ 2 mod 4,

−u2 ≡ −1 mod 4 if wu,i ≡ 0 mod 4.
(49)

We also have

n =
∑

h∈D(λ)

h =

s−1∑

i=0

pi+1
∑

u∈Ui

wu,i.
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Since wu,i is even, there is an integer w′
u,i such that wu,i = 2w′

u,i, and

n

2
=

s−1∑

i=0

pi+1
∑

u∈Ui

w′
u,i (50)

≡
s−1∑

i=0

∑

u∈Ui

w′
u,i mod 2,

because p is odd. Now, write A = {w′
u,i | 0 ≤ i ≤ s − 1, u ∈ Ui}, and Aeven and

Aodd for the subsets of even and odd elements of A, respectively. Then |A| = dλ

2
and (50) gives

n

2
≡

∑

w∈Aodd

w ≡
∑

w∈Aodd

1 ≡ |Aodd| mod 2.

Since |A| = |Aodd|+ |Aeven|, we deduce from (49) that

s−1∏

i=0

∏

u∈Ui

u(wu,ip− u) ≡ (−1)|Aeven| ≡ (−1)|A|−|Aodd| ≡ (−1)
n−dλ

2 mod 4. (51)

Thus, by (48) and Proposition 4.1 we obtain

ε



√ ∏

h∈d(λ)

h, f


 = ε(i, f)

(p−1)(n−dλ)

4

s−1∏

i=0

∏

u∈Ui

( r
u

)( r

wu,ip− u

)
, (52)

where r is such that f(ωm) = ωr
m for m =

∏
i,u u(wu,ip−u). Note that if f ∈ Kn!/2,

then f acts trivially on i and on ωm, that is r = 1, and (36) implies that ε(χλ, f) = 1.
Assume that f = σn!/2, that is r = p. On the other hand, by quadratic reciprocity,
one has

(p
u

)( p

wu,ip− u

)
= (−1)

p−1
2

(

u−1
2 +

wu,ip−u−1

2

)
(−1

p

)
(53)

= (−1)
p−1
2

(

u−1
2 +

wu,ip−u−1

2 +1
)

= (−1)
(p−1)wu,i

4

= (−1)
(p−1)w′

u,i
2

=

{
1 if w′

u,i ≡ 0 mod 2,

−1 if w′
u,i ≡ 1 mod 2.

Using (36), it follows that

ε(χλ, σn!/2) = (−1)
(p−1)(n−dλ)

4 ε




√ ∏

h∈d(λ)

h, f





= (−1)
(p−1)(n−dλ)

4 · (−1)
(p−1)(n−dλ)

4 · (−1)
(p−1)|Aodd |

2

= (−1)
(p−1)n

4 ,

as required. �
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4.4. Diagonal hooks of partitions with non-empty p-core. For any partition
λ, we denote by Qp(λ) the partition with the same p-quotient as λ but with empty
p-core. That is, Quop(Qp(λ)) = Quop(λ) but Corp(Qp(λ)) = ∅.

Let λ = λ∗. Write M = (mu)u∈Z, M′ = (m′
u)u∈Z and Λ = (lu)u∈Z for the

partition sequences with the labeling as in (39) associated to λ, Corp(λ) and Qp(λ)
respectively.

Since λ = λ∗ we have Corp(λ) = Cor∗p(λ) by [15, Prop. 3.5]. Let 0 ≤ γ ≤ p − 1.
By definition of a p-core, if m′

γ = 0, then there is an integer δγ > 0 such that

m′
pj+γ = 0 if and only if j ≤ δγ − 1. Since Corp(λ) = Cor∗p(λ) it follows from §4.2

that m′
pj+(p−1)−γ = 0 if and only if j < −δγ . If m′

γ = 1 and m′
−p−γ = 0 then

m′
(p−1)−γ = 1 and m′

−p+(p−1)−γ = 0. In this last case, we set δγ = 0. Let γ be

such that δγ > 0. Define ∆γ = {0 ≤ j ≤ δγ − 1}. Then elements of D(Corp(λ)) are
labeled by the elements of ∪δγ>0∆γ . In particular Corp(λ) has

∑
δγ>0 δγ diagonal

hooks.
We construct the p-abacus of λ from that of Qp(λ) as follows. If δγ = 0 then the

runners γ and (p − 1 − γ) of Qp(λ) and λ are identical. If δγ > 0, then runner γ
of λ (resp. the runner p− 1 − γ of λ) is obtained by shifting up (resp. down) the
corresponding runner of Qp(λ) δγ positions. It follows that, for all 0 ≤ γ ≤ p − 1
such that δγ ≥ 0, one has

m(j+δγ )p+γ = ljp+γ and m(j−δγ )p+p−1−γ = ljp+p−1−γ for all j ∈ Z. (54)

We will now describe how to obtain D(λ) from D(Qp(λ)). For γ ∈ Γ∪{(p−1)/2},
we denote by Xγ and Yγ (respectively X ′

γ and Y ′
γ) the sets as in (4.7) that label

the diagonal hooks of Qp(λ) (respectively, of λ).
We remark that if δγ = 0, then Xγ = X ′

γ and Yγ = Y ′
γ , that is the hooks of λ and

Qp(λ) arising from runner γ are the same. Note that δ(p−1)/2 = 0, since λ = λ∗.
Suppose δγ > 0. We introduce four possibilities in passing from the diagonal

hooks of Qp(λ) to those of λ.

(i) Any x ∈ Xγ corresponds to a hook labeled by x+δγ ∈ X ′
γ of λ on the γ-runner.

More precisely, by (54) we can associate to the hook of length dx of Qp(λ)
labeled by x given in (45), a hook of λ of length

c(dx) = 2((x+ δγ)p+ γ) + 1. (55)

We will call this an increase of the length of an existing hook with respect to
γ.

(ii) Similarly, for x ∈ Yγ such that x < −δγ , we have δγ + x < 0, and δγ + x ∈ Y ′
γ

by (54). By (45), we associate to dx a hook of λ of length

c(dx) = 2(φ(δγ + x)p+ (p− 1)− γ) + 1. (56)

We will refer to this as an increase of the length of an existing hook with
respect to γ∗ = p− γ − 1.

(iii) Let −δγ ≤ x ≤ −1 be such that x /∈ Yγ , that is lxp+γ = 0. Then x + δγ ≥ 0
and by (54), x+ δγ ∈ X ′

γ . Hence, a new diagonal hook of length

cx = 2((δγ + x)p+ γ) + 1

appears in λ. This is also a diagonal hook of Corp(λ). We will call this the
appearance of a new hook with respect to γ.
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(iv) Finally, let −δγ ≤ x ≤ −1 be such that x ∈ Yγ , that is lxp+γ = 1. Then
x+δγ /∈ X ′

γ . Then the hook of Qp(λ) labeled by x gives no hook of λ. We will
call this the disappearance of an existing hook with respect to γ∗ = p− γ − 1.

Remark 4.11. Let Aγ and Bγ be the set of −δγ ≤ x ≤ −1 such that lpx+γ = 0
and lpx+γ = 1, respectively. Then Aγ ⊔ Bγ labels the diagonal hooks of Corp(λ))
as follows: associate the set of diagonal hooks of Corp(λ) of length

cx = 2((δγ + x)p+ γ) + 1 (57)

to Aγ ⊔ Bγ .

In the next example we use the fact that the p-abacus of Corp(λ) is obtained
from the p-abacus of λ by placing beads in empty positions one position below them
on each runner until this is no longer possible, and then reading off the resulting
partition from the new p-abacus configuration. by [8, p. 79].

Example 4.12. Let λ = (16, 11, 3, 28, 15). We find D(λ) using the 3-abaci of
Cor3(λ) and Q3(λ).

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1

In particular, the 3-abaci of λ and of Cor3(λ) are depicted below:

0 1 2

0

−1

0 1 2

0

−1

λ Cor3(λ)
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We can obtain Cor3(λ) = (7, 5, 3, 22, 12) from λ by pushing down beads and read-
ing off the resulting bead positions. We have δ0 = 3 and δ1 = 0, and λ(3) has three
diagonal hooks. Now consider the partition Q3(λ) of Example 4.2. More precisely,
by the previous discussion, D(λ) can be obtained from the 3-abacus of Q3(λ) and
the ∆γ . The 3-abacus of λ is obtained by shifting up the runner 0 of Q3(λ) δ0
positions and by shifting down the runner 2 −δ0 positions.

+δ0

−δ0

0 1 2

0

−1

Consider runner 0 of Q3(λ). Since δ0 = 3, one shifts it up three positions to obtain
the 0-runner of λ. However (here we abuse notation) this causes X0 ∪ Y0(λ), to be
altered from X ′

0 ∪Y ′
0(λ), and hence the number of diagonal hooks of λ arising from

runner 0 is different the number of diagonal hooks of Q3(λ) arising from its runner
0. In particular, the diagonal hooks in Q3(λ) corresponding to positions 2 and 5
on runner 2 “disappear” for λ as they shift to new positions −1 and −4, while the
bead in position −9 on the 3-abacus of Qp(λ) introduces a new diagonal for λ as it
shifts up to position 0.

Recall that the Durfee square of λ is the largest square that can be accommodated
inside the Young diagram of λ (see for example [1, §2.3]). Let λ✷ be the size of the
Durfee square of λ, otherwise known as the Durfee number of λ. Let Y1

γ = {−δγ ≥
x ≥ −1 | x 6∈ Yγ} and Y0

γ = {−δγ ≥ x ≥ −1 | x ∈ Yγ}, and Y✷

γ = |Y1
γ | − |Y0

γ |.
Then steps (i) through (iv) in this section describe how to calculate the size of the
Durfee square of a symmetric partition from the Durfee squares of its p-quotient
and its p-core.

Lemma 4.13. With the above notation, we have

λ✷ =
∑

λγ∈Quop(λ)

λ✷γ +
∑

δγ>0

Y✷

γ .

Proof. We can rewrite the equation in the statement of the theorem as follows:

λ✷ =
∑

λγ ,δγ>0

(λ✷γ + Y✷

γ ) +
∑

λγ ,δγ=0

λ✷γ .

The second of the two sums counts the contribution to the Durfee number from
the runners that are not affected by the introduction of a core. The first of the two
sums calculates the original contribution to the Durfee number from the runners on
which the core appears, and then corrects it using Y✷

γ for each δγ > 0. In particular,



29

Y✷

γ subtracts the disappearances of existing hooks with respect to γ∗ = p − γ − 1
from the appearances of a new hooks with respect to γ. �

The following two corollaries are immediate.

Corollary 4.14. If λ is a p-core, that is λ = Corp(λ), then λ✷ =
∑

δγ>0 δγ.

Proof. In this case the Durfee number is calculated directly from the the p-core. �

Corollary 4.15. If λ has empty p-core, that is, λ = Qp(λ), then

λ✷ =
∑

λγ∈Quop(λ)

λ✷γ .

Proof. In the case the p-core contributes nothing, no diagonal hooks appear, non
disappear, and the Durfee number of λ is the the sum of the Durfee numbers of the
quotient. �

4.5. The sign of the product of the diagonal hooks.

Theorem 4.16. Let w and r be non-negative integers, and set n = pw + r. Let
λ = λ∗ be a partition of n such that |Corp(λ)| = r and Quop(λ) ∈ MP(p, w), where
MP(p, w) is the set of p-multipartitions of w. Assume that λ(p−1)/2 = ∅. Set

d =
∏

h∈d(λ)

h , q =
∏

h∈d(Qp(λ))

h and c =
∏

h∈d(Corp(λ))

h.

Then (p
d

)
=

(
p

q

)(p
c

)
.

Furthermore, if b =
∑

γ |Bγ |, then

d ≡ qc(−1)b mod 4,

where Bγ is the set defined in Remark 4.11.

Proof. Recall from §4.4 that D(λ) is labeled by X ′
γ and Y ′

γ where γ ∈ Γ. We choose
the representative γ ∈ Γ such that δγ ≥ 0. We also recall that D(Quop(λ)) is
labeled by Xγ ∪ Yγ and D(Corp(λ)) by ∆γ for γ ∈ Γ. Furthermore, for γ ∈ Γ, if
δγ = 0, then X ′

γ = Xγ , Y ′
γ = Y ′

γ and ∆γ = ∅. Otherwise, if δγ > 0, then with the
notation (55), (56) and (57)

X ′
γ = {c(dx) | x ∈ Xγ}∪{cx | x ∈ Aγ} and Y ′

γ = {c(dx) | x ∈ Yγ such that x < −δγ}.
Write

M =
∏

δγ>0

∏

x∈X ′
γ∪Y′

γ

(
p

d′x

)
,

where d′x is the diagonal hook-length of λ corresponding to x. We remark that
(p
d

)
=M

∏

δγ=0

∏

x∈Xγ∪Yγ

(
p

dx

)
.

But for any c(dx) ∈ Y ′
γ , there is c(dx∗) ∈ Xγ , where dx and dx∗ are diagonal hook

lengths of λ as in (45). Furthermore, by (46), (55) and (56) we have

c(dx) + c(d∗x) = 2pwx,x∗. (58)
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It follows that

c(dx)c(dx∗) ≡ 2c(dx)pwx,x∗ − 1 ≡ 2pwx,x∗ − 1 ≡ dxdx∗ mod 4. (59)

Hence,
(

p

c(dx)c(dx∗)

)
= (−1)

(p−1)(c(dx)c(dx∗ )−1)

4

(
c(dx)c(dx∗)

p

)
(60)

= (−1)
(p−1)(dxdx∗−1)

4

(−1

p

)

=

(
p

dxdx∗

)
.

On the other hand, if x ∈ Yγ is such that −δγ ≤ x ≤ −1, that is x ∈ Bγ , then
there is a diagonal hook of µ of length c(dx∗) with x∗ ∈ Xγ . So

M =
∏

δγ>0



∏

x∈Yγ

(
p

c(dx)c(dx∗)

) ∏

x∈Bγ

(
p

c(dx∗)

) ∏

x∈Aγ

(
p

cx

)


=
∏

δγ>0




∏

x∈Yγ

(
p

dxdx∗

) ∏

x∈Bγ

(
p

c(dx∗)

) ∏

x∈Aγ

(
p

cx

)

 .

By Remark 4.11, recall that d(Corp(λ)) = {cx | x ∈ Aγ ∪ Bγ}, where cx is given
in (57). Then

(p
d

)
=

(
p

q

)(p
c

) ∏

δγ>0

∏

x∈Bγ

(
p

dxdx∗c(dx∗)cx

)
.

Let γ be such that δγ > 0 and x ∈ Bγ . By (55) and (57), we have cx ≡ c(dx∗)
mod p. Moreover

cxc(dx∗) ≡ 1 + 2((δγ + x)p+ 1) + 2((δγ + x∗)p+ 1) mod 4 (61)

≡ 1 + 2x+ 2x∗ mod 4

≡ 1 + 2(x+ x∗) mod 4

= 1 + 2(x− x∗) mod 4

= 1 + 2wx,x∗ mod 4.

Hence
cxc(dx∗)− 1

2
≡ wx,x∗ mod 2,

and we obtain that
(

p

c(dx∗)cx

)
= (−1)

(p−1)wx,x∗

2

(
c(dx∗)cx

p

)
= (−1)

(p−1)wx,x∗

2 .

However, the computation (53) shows that
(

p
dxdx∗

)
= (−1)

(p−1)wx,x∗

2 , and

(
p

dxdx∗c(dx∗)cx

)
= (−1)

(p−1)wx,x∗

2 · (−1)
(p−1)wx,x∗

2 = 1.

The result follows.
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We now prove the second part of the statement. Since an odd number is its own
inverse modulo 4, we do the same computation as above and obtain that

d ≡ qc
∏

δγ>0

∏

x∈Bγ

dxdx∗c(dx∗)cx mod 4.

But by (59) and (61), we have

dxdx∗c(dx∗)cx ≡ (2wx,x′ − 1)(2wx,x′ + 1) ≡ 4w2
x,x∗ − 1 ≡ −1 mod 4.

Thus, d ≡ qc(−1)b mod 4. �

Theorem 4.17. Let λ = λ∗.Then for any f ∈ Hn!/2,

ε(χλ, f) = ε(χQp(λ), f)ε(χCorp(λ), f).

Proof. Write n = pw + r, where r = |Corp(λ)|.
First, we assume that λ(p−1)/2 = ∅. We define λ, d, q and c as in Theorem 4.16.

Since λ(p−1)/2 = ∅, we have ε(χλ, f) = ε(χQp(λ), f) = ε(χCorp(λ), f) = 1 for all
f ∈ Kn!/2. We consider the case f = σn!/2. In the proof of 4.10, we see that

ε(χλ, σn!/2) =
(

p
q

)
. To simplify the notation, set m = dCorp(λ). By Theorem 4.16,

d ≡ (−1)bqc mod 4. Furthermore,

dµ + dλ =
∑

γ∈Γ

(|Xγ |+ |X ′
γ |+ |Yγ |+ |Y ′

γ |)

=
∑

γ∈Γ

(2|Xγ |+ |Aγ |+ 2|Yγ | − |Bγ |)

= 2
∑

γ∈Γ

(|Xγ)|+ |Yγ |︸ ︷︷ ︸
even

) +m− 2b

≡ m+ 2b mod 4.

Now, we derive from the proof of Proposition 4.10 (−1)
n−r+dλ

2 = (−1)
n−r−dλ

2 =

(−1)
pw−dλ

2 = (−1)
q−1
2 . In particular, n− r + dλ ≡ q − 1 mod 4. Thus,

n− dµ + d− 1− r +m− c+ 1 = n− r +m− dµ + d− c

≡ n− r + dλ + 2b+ qc(−1)b − c mod 4

≡ q − 1 + 2b+ qc(−1)b − c mod 4.

If b is even, then

n− dµ + d− 1− r +m− c+ 1 ≡ q − 1 + qc− c ≡ (q − 1)(c+ 1) ≡ 0 mod 4,

because q and c are odd. If b is odd, then

n− dµ + d− 1− r +m− c+ 1 ≡ q − 1 + 2− qc− c mod 4

≡ (q + 1)(1− c) mod 4

≡ 0 mod 4.
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Finally, using Propositions 4.10 and 4.1, and (36), we obtain

ε(χλ, σn!/2) = (−1)
p−1
4 (n−dµ+d−1)

(p
d

)

= (−1)
p−1
4 (n−dµ+d−1)

(
p

q

)(p
c

)

= (−1)
p−1
4 (n−dµ+d−1−r+m−c+1)ε(χQp(λ), σn!/2)ε(χCorp(λ), σn!/2)

= ε(χQp(λ), σn!/2)ε(χCorp(λ), σn!/2).

Assume now that λ(p−1)/2 is non-empty. Since δ(p−1)/2 = ∅, we have X ′
(p−1)/2 =

X(p−1)/2, that is, the diagonal hooks arising from the (p − 1)/2-runner of λ and
Qp(λ) are the same. Denote by λ∨ the partition with same p-core and p-quotient
as λ except λ∨(p−1)/2 = ∅. Then

ε(χλ, f) = ε(i, f)
p|λ(p−1)/2|−|X(p−1)/2 |+d(p−1)/2−1

2 ε(
√
d(p−1)/2, f)ε(χλ∨ , f)

= ε(i, f)
p|λ(p−1)/2|−|X(p−1)/2 |+d(p−1)/2−1

2 ε(
√
d(p−1)/2, f)ε(χQp(λ)∨ , f)ε(χCorp(λ), f)

= ε(χQp(λ), f)ε(χ(Corp(λ), f),

where d(p−1)/2 is the product of the diagonal hook lengths arising from the runner
(p− 1)/2. �

5. Verification of Navarro’s conjecture for the alternating groups

We will now prove Theorem 1.1. Let n be a positive integer with p-adic expansion

n = n0 + pn1 + · · ·+ nsp
s. Let λ be a partition of n with p-core tower Cor(k)p (λ) =

{λj | j ∈ Ik} for k ≥ 0 such that ck(λ) =
∑

j∈Ik |λj |. We then associate to λ the

irreducible character of NSn(P )

ψλ =
∏

k≥0

ψλ,k,

as above, where ψλ,k ∈ Irr(Nk) as in (7). If λ is not symmetric, then χλ and
ψλ restrict irreducibly to An and NAn(P ). As above, we denote the restriction
by the same symbol. If λ is symmetric, then the restriction of χλ to An has two
irreducible constituents χ+

λ and χ−
λ . Similarly for ψλ. More precisely, for any k ≥ 0

and λ ∈ MP(pk, nk), we have λ∗ = λ and the restriction of ψλ,k to (Yk ≀Snk
)+ splits

into two irreducible characters ψ+
λ,k and ψ−

λ,k. Then following §3.1, we label ψ+
λ such

that
∏

k ψ
+
λ,k is a constituent of Res∏(Y k≀Snk

)+(ψ
+
λ ). In particular,

∏
k ψ

−
λ,k is a

constituent of Res∏(Y k≀Snk
)+(ψ

−
λ ). Now, define Φ : Irrp′(An) → Irrp′(NAn(P )) by

setting
Φ(χλ) = ψλ if λ 6= λ∗, and Φ(χ±

λ ) = ψ±
λ otherwise. (62)

We need the following two lemmas.

Lemma 5.1. If λ is a regular partition of n and f ∈ Hn!/2, then

ε(χλ, f) = ε(ψλ, f).

Proof. Since λ is regular, n = n1p+n2p
2+ · · ·+nsp

s with ni even for all 1 ≤ i ≤ s.
By Proposition 3.2

ε(ψλ, f) =

s∏

k=1

ε(ψλ,k, f).
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Hence, for f ∈ Kn!/2, one has ε(ψλ, f) = 1 by Proposition 3.6, and

ε(ψλ, σn!/2) =
s∏

k=1

ε(ψλ,k, σn!/2)

=

s∏

k=1

(−1)
(p−1)nk

2

= (−1)
p−1
4

∑s
k=1 nk .

For 1 ≤ k ≤ s, let n′
k ∈ Z such that nk = 2n′

k. We have

n

2
=

s∑

k=1

n′
kp

k ≡
s∑

k=1

n′
k mod 2,

because p is odd. Thus
∑s

k=1 nk ≡ n mod 4, and ε(ψλ, σn!/2) = (−1)
(p−1)n

4 . The
result now follows from Proposition 4.10. �

Lemma 5.2. If λ is a singular partition of n with empty p-core, and f ∈ Hn!/2,
then

ε(χλ, f) = ε(ψλ, f).

Proof. By construction of λ from its p-core tower and §4.4, for all k ≥ 1, we have

dpk(λ) = {pkh | h ∈ dλ,k},
where dpk(λ) is the set of diagonal hooklengths of χλ divisible by pk but not by

pk+1 and dλ,k is the set of diagonal hooklengths of χp∗(k) with p∗(k) ∈ Ik. In the

following, we write χk = χp∗(k). In particular, if dλ and dk are the number of

diagonal hooks of λ and the partition with empty p-core tower except the position
p∗(k) in the level k, that is equal to λp∗(k), then dλ =

∑s
k=1 dk.

Let f ∈ Hn!/2. By (36), we obtain

ε(χλ, f) = ε(i, f)(n−dλ)/2ε




√ ∏

h∈d(λ)

h, f





=

s∏

k=1

ε(i, f)
nkpk−dk

2 ε



√ ∏

h∈d
pk

(λ)

h, f




=

s∏

k=1

ε(i, f)
nk(−1)k−dk

2 ε


√

p
kdk

√ ∏

h∈dλ,k(λ)

h, f




=

s∏

k=1

ε(i, f)
nk(−1)k−dk+nk−dk

2 ε(
√
p
kdk , f)ε(χk, f)

=

s∏

k=1

ε(i, f)
nk(−1)k−dk+nk−dk+2dkk

2 ε(ψλ,k, f) by Prop. 3.7

= ε(i, f)
1
2

∑s
k=1(nk(−1)k−dk+nk−dk+2dkk)ε(ψλ, f),

where the last equality comes from Proposition 3.2. However, if k is even, then

nk(−1)k − dk + nk − dk + 2dkk ≡ 2(nk − dk) ≡ 0 mod 4
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because nk and dk have the same parity. If k is odd, then

nk(−1)k − dk + nk − dk + 2dkk ≡ −nk + 2dk + nk − 2dk ≡ 0 mod 4.

The result follows. �

Lemma 5.3. Let λ be a symmetric partition with empty p-core. Then for f ∈ Hn!/2

ε(χλ, f) = ε(χr(λ), f)ε(χs(λ), f),

where r(λ) and s(λ) are the regular and the singular parts of λ as in (47).

Proof. By assumption, the p-core of λ is empty. In particular,

D(λ) = D(r(λ)) ⊔D(s(λ)).

Write dλ = |D(λ)|, dr(λ) = |D(r(λ))| and ds(λ) = |D(s(λ))|. We have

dλ = dr(λ) + ds(λ).

Furthermore, we have |λ| = |r(λ)| + |s(λ)| by construction. Hence, for all f ∈ Hn!,
Equation (36) gives

ε(χλ, f) = ε


i(|λ|−dλ)/2

√ ∏

h∈D(λ)

h, f




= ε



i(|r(λ)|−d
r(λ))/2

√ ∏

h∈D(r(λ))

h, f



 ε



i(|s(λ)|−d
s(λ))/2

√ ∏

h∈D(s(λ))

h, f





= ε(χr(λ), f)ε(χs(λ), f),

as required. �

Assume that λ = λ∗. Recall Qp(λ) is the partition with the same p-quotient as
λ and with empty p-core. Proposition 4.17 and Lemma 5.3 give

ε(χλ, f) = ε(χCorp(λ), f)ε(χr(Qp(λ)), f)ε(χsQp(λ)), f). (63)

Now, by Theorem 3.8 and Proposition 3.2, we have

ε(ψλ, f) = ε(χCorp(λ), f)

s∏

k=1

ε(ψr(Qp(λ)),k, f)

s∏

k=1

ε(ψs(Qp(λ)),k, f) (64)

= ε(χCorp(λ), f)ε(ψr(Qp(λ)), f)ε(ψs(Qp(λ)), f).

However, by Lemmas 5.1 and 5.2, we have

ε(χr(Qp(λ)), f) = ε(ψr(Qp(λ)), f) and ε(χs(Qp(λ)), f) = ε(ψs(Qp(λ)), f).

Finally (63) and (64) give that

ε(χλ, f) = ε(ψλ, f).

Hence, Φ is an Hn!/2-equivariant bijection, as required.
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6. Blockwise Navarro’s conjecture for alternating groups

For any finite group G and any prime number p dividing |G|, recall that Irr(G)
decomposes into families, the so-called p-blocks of G. Write Bl(G) for the set of
p-blocks of G. Furthermore, we attach to any B ∈ Bl(G) its p-defect group D. This
is a p-subgroup of G which is well-defined up to conjugation. Now, by Brauer’s
first main theorem [7, (15.45)], we can associate to any p-block B of G its Brauer
correspondent B′ ∈ Bl(NG(D)). Then the blockwise Navarro’s conjecture asserts
that the number of height zero characters in B and B′ fixed by σ ∈ Hn is the same.

6.1. Case of p odd. In order to discuss blockwise Navarro’s conjecture for alter-
nating groups, we will first recall some some facts about the p-blocks of symmetric
and alternating groups.

It is well-know by the Nakayama Conjecture that for any prime p, the p-blocks
of Sn are labeled by the p-cores of partitions of n. More precisely, two irreducible
characters of Sn lie in the same p-block if and only if the partitions labeling them
have the same p-core; see for example [15, Theorem 11.1]. In the following, such a
p-core will be called a p-core of n. Note that there is here an abuse of terminology
since a p-core of n is not in general a partition of n. For a p-core γ of n, we denote
by Bγ the corresponding p-block of Sn, and we define the p-weight of Bγ by setting

w = n−|γ|
p .

We can describe the height zero characters of Bγ in term of the p-core tower
of partitions labeling characters of the block as follows. By [15, Proposition 11.5],
an irreducible character χλ lying in the block Bγ has height zero if and only if
0 ≤ ck(λ) ≤ p − 1 for all k ≥ 1 with ck(λ) =

∑
j∈Ik |λj |, where the Notation is as

in (2).
Furthermore, without loss of generality, we can assume by [15, Proposition 11.3]

that any Sylow p-subgroup Dγ of Spw ⊆ Sn is a defect group of Bγ . Let pw =
w1p + w2p

2 + · · · denote the p-adic expansion of pw. Then by [2, page 159], we
have

NSn(Dγ)/D
′
γ ≃ S|γ| ×

∏

k≥1

Y k ≀Swk
.

Moreover, by [2, page 158 and 159], the set Irr0(B
′
γ) of height zero characters of

the Brauer correspondent B′
γ ∈ NSn(Dγ) of Bγ is

Irr0(B
′
γ) =




χγ ⊗
∏

k≥1

ψλ,k

∣∣ χγ ∈ Irr(S|γ|); ψλ,k ∈ Irr(Y k ≀Swk
)




 .

From now on, assume p is odd. Note that Bγ∗ = {χλ∗ ∈ Irr(Sn) | Corp(λ) =
γ} = B∗

γ . In particular, if γ 6= γ∗, then Bγ ∩ Bγ∗ = ∅ and Bγ contains no self-
conjugate character. Then [12, (9.2)] implies that the two p-blocks Bγ and Bγ∗

cover a unique p-block bγ of An (Note that bγ = bγ∗). Furthermore, if γ = γ∗ and
Bγ has non-zero defect, then there is an irreducible character χλ ∈ Bγ with λ 6= λ∗

and [12, (9.2)] implies that Bγ again covers a unique p-block bγ of An. Finally, for
n ≥ 3, if Bγ has defect zero and γ = γ∗, then {χ+

γ } and {χ−
γ } are two p-blocks of

An of defect zero. These two blocks are equal to their Brauer correspondent, and
the blockwise Navarro’s conjecture is then trivial in this case.
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We remark that Dγ is a defect group of Bγ since p is odd, and NAn(Dγ) =
NSn(Dγ)

+. Assume that Bγ has a non-zero defect. Then B′
γ covers a unique p-

block of NSn(Dγ)
+. Indeed, if γ 6= γ∗ then the restrictions to NSn(Dγ)

+ of the
characters of B′

γ form a p-block b′γ(= b′γ∗) of NSn(Dγ)
+ covered by B′

γ and B′
γ∗

by [12, (9.2)], and if γ = γ∗, then B′
γ has a self-conjugate character (since the block

has a non-zero defect) and B′
γ covers a unique p-block b′γ of NSn(Dγ)

+ by [12, (9.2)].
Furthermore, by unicity of the covered block, b′γ is the Brauer correspondent of bγ
by [12, (9.28)]. Therefore, the height zero characters of this block are identified (by
lifting) with the set of irreductible characters of

NAn(Dγ)/Dγ ≃ (Sγ ×
∏

k≥1

Y k ≀Swk
)+.

Let λ be a partition of n with p-core γ and with height zero. Write CT (λ) for the
p-core tower of λ with the Notation as in (2). In particular, λ∅ = γ. Write

ψλ = χγ ⊗
∏

k≥1

ψλ,k

for the irreducible character of B′
γ labeled by λ (which is well-defined since χλ ∈ Bγ

is of height zero). Then ψλ splits into one or two constituents of b′γ whenever λ 6= λ∗

or λ = λ∗. We again write ψλ for the irreducible restriction in the first case, and
we write ψ±

λ for the two irreducible constituents otherwise.

Theorem 6.1. Let p be an odd prime. Let γ be a p-core of n. We assume w > 0.
For a partition λ of n with p-core γ, define Φ : Irr0(bγ) → Irr0(b

′
γ) by setting

Φ(χλ) = ψλ if λ 6= λ∗ and Φ(χ±
λ ) = ψ±

λ if λ = λ∗.

Then Φ is a Hn!/2-equivariant bijection. In particular, blockwise Navarro’s conjec-
ture holds for the p-blocks of alternating groups.

Proof. First, we remark that the map is well-defined. We only have to consider the
case of an irreducible character χ±

λ ∈ bγ for λ = λ∗. In particular, Corp(λ) = γ,
and by Equation (63) we have for any f ∈ Hn!/2

ε(χλ, f) = ε(χγ , f)ε(χr(Qp(λ)),f )ε(χs(Qp(λ)),f ).

Now, applying the resuts of Section 3 to pw with the group (
∏

k≥1 Y
k ≀ Swk

)+,
Proposition 3.2 and Theorem 3.8 give

ε(
∏

k≥1

ψλ,k, f) = ε(ψr(Qp(λ)), f)ε(ψr(Qp(λ)), f).

Again using Proposition 3.2, we obtain

ε(ψλ, f) = ε(χγ , f)ε(ψr(Qp(λ)), f)ε(ψr(Qp(λ)), f),

and we conclude by Lemmas 5.1 and 5.2. �

6.2. Case of p = 2. First, we will prove that an analogue of Theorem 4.16 holds
for p = 2.

Theorem 6.2. Assume p = 2. We have
(
2

d

)
=

(
2

q

)(
2

c

)
,

where c, d and q are as in Theorem 4.16.
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Proof. Let γ ∈ {0, 1} be such that δγ ≥ 0. We write X ′
γ , Y ′

γ , Xγ , Yγ and ∆γ for the
sets labeling D(λ), D(Quop(λ)), and D(Corp(λ)), respectively. If δγ = 0, then the
statement is trivial. Assume δγ > 0. We also consider the set Bγ as in Remark 4.11.
Let x ∈ Xγ and ε ∈ {1, 3} be such that dx = 4x + ε. Hence, dx∗ = 4φ(x∗) + ε′,
where ε′ = 4− ε. Furthermore, with the notation of (55),

c(dx) = 4(x+ δγ) + ε and c(dx∗) = 4(φ(x∗)− δγ) + ε′,

where c(dx∗) “exists” if and only if φ(x∗) ≥ δγ . Assume φ(x∗) ≥ δγ . Then

c(dx)c(dx∗) = dxdx∗ + 4δγ(dx∗ − dx)− 16d2 ≡ dxdx∗ + 4δγ(dx∗ − dx) mod 16.

Since dx∗ − dx is even, we obtain (c(dx)c(dx∗)2 ≡ (dxdx∗)2 mod 16. Hence,
(c(dx)c(dx∗)2 − 1)/8− ((dxdx∗)2 − 1)/8 is even, whence

(
2

c(dx)c(dx∗)

)
= (−1)

(c(dx)c(dx∗ ))2−1

8 = (−1)
(dxdx∗ )2−1

8 =

(
2

dxdx∗

)
. (65)

Assume now that 0 ≤ φ(x∗) ≤ δγ − 1. In particular, x∗ ∈ Bγ , and

cx∗ = 4(δγ − 1− φ(x∗)) + ε = 4δγ − 4− dx∗ + ε+ ε′︸ ︷︷ ︸
=4

= 4d− dx∗ ,

and we again have (c(dx)cx∗)2 ≡ (dxdx∗)2 mod 16. Hence,
(

2

c(dx)cx∗

)
=

(
2

dxdx∗

)
. (66)

Now, using Equations (65) and (66), like in the proof of Theorem 4.16, we obtain
(
2

d

)
=

(
2

q

)(
2

c

) ∏

x∈Bγ

(
2

dxdx∗

)(
2

c(dx∗)cx

)
=

(
2

q

)(
2

c

)
,

�

Theorem 6.3. The blockwise Navarro’s conjecture holds for alternating groups at
p = 2.

Proof. Let bγ be a 2-block of An covered by a 2-block Bγ of Sn labeled by the
2-core γ. Write r = |γ| and w for the 2-weight of Bγ . As above, we denote by
χλ the irreductible character of Sn labeled by λ. We also denote the irreducible
characters of An by ϑ+λ for λ 6= λ∗ and ϑ±λ for λ = λ∗. We only have to consider
the case that γ is self-conjugate and w > 0. Write Pγ for the set of partitions µ of
2w such that χµ has height zero or χµ is of height 1 and µ is self-conjugate. By [15,
Proposition 12.5], we have

Irr0(bγ) = {ϑ±λ | Cor2(λ) = γ, Q2(λ) ∈ Pγ}.
By [15, (12.2)], Bγ covers only the block bγ . Hence, bγ is Sn-invariant, and by [12,

Theorem 9.17] the defect group of bγ is D = An ∩ D̃, where D̃ is the defect group

of Bγ . Since D̃ is isomorphic to the Sylow 2-subgroup of a S2w, it follows that D
is isomorphic to the Sylow 2-subgroup of A2w and

NAn(D) ≃ (Sr ×NS2w (D))+.

We remark that (NS2w (D))+ = NA2w (D). By [10, Theorem 5.6] applied to the
principal 2-block of A2w, the number of 2′-characters of the principal blocks of
A2w and of NA2w (D) is the same. By [15, Proposition 12.5] Pγ labels the set of
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2′-characters of the principal block of A2w. We choose a bijection θ between these
two sets, and for µ ∈ Pγ , we set

ψ±
µ = θ(ϑ±µ ).

Now, the second author proved in [11] that if w > 3, then for all µ ∈ Pγ , ϑ±µ and

θ(ϑ±µ ) are fixed by all f ∈ Hn!/2. Furthermore, for w = 1 and w = 2, the normalizer
of the Sylow 2-subgroup of A2w is A2w itself. We can take θ to be the identity, that
is automatically Hn!/2-equivariant.

Write b′γ for the Brauer correspondent of bγ and B′
γ for the unique block of

Sr × NS2w (D) that covers b′γ by [12, Corollary 9.6]. By Clifford Theory, for any

µ ∈ Pγ , there is ψ̃µ ∈ Irr(NS2w (D)) such that ψ±
µ appears in its restriction to

(NS2w (D))+ with multiplicity one. Hence, for any µ ∈ Pγ , we have (χγ ⊗ ψ̃µ)
± ∈

Irr0(b
′
γ). On the other hand, by cardinality [10, Theorem 5.6], we deduce that

Irr0(b
′
γ) = {(χγ ⊗ ψ̃µ)

± | µ ∈ Pγ}.
Now, we define

Φ : Irr0(bγ) → Irr0(b
′
γ), ϑ±λ 7→ (χγ ⊗ ψQ2(λ))

±.

We remark that Φ is a bijection by construction. If λ 6= λ∗, then ϑ+λ and Φ(ϑλ)
+

are fixed by all f ∈ Hn!/2. Assume that λ = λ∗. Write dλ, dQ2(λ) and dγ for
the product of diagonal hooks of λ, Q2(λ) and γ. Then by [11, Theorem 2.2] and
Theorem 6.2, we obtain for any λ labeling a character of bγ

ε(χλ, f) =

(
2

dλ

)
=

(
2

dγ

)(
2

dQ2(λ)

)
= ε(χγ , f)ε(χQ2(λ), f).

On the other hand, by Proposition 3.2, for any f ∈ Hn!/2

ε(χγ ⊗ ψ̃Q2(λ), f) = ε(χγ , f)ε(ψ̃Q2(λ), f).

However, ε(ψ̃Q2(λ), f) = ε(χQ2(λ), f) because θ is Hn!/2-equivariant. Thus,

ε(χλ, f) = ε(χγ ⊗ ψ̃Q2(λ), f),

as required.
�
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