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THE NAVARRO CONJECTURE FOR THE ALTERNATING
GROUPS

OLIVIER BRUNAT AND RISHI NATH

ABsTRACT. Recently Navarro proposed a strengthening of the unsolved McKay
conjecture using Galois automorphisms. We prove that the Navarro conjecture
and its blockwise version hold for the alternating groups.

1. INTRODUCTION

Let G be a finite group of order n and p be a prime divisor of n. We denote by
Irr(G) the set of irreducible complex characters of G, and by Irr, (G) the subset of
irreducible characters with degree prime to p. In 1972, John McKay conjectured
that |Irr, (G)| = | Irry (Ng(P))|, where P is a Sylow p-subgroup of G. Although
the conjecture remains open, there is strong evidence in its favor. In 2007, I. M.
Isaacs, G. Malle and G. Navarro [5] reduced the problem to a question on finite
simple groups. In particular, they assert that if a set of conditions holds for all non
abelian finite simple groups, then the original conjecture holds for all finite groups.
Using this strategy, Malle and Spéth recently proved [9] that McKay conjecture
holds at p = 2 for all finite groups.

The McKay conjecture has lead to a family of other conjectures on finite groups.
For example, the conjectures of Alperin-McKay, of Dade, of Broué and of Isaacs-
Navarro are of a similar flavor. This paper is concerned with a refinement of the
McKay conjecture due to Navarro [I3], which posits not only a correspondence
between the set of global-and-local irreducible characters of p’-degree, but also
between their character values.

In order to state the conjecture more precisely, we introduce some notation.
Let Q, = Q(w,) be the cyclotomic subfield of C, where w, = €27/ and G, =
Gal(Q,|Q). For any f € G,, x € Irr(G) and g € G, we set Fx(9) = f(x(9)),
inducing an action of G,, on Irr(G) and then on Irry (G). Furthermore, if H is
a subgroup of G of order d, then d divides n and Qg is a subfield of Q,. Note
also that, if f € G,, then f(wg) is a primitive d-root of unity, that is, there is
some integer r prime to d such that f(wg) = w}. In particular, f(Qq) = Qg and
flo, € Ga. Hence, G, acts on Irr(H) through G, — Gy, f — flo,-

Even though there cannot exist a bijection Irr, (G) — Irry (Ng(P)) that com-
mutes with G,,, Gabriel Navarro observed in [I3] that there should exist a bijection
commuting with a special subgroup H,, of G,. More precisely, if we write n = p‘m
with m prime to p, then w, can be uniquely writen as a product wd, where w has
order p and ¢ has order m. It follows that G, = K, x J,, where C,, and J,, are
respectively the subgroups of G, fixing § and w. Let o, be the element of 7, such
that 0, (6) = 7. If we set H,, = K, X (0n), then K, is isomorphic to Gal(Q,¢|Q),
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and H,, is thus the subgroup of G,, which acts on the p’-roots of unity of Q,, by a
power of p. In [I3 Conjecture A], Navarro conjectured that for any f € H,,, there
are the same number of characters of Irr, (G) and of Irry (Ng(P)) fixed by f. In
the following, elements of H,, will be called Navarro automorphisms.

While significant progress has been made on the McKay conjecture, evidence
of the veracity of the Navarro refinement has been limited to a handful of cases:
groups of odd order by Isaacs [0], for solvable groups (E. Dade), for sporadic groups,
for symmetric groups (P. Fong), for simple groups of Lie type in defining charac-
teristic (L. Ruhstorfer [16]), and for alternating groups for p = 2 (by the second
author [I1]). A. Turull gave in [I8] a conjecture which implies the Navarro conjec-
ture. He proved in [I8] his conjecture for the special linear groups in defining char-
acteristic and in [I7] for p-solvable groups. Recently, Navarro, Spaeth and Vallejo
proved a reduction theorem of Navarro refinement to the quasisimple groups [14].

In this paper, we verify that when p is odd the conjecture holds for an important
family of simple groups, the alternating groups. More precisely, we will prove the
following general result.

Theorem 1.1. Let n be a positive integer, and 2 < p < n be an odd prime number.
Fiz a Sylow p-subgroup P of A,,. Then there is a natural H, 2-equivariant bijection

® : Irry () — Irry (N, (P)).

The paper is organized as follows. In Section 2l we discuss the Navarro conjecture
for the symmetric groups. It was noted in [I3] that this was checked by Fong.
However, since the details will be useful in our work, we supply them for the
convenience of the reader.

In Section B after studying the representation theory of the alternating subgroup
of a direct product of groups contained in some symmetric group, we describe the
action of automorphisms on Irr, (Ng,, (P)).

In Section [ we describe the action of Navarro automorphisms on Irr, (2,,). To
this end, we obtain an explicit formula for the diagonal hook lengths of a sym-
metric partition of n in terms of the diagonal hooks of the p-core and p-quotient.
These results are of independent interest : many partition-theoretic questions about
Ramanujan-type congruences, monotonicity and the Durfee square can be answered
using the relationship between a partition and its p-core and p-quotient (see for ex-
ample the work of F. Garvan, D. Kim and D. Stanton [3]).

Finally, Section 5] and 6 are devoted to the proof of the Navarro conjecture and
its blockwise version for the alternating groups with no condition over the prime p.

2. VERIFICATION OF THE CONJECTURE FOR THE SYMMETRIC GROUPS

Let n be a positive integer and p be a prime number. Let P be a Sylow p-
subgroup of &,,, and set N = Ng_(P). First, following |2, §1 and §2] we describe a
parametrization of Irry (&,,) and of Irr, (V). The irreducible characters of &,, are
naturally labeled by the set of partitions of n. For any such partition A\, we denote
by xa the corresponding character of &,,.

For any partition A of n, we write |\| = n for the size of A. We also will denote
by Y(A) for the Young diagram of A. Using matrix notation, we associate to any
(i,7)-box of Y(A), an (4, j)-hook with hook-length h;;. We denote by D(A) the set
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of diagonal hooks of X\, that is, the hooks in positions (i,4). Such a hook will be
known as the ith-diagonal hook. We denote by

o(A) = {[r[[ h e D(N)} (1)
the set of hook-lengths of the diagonal hooks of .

Recall that A is symmetric if A = A*. When A is symmetric the ith-diagonal
hook is uniquely determined by its hook-length.

Recall that any partition A is completely determined by its p-core Cor,(\) and
its p-quotient Quo,(A) = (Ao, ..., A\p—1); [15, §3]. Write I = {0,...,p — 1} and
19 = 0. Set A» = \. Let k be a non-negative integer, and assume M is constructed
for any j € I*. Then we define \; = Cor,(\) and for j = (j1,...,jr1) € I¥T1, we

set
T\ = | corlP (V) (2)
k>0
is called the p-core tower of A. For more details, we refer to [15, p.41].

On the other hand, recall that by [2] Proposition 1.1], x» € Irr, (&,,) if and only

if 0 <ck(A) <p—1forall k>0, where cx(A) = >, n [Aj.

Let n = ng + nip + nop? + n3p® + - - - be the p-adic expansion of n. Note that
the p’-irreducible characters of N are exactly the ones that have P’ in their kernel;

that is, the irreducible characters of N which can be lifted from the projection
N — N/P'. Furthermore, by |2, §2|, one has

N/P' =& x [[Y* 160, (3)
k>1
where X is a Sylow p-subgroup of &, and Y = Ng, (X).

Let k > 1. Write N, = Y*1&,,. The elements of N are denoted by (y; o),
where y = (y1,...,Yn,) € (Y*)™ and 0 € &,,. For any o € &,,,, we denote by
C(o) the set of cycles of o with respect to its canonical decomposition into cycles
with disjoint supports. For 7 € C(o), the corresponding “cycle” of Ny is (y,;7),
where (y,); = y; if j € supp(r) and (y,); = 1 otherwise. For any 7 € C(0), we
also define the cycle product ¢((y;0),7) = [];cqupp(r) ¥ of (y;0) with respect to 7.

Note that Y = (a) x (b) with a and b of order p and p — 1 respectively. Recall
that Y has p — 1 linear characters obtained by lifting the ones of (b) through
Y — Y/{a) ~ (b), and one character of degree p — 1 obtained by inducing any
non-trivial characters of (a) to Y. Write

IYF(Y) = {507 cee ,gp_l}. (4)
Then these characters are Q(wp,—1)-valued by construction.
Let k > 1. For j = (ji,...,jx) € I*, we set & = &, @ &), @ -~ ®¢&j,. Then
Irr(Y*) = {¢]j € I*}. (5)

Let MP(p*,ny) be the set of pF-multipartitions of nj that is, multipartitions
A=\ j€ I*) such that 2jere Al =

Remark 2.1. In the following, we will always assume that the A;’s in A appear in
increasing lexicographic order.
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By [8], the irreducible characters of N}, can be labeled by MP(p*, ny) as follows.
Let A = (\;;] € I*) be such that |Aj| = ny. Consider the irreducible
character

jEI*

H=Q¢ge--0g
jel k%/—/

[X;| times
of (YK)™r. If we set &) = Hjelk &, |, then the inertial subgroup of ) in Ny is
Niy = (Yk)nk X6y = H y* 26”‘1"
jerk
We denote by E(£y) the James Kerber extension of £, to Ny » described in [8]
§4.3]. Note that E(£y) = @ E(; —) and [8, Lemma 4.3.9] gives

B | [Twson | = I B¢ ws0,) (6)
jeIk

jET®

H H 5] y],oj) 7))

JEIF |X;|#0 T€C(0;)

Now, write x for the characters [] jers Xx; € G, lifted through the canonical
projection Ny x — Nj »/(Y*)" ~ &,, and define

dak =Indyt  (E(E)xa)- (7)
Then
Irr ]\/vzC {w)\k|)\€M'P(p nk)}

The following result will be useful.

Lemma 2.2. Let G be a finite group of order n and H a subgroup of G. Let f € G,.
Then for any class function ¢ on H, we have

T ndf(¢) = ndf; (Y ¢).
Proposition 2.3. The Navarro conjecture holds for the symmetric groups.

Proof. Let n be a positive integer and p < n be a prime number. Since the char-
acters of G,, are rational-valued, they are fixed by any automorphisms of H,;. It
remains to show that any p’-order irreducible characters of N is also fixed. From (@),
it is sufficient to show that for k > 1, the irreducible characters of IV} are fixed un-
der any f € H,y. If f € K1, then f fixes any p’-roots of unity. However, the values
of the characters of Irr(Y) lie in Q(wp—1), and are thus fixed by f. Write 0 = oy,1.
We have o(z) = 2 for any p’-root of unity z. Since wy,_1 is a p’-root of unity, we
deduce that o(w,—1) = w)_; = wp—1, and o fixes the characters of Irr(Y). In either
case, the irreducible characters of Y are fixed by H,i. Let n =ng+nip+--- be
the p-adic expansion of n as above and fix k > 1. Let A € MP(p*,ny). From (@)
and the fact that x, is rational-valued, we obtain that E(£y)x» is fixed under any
f € Hyn. Finally, we conclude using Lemma 2.2 O



3. ALTERNATING GROUPS. THE LOCAL CASE

For any subgroup G of &,,, we set Gt = GN4,. In particular, [G : GT] < 2 and
G is the kernel of the restriction to G of the sign character of &,,, also denoted
by sgn : G — {—1,1}. Suppose Gt # G. For x € Irr(G), we write x* = x ® sgn.
By Clifford theory, if x # x*, then x and x* restrict to an irreducible character of
G also denoted by x. If x = x*, then the restriction of x to GT is the sum of two
irreducible characters denoted by x™ and x~. Note that in this case, x(g) = 0 for
allg ¢ GT, and x(g9) = x*(9) + x " (9) for g € G*. All irreducible characters of G
are obtained exactly once by this process. A split class ¢ of G is a conjugacy class
of G contained in G such that ¢ is the union of two GT-classes ¢ and c™.

Let f be a Galois automorphism and y € Irr(G) be such that y = x* and /x = .
Then f acts on {xT,x"}. We define £(x, f) € {—1,1} by setting e(x, f) = 1 if
fxt =x* and e(x, f) = —1 otherwise. In particular, for n € {—1,1} we have

=y fim, (8)
3.1. Reduction of the problem. Let G1,...,G, be subgroups of G,, such that
G=Gyx---xG, C G, is adirect product and assume G;r #Gjforalll <j<r.
Fix 05 € Gj\G;'. Let x = x1 ® --- ® xr € Irr(G) be such that x; € Irr(G;) for all
1 < j <r. First, we remark that sgn = sgn® - - - ® sgn € Irr(G), thus
X" =X ®sgn 9)
=(x1®@ - ®Xxr)®(sgn®@- - - @ sgn)
= (1 ®sgn) ® -+ ® (xr ®sgn)
=X1® - ®X;-
In particular
x=x" < x;j=x; forall<j<nr (10)
Suppose x = x*. Write N = G x --- x G;f. Then N is a normal subgroup of
G. For € = (e1,...,¢.) € {—1,1}", we set
X§:X§l®®X7€«T
Consider a constituent ¢ of Res§ (). There is a@ = (a,...,a,) € {=1,1}" such
that ¢ = xo. Furthermore,
To=x{ ®x3 ® @ X,
where z =[], __; 0;. It follows that the G-orbit of ¢ is O = {x¢|e € {-1,1}"},
and Clifford theory gives
Resf(x) = D  Xe
ee{-1,1}7
On the other hand, N is contained in G, thus Xf@x;’@- --®x;" is a constituent
of the restriction to N of either x™ or x~. Without loss of generality, we choose it
to be a constituent of the restriction of xT. Now, for n € {—1,1}, we set
R"={(e1,...,e) €{-1,1}"|e1---e, =m} and O7={x.|e€ R"}.
Let (e1,...,€6.) € RT. Define x = He]‘:71 0;. Since the number of 1 < j <r with
€; = —1is even, we deduce that z € G and *(x{ ® x5 ®---@x; ) = X' ®- - @ X
In particular, the characters of O lie in the same GT-orbit. By Clifford theory, O
decomposes into two G -orbits of the same size. Since |OT| =|RT|=|R™| = |07,



6 OLIVIER BRUNAT AND RISHI NATH

and OTLUO~ = O, we deduce that O and O~ are the two GT-orbits of O. Again,
by Clifford theory, we obtain that

Res%+(xn) = Z Xe- (11)

ecR"

Remark 3.1. Let g = g1--- g, € G* with g; € G for 1 < j <r. Then g lies in a
split class of G if and only if g; lies in a split class of G; for all 1 < j7 < r. Indeed,
g lies in a split class of G if and only if C(g) = Ca4(g). Assume some g; does not
belong to a split class of G;. If g; ¢ G;r, then g; € Ca(g)\ Cao+(g). If g; € G;r,
then there is € Cg,(g;)\Cq+(g;), and z = 1---1zl---1 € Cg(g)\ Ca+(9).
Conversely, suppose that g; lies in a split class of G for all 1 < j < r. Then
Cag,(g) = CG; (g), so that

Ca(g) = Cai(91) - Ca,(9r) = Cgr (g1) - Cip (9r) = Cn(g) < Ce+(9) < Caly),

and Cg(g) = Cg+(g), as required.

Proposition 3.2. Write G = Gy x ---x G, C &, as above. Let x € Irr(G) be such
that x = x*, and let X;_ and x; be as above. For f € G|g| such that fx = x, with
the notation (8), we have

e ) = [T et ).
j=1

Proof. Let n € {—1,1}. First, we remark that either /x7 = x7 or /" = x 7"
because f fixes x. So, the set O is f-stable, and f acts on {OF, O~ }. Furthermore,
Fx" = x if and only if f(O") = O". However, we have f(OT) = O7 if and only if
fxf ®@x3 ®---®@x;t) € OF if and only if the number of 1 < j < r such that X;—
are not fixed by f is even. The result follows. O

3.2. Irreducible characters of Y* and of (Y*)*. Write I = {0,...,p — 1} as
above. We now describe how to construct the characters of Irr(Y) in (). For
0 < j < p—2, define the linear character ¢; : Y — C* by setting ¢;(a“d?) = wgil,
and write ¢ for the induced character of any non-trivial character of (a) to Y. In
particular, (;(1) = 1forall0 < j <p—2,and {(1) = p—1. Set p* = (p—1)/2. Since
sgn is the only linear character of ¥ of order 2, we have sgn = (- and (; = (pry ;-
On the other hand, {0,...,p—2} ={0,...,p* =1} U {p*,p* +1,...,2p* — 1}. So,
in (m) we set 5;0* = C, gj = Cj and fpflfj = Cp*+j for au] S {0, e ,p* — 1}

Note that (a) and (b?) are subgroups of Y*. By an order argument, we obtain
that Y+ = (a) x (b?). By Clifford theory, the characters &; and &,_;_; for 0 < j <
p* — 1 restrict to the same linear character of Y'*, also denoted by &;, and &+ splits
into two irreducible characters {;Z and §,. of degree (p—1)/2. Now, we will specify
the values of {;& and £ .. For every 0 < j <p—1, set a; : (a) — C, ak — wgk.
Write u for the integer such that bab~! = a*. Since forall 0 < j <p—1,0<k <
p—1l,and 0 <[ <p—2

bt ulk) _ w;flkj = a,;(a"),

o5(a*) = ay(a
we deduce that the (b?)-orbits on Irr({(a)) are
{ao}, {ajlj€S} and {a;[je S}
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X

where S is the set of square elements of (Z/(p — 1)Z)*, and S the non-squares.
Then by Clifford theory with respect to the normal subgroup {a) of YT, we can
choose the labels such that

+ o
Resl, (§1) = o; and Resl, (&) =Y aj, (12)

jes jES
and the inertial subgroup in Y* of a; with j # 0 is (a), hence f; and §,. are

the induced characters to Y of & with j € S and j € S, respectively. Thus, f;i
vanishes outside (a), and using (I2) and [4, Thm. 1 p.75], we obtain

6 &)@ = S-S aw =3 (L) ay

jes jes j=1 \P

where (%) is the Legendre symbol and ¢ is a complex square root of —1. This in

particular proves that Y has only one split class, with representative a. We write
at =a, and a~ € (a) for an element conjugate to a in Y but not in Y.

Let k£ > 1 be an integer. By Remark B.I] the group Y* has only one split class
with representative a = (a,a,...,a). Furthermore, Section §3.1] implies that Yk
has only one sgn-stable character £, () = {p« @ -+ @ §p, where

pr(k)=(p-1)/2,....(p - 1)/2) € I". (14)

Set a = {; (a) and 8 = &,.(a), and for ¢ € {—1,1}*, denote by n(e) the number of
1 < j <k such that ¢; = —1. Now, Equation (II) gives

(f;r*(k) - 5;*(k))(2) = Z Xe(a) — Z xe(a)

eERT eER™
_ Z Z a2j6k72j _ Z Z a2j+16k72j71
0<2j<k n(e)=2j 0<2j+1<k n(e)=2j+1
k o k , , i
= Z (2 .)(—1)2%235’c 5oy Z <2.+ 1) (—1)% 120t gh=2i=1
0<2j<k \ 7/ o<zjri<k \*
=> ( ) (-1l gt
j=0 J
=(@=8)"
by Newton’s binomial formula. Finally we deduce from (I3]) that
(5}(;@) — &)@ = RV (15)

3.3. Irreducible characters of (Y*1&,,)". Let k and w be two positive integers.
In this section, we set

N=Y"16, and M= (YF)"
For j = (jo,..-,Jk—1) € I* define

7p(3) = Je—1 + Jr—2p + - + jop* 1.

By the uniqueness of the p-adic expansion of a positive integer, we note that the
map 7, : I¥ — {0,...,p* — 1} is a bijection.
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We now generalize the Equation ([4) defining an involution * on I*, by setting

-k

J :(p_l_jOV"vp_l_jkfl)ejk'

Lemma 3.3. Forj € I*, one has
(j*) =p* —1—mp(j) and € = ¢
Proof. We have
() =@ —-1=jk-1) + (P —1—=Jr2)p+ -+ {@—-1-Jo)p
=(@-DA+p+--+p") —m())
:pk -1- 7710(1)'

k—1

O

We follow the convention of Remark 2] to label Irr(N). Moreover, for any
A= (Ao, Ape 1) € MP(p*, w), define
A= (N, Aoy AT AS) € MP(F, w),
where \* denotes the conjugate partition of A. To simplify the notation (), we set
Yk = a
Lemma 3.4. If j € I* and A = (Aj;J € I*) € MP(p*,w), then

P = Par-
Proof. Let g = H;ep«(ywaj) € Ni,a. Then g = nglk Hrec (y])T, T),
sen(g) = [ ] sen(y;-)sen(r),
16[’C TEC(G’i)

because sgn is a group homomorphism, and sgn(y;,-) = sgn(c((y;;0;),7)). Hence

(B(&x)x2)" (9) = sen(9) E(£2)(9)xa(9)
n) [T TI &(c(wiio) m)xale)

jerk reC(oy)

=sgu(o) [T T sen(cllws:on). ))& (el(s:07). 7)xa0)

jeIk 7€C(0;)

= sgn H H 5 y]7gj ))XA(U)

JjeI* 7eC(oy)

=sgn(0) [T TI &-(c(wiiop),mxale) (by LemmalE3)

jeI* 7eC(oy)

I II & s mxe),

jeIk reC(oy)

where 0 =[] o;.



Let wy € G, be the permutation that sends the support of A; to that of A%..
So, Gy« = “26,, and the decomposition of “2g with respect to Ny + is -

wag = [T (255 27),

jer®

and since ¢((y;;0;),7) = ¢((2y;;“20;), *271), we deduce that

E(&x)( H H 5] 7yl’ 01)7 2T))

jeIk reC(o;)

H H §J yavaa) 7))

jerk reC(oy)

Since “Ax - = X}, we obtain

It follows that

3 = senIndy, | (E(&
= Ind%k’i (sgn E(&x

=Indy,  (BE(&)xa)"
=Ind) P (E(6a)xa%)

w;lNkYA* wx
= Indy, (E(&)xar)
= 1/}A* ’

as required. (Il

Lemma 3.5. Let G be a group, and H and K be subgroups of G. Let x € G be
such that © normalizes H and K, and HN (z) = KN (x) = 1. Lett € Ng(H).
For every g € (tx), write g = gig. for unique g € K and g, € (x). Assume there
is a representation p : H — GL(V') that extends to a representation p: H x (x) —
GL(V). If p(9th) = p(h) for all h € H and g € (tx), then the map

v : H % (tz) —» GL(V), hg — p(hg.)
is a representation of H x (tx).
Proof. First, we remark that if g = (tx), then there is an integer j such that
g = (te)d = tot---" tad, s0 g, = t*t--- 't € K and g, = 27 because

normalizes K. Furthermore, this expression is unique because K N (x) = 1. Note
also that if g, ¢’ € (tz), then (99')z = g»g,. Now, for h, i’ € H and g, ¢’ € (tx),
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we have hgh'g’ = h9h/ g9’ = h91' (99")tgx9,. Thus,

o(hgh'g") = p(h*N g.g;,)
h)p(% (%= h)) (92 9z)
h)p(%=h")p(9=9,)

(
(
p(h9=N'g.g.)
7
Al

I
™™ D

hg.h'g,,)
hgz)p(h'g;,)
o(hg)p(h'g"),

as required. ([

A multipartition A = (A;; j € I*) € MP(p*, w) is called symmetric if \* = \.
We denote by SP(p*,w) the set of symmetric multipartitions of MP(p*,w). Let
c=(c;eEN;j€ I*) be such that >.j¢j=w,and ¢; = ¢« forall j € I*. Define

Pe={A e SP" w)| Vj € I",|)j| = ¢;}.

For any A € P, the characters £, and their inertial subgroup Ny x depend only
on c¢. We write £ and N, in the following.

Proposition 3.6. Let A € SP(p*,w) be such that Aprky = 0. If f € Kpija, then
e(¥a, f) = 1. Furthermore,
(p=Dw
E(Q/JAu Un!/2) = (_1) 4

Proof. Let ¢ = (cj;j € I¥) be such that Cp=(k) = 0. Furthermore, since A is a
symmetric multipartition, c¢; = ¢;+ and it follows that

w= Z (cj+ej) =2 Cjs

{4.3*}, 3#p* (k) {4.3*} i#p* (k)

hence w is even. By Clifford theory with respect to the normal subgroup M of
N, the characters ¢ for A € P, are the constituents of Ind};(£,). Write o, for
the restriction of & to M. Since £, is not sgn-stable, we have 9, € Irr(M ™) by
Clifford theory with respect to M < M. Furthermore, Mackey’s formula gives

ResN. Ind} (&) = Indd} (9,).

Hence, the irreducible characters 1/);\r and 1, for A € P, appear in the Clifford

theory with respect to M+ <t N* associated to the character 9. Denote by T, the
inertial subgroup of ¥, with respect to M* < N*.
Let A € P.. The character 9. is M-stable, thus

(Id§ (00), ) = (Ind$s (90), v3)-
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We also have Ind}7 (9,) = &, +¢&., and the last two characters are N-conjugate, in
particular, Ind}; (&.) = Ind}) (&) Now, we deduce from Frobenius reciprocity that

(nd} ), i) = 5 (' (0), v +v3)
(Indp+ (Ve), Resivs (12))
(Indjy+ (9e), 1)

(Indy; Ind}fs (9), )

= S (Indj (e +€2), )

5 (2 Indyy (£), ¥a)
= <Ind5\\2(§g), ¥a)-

Let t and ¢ be the number of N-conjugate characters of &, and of NT-conjugate
characters of ¥, respectively. Then, by Clifford theory, if e = (Ind};(&.),%.), then

Ua(l) =etée(l)  Ya(l)" = etde(1).
Hence, 2t' = ¢ because 9.(1) = &.(1) and 2, (1)" = ¥, (1).
Note that N < T, and that N/N, ~ N*/NJ, and
NI _INT ,_INT
= = and t = .
[Nel [N Tl

I»—lwly—lwly—lwly—lwly—l

Then T, is an extension of degree 2 of N . Since A is symmetric and )\p -(k) = 0, the
permutation wy defined in the proof of Lemma B4 is an involution that exchanges
the supports of /\ and A;- for all j € I". k. We remark that w) is the same element
for any A € P, we will denote it by we. Denote by 6 the restriction of E(&x)xx
to N;rc which is irreducible because E(€y)xx # (E(€x)xa)*. Then for all g € N,

0r(9) = E(€x)xal9) = (E(E0)xa)"(9) = “=(E(&a)xa)(9) = “<bx(9)  (17)
by Equation (I6). Let h € N \NS. We set t, = w, if w. € N*, and t, = hw,
otherwise. We remark that
sgu(we) = (=1)*/%. (18)
Now, we define y as follows. For any j € I* such that m,(j) < (p —1)/2, set
n; = (¢;) and pj» = (12), and py-x) = 0. So, pu € P, and ResM( W) = e
particular, Equation (IT) gives
TE = <Ng+a t£>'

Since T is a cyclic extension of N, by [7, 11.22] we can extend 6, to a character 5#

of T,. Thus, by Gallagher’s theorem (see [7), 6.17]), the constituents of IndJA\Z (9e)
are

po =nd} (6, ® ), (19)
where « is any irreducible characters of T, /M ™ lifted through T, — T./M™.
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If we write H, = (N, t.), then H} =T, and
Ho/M ~ T./M*.

However, if we choose h € M\M™, then ¢2 € M and the image of ¢, in H./M has
order 2, and can be identified with w.. It follows that

H. /M ~ &, % (w,).

Set L = &, x (w.). We now will prove that the irreducible characters of L are
integer-valued. Let ¢ € Irr(&,.). If ¢ is not L-stable, then ¢ = Indéc(d)) € Irr(L)
and 5(9) =¢(g9) +"“"¢p(g) € Z if g € &, and 0 otherwise.

Assume ¢ is L-stable. Then ¢ extends to L (because L is a cyclic extension of
6S.) and has exactly two extensions q~5 and 5 ® e, where ¢ is the lift of the non-trivial
character of (w.). Now, for j € I* such that 7,(j) < (p* — 1)/2, write 7; for the
involution that exchanges the supports of ¢; and ¢;j-. One has w, = [17;. Since
Cj = Cj*, the group L can be viewed as a subgroup of

L = II S, (7))

mp(f)<(pF—1)/2
Since ¢ is L-stable, we must have ¢ = ¢;+, and ¢ is 7; stable for all j. Thus,
¢ is L'-stable and can be extend to L’ because L’ is a direct product of wreath
products isomorphic to 601 ! &3. Denote by FE(¢) the James-Kerber extension as
above. By (@), E(¢) takes integer values. However, Resg (E()) is either ¢ or ¢ ®e.

Thus, ¢ and ¢ ® € also take integer values.
The argument above implies that any « € Irr(7,./M ™) takes integer values. Let

[ € Hpi2. By Proposition 23] 0, is f-fixed. The two extensions of 6, to T, are 5
and 5 ® €. Thus, either f@) = 9 or f(t? )= 9 ®e. Then ([I9) and Lemma 2]

give f(pa) = po in the ﬁrst case, and flpa) = Pawe in the second case.
On the other hand, f(f, W) = 9#®5 if and only if f(6, u(gte)) = -6 u(gtc) for all
g € N[ if and only if there exists go € N such that

Bu(gote) #0 and  f(B(gote)) = —0,(gote). (20)

We will use this criterion to understand the action of f on 5#. Set H = ((YF)*)w
and B

G = H x (w).

For j such that m,(j) < (p* —1)/2, define Y., = ((Y*)*)*2 < H corresponding to
the supports of S, and &.,.. Then G can be viewed as a subgroup of

¢ = H Ye, 275),
mp(3)<(p*—1)/2
where 7; is defined as before.

The character & is not sgn-stable. It takes non-zero values outside M, hence
outside H, and the restriction 7. of & to H is irreducible by Clifford theory with

respect to H < M™*. Moreover, if we write 7; = Res, Yk +(&), then n;« =n;. In
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particular,

Cj Cj
= I nten”
T (d)<(pF-1)/2

It follows that 7, extends to G*, and the James-Kerber extension E(r.) has integer

values. Hence Resg/ (E(nc)) takes integer values, and by Gallagher’s theorem, the
extension of 7. to G takes a non-zero and integer value on w,.

Suppose w = 0 mod 4. Then by ([I8), we take ¢, = w.. By the previous
discussion,

Oc(we) = £ResG (E(n.))(we) € Z

is a non-zero integer. We deduce from criterion (20) that the characters of NT are
fixed by all f € Hp1/2.

Suppose w = 2 mod 4. Let y € M. We label the components of y as follows.
For j € I* such that ¢; # 0, write y; = (Y;j1,-..,¥j.c;) € (YF)L, where y;; =
(Yjr i > Yjri) € YEforalll <i< ¢j. One has

&) = [T & wy).

Let u be such that ¢, # 0. So u # p*(k), and there is u, # 0 with r # (p—1)/2. Let
h be the element of M that is trivial on any component of Y** except Ry, 1 =0b.
Set A’ = “<h, which is the element of M all of whose components are trivial except
Ry 1 =b. Since h ¢ N, by (I8) we take . = hw,. Remark that w, normalizes H
and M*, (we.) N H = (we) "M+ =1, and h € M+ normalizes H.

For any 1 < j < p, denote by X; a representation of ¥ with character &;. Then

R =[[(%, 0@ x;)

J
is a representation of M with character .. For any positive integer [,
tah =h'n" and 2 = B .

Then t. has order 2(p — 1) and if g € (¢.), then g, (see the notation of Lemma [3.7]
with ¢+ = h) has possibly non zero values only on the components of Y** labeled
by (ur,1) and (u¥,1).

However, for any z € Y, we have *X, ;1 = &, 1 and “Xyz1 = Xyx1 because
these two representations have dimension 1. Hence, if we denote by p. the restriction
of R, to H, then 9"p, = p, for all g € (t.). Thus, by Lemma B3] we can extend
pe to Q = H x (t.), and the character 7. of this extension takes the same values

as E(n.). Moreover, by Gallagher’s theorem, every extension of 1. to @ is of the
form 7). ® 8, where § is an irreducible character of (t.). The irreducible characters

of Irr((t,)) are B : (t.) — C* for 0 < j < 2p — 3 defined by 8;(t}) = wgl(pil). Since
Resgg(gg) is such an extension, there is 0 < s < 2p — 3 such that
T. ~
Resg () = pe @ Bs. (21)

We notice that p(tL) is equal to E(n.)(1) if I is even, and to E(n.)(t.) if I is odd.
In either case, (@) implies that theses values are positive integers.
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Recall that tz = hh' is the element whose every component is trivial except those
labeled (u.,,1) and (u}, 1) taking the value b. By (6l), we have

0.(12) = 0.(7) = —w]_1 (0)%0(1) = —w?" ne(1). (22)
Using (20]), we also have

n Te iy ~ s s
eg(tz) = ReSQf(eg) (tz) = pg(tz)ﬁs (tz) = Wg(p—l)ng(l) = Wp—lng(l)'
Comparing with ([22)), we obtain

w;:%r =—1
However, —1 € (w2 ;) = (w(p—1)/2) if and only if (p —1)/2 is even. Hence, if p = 1
mod 4, s has to be even, and if p =3 mod 4, s has to be odd.

On the other hand, (2I)) gives

Oc(te) = E(ne)(te)Bs(te) = E(nﬁ)(tE)wg(p—l)' (23)
Since E(n.)(t.) is fixed by any f € H,, /2 because 7, is, and ws(p_l) is fixed by any
[ € Kyi/2, we deduce from (20) that the characters z/Jf are fixed by f € Ky, /2 for
all A € P..

Finall}:, we remark that o.)g(;l_l) = wy = —1. Thus, wg(p_l) = —wy(p—1), and
ng(”pil) = wg(pfl). Then by 23), 0,12 fixes é;(tg) if s is even, that is when p =1
mod 4 and N N

Un!/Q(eg(tg)) = _eg(tg)
if s is odd, that is p =3 mod 4. The result follows from the criterion (20). O

Since /p is a root of the polynomial 2% — p € Q[z], we have f(,/p) = +,/p for
J € K. Denote by e; € {—1,1} the sign such that f(,/p) = €y/p.
Proposition 3.7. Let A € SP(p*,w) be such that \; = 0 for all j # p*(k). If
f € Kn, then
f(a ) = & e(re i £
where €(Xx, -, f) s defined in (8), and d is the number of diagonal hooks in the
Young diagram of Ay (). Moreover,

E(q/JA? U’ﬂ!/2) = (_l)dk(pil)/2 ’ E(XAB*(IC) l Un!/2)'
Proof. As in the proof of the Proposition 3.7, we consider the group H = ((Y*)*)v.
Write £ = {é’i (k) € Irr(M). This is the unique split character of M by (10) and
§32 Denote by £* the constituent of Resyr (€) such that (5;(k))w € Irr(H) is a

constituent of Res]\H/I+ (€T). First, we remark that the subgroup U = M+ x 2, is
a normal subgroup of N because it has index 2. Moreover, the inertial subgroup
inUof " and ¢ is U. Let s € NT\U. Then s = (h;7) with h € M\M™* and
T € 6,\%y, and 56T = £, Tt follows that

*Indfs (€1) = Indy, 4 (€7),

because M+ <IN+ and U < N*t. Furthermore, Ind,+ (¢1) and IndY,+ (€7) have no
constituents in common by Clifford theory with respect to M < U. It follows that

if ¥ is a constituent of IndY,; (€1), then *x # x. Hence, Indg+ (x) is irreducible
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by Clifford theory with respect to U < NT. By the transitivity of induction and
Mackey’s formula,

ResN . Indy; (&) = ResY, Indd, Indd, (£1) = ResN, nd}, (1) = Ind} (£1).
Hence, z/JZ and w; restrict to U into two irreducible components. We write z/Ji I

for the constituent of Respy ’ Wic) which belongs to IndY, (€F).

Now we show how to extend ¢' and £~ to U. Consider the wreath product
V = H x 2,. Denote by vt = ( ;;(k))w € Irr(H) and v~ = svt. By Clifford
theory with respect to H < M™T and the previous choice of labeling, we have

Ind%‘,+(u+) =¢t and Ind]\H/ﬁ(V*) =,
Write E(vt) for the James-Kerber extension of vt to V. Therefore, Mackey’s
formula gives

ResY,, ndY(E(wh)) = md¥ " (v = ¢+

Thus, Vt = IndY(E(v1)) is an extension of £ to U. By Gallagher’s theorem [7,
Corollary 6.17], the constituents of IndY; (€T) are of the form (, = V* @ x,
if p # p* and <i+ =Vt ® Xff if 4 = p*. Here, x, and Xff are the irreducible
characters of . If we set V= = SV*, then V* £ V™ because it is a constituent of
IndY,+ (¢€7). Thus,

s + _ hyx F F
7/1>\i— (v ®X>\ *(,C))— VoHer (XA *(k)) Viexg % (k) 7/@7;,

and

Res)) (vf) =y, +¢5_ and Res) (¥5) =1y, +vf_. (24)
Consider the element g = (u, ) such that the cycle lengths of 7 are the diagonal
hook lengths of A (), and u is such that every cycle of g has cyclic product equal
to a. Then g € U and

Vi) =Idp(EwM)9)= Y EeH(9= > [ »

te(U/V] te [U/V] ~eC(w)
tgev tgeVv

However, U/V ~ M*/H. Hence, we can take for transversal of U mod V the set
[U/V] = {ta = (b, ....0") |a€{0,1}", a1+ +ay=0 (mod2)}.
Moreover, ‘g € U if and only if b%u;b~ 1) € (Y*)* for all 1 < j < w, if and
only if b b~ 1w € (Y*)* (because " u; € (Y*)*) if and only if 6™~ “'») &
(YR, e Qj = ag-1(j), that is all a; are equal on the cycles of 7. Denote by

T the set of elements of [U/V] that satisfy this property. By [8 4.2.6], for any
veCC(r)and ty € T,

c('=g,7) =""c(g,7) =""a
Thus
=> I »("a
tacT veC(7)

Let o be the cycle of C(7) whose support contains 1, and define y € M such that
y; = bif i € supp(7o) and 1 otherwise. Since |yo| is odd, y € M\M™*. Using that
V= (g9) = VT (Yg), the same computation as above shows that

=2 Il (e,

to €T YEC(m)
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where T is the set of ¢, such that the a; are constant on the cycle of m and
a1+ -+ ay, =1 (mod 2). Since the lengths of the cycles of 7 are odd, we have

Zozjz Z oy  (mod 2)
Jj=1 ~yeC(m)

for every t, € T UT. Therefore, by a computation similar to that proving ([f]), we
obtain

(V= V7)(g) = iV pdh, (25)
where d = |C(7)|. By [8, 2.5.13], we also have
+ _ —
O ) = Xoeg, () 0. (26)

Let f € Gn1/2. By @24), if fwii = @bii or f@[}ii =¥ o, then £(¢n7) = 1, and
if fy3, = ¢, then e(¢y f) = —1. However,

Va1 (9) = VEON g

(m) (27)
is non-zero, and f(?/)ii(g)) = f(V(g)) - f(xi*(k)). Thus, by equalities (25]),(26)
and (21), we have fd’ii =4, ifand only iff(l_/i(g)) = V*(g) and f(xi*(k) (m)) =

X3 ., (1) or f(VE(9)) = VF(g) and (x5 ., (7)) = X3, (7)-

p* (k) p* (k) p* (k)
Now, if f € IC,1/2, then f(i) = i. Note also that o,,/5(i) = (=1)®=1/2; and that
on1/2 fixes \/p. The result then follows from (23)). O

Let A € SP(pF,w). Let w' = |Ap+x)| and w” = w — w’. Define " € SP(p*, w’)
such that each part is empty except )\;’*(k) = Ap(iy> and X' € SP(p*,w") such that
)\3_» = \;j when p # p*(k) and Ap* (k) = (). Denote by ¥y and ¥y the corresponding
irreducible characters of Ny v and Ny ., respectively.

Theorem 3.8. Let A\ € SP(p*,w). Then for any f € G2,

e(Ua, f) = ey, f) e, f).
Proof. Let A € SP(p*,w). Assume N # () and A" # 0. Set ¢ = (|\;], j € I¥),

¢ =(0,...,0,¢p+(1),0,...,0) and ¢” such that the coordinates of ¢ and ¢ are the
same, except CZ*(k) = 0. Since A" # 0, one has £} # &, and the restriction ¥, of &

to M is irreducible. By Mackey’s formula,
ResN. Ind, (&) = Ind} (9,).

Thus, @[Jj and 1, appear in the Clifford theory attached to ¥, with respect to M+ <

N+. Moreover, by an argument similar to the one in the proof of Proposition B.0]
the inertial group of ¥, is an extension of degree 2 of N, 2* . Let t.» be an element of

N7, as in the proof of Proposition 3.6, and H» = (Ngv,tc). Consider
I{2 = Nw/ X HE”' (28)

Then the elements of H = ((Ny x Ng)*, tor) fix . and this group is an extension

of degree 2 of (Ny x Ngv)* = N. Thus, the inertial subgroup of 9, is H.
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On the other hand, E(&:x,) is not H-stable. Hence, 1}1} = Indﬁf(E({Q)XA) is
irreducible and by Mackey’s formula -

H. ,7 Hj + _
I{GSHEr (1/)&) = Insz (9&) = GA + 0&’
where 6, is the restriction of E({.)xa to NJ. Again, by Mackey’s formula,
UX Uy = Resy (1) (29)
= Resy+ Indy_(E(&)xa)
+
= Indyy+ (62)

= Ind{ (65) + Ina}: (63).

In particular, we can choose the label such that wg = Ind%i (92) forn e {-1,1}.
Let f € Hy1/2. By Lemma 2.2] one has h

e(a, f) = (@a, f)- (30)
Note that E(&:)xx = E(&)xx ® E(&)xa, hence
U =ty @y, (31)

where @Zy = IndHEZ (E(&)xa) € Trr(Her). We remark that the computa-

tions (29) and (30) applied to Ny, .~ give
e(rr, f) = (. f). (32)

Now, E(&.)xx is f-stable, thus @ZA also is by Lemma Applying Proposi-
tion B2 with respect to the direct product (28], and using ([B1]) and ([B2]) we obtain
that

e(Ua, f) =en, f) e, f) = e(n, ) - e(nr, f). (33)
The result follows from B0) and B3)). O

4. ALTERNATING GROUPS: THE GLOBAL CASE

Let A = A*. Denote by Cy the conjugacy classes of &,, of type D(\), that is,
the lengths of the elements of D(\) are the cycle lengths of any element = € C.
Recall that the classes Cy of &, split into two classes Cj\' and C, of 2, and that
the restriction to 2, of the irreducible character x splits into two constituents Xj\r

and x, that take the same (integer) value on every class except on C)j\[, and by [8]
2.5.13] the labeling can be chosen such that for all n, v € {—1,1}

vy _ 1 ne (n—
W(@5) = 5 | (D02 itz T ) (34)
heD(N)

where 2§ is a representative of C¥ and dy = |D(N)|.
For any field automorphism f, if « is a root of 22 — ¢ € Q[a], then f(«) is also
a root of 22 — g. We denote by e(a, f) € {—1,1} the sign such that

fla) = e(a, fe. (35)
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Note that when A = A* and f € H,,1/2,

e(xn, f) =e | imm )/ H hof]. (36)
\/ heD(N)

4.1. Action of Galois automorphisms on square roots. Let m be an odd
number. For any integer r, we write (%) for the Jacobi symbol.

Proposition 4.1. Let m be an odd number, and f be a Galois automorphism.
Denote by v an integer prime to m such that f(w.,) =w!,. Then

fVm) =i, )77 (=) V.

Proof. Write m = pi* ---p% for the prime factorisation of m. Define by F and F
respectively the set of indices 1 < j < s such that p; =1 or 3 modulo 4.
Suppose m =1 mod 4. Then ZJ—GF a; is even, and

V=T v (n [16ve)™ |, (37)
JEE jEF
where n = —1 if ZjeF a; = 2 mod 4 and n = 1 otherwise. Since f is a field
automorphism ﬁxing‘ 71, we deduce

e = [Te(vp,. 0% T eliviy. ) (38)

JjeEE JEF

Now, if we set ¢; = /p; if j € E and ¢; = i,/p; if j € F', then [4, Thm. 1] gives

i—1
ZDJZ (t )wt —q
_ b =
=1 \Pj ’

Furthermore, one has w,, = wm/ P70 s0 fwp,) = wy,, and

il t r
-5 () - ()e
E ; D; D; E

by [4, Prop. 6.3.1]. Hence, (g;, f) = (%j) and the result follows from (B8) and

the definition of the Jacobi symbol.

Suppose that m = 3 mod 4. Then Z]EF a; is odd, and in the formula (&7,
is now equal to ¢ up to a sign. When the formula (38]) is multiplied by (3, f), the
result follows. O

4.2. Combinatorics of symmetric partitions. Recall a partition A\ is com-
pletely determined by the rim of its Young diagram Y (), a path constituted of
vertical and horizontal dashes of length one. Then A can, by the association of 0
(resp. 1) to a vertical (resp. horizontal) dash of length one, be expressed by its
partition sequence A. This is an infinite sequence taking its values in {0,1} and
of the form 0---1, where 0 and 1 mean an infinite sequence of left-trailing and
right-trailing Os and of 1s, respectively. We refer the reader to Example
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FI1GURE 1. Construction of the rim from the sequence

Let A be the partition sequence associated to A\. Denote by « and 8 the numbers
of zeroes and ones between the leftmost 1 and the rightmost 0 coming after it when
we read the sequence from the left-to-right. Then there are o + 5 elements in the
sequence between 0 and 1. We write

A=0l_al_as1 Iy 1g—11 = (l)uez. (39)

In particular{_, = 1 and lg = 0. If there is no 0 after the first 1, then « = 8 = 0 and
the sequence is 01 and corresponds to the empty partition. The bijection between
this labeling of partition sequences and partitions can be represented graphically
as in Figure 1.

Example 4.2. Consider the partition A = (7%,5,4,3,22).

010110011

= o

O O == O

The partition sequence of XA is A = 0110010101011001. We have o = B3 = 7, and
following the preceding convention, lg and l_1 are the numbers directly at the right
and the left of the dash 1100101|0101100. Note that in the accompanying figure
the partition sequence has been projected to the left-and-top border of the Young
diagram.

Furthermore, by [15, Lemma 2.2], the partition sequence of A*, denoted by A*, is
obtained from A by reading A from the right to the left with Os and 1s interchanged.
In other words

A =01 = lp-1)A —laa) (1= 1_)T = (1 = l_u_1)ucz. (40)
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2p

p

0 1 p—1

-P -1
0 1 p—1

FIGURE 2. p-abacus of the empty partition

We now describe D () the diagonal hooks of X using A. For ¢ € {0,1}, write
Hy={0<j<B-1|l;=6} and K;={-a<j<-1]l;=0a}.

Note that if h = |Hp|, then |H1| = —hand |K 1| =8 — |Hi|=8—-(8—h) = h.
Hence, |Hp| = |K1]. On the other hand, by [I5, p. 9] each hook of A corresponds to
a pair (i, j) such that —a <i < j < —1with l; = 1 and I; = 0. Such a hook h; ;
has length |j — 4|. In particular, the longest hook of A is h_, g—1 and it has to be
the first diagonal hook of \. When we remove it from A, we obtain a new partition
with the same sequence as A except that I_, = 0 and lg_; = 1. Since |Hp| = | K],
when we iterate this process |Hy| times, we obtain the empty partition. In fact, we
have removed from A all diagonal hooks one by one. Thus, the diagonal hooks of A
are labeled by Hy (and Kj).

Example 4.3. In Example[].3, we see that there are four Os on the horizontal and
four 1s on the vertical axe, corresponding to the four diagonal hooks of \.

Let p be an odd prime. We now consider a p-abacus with p runners, labeled
from 0 to p — 1 from left-to-right. We choose a position on the first runner and
we label it by 0. Then we label positions by integers moving left-to-right to the
runner p — 1, then wrapping around to runner 0 one row above. In particular, the
positions on the runner 0 are labeled by ---,—3p, —2p, —p, 0, p, 2p---. Now, we
fill the abacus so that there is a bead at the position labeled by j if and only if
l; = 0. For example, Figure 2 is the p-abacus of the empty partition.

We can also read the diagonal hooks ®(\) directly off of the p-abacus: they are
parametrized by the beads labeled by a non-negative integer. More precisely, if we
set

i = lipry (41)

for all j € Z, then the beads on runner « can be interpreted as the partition sequence
(l'y,j)jez of a partition A.
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Remark 4.4. In general, this labeling of the sequence is not compatible with that
of B9). Indeed, there is no reason that there should be exactly the same number
of 1s below [, o as the number of 0s above it.

We define A\, as the partition whose partition sequence can be read off the beads
on runner . That is, the abacus position v + mp corresponds to a so-called -
position m; that is, if A has a bead in abacus position v +mp then A, has a bead in
position m on runner . Then Quop(A) is the p-quotient of A, that is, the sequence
()\0, ey )\pfl).

Now, for 0 < v < p —1, define

Xy ={j€Z|pj+~y=0andl,; =0}

Therefore, each j € X, labels a diagonal hook of A. Such hooks will be called
diagonal hooks of X arising from runner . Let Corp(X) be the p-core of A, that
is, the partition one obtains by removing all the p-hooks of A. Such a partition is
well-defined [8 p.79]. Then, A is uniquely determined by Cor,(A) and Quo,(A).

Let Cor](oo)(/\) = Corp(A). Now consider the p-tuple of p-abaci, one for each
of the A, € Quo,()\) above. Then Cor(V(\) will be a p-tuple defined to be
the sequence (Cor,(\,)) for 0 < o < p — 1. This naturally induces a p*-tuple
(Quop(Xo), -+ -, Quop(Ap—1)), that defines Cor](oz)(/\). Iterating this process we de-
fine Corék) (\) for any non-negative integer k, and obtain at the end the p-core tower

CT(N) of X as in (2).

Example 4.5. We continue with Example[{.9. Consider p = 3. Then the p-abacus
of A is

3 4 5
0 1 2
=37 —27 -1
—4

0 1 2

Then A has four diagonal hooks corresponding to the beads in positions 0, 2, 5 and
6. We have

XO = {0, 2}, Xl = (Z) and Xg = {0, 1}
By the discussion after Example 4.2, the diagonal hooks arising from the 0-runner
have length 1 and 13. The ones arising from the 2-runner have length 5 and 11.
The partition sequences of Mg, A1 and A2 are respectively 0110101, 01 and 0101001.
Thus,

M= (3,2), M=0 and X\ =(2%1).

Suppose A = \*. Then A* = A, and [_, = 1—1[,_1. Since, by definition, « is the
number of zeroes before the leftmost 1, and £ is the number of ones after the leftmost
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0, this switch between 0 and 1 in each position implies that o = 8. Moreover, for
0<u<a-1andd € {0,1}, we have I, = ¢ if and ounly if [_,,_; =1 — §. Denote
by ¢ : Z+— Z,u — —u — 1. We define

YV,={j€Z|pj+~v<-landl,; =1}
Lemma 4.6. Suppose ¢ is as above. Then the following hold.
(1) ¢ is a bijection from Z to Z.
(2) ¢ induces a bijection ¢|p, : Hy — Hy with inverse map ¢|m, : H1 — Hp.

(3) ¢ = id.
(4) ¢ induces a bijection from X to Vp—y—1.

Proof. (1) and (3) are immediate. For (2), note, in particular, ¢ and the diagonal
hooks of A are the hy, 4(,) for u € Hp of length 2u + 1. For u € Hy, we denote the
corresponding diagonal hook-length by

dy = 2u+1. (42)

To see (4), suppose that u = jp+yfor j€ Zand 0 <~y <p—1. Then —u—1=
—jp—v—1=—=(G+1p+p—1—-ywith0<p—1—v <p—1. Since ly) = 1if
and only if /,, = 0, we have

lp—l—’y,j = 1 - 177,(j+1) (43)

which is the partition sequence of the conjugate partition of A,. ([l

Assume that v # (p—1)/2. Since A,_1_, labels the diagonal hooks of X arising
from runner (p — 1 — ), ), does too. Hence, the diagonal hooks of A arising from
the runners v and (p — 1 — ) are parametrized by X, UY,. By [@2), for z € X,
and 2’ € Y,, the corresponding diagonal hook-lengths of A are

dy =2(xp+7)+1 and dp =2((-2' —Dp+p—1—7)+ 1. (44)

Denote by I a set of representatives of {y,p—1—~}for {0,...,7,...,p—11\{(p—
1)/2}. By the discussion above, we have the following.

Corollary 4.7. The diagonal hooks of A are parametrized by the elements of

X120 | (X, 095).
yel’

Assume now that A = \* with Cor,()\) = (). Furthermore, assume that A(,_1)/o =
0 where Ap—1 € Quop(A). Let 0 < < p—1. Consider the partition sequence
2

(ly,j)jez as in @I). Since the p-abacus of Figure 2 is the one that we obtain af-
ter removing all the p-hooks of A (because Cor,(\) is empty), it follows from the
construction of the p-quotient that the number of beads above j = 0 is the same
as the number of empty positions under and strictly below 57 = 0. In particular,
the sequence (l,,;); ez is compatible with the labeling of (BJ), and the beads over
j = 0 correspond to the diagonal hooks of A, and are in bijection with the diagonal
hooks of A arising from runner ~.

Since A;_;_, = Ay, they have the same number of diagonal hooks. If d is the
length of the jth-diagonal hook of A, then we denote by d* the length of the
jth-diagonal hook of A\,_i_,. Write x € &, and z* € ), such that d = d, and
d* = dg(z+). Then [@2) gives

dy =2(xp+)+1 and dp =2(¢(x*)p+ (p—1)—7) + 1. (45)
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Hence, if we set wy 7+ = & — ¥, then
dy + dygr = 2pWy 5. (46)
Moreover, by ([{.1)
o) = (J{d, do- |z € X3},
yel’
where 0()) is defined in ()

Example 4.8. Consider the partition A = (7%,5,4,3,2%) in Exzample[J.5. We see
from the 3-abacus that Cors(X) is empty. We also see that

Yo={-2,-1} and ¥ ={-1,-3},
The bijection between Yy and Xs is
2 ¢(-2)=2-1=1 and —-1—¢(-1)=1-1=0.
Then d(X) is given by ([{4))
{dy | x € X} = {do, do} = {1,13} and {dy |z € W} ={d—2,d_1} = {5,11}.

In particular, the diagonal hooks of length 1 of A\g and As are associated with 1 € X
and —1 € Yy. Similarly, the ones of length 4 correspond to 2 € Xy and —3 € ).
It follows that

1*=—-1 and 2" =-3.

4.3. Diagonal hooks of regular partitions. Let p be an odd prime, n an integer
divisible by p, and A = \* be a partition of n. Let n = nip+nap?+---+nsp° be its
p-adic expansion. Write I = {0,...,p— 1} as above, and the p-core tower CT (\) of
A asin ([2). We assume that the Corp(\) = 0. We say that A is a regular partition
when ¢ (A) = ng and A\p« = () where p* € I* for any 1 < k < s. On the other hand,
A is called singular whenever A\; = (), except possibly for j = p*(k) € I k. where
p*(k) is defined in Equation (I).

~ For X as above, we also define t(\) and s(\) the regular and singular parts
(respectively) by giving their p-core towers as follows. For & > 0 and j € I, if
j # p*(k), then we set \; = \; and X/ = . Otherwise, if j = p*(k), then write
)\1/2*(’“) = and /\’é*(k) = Ap* (k)-

Therefore, the p-core towers of t(A) and s(\) are given by

k . k .
CorfP(e(A\) ={X; [j € I*} and Cor((s(\)) ={N] | j € I*} for k> 0. (47)

Recall p*(k) € I*. Then that cx(s(\)) = [Ap= (| and ¢ (v(A)) = cr(A) — cr(s())
by construction. Hence, if we set n' = 3 cx(t(A))p* and n” = 3 cx(s(\))p”, then
n=n'+n" and t(\) and s(\) are respectively regular and singular partitions of n’
and n” in the previous sense.

Proposition 4.9. Let n be an integer with p-adic expansion n = nip + nop® +
-« 4+ ngp®, where p is an odd prime. Let \ be a regular partition with p-core tower
Corék)(/\) ={\lj€ I*} for k > 0. For any integer 0 < i < s — 1, write H; for the
set of diagonal hooks lengths of A which are divisible by p' but not by p't'. Then
the elements of H; are of the form t, ; = p'u and toi = P (wy,ip —u), where u € U;
is an odd integer relatively prime to p, and w,; € Wj is an even integer.
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Proof. We proceed by induction on s > 1. Suppose that s = 1. Then n = nyp.
Note that Cory,(A\) = () by assumption, thus we are in the situation described above.
By (@3) we set t, 0 = d, and t}, o = d~, and (@) gives that ¢}, = pw, — t, 0 with
Wy,0 = 2Wy 2+ In particular, ¢, 0 and ti,o are odd and prime to p and w, o is even.
The result is true for s = 1.

Let s > 1. Suppose that the result holds for s. Let n = nip + nop? + --- +
nsp® +nsp1p® T, and A be a partition of n that satisfies the assumption. Consider
AN = Ap-1)72 € Quop(A) and n' = |[N|. One has n = p(n' + 3>, ,,_1)/2 Al
because Corp(A) = 0, and n' is divisible by p because Cor,(X') = 0, since A is
regular. Thus, the p-adic expansion of n’ is then of the form nip + - + n}p"
with A < s. By induction, the diagonal hooks of A are as required. Now, there
is a bijection f between the diagonal hooks of A divisible by p and the diagonal
hooks of A,_1y/2 such that [f(hmm)| = plhmm|, where hp, is a diagonal hook
of Ap—1y/2. In particular, for 1 < i < s, we have H; = f(H;_;) where H]
is the set of diagonal hooks of X divisible by p’~! but not by p’. On the other
hand, since Cor,(A\) = 0, Hy is the set of diagonal hooks arising from Quo,(\) =
(Xos -3 Ap=3)/2: 0, A1) /25 - - - » Ap—1), and (@D and @B) give the result. O

Proposition 4.10. Let A be a regular partition of n. If f € Ky1/2 thene(xa, f) = 1.

MOT@OU@? P
(p—1)
P n

e(xx, ony2) = (=1)

Proof. First, we remark that if the p-adic expansion of n is nip + - - - + ngp® then
each n; is even since n; = 23, |A;|, where the sum runs over j # p*(k) and j is

a representative of {j,j*}. Here we use that \ is a symmetric partition and that
|Aj| = [A3| = [Aj=|. Now, by Proposition [4.9] we have

[ #=11 I vt

heD(N) i=0 ueU;

= H H PP u(w,ip — ).

=0 ueU;
Let f be in H,, /2. With the notation (35]), we have

[T »s :g<ﬁ 11 u(wu,ip—u»f) (48)
heD(N) =0 ueU;

_H5<H w(wy, ip — ),f).

uel;

Note that « and (w, ;p — u) are odd. Furthermore,

(49)

{2—u2:1 mod 4 ifwy; =2 mod 4,
w(wy,ip —u) = ’

=-1 mod4 ifw,; =0 mod4.

We also have

SO Wb o

heD(X) =0 u€U;
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Since w,,; is even, there is an integer w/, ; such that w, ; = 2w, ,, and

’U.Z’

s—1

M

Py wl (50)

uelU;

Z wi  mod 2,
eu;

because p is odd. Now, write A = {w;, ;| 0 <i < s —1,u € U;}, and Aeyen and

Il
m .
Il
)_. o

Agqq for the subsets of even and odd elements of A, respectively. Then |A| = *
and (B0) gives
n
55 Z w = Z 1=|A4oad|] mod 2.
wWEAoda wE Aoda

Since |A| = |Aodd| + |Aeven|, we deduce from [@9) that

TT T vt -

=0 ueU;

Thus, by [@8) and Proposition 1] we obtain

ey
[T =™ T () ()
heo()) =0 ueU;

where 7 is such that f(wm) = wy, for m =[], , u(w,,;p—u). Note that if f € ICyy1/2,
then f acts trivially on ¢ and on w,,, that is » = 1, and (36 implies that e(xx, f) = 1.
Assume that f = 0,1/2, that is 7 = p. On the other hand, by quadratic reciprocity,

one has
0 ms) -G s

= (cT (=)
(P—Dwy 4

=(-1) I

(p—Dwy, ;

(—1) Mol = (—1)lAI-Monat = (-1)"F> mod 4. (51)

_J1 ifw,; =0 mod 2,
=1 ifw, ;=1 mod 2.

Using (B0), it follows that

(p—1)(n—dy)
O omye) = (=1 1 el | I] nf
hed(N)

_ (_1)(1)71)(:7%) .(_1)(1)71)(47%%) .(_1)(P*1)‘2Aodd\
(p=1)n

= (—1)T,

as required. (|
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4.4. Diagonal hooks of partitions with non-empty p-core. For any partition
A, we denote by Q,(A) the partition with the same p-quotient as A but with empty
p-core. That is, Quo,(Qp(A)) = Quoy(A) but Cor,(Q,(A)) = 0.

Let A = X*. Write M = (my)uez, M’ = (m))uez and A = (ly)yez for the
partition sequences with the labeling as in ([B9)) associated to A, Cor,(A) and Q,(X)
respectively.

Since A = A* we have Cory,(\) = Cor,(A) by [15, Prop.3.5]. Let 0 <~y <p— 1.
By definition of a p-core, if m/ = 0, then there is an integer §, > 0 such that
my,; = 0 if and only if j < 0, — 1. Since Cor,(\) = Cory()) it follows from §24.2]
that m;j+(p—1)—»y = 0 if and only if j < —d,. If m/, =1 and m’ , = 0 then
m’(pfl)f,y =1 and mlfp+(p71)f’y = 0. In this last case, we set 6, = 0. Let 7 be
such that §, > 0. Define A, = {0 < j <4, —1}. Then elements of D(Cor,(\)) are
labeled by the elements of Us_~0A,. In particular Cor,(A) has ) 5,50 0. diagonal
hooks.

We construct the p-abacus of A from that of Q,(\) as follows. If 6., = 0 then the
runners v and (p — 1 — ) of Q,(A\) and X are identical. If ¢, > 0, then runner ~
of A (resp. the runner p — 1 — « of A) is obtained by shifting up (resp. down) the
corresponding runner of Q,(\) d positions. It follows that, for all 0 <y <p—1
such that 6, > 0, one has

M5, p4ry = Lipty  a0d M5 ypip_1—y = ljprp-1-~ forall j€Z.  (54)

We will now describe how to obtain ®(A) from ®(Q,())). For v € TU{(p—1)/2},
we denote by X, and ), (respectively X) and )) the sets as in (L7 that label
the diagonal hooks of Q,()) (respectively, of A).

We remark that if 6, = 0, then X, = X7 and ), = )., that is the hooks of A and
Qp(A) arising from runner v are the same. Note that 6(,_1)/2 = 0, since A = \*.

Suppose d, > 0. We introduce four possibilities in passing from the diagonal
hooks of Q,(\) to those of .

(i) Any x € &, corresponds to a hook labeled by x+4, € A, of A on the y-runner.

More precisely, by (54) we can associate to the hook of length d, of Q,(\)
labeled by x given in [{H)), a hook of A of length

c(dz) =2((x +6,)p+7) + L. (55)

We will call this an increase of the length of an existing hook with respect to
5.

(ii) Similarly, for x € ), such that < —d,, we have 0, +z <0, and 6, +x € }
by (B&4). By [@H), we associate to d, a hook of A of length

c(dy) =2(¢(0y +2)p+(p—1) —7) + 1. (56)

We will refer to this as an increase of the length of an existing hook with
respect to v =p—~v — 1.

(ili) Let —6, < & < —1 be such that = ¢ ), that is l;,1, = 0. Then 2+ 6, > 0
and by (54)), = + d, € A7. Hence, a new diagonal hook of length

Cx = 2((5v +a)p+y)+1

appears in A\. This is also a diagonal hook of Corp(\). We will call this the
appearance of a new hook with respect to .
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(iv) Finally, let —¢, < < —1 be such that € ), that is l;p;, = 1. Then
r+0, ¢ X5, Then the hook of Q, () labeled by z gives no hook of A\. We will
call this the disappearance of an existing hook with respect to v* =p —~v — 1.

Remark 4.11. Let A, and B, be the set of -9, < 2 < —1 such that [,;4, =0
and lpy4~ = 1, respectively. Then A, LI B, labels the diagonal hooks of Corp(\))
as follows: associate the set of diagonal hooks of Cor,(A) of length

e =2((6y +x)p+7v)+1 (57)

to A, U B,.
In the next example we use the fact that the p-abacus of Cor,(\) is obtained
from the p-abacus of A by placing beads in empty positions one position below them

on each runner until this is no longer possible, and then reading off the resulting
partition from the new p-abacus configuration. by [8 p.79].

Example 4.12. Let A = (16,11,3,28,1%). We find D()\) using the 3-abaci of
Cors(A) and Qs(X).

011111111011 11101

o o =

O~ 0O 0000 HOOO00 0O

In particular, the 3-abaci of X and of Cors(\) are depicted below:

A Cors(N)
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We can obtain Cors(\) = (7,5, 3,22%,1%) from X by pushing down beads and read-
ing off the resulting bead positions. We have 6o = 3 and 61 = 0, and A3 has three
diagonal hooks. Now consider the partition Q3(\) of Example[{-2, More precisely,
by the previous discussion, D(X) can be obtained from the 3-abacus of Qs(A\) and
the A,. The 3-abacus of X is obtained by shifting up the runner 0 of Qz(X) do
positions and by shifting down the runner 2 —dg positions.

— 0
| —%0

0 1 2

Consider runner 0 of Qs(X). Since 69 = 3, one shifts it up three positions to obtain
the O-runner of A\. However (here we abuse notation) this causes Xy U Yo(N), to be
altered from X[ U Y}(X), and hence the number of diagonal hooks of X arising from
runner 0 is different the number of diagonal hooks of Q3(\) arising from its runner
0. In particular, the diagonal hooks in Qs(\) corresponding to positions 2 and 5
on runner 2 “disappear” for X as they shift to new positions —1 and —4, while the
bead in position —9 on the 3-abacus of Qp(N) introduces a new diagonal for X as it
shifts up to position 0.

Recall that the Durfee square of ) is the largest square that can be accommodated
inside the Young diagram of \ (see for example [I} §2.3]). Let A7 be the size of the
Durfee square of A\, otherwise known as the Durfee number of A. Let y; ={-6y >
x> —-1]z¢gY,}and V) = {0, >z > -1 |z € Y}, and Y = |VI| - DI].
Then steps (i) through (iv) in this section describe how to calculate the size of the
Durfee square of a symmetric partition from the Durfee squares of its p-quotient
and its p-core.

Lemma 4.13. With the above notation, we have
SR SRS
Ay EQuop(N) >0
Proof. We can rewrite the equation in the statement of the theorem as follows:
S SRR
Ay,8,>0 Ay,6,=0

The second of the two sums counts the contribution to the Durfee number from
the runners that are not affected by the introduction of a core. The first of the two
sums calculates the original contribution to the Durfee number from the runners on
which the core appears, and then corrects it using yS for each 6, > 0. In particular,
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yS subtracts the disappearances of existing hooks with respect to v* =p—~v —1
from the appearances of a new hooks with respect to 7. (I

The following two corollaries are immediate.
Corollary 4.14. If X is a p-core, that is A = Cory(X), then \7 = > 6,500y
Proof. In this case the Durfee number is calculated directly from the the p-core. [

Corollary 4.15. If XA has empty p-core, that is, A = Qu(X), then
A=)
Ay EQuop(N)

Proof. In the case the p-core contributes nothing, no diagonal hooks appear, non
disappear, and the Durfee number of A is the the sum of the Durfee numbers of the
quotient. ([l

4.5. The sign of the product of the diagonal hooks.

Theorem 4.16. Let w and r be non-negative integers, and set n = pw +r. Let
A = X\* be a partition of n such that |Cor,(A)| = r and Quo,(A\) € MP(p,w), where
MP(p,w) is the set of p-multipartitions of w. Assume that Ag,—1y/o = 0. Set

d= J[ h, a= J[ n and e= J] h

hed(A) hed(Qp(N) hed(Corp(A))

(0)-=(5) )

Furthermore, if b="73__|B,|, then

Then

d=qce(—=1)" mod 4,

where B, is the set defined in Remark[{.1]]

Proof. Recall from §2.4that D(A) is labeled by X and Y. where v € I'. We choose
the representative v € T' such that 6, > 0. We also recall that ©(Quop(\)) is
labeled by X, UY, and ©(Corp(X)) by A, for v € I'. Furthermore, for v € T, if
6y = 0, then &) = X, V) = V. and A, = (. Otherwise, if 4, > 0, then with the
notation (B3)), (B6) and (BT

X ={c(ds) | v € Xy JU{cp |2 € Ay} and V) = {c(dz) | z € Y, such that z < -4, }.

Write
mM=1] ]I (dﬁ,>,

Iy >0zEX, VY hd
where d!, is the diagonal hook-length of A\ corresponding to z. We remark that
Py _ p
@=vI 1 (7)
6y=02€X,UY,

But for any c(d,) € V;, there is ¢(d,+) € X, where d;, and d,- are diagonal hook

lengths of A as in ({@H]). Furthermore, by (@), (53) and (B6) we have
C(dﬂﬂ) + C(d;) = 2pwz,z*- (58)
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It follows that
c(dy)e(dyg) = 2¢(dy)pwy g — 1 = 2pwy v — 1 = dpdyx mod 4. (59)

() - “>( ()Wp(d)) @
= (_1)% _?1
- <d2>

On the other hand, if x € ), is such that -0, <z < —1, that is x € B,, then
there is a diagonal hook of y of length ¢(d,-) with z* € X,. So

Hence,

M = 5£[o zg <m> zg (c(i*)> zg (%)
“I0 {1 () 1 () 11 ()

By Remark B.TT] recall that d(Corp(X)) = {c, | z € A, U B,}, where ¢, is given

in 7). Then
()OI (i)

Let v be such that 4 > 0 and z € B,. By (3 and (E1), we have ¢, = c(dg+)
mod p. Moreover
Ca(dpx) =1+ 2((0y +2)p+1) +2((0y +2")p+1) mod 4 (61)
=1+2z+2z* mod4
=142z +2") mod4
=14+2(xz—2") mod4
=14 2wy« mod 4.

Hence
cxC(dg-) — 1
2

= Wg p+ mod 2,

and we obtain that

P o (pfl);uz,z* C(dm*)cm o (P*l);ﬂz,z*
() = (“5%) = v |

(pfl)wmym*

2 and

)

However, the computation (53] shows that (%)

p 1 (P—Dwy z* 1 (P—Dwy z* 1
e = (— 2 P — 2 =
dpdysc(dys )y (=1) (1) '

The result follows.

—
|
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We now prove the second part of the statement. Since an odd number is its own
inverse modulo 4, we do the same computation as above and obtain that

d=qc H H dydyxc(dy)e, mod 4.

04 >0z€B,

But by (B9) and (@1]), we have

dpdyc(dy=)ey = Wy — 1) 2wy 0 + 1) = 4“’925,1* —1=-1 mod 4.
Thus, d = ge(—1)? mod 4. O
Theorem 4.17. Let X\ = \*.Then for any f € Hy /2,

e(xns f) = elxa, ), fe(xcor, (3, f)-

Proof. Write n = pw + r, where r = |Cor,())].

First, we assume that A,_1)/2 = (). We define ), d, ¢ and c as in Theorem [4.16]
Since Ap—1)/2 = 0, we have e(x», f) = e(xo,(): f) = e(Xcor,(v), f) = 1 for all
[ € Knij2. We consider the case f = 0,1/2. In the proof of AI0, we see that
(X Onty2) = (%). To simplify the notation, set m = deo,,(1). By Theorem A.16),
d = (—1)®qc mod 4. Furthermore,

dy+dy =Y (12 + 12|+ 125] + V)
~el’
= Z(2|X’Y| + |-Av| + 2|y7| - |Bv|)
~el’

=237 + D)) +m — 20

’YEF even

=m+2b mod 4.
Now, we derive from the proof of Proposition [£.10] (—1)L2+dk = (—1)n427dk =

(—1)% = (—1)%1. In particular, n — r +dy = ¢—1 mod 4. Thus,

n—d,+d—1-r+m-c+l=n—-r+m-d,+d—c
=n—r+dyx+2b+qe(—1)’ —¢ mod 4
=q—142b+qc(—1) —¢ mod 4.
If b is even, then
n—d,+d—1—-r4+m-c+1=qg—1+qgc—c=(¢—1)(c+1)=0 mod 4,
because ¢ and c are odd. If b is odd, then

n—d,+d—-1-r+m-c+1=qg—1+2-qc—c mod 4
=(¢g+1)(1—¢) mod 4
=0 mod 4.
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Finally, using Propositions [.10 and [} and (36), we obtain

e(Xxs Oniy2) = (_1)%1(71—(1”,1_1) (g)

= (=1)%F (n—dutd-1) (g) (%)

2=l (p— —1—r+m—c
= (_1)7( dutd=1-rt +1)E(XQP()\)7Un!/2)€(XCorp(A)70n!/2)

= e(X 0, Tn1/2)e(XCor, (), Tn/2)-
Assume now that A\(,_1)/, is non-empty. Since d(,_1y/2 = ), we have X(’p_l)/2 =
X(p—1)/2, that is, the diagonal hooks arising from the (p — 1)/2-runner of A and

Q,(\) are the same. Denote by AV the partition with same p-core and p-quotient
as \ except )\2/20*1)/2 = (). Then

PR p-1y 2= 1 X1y 21td(p—1)/2~1
2

E(Xkaf) :E(iaf) 5( d(p—l)/Qaf)E(X)\vaf)

PR p-1y 271X 1) 2ltd(p—1)/2~1
2

= e(i,

e(y/dp-1)/2, Fe(xo, s Fle(Xeor,(r)s f)

= E(XQ;,(A)? f)E(X(Corp()\)a f)u

where d(,_1)/2 is the product of the diagonal hook lengths arising from the runner
(- 1)/2. O

5. VERIFICATION OF NAVARRO’S CONJECTURE FOR THE ALTERNATING GROUPS

We will now prove Theorem[I Tl Let n be a positive integer with p-adic expansion
n =mng+pni +---+nsp®. Let A be a partition of n with p-core tower Corék) \) =
{A; | j € I¥} for k > 0 such that cx(A) = |Aj]. We then associate to A the
irreducible character of Ng, (P)
Ua =[] van

k>0

jEI*

as above, where 9y € Irr(IV) as in (7). If X\ is not symmetric, then x» and
1y restrict irreducibly to 2, and Ny, (P). As above, we denote the restriction
by the same symbol. If X\ is symmetric, then the restriction of x to 2, has two
irreducible constituents X;r and x, . Similarly for 1x. More precisely, for any £ > 0
and A\ € MP(p*, ny), we have \* = ) and the restriction of 1 1 to (Yx1&,, )T splits
into two irreducible characters w)t p and ¥y ;. Then following §3.1] we label w;\r such
that [], z/);k is a constituent of Resl—[(ykzgnk)+(1/);f). In particular, [], Yy isa
constituent of Resyyme,,, )+ (¥ ). Now, define @ : Irry (Un) — Irry (Nai, (P)) by
setting

D(xa) =Un if A £ N, and ®(xi) = ¢} otherwise. (62)

We need the following two lemmas.

Lemma 5.1. If A is a regular partition of n and f € Hy,/2, then
E(X)\a f) = 5(¢>\7 f)

Proof. Since A is regular, n = nip+nap? + - - -+ ngp°® with n; even for all 1 < i < s.
By Proposition

eWn f) = [ @ )
k=1
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Hence, for f € K,1/2, one has e(iy, f) = 1 by Proposition [3.6] and

e(Ux, op1y2) = H (k> Tn1s2)
k=1

5 (p=1)n
— H(_U%
k=1

= (1) Ziaimn,

For 1 <k < s, let nj, € Z such that n;, = 2nj,. We have

S

S
g = Zn;pk = ZmC mod 2,
k k=1

=1

because p is odd. Thus > ;_; nx = n mod 4, and e(Yx, oniy2) = (—1)(1)1—1)n. The
result now follows from Proposition O

Lemma 5.2. If A is a singular partition of n with empty p-core, and f € Hy /2,
then

E(X)\a f) = 5(¢>\7 f)
Proof. By construction of A from its p-core tower and §4.4] for all k£ > 1, we have
0k ()‘) = {pkh | h e aiqk}v
where ,:()) is the set of diagonal hooklengths of x divisible by p* but not by
pF*l and 0,k is the set of diagonal hooklengths of Xp+ (k) With p*(k) € I*. In the
following, we write xr = Xp+(x). In particular, if dy and dj, are the number of
diagonal hooks of A and the partition with empty p-core tower except the position
p*(k) in the level k, that is equal to Ay« (x), then dy = Sor_q i
Let f € Hy/2- By (B8], we obtain

E(X)\a f) = E(iv f)(nidx)/%s H h, f

hea(n)

“TL=6n™ =" [ 1I h,f)

k=1 hev i (M)

= Lt ™" (ﬁkdk W,f

hGDA,k()\)

_ Hg(ijf)"k(—l)kfsvrnk—dk 5(\/]_?kdk7f)5()(k,f)

np (=K —dy +ny —dy+2d,k
=]]<G.n" U (s 1 f) by Prop. BT

_ E(l,f)% Ezzl(nk(—1)’6—dk+nk—dk+2dkk)€(,¢>\7f),

where the last equality comes from Proposition 3.2l However, if k is even, then

nk(—l)k —dp +np —dp +2dk = 2(nk — dk) =0 mod4
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because ng and dj have the same parity. If k is odd, then
nk(—l)k —di +np —dp +2dpk = —np + 2dp +np, —2d, =0 mod 4.

The result follows. O

Lemma 5.3. Let A be a symmetric partition with empty p-core. Then for f € Hyy/o
e(xns f) = e(xen), Fle(xsnys )
where t(A\) and () are the regular and the singular parts of A as in ([{7).
Proof. By assumption, the p-core of X is empty. In particular,
D(\) = D(x(\) UD(s(\)).
Write dy = [D(N)], di(n) = [D(t(A))| and dgn) = [D(s(N))]. We have
dx =don + ds()\)'

Furthermore, we have |A| = [t(A)| + |s(\)| by construction. Hence, for all f € H,y,
Equation (B) gives

exn f) =e [N T o f
heED(N)

= ¢ | {(IxN=dex))/2 H h, f | e[ illsVI=ds)/2 H h, f

heD(x(N)) heD(s(N))
- s(Xt()\)v f)E(Xs()\)a f)7

as required. O

Assume that A = X\*. Recall Q,()) is the partition with the same p-quotient as
A and with empty p-core. Proposition [£17 and Lemma give

e(xxs f) = e(Xcor, (), le(xeco, (2> Fe(xsa, ), f)- (63)
Now, by Theorem B.8 and Proposition B.2] we have

e(Wn, f) = e(xcor,(n)s f H e(Ve(a,(0).ks f) H (s, 0.k f) (64)
k=1

= e(Xcor,(\)s f)E (Uk(gp o> Fe@Wsia, () f)-
However, by Lemmas 5.1l and (5.2, we have

e(Xe(0,(0)s f) = e(We(o, 0> f)  and  e(Xs(o,(0)» f) = (¥, (), f)-
Finally (63) and (©4) give that
6(X>\7 f) = 6(1/))\7 f)

Hence, @ is an H,,/2-equivariant bijection, as required.
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6. BLOCKWISE NAVARRO’S CONJECTURE FOR ALTERNATING GROUPS

For any finite group G and any prime number p dividing |G|, recall that Irr(G)
decomposes into families, the so-called p-blocks of G. Write BI(G) for the set of
p-blocks of G. Furthermore, we attach to any B € BI(G) its p-defect group D. This
is a p-subgroup of G which is well-defined up to conjugation. Now, by Brauer’s
first main theorem [7, (15.45)], we can associate to any p-block B of G its Brauer
correspondent B’ € BI(Ng(D)). Then the blockwise Navarro’s conjecture asserts
that the number of height zero characters in B and B’ fixed by o € H,, is the same.

6.1. Case of p odd. In order to discuss blockwise Navarro’s conjecture for alter-
nating groups, we will first recall some some facts about the p-blocks of symmetric
and alternating groups.

It is well-know by the Nakayama Conjecture that for any prime p, the p-blocks
of &,, are labeled by the p-cores of partitions of n. More precisely, two irreducible
characters of &, lie in the same p-block if and only if the partitions labeling them
have the same p-core; see for example [I5, Theorem 11.1]. In the following, such a
p-core will be called a p-core of n. Note that there is here an abuse of terminology
since a p-core of n is not in general a partition of n. For a p-core v of n, we denote
by B, the corresponding p-block of &,,, and we define the p-weight of B, by setting

— n=Dl

We can describe the height zero characters of B, in term of the p-core tower
of partitions labeling characters of the block as follows. By [I5 Proposition 11.5],
an irreducible character x lying in the block B, has height zero if and only if
0<ecr(A) <p—1forall k >1with cx(A) =D |A;], where the Notation is as
in (@).

Furthermore, without loss of generality, we can assume by [I5, Proposition 11.3]
that any Sylow p-subgroup D, of &,, C &,, is a defect group of B,. Let pw =
wip + wap? + -+ - denote the p-adic expansion of pw. Then by |2, page 159], we
have

jerr

Ne, (D,)/D, ~ &, x [[Y*16u,.
k>1

Moreover, by [2, page 158 and 159], the set Irro(B) of height zero characters of
the Brauer correspondent B’, € Ng,, (D) of B, is

Irrg(B) = ¢ x4 ® H Uak | Xy €Ir(S))); Ak € (Y"1 6,,)
E>1

From now on, assume p is odd. Note that B« = {xa- € Irr(&,) | Corp(A) =
v} = B3. In particular, if v # +*, then B, N B,- = () and B, contains no self-
conjugate character. Then [I2| (9.2)] implies that the two p-blocks B, and B.-
cover a unique p-block b, of 2,, (Note that b, = by~). Furthermore, if v = +* and
B, has non-zero defect, then there is an irreducible character x € B, with A # A*
and [12] (9.2)] implies that B, again covers a unique p-block b, of 2,,. Finally, for
n > 3, if B, has defect zero and v = ~*, then {xI} and {x} are two p-blocks of
2, of defect zero. These two blocks are equal to their Brauer correspondent, and
the blockwise Navarro’s conjecture is then trivial in this case.



36 OLIVIER BRUNAT AND RISHI NATH

We remark that D, is a defect group of B, since p is odd, and Ny, (D) =
Ne, (Dy)*. Assume that B, has a non-zero defect. Then B! covers a unique p-
block of Ng, (D,)". Indeed, if v # ~* then the restrictions to Ng, (D,)" of the
characters of B!, form a p-block b/ (= ¥..) of Ng, (D,)* covered by B! and B!.
by [12} (9.2)], and if v = v*, then B has a self-conjugate character (since the block
has a non-zero defect) and B!, covers a unique p-block b/, of Ng,, (D-)" by [12, (9.2)].
Furthermore, by unicity of the covered block, b; is the Brauer correspondent of b,
by [12] (9.28)]. Therefore, the height zero characters of this block are identified (by
lifting) with the set of irreductible characters of

Nai, (Dy)/Dy = (&4 x []Y* 18w, "
k>1

Let A be a partition of n with p-core v and with height zero. Write C7 () for the
p-core tower of A with the Notation as in ([2). In particular, Ay = . Write

1/}>\ = X~ ® H 1/}A,k
E>1

for the irreducible character of ny labeled by X (which is well-defined since x» € By
is of height zero). Then 1, splits into one or two constituents of b, whenever A # \*
or A = \*. We again write 1, for the irreducible restriction in the first case, and
we write wf for the two irreducible constituents otherwise.

Theorem 6.1. Let p be an odd prime. Let v be a p-core of n. We assume w > 0.

For a partition X of n with p-core v, define ® : Trrg(by) — Trro(b)) by setting
Dxn)=vn FAZEN and B(xF) =vr if A=A\

Then @ is a Hpyj2-equivariant bijection. In particular, blockwise Navarro’s conjec-

ture holds for the p-blocks of alternating groups.

Proof. First, we remark that the map is well-defined. We only have to consider the
case of an irreducible character Xf € by for A = A*. In particular, Corp(X\) = 7,
and by Equation (63) we have for any f € H,1/2

e0ns f) = e(xy, Fle(Xeie,00), 1) (Xs(2, (1), £)-
Now, applying the resuts of Section ] to pw with the group ([[;~, Y"1 Su,)t,
Proposition and Theorem [3.8] give -

E(H Uaks f) = e(Wea,000), e, -

k>1

Again using Proposition [3.2] we obtain

e(Wx, f) = e(xys Fe(We(, ) F)e@Wreia, ()5 )
and we conclude by Lemmas (.1l and O
6.2. Case of p = 2. First, we will prove that an analogue of Theorem holds
for p = 2.

Theorem 6.2. Assume p = 2. We have

(2)- ()

where ¢, d and q are as in Theorem [{.16
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Proof. Let v € {0,1} be such that 6, > 0. We write X7, V., X, Y, and A, for the
sets labeling ®(X), ©(Quo, (X)), and D(Cory(A)), respectively. If 6, = 0, then the
statement is trivial. Assume d, > 0. We also consider the set B, as in Remark [LT1]
Let x € X, and ¢ € {1,3} be such that d, = 4z + ¢. Hence, d,~ = 4¢(z*) + &/,
where ¢’ = 4 — e. Furthermore, with the notation of (G5,

c(dy) =4(x+6y)+e and c(dy~) = 4(P(z*) — 8y) + €',
where ¢(d,-) “exists” if and only if ¢(z*) > d,. Assume ¢(z*) > 6. Then
c(dy)e(dy) = dypdys + 46+ (g — dy) — 16d* = dypdys + 40, (dyr — d;)  mod 16.

Since d,« — d, is even, we obtain (c(d,)c(dy+)? = (dypdy+)? mod 16. Hence,
(e(dg)e(des)? —1)/8 — ((dpdy+)?* — 1)/8 is even, whence

2 (c(dg)e(dg))?—1 (dgdyx)?—1 2
() =0T = = () @

Assume now that 0 < ¢(z*) < ¢, — 1. In particular, z* € B,, and
Cor =40y = 1= P(z")) +e =40y —4 —dp + e+ & = 4d — dy-,
=4

and we again have (c¢(dy)cy+)? = (dyd,+)? mod 16. Hence,

(c(df)cw) N (di) - (66)

Now, using Equations (63]) and (G4]), like in the proof of Theorem [.16, we obtain

(3 -C) 0 I () Gaoe) -G 6):

T€B,

O

Theorem 6.3. The blockwise Navarro’s conjecture holds for alternating groups at
p=2.

Proof. Let by be a 2-block of 2,, covered by a 2-block B, of &,, labeled by the
2-core 7. Write r = |y| and w for the 2-weight of B,. As above, we denote by
xx the irreductible character of G,, labeled by A. We also denote the irreducible
characters of 2, by 19j\r for A # A\* and 19?{ for A = A*. We only have to consider
the case that v is self-conjugate and w > 0. Write P, for the set of partitions p of
2w such that x,, has height zero or x,, is of height 1 and p is self-conjugate. By [15),
Proposition 12.5], we have

Irrg(by) = {05 | Cora(N) =, Qa2(\) € P,}.
By [15} (12.2)], B, covers only the block b.,. Hence, b, is &,-invariant, and by [12]
Theorem 9.17] the defect group of b, is D = 2, N l~), where D is the defect group
of B,. Since Dis isomorphic to the Sylow 2-subgroup of a &g, it follows that D
is isomorphic to the Sylow 2-subgroup of s, and
Ny, (D) =~ (&, x Ne,,, (D))*.

We remark that (Ng,, (D))t = Ng,, (D). By [10, Theorem 5.6] applied to the
principal 2-block of %A, the number of 2'-characters of the principal blocks of
s, and of Ny, (D) is the same. By [I5, Proposition 12.5] P, labels the set of
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2'-characters of the principal block of 25,,. We choose a bijection 6 between these
two sets, and for 1 € P, we set

= 0(9F).

Now, the second author proved in [II] that if w > 3, then for all u € P,, 19?5 and
9(19?5) are fixed by all f € H,,/3. Furthermore, for w = 1 and w = 2, the normalizer
of the Sylow 2-subgroup of s, is sy, itself. We can take € to be the identity, that
is automatically H,,1/2-equivariant.

Write ), for the Brauer correspondent of b, and B for the unique block of
&, x Ne,, (D) that covers b, by [12, Corollary 9.6]. By Clifford Theory, for any

i € P, there is {/;# € Irr(Ng,, (D)) such that 1/Jff appears in its restriction to

(Ne,,, (D))" with multiplicity one. Hence, for any p € P., we have (x, ® {/)V#)i €
Irrg(b7,). On the other hand, by cardinality [I0, Theorem 5.6], we deduce that

Irro(8) = {0y ® )™ [ € Py}
Now, we define
® : Trrg(by) — T (b)), 05 = (Xy © thg,n)™

We remark that @ is a bijection by construction. If A # A*, then ¥ and ®(J,)"
are fixed by all f € H,1/o. Assume that A\ = \*. Write dy, dg,() and d, for
the product of diagonal hooks of A, Q2(\) and . Then by [11, Theorem 2.2] and
Theorem [6.2] we obtain for any A labeling a character of b,

2 2 2
g ) = _ = _ = £ y £ y .
(xx, f) (d,\> (d"y) (dgm)) (x> le(xazn) f)
On the other hand, by Proposition B.2 for any f € H,1/2

E(X’Y ® JQQ()\)’ f) = E(X’Y? f)s({/jgz()\)v f)
However, s(igz(”, f) =¢e(xa,(n), f) because 0 is H,, /o-equivariant. Thus,

E(X)\u f) = E(X’Y & /lZQ2(>\)7f)7

as required.
O
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