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We investigate the large n asymptotics of the n-th eigenvalue for a class of unbounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In the case of the quantum Rabi model we obtain the first three terms of the asymptotics which determine the parameters of the model. This paper is based on our previous paper [5] that it completes and improves.

1. Introduction 1.1. The quantum Rabi model. This paper is motivated by the quantum Rabi model [START_REF] Braak | Semi-classical and quantum Rabi models: in celebration of 80 years[END_REF] describing the simplest interaction between radiation and matter (see [START_REF] Scully | Quantum Optics[END_REF]). It is also called the Jaynes-Cummings model without the rotating-wave approximation. The Hamiltonian of this model is a self-adjoint operator H Rabi with discrete spectrum defined in Appendix. We refer to [START_REF] Xie | The quantum Rabi model: solution and dynamics[END_REF] for a list of recent works on this model.

A natural question is whether the spectrum of H Rabi determines the values of all the parameters involved in its definition. These parameters are listed in the Appendix and denoted by ω, E, and g. The answer to this question is positive. In [START_REF]On the spectrum of the quantum Rabi model[END_REF] we explain how to recover the values of all the parameters from the spectrum of H Rabi . The method described in [START_REF]On the spectrum of the quantum Rabi model[END_REF] is based on the three term asymptotics for large eigenvalues of H Rabi . This asymptotic formula can be easily deduced from the formula (1.4a) of this paper using the well known fact (see [START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF][START_REF] Tur | Jaynes-Cummings model without rotating wave approximation[END_REF][START_REF] Yanovich | Asymptotics of eigenvalues of an energy operator in a problem of quantum physics[END_REF]) that H Rabi can be written as the direct sum of two Jacobi matrices (see Appendix) to which Theorem 1.1 applies.

Further on J denotes an infinite real Jacobi matrix To treat the Jacobi matrices representing the quantum Rabi model we have to consider entries {d(k)} ∞ k=1 and {a(k)} ∞ k=1 of the form

J =        d ( 
d(k) = k + (-1) k ρ, a(k) = a 1 k 1/2 , (1.2) 
where ρ ∈ R and a 1 > 0 are some constants. The Jacobi matrix (1.1) defines the self-adjoint operator J that acts on l 2 (N * ) by

(Jx)(k) = d(k)x(k) + a(k)x(k + 1) + a(k -1)x(k -1) (1.3)
where, by convention, x(0) = 0 and a(0) = 0. We denote by N * the set of positive integers and by l 2 (N * ) the Hilbert space of square summable complex sequences x = (x(k)) ∞ k=1 equipped with the scalar product x, y = ∞ k=1 x(k)y(k). The operator J is defined on D := x ∈ l 2 (N * ) :

∞ k=1 d(k) 2 |x(k)| 2 < ∞ .
Under our assumptions, in particular under (1.2), the self-adjoint operator J is bounded from below with compact resolvent. Its spectrum is therefore discrete and one can find an orthogonal basis {w n } ∞ n=1 such that Jw n = λ n (J)w n where {λ n (J)} ∞ n=1 is the non-decreasing sequence of its eigenvalues: λ 1 (J) ≤ • • • ≤ λ n (J) ≤ λ n+1 (J) ≤ . . . The aim of this paper is to describe the asymptotic behavior of λ n (J) when n → ∞. given by (1.2). Let λ n (J) denote the n-th eigenvalue of J. Then, for any ε > 0 we have the large n asymptotic formula λ n (J) = na 2 1 + r(n) + O(n -1/2+ε ), (1.4a) where

r(n) = (-1) n ρ cos 4a 1 √ n -π 4 √ 2πa 1 n -1/4 .
(1.4b) 1.2. Comments. In this section J denotes the Jacobi operator defined by (1.3)-(1.2).

1.2.1. The three-term asymptotics (1.4) improves the two-term asymptotics proved by Yanovich [START_REF] Yanovich | Asymptotics of eigenvalues of an energy operator in a problem of quantum physics[END_REF] (see also an earlier version in [START_REF] Tur | Jaynes-Cummings model without rotating wave approximation[END_REF]):

λ n (J) = n -a 2 1 + O(n -1/16
).

(1.5) 1.2.2. The large n behavior of λ n (J) was already investigated by Schmutz [START_REF] Schmutz | Two-level system coupled to a boson mode: the large n limit[END_REF]. Let J 0 denote the operator defined by (1.3)-(1.2) when ρ = 0, i.e.,

(J 0 x)(k) = kx(k) + a 1 √ k x(k + 1) + a 1 √ k -1 x(k -1). (1.6) 
As noticed by Schmutz, J 0 can be diagonalized in the canonical basis by means of the Bogoliubov transformation: L 0 := e iB J 0 e -iB = diag(ka 2 1 ) ∞ k=1 defined by B = a 1 (â-â † ), where â and â † are the annihilation and creation operators, respectively (see Appendix A). Since J = J 0 + V with V = diag (-1) k ρ , its eigenvalues are the same as those of L := e iB Je -iB = L 0 + Ṽ , where Ṽ := e iB V e -iB . Then, decay properties of the entries of Ṽ should allow to expect the large n behavior λ n (J) = λ n (L) ≈ λ n (L 0 ) = na 2 1 .

(1.7)

1.2.3. The asymptotic behavior of the matrix elements Ṽ (j, k) expressed by means of Laguerre polynomials was considered by I. D. Feranchuk et al [START_REF] Feranchuk | Two-level system in a one-mode quantum field: numerical solution on the basis of the operator method[END_REF] who proposed to apply the 0th order perturbation theory (see the book [START_REF] Feranchuk | Non-perturbative Description of Quantum Systems[END_REF]) and suggested the following improvement of (1.7):

λ n (J) = λ n (L) ≈ λ n (L 0 ) + Ṽ (n, n). (1.8) 
The approximation (1.8) was discovered independently by Irish [START_REF] Irish | Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling[END_REF]. Following Irish, (1.8) is called the Generalized Rotating-Wave Approximation (GRWA) in the physical literature. We observe that one can prove that

Ṽ (n, n) = r(n) + O(n -1/2+ε ), (1.9) 
where r(n) is given by (1.4b).

1.2.4. The first step of our analysis uses an analog of the Bogoliubov transformation. In order to simplify the remainder estimates with respect to the large parameter n we work with Jacobi operators indexed by n and write e iBn J n e -iBn = L 0,n + Ṽn + R n where L 0,n is diagonal, R n = O(n -1/2 ), and

Ṽn (n, n) = r(n) + O(n -1/2+ε
).

(1.10)

The definitions of J n , L 0,n , and Ṽn are given in Section 2.2. Propositions 2.1 and 2.3 ensure the fact that the asymptotic formula for J can be reduced to an analogous formula for J n and L n = L 0,n + Ṽn .

1.2.5. The asymptotic behavior of λ n (J n ) is deduced from the trace estimate described in Section 2.3 by means of a Tauberian type result [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Proposition 11.1] slightly adapted in Proposition 2.5. We begin the proof of the trace estimate in Section 4 by reducing the problem to large n estimates of a Dyson expansion similarly as in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]. We notice that Section 4 is the only part of this paper where we rewrite proofs from [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] in a slightly more general form. We complete the proof by an analysis of the Dyson expansion in Sections 5-8 and to perform this analysis we need to use a certain number of auxiliary results from [5, Section 10]. In order to avoid unnecessary overlaps we refer to [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] for the proofs of these auxiliary results.

1.2.6. In Section 1.3 we describe a class of more general type of operators for which we can obtain an analogous large n asymptotic formula. Following [START_REF] Boutet De Monvel | The asymptotic behavior of eigenvalues of a modified Jaynes-Cummings model[END_REF] we replace the sequence ρ(-1) k by a general sequence of period N and we give the corresponding asymptotic formula in Theorem 1.2.

Since in practice the proofs of Theorem 1.1 and Theorem 1.2 require the same arguments, we chose to present the proof in the more general framework, i.e., for the class of operators described in Section 1.3. For readers interested only in the result of Theorem 1.1 we indicate that the only simplification with respect to Theorem 1.2 consists in the fact that the proof of (1.9) is simpler in the case of period N = 2. Indeed, an additional symmetry of this case allows us to express an approximation of Ṽn (k, k) by oscillating integrals with very simple phase functions (see Section 3.2) and to obtain (1.9) immediately from the stationary phase formula. Thus the proof of Theorem 1.1 ends in Section 8.1. In the case of Theorem 1.2 the proof of (1.9) involves more complicated phase functions and is given in Section 8.2.

1.2.7. Our approach works the same way in the proofs of Theorems 1.1 and 1.2. Therefore, it does not distinguish whether or not the corresponding model is integrable in the sense of Braak [START_REF] Braak | Integrability of the Rabi Model[END_REF]. For this reason, it makes no contribution to the Braak conjecture.

1.3. Quantum Rabi type models. We consider the following assumptions on the entries of J:

Assumption (H1). There exist constants 0 < γ ≤ 1 2 , C, C ′ , C ′′ , and c > 0 such that ck γ ≤ a(k) ≤ Ck γ , (H1a) |δa(k)| ≤ C ′ k γ-1 , (H1b) 
|δ 2 a(k)| ≤ C ′′ k γ-2 (H1c) 
for any k ∈ N * . Here, δa(k

) := a(k + 1) -a(k) and δ 2 a(k) := a(k + 2) -2a(k + 1) + a(k). Remark. (H1) is satisfied if a(k) has the large k behavior a(k) = a 1 k γ + a ′ 1 k γ-1 + O(k γ-2 ).
Assumption (H2). The diagonal entries of J are of the form

d(k) = k + v(k) (H2a) 
where v : N * → R is real-valued and periodic of period N , i.e.:

v(k + N ) = v(k) for any k ∈ N * . (H2b) 
Moreover, we assume

ρ N < 1 2 if N = 2, 1 π √ N if N ≥ 3, (H2c) 
where

ρ N = ρ N (v) := max 1≤k≤N |v(k) -v |. (1.11) 
Here v := 1 N 1≤k≤N v(k) denotes the "mean value" of v. To compare with the hypotheses of Theorem 1.1 we reformulate these as follows:

Assumption (H0). The diagonal and off-diagonal entries of J are of the form

d(k) = k + v(k), with v(k) = (-1) k ρ, a(k) = a 1 k γ , with γ = 1 2
, where ρ is a real constant. In particular, v is periodic of period N = 2, v = 0, and ρ N = |ρ|.

Remark. (H0) is a special case of (H1) and (H2), except that there is no restriction on ρ N = |ρ|.

Let v be as in (H2). By N -periodicity we can expand it as follows:

v(k) = α 0 + ⌊N/2⌋ m=1 α m cos 2mπk N + ⌊(N -1)/2⌋ m=1 αm sin 2mπk N , (1.12) 
where

• ⌊s⌋ := max{k ∈ Z : k ≤ s} is the integer part of s,
• all coefficients α 0 = v , α m , and αm are real constants.

Theorem 1.2 (Quantum Rabi type model). Let J be defined by (1.3) with {a(k)} ∞ k=1 and {d(k)} ∞ k=1 satisfying assumptions (H1) and (H2), respectively. Then, for any ε > 0 we have the large n asymptotic formula:

λ n (J) = n + a(n -1) 2 -a(n) 2 + α 0 + r(n) + O(n -γ+ε ).
(1.13a)

where α 0 = v and

r(n) = ⌊N/2⌋ m=1 α m r m (n) + ⌊(N -1)/2⌋ m=1 αm rm (n), (1.13b) 
with α m , αm as in (1.12) and r m (n), rm (n) defined by

r m (n) := cos 4a(n) sin mπ N -π 4 2πa(n) sin mπ N cos 2mπn N + 2a(n)δa(n) sin 2mπ N , (1.13c) rm (n) := cos 4a(n) sin mπ N -π 4 2πa(n) sin mπ N sin 2mπn N + 2a(n)δa(n) sin 2mπ N . (1.13d)
Remark. For N = 2, the expression of r(n) reduces to

r(n) = ρ r 1 (n) = (-1) n ρ cos(4a(n) -π 4 ) 2πa(n) .
Moreover, in the case of the quantum Rabi model,

a(n) = a 1 √ n, hence a(n -1) 2 -a(n) 2 = -a 2 1 .
Then, (1.13) becomes the asymptotic formula (1.4) in Theorem 1.1.

Assumption. Further on, we make the assumption v = α 0 = 0.

(1.14) Indeed, since λ n (J) = α 0 + λ n (Jα 0 I) it suffices to prove Theorem 1.2 for Jα 0 I.

1.4. Plan of the paper. As in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] the main ingredient of our approach is a trace estimate (Proposition 2.4). In Section The remaining part of the paper is devoted to the proof of the trace estimate (Proposition 2.4). This result is a refinement of a less precise trace estimate [5, Proposition 5.2] and is obtained from the analysis of a suitable evolution t → U n (t) based on Fourier transform, as in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Section 6]. This reduction is presented in Section 4 where we give details which are more involved than in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]. More precisely, in Section 4 we state Proposition 4.1 which gives O(n -γ+ε ) estimates for the diagonal entries from the Neumann series expansion of t → U n (t) and we show that Proposition 4.1 implies Proposition 2.4. The proof of Proposition 4.1 is given in Section 7 and is based on approximations by oscillatory integrals (Lemma 6.1). In Section 8 we observe that the construction of these approximations was already made in [5, Section 10] and give the proof of the regularity properties claimed in Lemma 6.1.

Concerning the proof of Proposition 4.1 we observe that the principal difficulty consists in the control of oscillatory integrals with phase functions depending on parameters. In particular these phase functions can be identically zero for some values of the parameters but an additional integration allows us to neglect the contribution of these bad cases. More precisely the phase functions appear with a large parameter proportional to n γ (see Section 6.2.1) and the results of [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] were based on the fact that the decay of the corresponding oscillatory integrals is of order n -γ/2 . To obtain the results described in this paper we apply the formula of the asymptotic expansion for oscillatory integrals stated in Lemma 3.1. In Section 7 we investigate the special structure of the main term (of order n -γ/2 ) and error terms (of order n -γ ) and we manage to control their dependence on parameters by using an auxiliary estimate proved in Section 5.

1.5. Notations. Throughout the paper, we use the following notations: • B(H) is the algebra of linear bounded operators on a Hilbert space H.

• N = {0, 1, . . . } is the set of non-negative integers, N * = {1, 2, . . . } is the set of positive integers.

• l 2 (Z) is the Hilbert space of square-summable complex sequences x : Z → C equipped with the scalar product x, y = k∈Z x(k)y(k) and with the norm x l 2 (Z) := x, x .

• {e k } k∈Z is the canonical basis of l 2 (Z), i.e., e k (j) = δ k,j .

• H(j, k) := e j , He k , j, k ∈ Z denote the matrix elements of an operator H acting on l 2 (Z) and defined on its canonical basis. • l 2 (N * ) is the Hilbert space of square-summable complex sequences x : N * → C equipped with the scalar product x, y = k∈N * x(k)y(k) and the norm x l 2 (N * ) := x, x . It can be identified with the closed subspace of l 2 (Z) generated by {e n } n∈N * , i.e., with the subspace defined by the conditions x(k) = 0 for any k ≤ 0.

We use specific notations for some operators acting on l 2 (Z):

• The shift S ∈ B(l 2 (Z)) is defined by (Sx)(k) = x(k -1), k ∈ Z. Thus, Se k = e k+1 . • Λ acts on l 2 (Z) by (Λx)(k) = kx(k), k ∈ Z for any x such that (kx(k)) k∈Z ∈ l 2 (Z).
• For any q : Z → C we define the linear operator q(Λ) by functional calculus, i.e., q(Λ) is the closed operator acting on l 2 (Z) and characterized by q(Λ)e k = q(k)e k , k ∈ Z. • If L is a self-adjoint operator which is bounded from below with compact resolvent its spectrum is discrete and we denote

λ 1 (L) ≤ • • • ≤ λ k (L) ≤ λ k+1 (L) ≤ . . .
its eigenvalues, enumerated in non-decreasing order, counting multiplicities.

Finally, we also use the following notations:

• S(R) denotes the Schwartz class of rapidly decreasing functions χ : R → C.

• The Fourier transform χ of a function χ ∈ S(R) is defined by

χ(t) := ∞ -∞
χ(λ)e -itλ dλ 2π .

• T denotes the unit circle {z ∈ C : |z| = 1}.

• τ ω : T → T, where ω ∈ R denotes the translation e iξ → e i(ξ-ω) .

• C m (T), m = 0, 1, 2, . . . Throughout the paper n ∈ N * is the large parameter involved in the asymptotics (1.4a) or (1.13a). All error estimates are considered with respect to n ∈ N * and some statements will be established only for n ≥ n 0 , for some large enough constant n 0 .

2. Scheme of the proof of Theorems 1.1 and 1.2 2.1. Plan of Section 2. In Section 2.2 we introduce auxiliary operators J n , Ṽn , and L n and state Propositions 2.1 and 2.3 ensuring that λ n (J) is well approximated for large n by suitable eigenvalues of J n and L n . Moreover, we state Lemma 2.2 which gives the asymptotics of the n-th diagonal entry of Ṽn . In Section 2.3 we first state Proposition 2.4 which gives a trace estimate for L n . To derive from this estimate the asymptotic behavior of eigenvalues of L n we prove Lemma 2.7 which allows us to apply Proposition 2.5. Finally in Section 2.4 we check the implication (1.15).

Remark. Proposition 2.5 was already proved in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]. Propositions 2.1 and 2.3 were proved in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] under assumptions (H1) and (H2). Lemma 2.7 is proved in Section 2.3.3. Lemma 2.2 is proved in Section 3 under assumption (H0) and in Section 8 under assumptions (H1) and (H2). Sections 4, 5, 6, and 7 are devoted to the proof of Proposition 2.4 (trace estimate).

2.2. Auxiliary operators J n , Ṽn , and L n .

2.2.1.

Cut-off function. These operators were already introduced in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]. Their definition depends on the choice of a cut-off function

θ 0 ∈ C ∞ (R) such that      θ 0 (t) = 1 if |t| ≤ 1 6 , θ 0 (t) = 0 if |t| ≥ 1 5 , 0 ≤ θ 0 (t) ≤ 1 otherwise. (2.1a)
From now on such a cut-off is fixed and for any τ > 0 we denote θ τ,n (s) := θ 0 sn τ .

(2.1b)

Finally we define v n , a n : Z → R by v n (k) := v(k)θ n,n (k) 2 , (2.2a) a n (k) := (a(n) + (k -n)δa(n)) θ 2n,n (k). (2.2b) 2.2.2. Operators J n .
As in [5, Section 2.2] we define the self-adjoint operator J n on l 2 (Z) by

(J n x)(k) = (k + v n (k))x(k) + a n (k)x(k + 1) + a n (k -1)x(k -1) (2.3a)
for any x such that (kx(k)) k∈Z ∈ l 2 (Z). Using notations of Section 1.5 we can write

J n = Λ + v n (Λ) + a n (Λ)S -1 + Sa n (Λ), (2.3b) 
to compare with the similar expression for J. Each operator J n is a finite rank perturbation of Λ, hence its spectrum σ(J n ) is discrete and can be written

σ(J n ) = {λ k (J n )} k∈Z (2.4) 
where (λ k (J n )) k∈Z denotes the non-decreasing sequence of eigenvalues of J n counted with their multiplicities, well labeled up to translation.

Proposition 2.1. Let J and J n be defined by (1.3) and (2.3), respectively. Assume we are in one of the following two cases: (a) (H0) is satisfied.

(b) (H1) for some 0 < γ ≤ 1 2 and (H2) are satisfied. Let n 0 ∈ N be large enough. Then, for any n ≥ n 0 we can enumerate the eigenvalues of J n as in (2.4) so that we have the large n estimate

λ n (J) = λ n (J n ) + O(n 3γ-2 ), (2.5) 
where γ = 1 2 in case (a). Proof. Case (b) is already proven in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Proposition 12.1]. Case (a) requires a new proof, since in that case there is no restriction on ρ N = |ρ|.

Let J + n be the restriction of J n to the subspace l 2 (N * ) which is invariant under J n . The operator J + n is self-adjoint and bounded from below with compact resolvent. Its spectrum is discrete:

σ(J + n ) = {λ k (J + n )} k≥1 , where λ 1 (J + n ) ≤ • • • ≤ λ k (J + n ) ≤ λ k+1 (J + n ) ≤ .
. . denote its eigenvalues, enumerated in non-decreasing order, counting multiplicities. Since J n e k = ke k for k ≤ 0 we can write

σ(J n ) = {k ∈ Z : k ≤ 0} ∪ σ(J + n ) = {k ∈ Z : k ≤ 0} ∪ {λ k (J + n )} k≥1 .
(2.6)

Step 1. We will show the estimate

sup n,k≥1 |λ k (J + n ) -k| < ∞. (2.7) 
Let J + 0,n denote the operator acting on l 2 (N * ) by 

(J + 0,n x)(k) = kx(k) + a n (k)x(k + 1) + a n (k -1)x(k -1). Since J + n -J + 0,n = diag (v n (k)) ∞ k=1 with |v n (k)| ≤ |ρ|,
|λ k (J + n ) -λ k (J + 0,n )| < ∞. ( 2 
|λ k (J + 0,n ) -k| < ∞.
(2.9)

In [5, Proposition 3.1] we proved the large n estimate

sup k∈N * |λ k (J + 0,n ) -l n (k)| = O(n 3γ-2 ), (2.10) 
where

l n (k) := k + a n (k -1) 2 -a n (k) 2 , k ≥ 1. (2.11)
Hence, to obtain (2.9) it suffices to show sup n,k≥1

|l n (k) -k| < ∞.

(2.12)

To prove (2.12) we denote

a 1,n (k) := l n (k) -k = a n (k -1) 2 -a n (k) 2 . (2.13) By estimate a n (n -1) 2 -a n (n) 2 = a(n -1) 2 -a(n) 2 + O(n 2γ-2 ) from [5, (2.5)] we get l n (n) = n + a(n -1) 2 -a(n) 2 + O(n 2γ-2 ).
In case (a), γ = 1 2 and a(n) = a 1 √ n, and thus we obtain 

a 1,n (n) = l n (n) -n = -a 2 1 + O(n -1
|a 1,n (k) -a 1,n (n)| < ∞.
Using (2.14) which implies a 1,n = O(1) we finally get (2.12):

sup n,k≥1 |a 1,n (k)| < ∞.
Step 2. Now we will prove that sup

n,k≥1 |λ k ( J+ n ) -k| < ∞. (2.17)
where the operator J+ n acts on l 2 (N * ) by

( J+ n x)(k) = d n (k)x(k) + ãn (k)x(k + 1) + ãn (k -1)x(k -1), (2.18a) 
with

ãn (k) = a(k) if n -C 1 (n + 1) γ ≤ k ≤ n + C 1 (n + 1) γ , a n (k) otherwise, (2.18b) 
and with a large enough constant C 1 . Estimate [5, (12.8)] ensures that

sup k∈N * |λ k ( J+ n ) -λ k (J + n )| = O(n 3γ-2 ). (2.19)
Thus, (2.7) and (2.19) for γ = 1/2 give (2.17).

Step 3. Taking C 1 > 3 in the definition (2.18) we have the property

n -3n γ ≤ k ≤ n + 3n γ =⇒ Je k = J+ n e k .
Then [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Proposition 12.5] applies and for any ν > 0 there exists n(ν) such that the inequalities

card{k ∈ N * : λ ′ + λ -ν < λ k ( J+ n ) ≤ λ -λ -ν } ≤ card{k ∈ N * : λ ′ < λ k (J) ≤ λ}, (2.20a) card{k ∈ N * : λ ′ < λ k (J) ≤ λ} ≤ card{k ∈ N * : λ ′ -λ -ν < λ k ( J+ n ) ≤ λ + λ -ν }, (2.20b) hold if n -2n γ ≤ λ ′ < λ ≤ n + 2n γ and n ≥ n(ν). Let {∆ κ n } n≥1 , 0 < κ < 1 be the family of intervals defined by ∆ κ n = (n -a 2 1 -κ, n -a 2 1 + κ]. Using (2.20a) with λ ′ = n-a 2 1 -3 4 , λ = n-a 2 1 + 3 4 , and (2.20b) with λ ′ = n-a 2 1 -1 4 , λ = n-a 2 1 + 1 4
we get that for some n 0 and any n ≥ n 0 we have the inequalities

card{k ∈ N * : λ k ( J+ n ) ∈ ∆ 1/2 n } ≤ card{k ∈ N * : λ k (J) ∈ ∆ 3/4 n }, (2.21a) card{k ∈ N * : λ k ( J+ n ) ∈ ∆ 1/2 n } ≥ card{k ∈ N * : λ k (J) ∈ ∆ 1/4 n }. (2.21b) Step 4. Yanovich estimate (1.5) gives λ n (J) = n -a 2 1 + o(1). Hence, for any 0 < κ < 1 and n(κ) large enough n ≥ n(κ) =⇒ σ(J) ∩ ∆ κ n = {λ n (J)}. (2.22) 
Thus we can find n 1 ≥ n 0 such that the right hand sides of (2.21) are both equal to 1 for n ≥ n 1 . Hence, inequalities (2.21) imply

n ≥ n 1 =⇒ card{k ∈ N * : λ k ( J+ n ) ∈ ∆ 1/2 n } = 1. (2.23) Let k(n) = n + m(n), m(n) ∈ Z, n ≥ n 1 , be the unique k such that λ k ( J+ n ) ∈ ∆ 1/2 n : n ≥ n 1 =⇒ σ( J+ n ) ∩ ∆ 1/2 n = {λ n+m(n) ( J+ n )}.
The eigenvalues λ n+m(n) ( J+ n ) are of multiplicity one. Moreover, by (2.17) there exist ñ0 ,

m 0 ∈ N * large enough such that n ≥ ñ0 =⇒ |m(n)| ≤ m 0 .
(2.24)

Step 5. Using (2.20b) with λ ′ = λ n (J)λ n (J) -ν , λ = λ n (J) we find that, for any fixed ν > 0,

λ n+m(n) ( J+ n ) = λ n (J) + O(n -ν ). (2.25) Then, using (2.19) with γ = 1 2 and (2.25) with ν = 1 2 we get λ n+m(n) (J + n ) = λ n (J) + O(n -1/2 ). (2.26)
Let n ≥ ñ1 with ñ1 large enough. Then, according to (2.6) and (2.24) we can label the eigenvalues of J n in nondecreasing order, counting multiplicity, so that

λ n (J n ) = λ n+m(n) (J + n ). (2.27)
The proof of (2.5) is then completed by combining (2.26) with (2.27).

Operators Ṽn .

As in [5, Section 5.2] we define self-adjoint operators B n , Ṽn ∈ B(l 2 (Z)) by

B n := i a n (Λ)S -1 -Sa n (Λ) , (2.28a) Ṽn := e iBn v n (Λ)e -iBn , (2.28b) 
where {a n (k)} k∈Z and {v n (k)} k∈Z are defined in (2.2), and we denote by {g n (k)} k∈Z the sequence of diagonal entries of Ṽn :

g n (k) := Ṽn (k, k). (2.29)
Notice that Ṽn and g n depend on both sequences {a(k)} ∞ k=1 , {v(k)} ∞ k=1 , and on the cut-off θ 0 . Lemma 2.2. Let Ṽn be defined by (2.28) and assume we are in one of the following two cases: (a) (H0) is satisfied. (b) (H1) and (H2) with v = 0 are satisfied. Then for any ε > 0 one has the large n asymptotics

g n (n) = r(n) + O(n -γ+ε ).
(2.30)

where r(n) is given by (1.4b) in case (a) and by (1.13b) in case (b).

Proof. See Section 3.3 for case (a) and Section 8.2 for case (b).

2.2.4. Operators L n . As in [5, Section 5.2] we introduce operators L n acting on l 2 (Z) by

L n := l n (Λ) + Ṽn , (2.31a) 
where Ṽn is defined by (2.28) and l n (k) is as in (2.11):

l n (k) := k + a n (k -1) 2 -a n (k) 2 . (2.31b) 
Since l n (Λ) is a diagonal operator with discrete spectrum and Ṽn is bounded, the spectrum of L n is discrete and can be written

σ(L n ) = {λ k (L n )} k∈Z (2.32)
where (λ k (L n )) ∞ k∈Z denotes the non-decreasing sequence of eigenvalues of L n counted with their multiplicities, well-labeled up to translation. Moreover, the subspace l 2 (N * ) is invariant by B n , hence by Ṽn and L n , and

L n e k = ke k if k ≤ 0.
Proposition 2.3. Let J n and L n be defined by (2.3) and (2.31), respectively. We assume we are in one of the following two cases: (a) (H0) is satisfied. (b) (H1) for some 0 < γ ≤ 1 2 and (H2) are satisfied. Then, the eigenvalues of L n can be enumerated in nondecreasing order, counting multiplicity, so that one has the large n estimate

λ n (J n ) = λ n (L n ) + O(n 3γ-2 ), (2.33 
)

where γ = 1 2 in case (a). Proof. We indeed have J n -L n = O(n 3γ-2 ), see [5, proof of Proposition 5.1]. Hence, we can enumerate the eigenvalues of L n in (2.32) so that sup k∈Z |λ k (J n ) -λ k (L n )| = O(n 3γ-2 ).
Summary. In both cases (a) and (b), Propositions 2.1 and 2.3 imply the large n estimate λ n

(J) = λ n (L n ) + O(n 3γ-2 ). Since γ ≤ 1 2 we also get λ n (J) = λ n (L n ) + O(n -γ ).
(2.34) 2.3. Trace estimate and its consequences.

2.3.1.

The trace estimate. Further on we denote ln (k

) := l n (k) + g n (k) (2.35)
where l n and g n are given by (2.31b) and (2.29), respectively. Then, for χ ∈ S(R) we consider

G0 n := j∈Z χ λ n+j (L n ) -l n (n) -χ ln (n + j) -l n (n) (2.36a)
with L n as in (2.31a). Writing k = j + n in (2.36a) we get the expression

G0 n = k∈Z χ(λ k (L n ) -l n (n)) -χ( ln (k) -l n (n)) . (2.36b)
Introducing the diagonal operators

L 0,n := l n (Λ), (2.37a) L0,n := ln (Λ) = L 0,n + g n (Λ) (2.37b)
we see that the r.h.s. of (2.36b) is the trace of an operator:

G0 n = tr χ(L n -l n (n)) -χ( L0,n -l n (n)) . (2.38) Notice that G0 n depends on χ ∈ S(R). It also depends on {a(k)} ∞ k=1 , {v(k)} ∞ k=1
, and θ 0 . Warning. This trace G0 n differs from the trace G 0 n considered in [5, formulas (5.10)], that uses L 0,n instead of L0,n , and thus does not involve g n .

Proposition 2.4 (trace estimate). Let G0

n be the trace defined by (2.36a) under the additional assumption that χ ∈ S(R) has Fourier transform with compact support. Then, under assumption (H0) or assumptions (H1) and (H2) and for any ε > 0 one has the large n estimate

G0 n = O(n -γ+ε ).
(2.39)

Proof. See Section 4.3 where the proof is reduced to that of Proposition 4.1. See also Section 7 where the proof of Proposition 4.1 is given.

2.3.2.

Comparison of the asymptotic behavior of two sequences. As before (l n (k)) k∈Z is defined by (2.31b) where (a n (k)) k∈Z is given by (2.2b) under assumption (H1).

Proposition 2.5. Let (l n (k)) k∈Z be defined by (2.31b) under assumption(H1) for some 0 < γ ≤ 1 2 . For each j ∈ Z let (r 0 n (j)) ∞ n=1 and (r 1 n (j)) ∞ n=1 be real valued sequences such that sup j∈Z, n≥1

|r 0 n (j)| + |r 1 n (j)| < ∞.
Assume they also satisfy

sup |j|≤n γ 0 |r i n (j + N ) -r i n (j)| ≤ Cn γ-1 (i = 0, 1), (2.40a 
)

sup n>n0 sup |j|≤n γ 0 |r 0 n (j)| + |r 1 n (j)| ≤ ρ ′ (2.40b)
for some γ 0 > 0, n 0 ∈ N, and ρ ′ > 0 such that

ρ ′ < 1 2
when N = 2,

1 π √ N when N ≥ 3. (2.41)
Assume moreover that for some ε > 0

j∈Z χ(l n (n + j) + r 1 n (j) -l n (n)) -χ(l n (n + j) + r 0 n (j) -l n (n)) = O(n -γ+ε ) (2.42)
holds for any χ ∈ S(R) whose Fourier transform has compact support. Then

r 1 n (0) = r 0 n (0) + O(n -γ+ε ).
(2.43)

Proof. It suffices to adapt the proof of [5, Proposition 11.1] as follows. Remove the first two lines, define G χ n as the l.h.s. of (2.42) and replace the error terms O(n -γ/2 ln n) by O(n -γ+ε ).

2.3.3.

Application of Proposition 2.5. We will apply Proposition 2.5 to the case where the two sequences (r 0 n (j)) ∞ n=1 and (r 1 n (j)) ∞ n=1 are given by r 0 n (j) := g n (n + j), (2.44a)

r 1 n (j) := λ n+j (L n ) -l n (n + j).
(2.44b) Proposition 2.6. Let L n and ln (k) be given by (2.31a) and (2.35), respectively. We assume we are in one of the following two cases:

(a) (H0) is satisfied, γ = 1 2 . (b) (H1) for some 0 < γ ≤ 1
2 and (H2) are satisfied. Then, for any ε > 0 one has the large n estimate

λ n (L n ) = ln (n) + O(n -γ+ε ).
(2.45)

Proof. We first show that Proposition 2.5 applies to the case where r 0 n and r 1 n are given by (2.44). In this case the l.h.s. of (2.42) is G0 n as defined by (2.36a) and thus the trace estimate (2.39) in Proposition 2.4 says that assumption (2.42) is satisfied for any ε > 0 and any χ ∈ S(R) whose Fourier transform has compact support. That the conditions (2.40) are also satisfied is proven in Lemma 2.7 below. Thus, Proposition 2.5 applies and the assertion (2.43) is exactly (2.45) since in that case r 1 n (0

) -r 0 n (0) = λ n (L n ) -ln (n).
Lemma 2.7. The sequences r 0 n and r 1 n given by (2.44) satisfy the conditions (2.40) in each of the following two cases:

(a) (H0) is satisfied, N = 2, γ = 1 2 , γ 0 = 1 4 , any 0 < ρ ′ < 1 2
, and n 0 ∈ N large enough. (b) (H1) and (H2) are satisfied, 0 < γ ≤ 1 2 , γ 0 = γ, any ρ ′ > ρ N satisfying (2.41), and n 0 ∈ N large enough.

Proof. We first prove (2.40b).

Step 1 (estimate of r 0 n (j) in cases (a) and (b)). First note that r 0 n (j) = g n (n + j). Then, taking t 1 = 0 and j + n instead of j in [5, Lemma 6.3 (i)] we get

sup |j|≤n γ |r 0 n (j)| = sup |j|≤n γ |g n (n + j)| = O(n -γ/2 ). (2.46)
We indeed have the relation g 1,n,j (0) = ig n (j) with g 1,n,j defined in [5, (6.16)].

Step 2 (estimate of r 1 n (j) in case (a)). It suffices to show sup 

|j|≤n 1/4 |r 1 n (j)| = O(n -1/16
|r 1 n (j) -r1 n (j)| = O(n -1/2 ).
(2.50)

In order to get (2.50) we first show the estimate

sup |j|≤n 1/4 |λ n (J) -λ n (J n-j )| = O(n -1/2 ). (2.51)
For this purpose we observe that the proof given in [5, Section 12.5] still holds if J+ n is replaced by J+ n-j with |j| ≤ n 1/4 and all estimates are uniform with respect to j. Hence we can replace J n by J n-j in (2.5), and (2.51) is proved. Moreover, replacing n by n + j we can write (2.51) in the form sup 

|j|≤n 1/4 |λ n+j (J) -λ n+j (J n )| = O(n -1/2
|l n (n + j) -l n (n) -j| = |a 1,n (n + j) -a 1,n (n)| ≤ |j| Cn -1 , hence sup |j|≤n 1/4 |l n (n + j) -l n (n) -j| = O(n -3/4 ),
and (2.53) follows by using (2.14) in the last estimate.

Step 3 (estimate of r 1 n (j) in case (b)). In [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Section 11.3] where r 1 n is denoted by r n (see [5, (11.16)]) we have shown the estimate

sup j∈Z |r 1 n (j)| ≤ ρ N + C 1 n 3γ-2 .
(2.54)

We indeed have the relation g 1,n,j (0) = ig n (j) with g 1,n,j defined in [5, (6.16)]. Using (2.54), (2.46) and taking γ 0 = γ we can estimate the l.h.s. of (2.40b) by ρ N + C 1 n 3γ-2 + C 2 n -γ/2 . Moreover, by assumption (H2c) on ρ N we can choose ρ ′ > ρ N satisfying (2.41). We conclude that (2.40b)

holds if n 0 satisfies C 1 n 3γ-2 0 + C 2 n -γ/2 0 ≤ ρ ′ -ρ N ,
and that is possible since 0 < γ < 2 3 . We now prove (2.40a).

Step 4 (proof of (2.40a) for i = 0). Since g n (k + N ) = e k , S -N Ṽn S N e k it suffices to prove

S -N Ṽn S N -Ṽn = O(n γ-1 ). (2.55)
In order to show (2.55) we first observe that

S -N v(Λ)S N = v(Λ+N ) = v(Λ) and S -N θ n,n (Λ)S N - θ n,n (Λ) = θ 0 ((Λ + N )/n -I) -θ 0 (Λ/n -I) = O(n -1 ) ensure S -N v n (Λ)S N -v n (Λ) = O(n γ-1 ). (2.56) Similarly, S -N a n (Λ)S N -a n (Λ) = a n (Λ + N ) -a n (Λ) = O(n γ-1 ) implies S -N e ±iBn S N -e ±iBn = O(n γ-1 ) (2.57)
and (2.55) follows from (2.56) and (2.57).

Step 5 (proof of (2.40a) for i = 1 in case (b)). In [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF]Section 11.3] where r 1 n is denoted by r n we already checked that (2.40a) holds for i = 1.

Step 6 (proof of (2.40a) for i = 1 in case (a)). We observe that if 0 < κ < 1 then combining (2.22) and (2.52) we can choose n κ large enough to ensure 

n ≥ n κ and |j| ≤ n 1/4 =⇒ σ(J n ) ∩ (n + j -a 2 1 -κ, n + j -a 2 1 + κ] = {λ n+j (J n )} (2.
l n (n) -n = a n (n -1) 2 -a n (n) 2 = a(n -1) 2 -a(n) 2 + O(n 2γ-2 )
whose last estimate comes from [5, Section 2.3, (2.5)].

Proof of Lemma 2.2 (a)

In section 3.1 we prove a stationary phase formula for some type of oscillatory integral (Lemma 3.1). Then we assume that the diagonal and off-diagonal entries of J satisfy (H1) and

d(k) = k + v(k) with v(k) = (-1) k ρ.
In section 3.2 we prove an approximation result of g n (n) by an oscillatory integral of the above type (Lemma 3.2). Finally, in section 3.3 we derive the asymptotics (2.30) of g n (n): If we write

Lemma 3.1 Lemma 3.2 =⇒ Lemma 2.2 (a).
I(b, µ, η 0 ) = κ=±1 e iκ(µ-π/4) √ 2πµ b(κe iη0 ) + r b (µ, η 0 ) (3.2a)
then the remainder r b (µ, η 0 ) satisfies the estimate 

|r b (µ, η 0 )| ≤ C 0 µ b C 2 (T) (3.2b) for some constant C 0 . Proof. Let χ ∈ C ∞ (T) be such that χ(e i(ξ+η0) ) = 1 if |ξ| ≤ π/
I((1 -χ)b, µ, η 0 ) = π -π e -iµ cos ξ (χ -b -)(ξ) dξ 2π .
We have

[-π, π] ∩ supp χ ± ⊂ [-3π 4 , 3π 4 
]. Next we observe that |ξ| ≤ 3π/4 allows us to write b ± (ξ) = b ± (0) + q ± (ξ)ξ = b ± (0) + q± (ξ) sin ξ with q± (ξ) := q ± (ξ) ξ sin ξ . Moreover, χ ± (0) = 1 and the standard stationary phase formula ensures

π -π e ±iµ cos ξ χ ± (ξ)b ± (0) dξ - e ±i(µ-π/4) √ 2πµ b ± (0) ≤ C χ± µ |b ± (0)|.
Then writing e ±iµ cos ξ sin ξ = ±i µ ∂ ξ e ±iµ cos ξ and integrating by parts we obtain

π -π q± (ξ) sin ξe ±iµ cos(ξ) χ ± (ξ) dξ = ±i µ π -π e ±iµ cos ξ ∂ ξ (q ± χ ± )(ξ) dξ . (3.3)
Since the absolute value of the right hand side of (3.3) can be estimated by C1 µ b ± C 2 (R) the proof is complete.

3.2. Approximation of g n (n) by an oscillatory integral. Recall that g n (k), k ∈ Z is defined in (2.29) as the k-th diagonal entry of Ṽn := e iBn v n (Λ)e -iBn . We define φn :

Z × T → C by φn (k, e iξ ) := -4 (a(n) + (k -n)δa(n)) (sin ξ + δa(n) sin 2ξ) (3.4) 
Lemma 3.2. We assume that the diagonal entries of J are of the form d(k) = k + (-1) k ρ and the off-diagonal entries a(k) satisfy (H1) for some 0

< γ ≤ 1 2 . Let g n (k), k ∈ Z be defined by (2.29). If g n (k), k ∈ Z is defined by g n (k) := (-1) k ρ 2π 0 e i φn(k,e iξ ) dξ 2π , (3.5a) 
with φn as above, then sup

|k-n|≤n γ |g n (k) -g n (k)| = O(n -γ ln n). (3.5b) 
Proof. As in [START_REF]Asymptotic behavior of large eigenvalues for Jaynes-Cummings type models[END_REF] we denote

Θ n := θ n,n (Λ) = θ 0 (Λ/n -I).
Then it is easy to check the estimate

[B n , Θ n ] = O(n γ-1 ). Writing [e ±iBn , Θ n ] = 1 0 e ±itBn [±iB n , Θ n ] e ±i(1-t)Bn dt we deduce [e ±iBn , Θ n ] = O(n γ-1 ). (3.6) 
We recall that Ṽn = e iBn Θ n v(Λ)Θ n e -iBn and observe that (3.6) ensures Moreover,

Ṽn -Θ n e iBn v(Λ)e -iBn Θ n = O(n γ-1 ). ( 3 
Q t n (k, k) = θ n (k) 2π 0 e i ψt n (k,e iξ ) dξ 2π (3.11)
where ψt n is given by [5, (8.5a)]. Observe now that φn given by (3.4) coincides with ψt n for t = -2. Thus, to complete the proof of (3.5b) it suffices to use (3.10) and (3.11) with t = -2.

3.3.

End of the proof of Lemma 2.2 (a). By definitions (3.5a) and (3.4) we have

g n (n) = (-1) n ρ 2π 0 e -4ia(n) sin ξ b n (e iξ ) dξ 2π 
, where b n (e iξ ) := e -4ia(n)δa(n) sin 2ξ .

Thus, using notation (3.1) we can write

g n (n) = (-1) n ρ I(b n , 4a(n), -π/2).
By (H1a) and (H1b) with 0 < γ ≤ 1 2 we have b n C 2 (T) = O(1). We also have O(a(n) -1 ) = O(n -γ ) by (H1a) and b n (±e -iπ/2 ) = 1. Then the stationary phase formula of Lemma 3.1 gives

g n (n) = (-1) n ρ κ=±1 e iκ(4a(n)-π/4) 2 2πa(n) b n (κe -iπ/2 ) + O(a(n) -1 ) = (-1) n ρ cos(4a(n) -π/4) 2πa(n) + O(n -γ ) = r(n) + O(n -γ )
with r(n) as in (1.4b). This estimate, together with the estimate

|g n (n) -g n (n)| = O(n -γ ln n) from Lemma 3.2, gives g n (n) = r(n) + O(n -γ+ε
) for any ε > 0, i.e. estimate (2.30), in case (a).

Trace estimate: a first reduction

In this section we reduce the proof of Proposition 2.4 to that of Proposition 4.1 using the representation of functions of operators by means of Fourier transform. This representation allows us to investigate the quantity G0 n using the Neumann series of U n (t) := e -itln(Λ) e itLn (t ∈ R).

( 

(Λ) = L n -L 0,n = Ṽn , we get -i ∂ t U n (t) = H n (t)U n (t)
where

H n (t) := e -itL0,n Ṽn e itL0,n . (4.2) 
The Neumann series gives the expansion

U n (t) = I + i t 0 H n (t 1 ) dt 1 + ∞ ν=2 i ν t 0 dt 1 • • • tν-1 0 H n (t 1 ) . . . H n (t ν ) dt ν .
For ν ≥ 1 and t = (t 1 , . . . , t ν ) ∈ R ν we denote

H n (t) := H n (t 1 ) . . . H n (t ν )
and

g ν,n,j (t) := i ν H n (t)(j, j). (4.3) 
Note that e j , H n (t)e j = e itL0,n e j , Ṽn e itL0,n e j = e itln(j) e j , Ṽn e itln(j) e j = e j , Ṽn e j , i.e.

H n (t)(j, j) = g n (j). (4.4)

For t ∈ R we denote

u n,j (t) := U n (t)(j, j). (4.5) 
Then, using (4.4), we get the expansion

∂ t u n,j (t) = ig n (j) + ∞ ν=2 u ν,n,j (t), (4.6) 
where 

u 2,
G0 n = O(n -γ+6ε ).
(4.9)

Proof. It consists in four steps.

Step 1. Let θ 0 be as in (2.1a) and θ n γ ,n (s) := θ 0 ( s-n n γ ) according to (2.1b). We claim that

(I -θ n γ ,n ( L0,n ))χ(L n -l n (n)) B1(l 2 (Z)) = O(n -γ ), (4.10a) 
(I -θ n γ ,n ( L0,n ))χ( L0,n -l n (n)) B1(l 2 (Z)) = O(n -γ ), (4.10b) 
where T B1(l 2 (Z)) = tr √ T * T is the trace class norm on the algebra B 1 (l 2 (Z)) of trace class operators on l 2 (Z). It suffices to apply [5, Proof of Lemma 6.1] with L0,n instead of L 0,n .

Step 2. The assertions (4.10) of Step 1 ensure that

G0 n -Gn = O(n -γ ) (4.11) 
holds with

Gn := tr θ n γ ,n ( L0,n ) χ(L n -l n (n)) -χ( L0,n -l n (n)) .
Thus it remains to prove Gn = O(n -γ+6ε ).

Step 3. Let t 0 > 0 be such that supp χ ⊂ [-t 0 , t 0 ]. Then the inverse Fourier formula

χ(λ) = ∞ -∞ χ(t)e itλ dt = t0 -t0 χ(t)e itλ dt
allows us to express

χ(L n -l n (n)) -χ( L0,n -l n (n)) = t0 -t0
χ(t) e -itln(n) e itLne it L0,n dt and

Gn = t0 -t0 χ(t) e -itln(n) tr θ n γ ,n ( L0,n )e itL0,n (U n (t) -e itgn(Λ) ) dt.
We thus have Gn = j∈Z Gn (j) with Gn (j) := t0 -t0 χ(t) e it/2 e it(ln(j)-ln(n)-1/2) θ n γ ,n ( ln (j)) u n,j (t)e itgn(j) dt.

Integrating by parts as in [5, Section 6.3] we find

Gn (j) = i G1,n (j) + i G2,n (j) with G1,n (j) = t0 -t0 χ(t) e it(ln(j)-ln(n)) θ n γ ,n ( ln (j)) l n (j) -l n (n) -1 2 ∂ t u n,j (t) -e itgn(j) dt, G2,n (j) = t0 -t0
∂ t χ(t) e it/2 e it(ln(j)-ln(n)-1/2) θ n γ ,n ( ln (j))

l n (j) -l n (n) -1 2
u n,j (t)e itgn(j) dt and we can estimate

| G1,n (j)| ≤ C θ n γ ,n ( ln (j)) 1 + |j -n| sup -t0≤t≤t0 ∂ t u n,j (t) -e itgn(j) , | G2,n (j)| ≤ C θ n γ ,n ( ln (j)) 1 + |j -n| sup -t0≤t≤t0
u n,j (t)e itgn(j) .

Step 4 (last step). Since | ln (j) -j| ≤ C we can find n 0 such that θ n γ ,n ( ln (j)) = 0 implies |j -n| ≤ n γ for n ≥ n 0 . Combining this fact with

sup -t0≤t≤t0 u n,j (t) -e itgn(j) ≤ |t 0 | sup -t0≤t≤t0 ∂ t u n,j (t) -e itgn(j)
we can estimate

| Gn | ≤ |j-n|≤n γ C 0 1 + |j -n| sup -t0≤t≤t0
∂ t u n,j (t)e itgn(j) . (4.12) By (2.46) we have the estimate e itgn(j) -1 ≤ |tg n (j)| ≤ C|t|n -γ/2 for |j -n| ≤ n γ , and thus 

sup |j-n|≤n γ -t0≤t≤t0 ∂ t e itgn(j) -ig n (j) = O(n -γ ). ( 4 
|∂ t u n,j (t) -ig n (j)| = O(n -γ+5ε ).
We first note that (4.6) and (4.4) give the expansion

∂ t u n,j (t) -ig n (j) = ∞ ν=2 u ν,n,j (t). (4.15) 
We then observe that (4.7b) for ν = 3 yields

sup |j-n|≤n γ -t0≤t≤t0 |u 3,n,j (t)| ≤ C3 n -γ+5ε . (4.16)
For any 4 ≤ ν < n ε and t ∈ [-t 0 , t 0 ], estimate (4.7b) gives

sup |j-n|≤n γ |u ν,n,j (t)| ≤ Cν n -γ+5ε ∆t dt 2 • • • ∆t ν-3 dt ν-2 = Cν n -γ+5ε |t| ν-3 (ν -3)! , (4.17) 
where ∆ t := [0, t] when t ≥ 0 and [t, 0] when t ≤ 0. Therefore, by using (4.7a), (4.16), and (4.17) we get

sup |j-n|≤n γ -t0≤t≤t0 2≤ν<n ε |u ν,n,j (t)| ≤ Cn -γ+5ε + 3≤ν<n ε Cν t ν-3 0 n -γ+5ε (ν -3)! ≤ C + C3 e Ct0 n -γ+5ε . (4.18a)
To complete the proof it remains to consider indices ν ≥ n ε . We observe that

H n (t) = Ṽn = V n ≤ ρ N . Therefore, | e j , H n (t)H n (t 2 ) . . . H n (t ν )e j | ≤ ρ ν N and |u ν,n,j (t)| ≤ ∆t dt 2 • • • ∆t ν-1 | e j , H n (t)H n (t 2 ) . . . H n (t ν )e j | dt ν ≤ ρ ν N |t| ν-1 (ν -1)! .
We thus get 

sup |j-n|≤n γ -t0≤t≤t0 ν≥n ε |u ν,n,j (t)| ≤ ν≥n ε ρ ν N t ν-1 0 (ν -1)! ≤ ρ N e ρN t0 (ρ N t 0 ) ⌊n ε ⌋-1 (⌊n ε ⌋ -1)! = O(n -m ) (4.
] ⊂ ∆ 0 , µ ∈ R * , ζ ≥ 0 and b ∈ C 1 (R) one has the estimate |J (b, t 1 , t 2 , ζ, µ)| ≤ C ∆0 1 + √ ζ |µ| M(b, [t 1 , t 2 ]), (5.2) 
where for any bounded interval

∆ ⊂ R M(b, ∆) := sup t∈∆ |b(t)| + ∆ |b ′ (t)|dt. (5.3)
This lemma is used in the proof of Proposition 4.1. It serves in Section 7.3.4 to prove estimate (7.19) of some oscillatory integral.

Proof. The proof is given in the next subsections. It is based on van der Corput lemma. Lemma 5.2 (van der Corput). Assume that h 0 : (t 1 , t 2 ) → R is smooth and its second derivative satisfies h ′′ 0 (t) ≥ c 0 for t 1 < t < t 2 and some constant c 0 > 0. Assume also that µ 0 ∈ R * and b 0 ∈ C 1 (t 1 , t 2 ) , and consider the oscillatory integral J(b 0 , t 1 , t 2 , h 0 , µ 0 ) := t2 t1 e iµ0h0(t) b 0 (t) dt.

(5.4)

Then there is a constant C 0 depending only on c 0 such that we have the estimate

|J(b 0 , t 1 , t 2 , h 0 , µ 0 )| ≤ C 0 |µ 0 | |b 0 (t 1 )| + t2 t1 |b ′ 0 (t)| dt ≤ C 0 |µ 0 | M(b 0 , [t 1 , t 2 ]).
Proof In particular, 4 sin 2 (t/2) + ζ 2 = s 2 + ζ 2 and the change of variable (5.5) gives

J (b, t 1 , t 2 , ζ, µ) = J 1 (b 1 , s 1 , s 2 , ζ, µ),
where

J 1 (b 1 , s 1 , s 2 , ζ, µ) := s2 s1 e iµ √ s 2 +ζ 2 (s 2 + ζ 2 ) 1/4 b 1 (s) ds with b 1 (s) := b(2 arcsin(s/2)) 1 -s 2 /4 .
Since there is a constant

C 0 such that M(b 1 , [s 1 , s 2 ]) ≤ C 0 M(b, [t 1 , t 2 ]), to get (5.2) for any interval [t 1 , t 2 ] ⊂ [0, 2π/3], µ ∈ R * , ζ ≥ 0, and b ∈ C 1 ([t 1 , t 2 ]) it

suffices to prove the following

Statement. There is a constant C > 0 such that for any

µ ∈ R * , ζ ≥ 0, [s 1 , s 2 ] ⊂ [0, √ 3], and b 1 ∈ C 1 ([s 1 , s 2 ]) we have the estimate |J 1 (b 1 , s 1 , s 2 , ζ, µ)| ≤ C |µ| M(b 1 , [s 1 , s 2 ]). (5.6)
To prove this statement we distinguish three cases: and (5.4) from Lemma 5.2 we can write

ζ ≥ s 2 , ζ ≤ s 1 ,
J 1 (b 1 , s 1 , s 2 , ζ, µ) = ζ s2 s1 e iµζ -1 h1(s,ζ) h 1 (s, ζ) -1/2 b 1 (s) ds = ζ × J b 1 h1 ( • , ζ), s 1 , s 2 , h 1 ( • , ζ), µζ -1 where h1 (s, ζ) := h 1 (s, ζ) -1/2 = 1 √ ζ(ζ 2 + s 2 ) 1/4 . Next we observe that ζ ≥ s ensures ∂ 2 s h 1 (s, ζ) = ζ 3 (s 2 + ζ 2 ) 3/2 ≥ ζ 3 (2ζ 2 ) 3/2 = 2 -3/2
and thus we can apply Lemma 5.2. It gives the estimate

|J 1 (b 1 , s 1 , s 2 , ζ, µ)| ≤ C 0 ζ |µ| M b 1 h1 ( • , ζ), [s 1 , s 2 ] .
Thus to get (5.6) it suffices to show

M b 1 h1 ( • , ζ), [s 1 , s 2 ] ≤ 2 M(b 1 , [s 1 , s 2 ]) ζ .
For this purpose we first observe that h 1 (s, ζ)

:= ζ ζ 2 + s 2 ≥ ζ 2 . Then 0 < h1 (s, ζ) ≤ 1 ζ , (5.7) 
hence

sup s1≤s≤s2 |b 1 (s) h1 (s, ζ)| ≤ sup s1≤s≤s2 |b 1 (s)| ζ ≤ M(b 1 , [s 1 , s 2 ]) ζ .
Next we claim that

s2 s1 |∂ s h1 (s, ζ)| ds ≤ 1 ζ . (5.8)
Indeed, since ∂ s h1 (s, ζ) ≤ 0, we can estimate the left hand side of (5.8) using (5.7):

s2 s1 (-∂ s h1 )(s, ζ) ds = h1 (s 1 , ζ) -h1 (s 2 , ζ) ≤ 1 ζ .
Finally it remains to show

s2 s1 |∂ s (b 1 h1 )(s, ζ)| ds ≤ M(b 1 , [s 1 , s 2 ]) ζ .
(5.9)

The left hand side of (5.9) is indeed which gives s 2 + ζ 2 = s2 . By applying this change of variable to the integral

J 1 (b 1 , s 1 , s 2 , ζ, µ) = s2 s1 e iµ √ s 2 +ζ 2 (s 2 + ζ 2 ) -1/4 b 1 (s) ds we find J 1 (b 1 , s 1 , s 2 , ζ, µ) = s2 s1 e iµs 2 b 2 (s, ζ) h2 (s, ζ) ds = J b 2 h2 ( • , ζ), s1 , s2 , h 0 , µ , with b 2 (s, ζ) := b 1 ( s4 -ζ 2 ), h 0 (s) = s2 and h2 (s, ζ) := 1 s ∂ s( s4 -ζ 2 ) = 2s 2 s4 -ζ 2 .
Then Lemma 5.2 applies and gives

|J 1 (b 1 , s 1 , s 2 , ζ, µ)| ≤ C 0 |µ| M(b 2 h2 , [s 1 , s2 ]). (5.10) We observe that s ≥ s 1 ≥ ζ ensures s ≥ (2ζ 2 ) 1/4 , hence ζ ≤ s2 / √ 2.
Using the fact that h2 (s, ζ) is increasing with ζ we have the estimate

s ≥ s 1 ≥ ζ =⇒ h2 (s, ζ) ≤ h2 (s, s2 / √ 2) = 2 √ 2.
(5.11)

Moreover, ∂ sh 2 (s, ζ) = -4ζ 2 s(s 4ζ 2 ) -3/2 ≤ 0 and as in the proof of estimate (5.8) we find

s2 s1 |∂ sh 2 (s, ζ)| ds = h2 (s 1 , ζ) -h2 (s 2 , ζ) ≤ 2 √ 2.
(5.12) Estimate (5.10) leads to the desired estimate (5.6) if we prove

M(b 2 h2 , [s 1 , s2 ]) ≤ 4 √ 2M(b 2 , [s 1 , s2 ]) = 4 √ 2M(b 1 , [s 1 , s 2 ]).
The last equality is easy. For the inequality we first observe that by (5.11)

sup s1≤s≤s2 |b 2 h2 (s, ζ)| ≤ 2 √ 2 sup s1≤s≤s2 |b 2 (s, ζ)| ≤ 2 √ 2M(b 2 , [s 1 , s2 ]).
Moreover, using (5.11) and (5.12) we find

s2 s1 |∂ s(b 2 h2 )(s, ζ)| ds ≤ sup s1≤s≤s2 | h2 (s, ζ)| s2 s1 |∂ sb 2 (s, ζ)| ds + sup s1<s<s2 |b 2 (s, ζ)| s2 s1 |∂ sh 2 (s, ζ)| ds ≤ 2 √ 2 s2 s1 |∂ sb 2 (s, ζ)| ds + 2 √ 2 sup s1<s<s2 |b 2 (s, ζ)| = 2 √ 2M(b 2 , [s 1 , s2 ]).
5.2.4. Proof of (5.6) in case s 1 < ζ < s 2 . This case reduces to the previous ones. For s 1 < ζ < s 2 we indeed have we can write

J 1 (b 1 , s 1 , s 2 , ζ, µ) = J 1 (b 1 , s 1 , ζ, ζ, µ) + J 1 (b 1 , ζ, s 2 , ζ, µ), M(b 1 , [s 1 , ζ]) + M(b 1 , [ζ, s 2 ]) ≤ 2M(b 1 , [s 1 , s 2 ]).
J 1 (b, t 1 , t 2 , ζ, µ) := t2 t1 e iµ √ 4 sin 2 (t/2)+ζ 2 (4 sin 2 (t/2) + ζ 2 ) 1/4 b(t) dt = t2 t1 e iµh(t,ζ) b(t) h(t, ζ) 1/2 dt = t2 t1 e i µ 1+ζ (1+ζ)h(t,ζ) b(t, ζ) dt = J b, t 1 , t 2 , h, μ , where b(t, ζ) := b(t)h(t, ζ) -1/2 , μ := µ/(1 + ζ), h(t, ζ) := (1 + ζ)h(t, ζ
), and J is as in (5.4). We get

∂ t h(t, ζ) = sin t h(t, ζ) , -∂ 2 t h(t, ζ) = - cos t h(t, ζ) + sin 2 t h(t, ζ) 3 . Since 2π/3 ≤ t ≤ π implies 1/2 ≤ -cos t ≤ 1, we get 2π/3 ≤ t ≤ π =⇒ -∂ 2 t h(t, ζ) ≥ - (1 + ζ) cos t h(t, ζ) ≥ 1 + ζ 2 4 + ζ 2 ≥ 1 4 .
Hence, Lemma 5.2 applies to estimate J b, t 1 , t 2 , h, μ . To get (5.2) it suffices to show that there exists a constant C, independent of ζ, t 1 , t 2 such that

M( b, [t 1 , t 2 ]) ≤ CM(b, [t 1 , t 2 ]
).

For 2π/3 ≤ t ≤ π we have 2 sin(t/2) ≥ √ 3 so that h(t, ζ) ≥ 3 + ζ 2 ≥ √ 3. Hence, sup t1≤t≤t2 | b(t, ζ)| = sup t1≤t≤t2 |b(t)| h(t, ζ) ≤ 1 4 √ 3 sup t1≤t≤t2 |b(t)|.
Moreover,

|∂ t b(t, ζ)| = b ′ (t) h(t, ζ) 1/2 - b(t) sin t 2h(t, ζ) 5/2 ≤ 1 4 √ 3 |b ′ (t)| + 1 2 4 √ 3 5 |b(t)| ≤ 1 4 √ 3 (|b ′ (t)| + |b(t)|).
Thus, using

t 2 -t 1 ≤ π/3, t2 t1 |∂ t b(t, ζ)| dt ≤ 1 4 √ 3 t2 t1 |b ′ (t)| dt + π 3 4 √ 3 sup t1≤t≤t2 |b(t)|.
Summarizing,

M( b, [t 1 , t 2 ]) ≤ 1 4 √ 3 1 + π 3 M(b, [t 1 , t 2 ]).
5.4. Proof of Lemma 5.1: last steps.

5.4.1.

Proof of (5.2) in case ∆ 0 = [0, π]. By Sections 5.2 and 5.3 we know that (5.2) holds if 2π/3 / ∈ (t 1 , t 2 ). The remaining case t 1 < 2π/3 < t 2 can be deduced from the previous ones by using the additivity properties

J (b, t 1 , t 2 , ζ, µ) = J (b, t 1 , t * , ζ, µ) + J (b, t * , t 2 , ζ, µ), (5.13a) 
M(b, [t 1 , t * ]) + M(b, [t * , t 2 ]) ≤ 2M(b, [t 1 , t 2 ]) (5.13b) 
with t * = 2π/3.

5.4.2.

Proof of (5.2) in case ∆ 0 = [-π, 0]. This case reduces to the previous one by using the symmetry t -t. We indeed have J (b,

t 1 , t 2 , ζ, µ) = J ( b, -t 2 , -t 1 , ζ, µ) and M(b, [t 1 , t 2 ]) = M( b, [-t 2 , -t 1 ]) where b(t) = b(-t). 5.4.3. Proof of (5.2) in case ∆ 0 = [-π, π]
. By Sections 5.4.1 and 5.4.2 we know that (5.2) holds if 0 / ∈ (t 1 , t 2 ). The remaining case 0 ∈ (t 1 , t 2 ) can be deduced from the two previous ones by using (5.13) with t * = 0. 5.4.4. Proof of (5.2) for ∆ 0 = [(2k -1)π, (2k + 1)π], k ∈ Z. This case reduces to the previous one by translation t → t := t -2kπ. We indeed have J (b,

t 1 , t 2 , ζ, µ) = J ( b, t1 , t2 , ζ, µ) and M(b, [t 1 , t 2 ]) = M( b, [ t1 , t2 ]) where b(t) := b(t + 2kπ). 5.4.5. Proof of (5.2) for arbitrary ∆ 0 . We know (5.2) holds if (t 1 , t 2 ) ∩ (2Z + 1)π = ∅. If (t 1 , t 2 ) ∩ (2Z + 1)π = {t 1
6. Approximation by oscillatory integrals 6.1. Decomposition of H n (t) into components H ω,t n . We assume α 0 = 0 in (1.12) and denote Ω * = {2πm/N } N -1 m=1 . Thus, we can expand

v(Λ) = ω∈Ω * c ω e iωΛ
where c ω ∈ C are constants. Since H n (t) := e -itL0,n Ṽn e itL0,n with Ṽn = e iBn (θ 2 n,n v)(Λ)e -iBn we can expand H n (t) as follows:

H n (t) = e -itL0,n e iBn (θ 2 n,n v)(Λ)e -iBn e itL0,n = ω∈Ω * c ω H ω,t n with H ω,t n := e -itL0
,n e iBn θ 2 n,n (Λ)e iωΛ e -iBn e itL0,n . More generally, for any integer ν ≥ 1, ω = (ω 1 , . . . , ω ν ) ∈ (Ω * ) ν , and t = (t 1 , . . . , t ν ) ∈ R ν ,

H n (t) := H n (t 1 ) . . . H n (t ν ) = ω∈(Ω * ) ν c ω H ω,t n (6.1)
where c ω := c ω1 . . . c ων and H ω,t n := H ω1,t1 n . . . H ων ,tν n . (6.2) Let g ν,n,j (t) := i ν H n (t)(j, j) be as in (4.3). Using (6.1) we can expand g ν,n,j (t) as follows:

g ν,n,j (t) = i ν ω∈(Ω * ) ν c ω g ω,t n (j), (6.3a) 
where g ω,t n (j) := H ω,t n (j, j). (

. Approximation of g ω,t n (j) by an oscillatory integral. For j ∈ [nn γ , n + n γ ] we approximate the j-th diagonal entry g 

Definition of ψ

ω,t n,1 . For (ω, t) ∈ (Ω * ) ν × R ν the phase ψ ω,t n,1 is given by ψ ω,t n,1 (e iξ ) := 2a(n) Im z(ω; t)e iξ , (6.5) 
where z(ω; t) will be defined by induction on ν. We first assume ν = 1. For ω ∈ Ω, t ∈ R we define

z(ω; t) := e -iω -1 e -it = -2 sin ω 2 e iπ/2-iω/2-it . (6.6) 
Thus the definition of ψ ω,t n,1 : T → R is as in [5, (9.10b)]:

ψ ω,t n,1 (e iξ ) := 2a(n) Im z(ω; t)e iξ = -4a(n) sin ω 2 cos(ξ -t -ω 2 ). (6.7) 
Moreover, if τ ω : T → T is the translation e iξ → e i(ξ-ω) and ψ -ω,t n,1 := ψ 2π-ω,t n,1

we have the relation

ψ ω,t n,1 = -ψ -ω,t n,1 • τ ω . (6.8) 
Assuming now ν ≥ 2 and using induction with respect to ν, we define

z(ω; t) = z(ω ′ ; t ′ )e -iων + z(ω ν ; t ν ), (6.9) 
where

ω = (ω ′ , ω ν ) ∈ (Ω * ) ν = (Ω * ) ν-1 × Ω * , t = (t ′ , t ν ) ∈ R ν = R ν-1 × R. (6.10) 
By (6.9) and (6.8) we observe that ψ ω,t n,1 can also be defined by induction as in [5, (10.7) and (10.6)]:

ψ ω,t n,1 = ψ ω ′ ,t ′ n,1 • τ ων + ψ ων ,tν n,1 = (ψ ω ′ ,t ′ n,1 -ψ -ων ,tν n,1 ) • τ ων , (6.11) 
6.2.2. Approximation of g ω,t n (j) by g ω,t n (j).

Lemma 6.1. Let t 0 > 0 and 0 < ε < 1 8 be fixed. Let g ω,t n (j) be the oscillatory integral defined by (6.4) for |j -n| ≤ n γ with ψ ω,t n,1 as in (6.5).

If Ĉ = Ĉ(t 0 , ε) > 0 is large enough, then for any ν ∈ N * , (ω, t) ∈ (Ω * ) ν × [-t 0 , t 0 ] ν , n ≥ ν 1 ε , and j ∈ [n -n γ , n + n γ ] we can choose b ω,t n (j, • ) : T → C in (6.4) such that g ω,t n (j) satisfies sup |j-n|≤n γ |g ω,t n (j) -g ω,t n (j)| ≤ Ĉn -γ+4ε , (6.12) 
with

|b ω,t n (j, e iη )| = 1, (6.13a) b ω,t n (j, • ) C 2 (T) ≤ Ĉn 4ε , (6.13b) 
∂ tν b ω,t n (j, • ) C 0 (T) ≤ Ĉn ε , ν ≥ 2. (6.13c) 
Proof. See Section 8.1, in particular Section 8.1.1 and (8.7) for the actual choice of b ω,t n (j, • ).

6.3.

Properties of z(ω; t). Let z(ω; t), ω ∈ (Ω * ) ν , t ∈ R ν be as in Section 6.2.1. We write z(ω; t) = |z(ω; t)|e iα(ω;t) , (

where 0 ≤ α(ω; t) < 2π is the argument of z(ω; t). If ν ≥ 2 we write ω = (ω ′ , ω ν ) ∈ (Ω * ) ν-1 × Ω * , t = (t ′ , t ν ) ∈ R ν-1 × R as in (6.10) and define

ẑ(ω; t ′ ) := z(ω ′ ; t ′ ) 2 sin(ω ν /2) , (6.15) 
α(ω; t ′ ) := α(ω ′ ; t ′ ) -ω ν /2 -π/2. (6.16) 
For the next lemma we also introduce the function h : R × C → R + by h(t, z) := 4|z| sin 2 (t/2) + (1 -|z|) 2 . (6.17) Lemma 6.2. We assume ν ≥ 2.

Then for ω = (ω ′ , ω ν ) ∈ (Ω * ) ν-1 ×Ω * and t = (t ′ , t ν ) ∈ R ν-1 ×R we have the relation |z(ω; t)| = 2 sin(ω ν /2) h(t ν + α(ω; t ′ ), ẑ(ω; t ′ )), (6.18) 
where h is given by (6.17), ẑ(ω; t ′ ) by (6.15), and α(ω; t ′ ) by (6.16). Moreover,

|z(ω; t)| ≥ 2 sin(ω ν /2) π |t ν + α(ω; t ′ )| 2π (6.19) 
where |t| 2π := dist(t, 2πZ) and

∂ tν e iα(ω; t) ≤ 6 |z(ω; t)| . (6.20) 
Proof. The proof consists of four steps.

Step 1. We first claim that for t ∈ R and z ∈ C

|z|e -it = h(t, z). (

Indeed, the left hand side of (6.21) is

(|z| -cos t) 2 + sin 2 t = 2|z|(1 -cos t) + (1 -|z|) 2
which is h(t, z) defined by (6.17) due to 1cos t = 2 sin 2 (t/2).

Step 2. Now we will show (6.18). Combining (6.6), (6.9) with (6.14) we obtain

z(ω; t) = |z(ω; t ′ )|e iα(ω ′ ;t ′ )-iων -2 sin(ω ν /2) e -i(tν +ων /2-π/2) . (6.22) 
Using (6.15) and (6.16) in the right hand side of (6.22) we find

z(ω; t) = 2 sin(ω ν /2) |ẑ(ω; t ′ )| -e -i(tν + α(ω;t ′ )) e iα(ω ′ ;t ′ )-iων , hence |z(ω; t)| = 2 sin(ω ν /2) |ẑ(ω; t ′ )| -e -i(tν + α(ω;t ′ )) . (6.23) 
Denoting z := ẑ(ω; t ′ ), t := t ν + α(ω; t ′ ) and using (6.21) we can express the right hand side of (6.23) in the form

2 sin(ω ν /2) |z| -e -it = 2 sin(ω ν /2) h(t, z),
which completes the proof of (6.18).

Step 3. Here we will show (6.19). Combining for (ω, t) ∈ (Ω * ) ν × R ν and by g ω,t n (j) its j-th diagonal entry. We first observe that instead of (4.7) it suffices to prove the estimates ∆1 g ω,t n (j) dt 2 ≤ Cn -γ+5ε (ν = 2), (7.1a)

h(t, z) ≥ (4|z| + (1 -|z|)
∆2 ∆1 g ω,t n (j) dt ν dt ν-1 ≤ Cn -γ+5ε (3 ≤ ν ≤ n ε ) (7.1b) for any intervals ∆ 1 , ∆ 2 ⊂ [-t 0 , t 0 ], (ω, t) ∈ (Ω * ) ν × [-t 0 , t 0 ] ν , and j ∈ [n -n γ , n + n γ ].
Further on, g ω,t n (j) is given by (6.4) with b ω,t n (j, • ) as in Lemma 6.1, |j -n| ≤ n γ , (ω, t) ∈ (Ω * ) ν × [-t 0 , t 0 ] ν , and 2 ≤ ν ≤ n ε . Then due to Lemma 6.1, instead of proving estimates (7.1) it suffices to prove these ones:

∆1 g ω,t n (j) dt 2 ≤ Cn -γ+5ε (ν = 2), (7.2a) ∆2 ∆1 g ω,t n (j) dt ν dt ν-1 ≤ Cn -γ+5ε (3 ≤ ν ≤ n ε ). (7.2b)
To estimate ∆1 g ω,t n (j) dt ν it suffices to consider the following two cases: for some constant C 1 > 0. Since ∆ 1 is a subinterval of [-t 0 , t 0 ] satisfying

1) ∆ 1 ⊂ [-n -γ , n -γ ] + 2πZ -α(ω; t ′ ), 2) ∆ 1 ⊂ [n -γ , 2π -n -γ ] + 2πZ -α(ω; t ′ ), where α(ω; t ′ ) := α(ω ′ ; t ′ ) -ω ν /2 -π/
∆ 1 ⊂ [-n -γ , n -γ ] + 2πZ -α(ω; t ′ ), (7.4) 
its length satisfies |∆ 1 | ≤ 2n -γ and using (7.3) we get the estimate

∆1 g ω,t n (j) dt ν ≤ C 0 n -γ+4ε (7.5) 
for some constant C 0 > 0. Thus, in case 1) the proof of (7.2) is completed.

Case 2)

. We now assume ∆ 1 is a subinterval of [-t 0 , t 0 ] satisfying 

∆ 1 ⊂ [n -γ , 2π -n -γ ] + 2πZ -α(ω; t ′ ). ( 7 
∆1 dt ν |t ν + α(ω; t ′ )| 2π ≤ 2 π n -γ dt t = O(ln n).
To complete the proof of (7.2) in case 2) we will prove the following estimates:

J ω,t ′ n,j,± (∆ 1 ) ≤ Cn -γ+2ε (ν = 2), (7.12a) ∆2 J ω,t ′ n,j,± (∆ 1 ) dt ν-1 ≤ Cn -γ+2ε (3 ≤ ν ≤ n ε ). (7.12b)
According to (7.9) these estimates together with the remainder estimate (7.11) actually imply (7.2) in case 2).

Transformation of J

ω,t ′ n,j,± (∆ 1 ). If the new variable t = t ν + α(ω; t ′ ) is introduced, then (6.18) becomes |z(ω; t)| = 2 sin(ω ν /2) h(t, ẑ(ω; t ′ )) and (7.10) takes the form

J ω,t ′ n,j,± (∆ 1 ) = ∆1+ α(ω;t ′ ) e ±iμn(ων )h(t,ẑ(ω;t ′ )) 2π μn (ω ν )h(t, ẑ(ω; t ′ )) b ω,t ′ n,j,± (t) dt (7.13a)
where

μn (ω ν ) := 4a(n) sin(ω ν /2), (7.13b) b ω,t ′ n,j,± (t) := b ω,(t ′ ,t-α(ω;t ′ )) n j, ±ie -iα(ω;(t ′ ,t-α(ω;t ′ )) . (7.13c)
Our goal is to get (7.12). We first observe that in the case ν = 2 we have |z(ω ′ ; t ′ )| = |z(ω 1 ; t 1 )| = 2 sin(ω 1 /2) > 0 for ω 1 ∈ Ω * , hence ẑ(ω; t ′ ) = 0. In the case ν ≥ 3 we have to estimate the integral ∆2 |J ω,t ′ n,j,± (∆ 1 )|dt ν-1 and we observe that in this integral we can forget the t ν-1 such that ẑ(ω; t ′ ) = 0, or equivalently, z(ω ′ ; t ′ ) = 0 because there are only finitely many. By (6.19) they indeed satisfy t ν-1 ∈ 2πZα(ω ′ ; t ′′ ) where t ′ = (t ′′ , t ν-1 ). So, we henceforth assume ẑ(ω; t ′ ) = 0 when estimating J ω,t ′ n,j,± (∆ 1 ). Our next step is to write (7.13a) 

∆ ′ 1 ⊂ [n -γ , 2π -n -γ ] + 2πZ. (7.18) 7.3.4. Estimate of J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 )
. In this section ζ and µ are given by (7.17b) and (7.17c) and ∆ ′

1 is an interval satisfying (7.18). We claim that there is a constant C > 0 such that

| J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 )| ≤ C n 2ε a(n) 1 + |ẑ(ω; t ′ )| -3/4 . (7.19) 
For this purpose we first observe that J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 ) coincides with the oscillatory integral J (b, t 1 , t 2 , ζ, ±µ) defined in (5.1) 

for b = 1 √ 2πµ b ω,t ′ n,j,± (t) and ∆ ′ 1 = [t 1 , t 2 ]. Since µ = µ n (ω; t ′ ) > 0, Lemma 5.1 applies and gives | J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 )| ≤ C 1 + ζ 1/2 µ M(b ω,t ′ n,j,± , ∆ ′ 1 ). (7.20) Since 1 + ζ 1/2 µ ≤ 1 + |ẑ(ω; t ′ )| 1/4 + |ẑ(ω; t ′ )| -1/4 4a(n) sin(ω ν /2)|ẑ(ω; t ′ )| 1/2 ≤ 1 + |ẑ(ω; t ′ )| -3/4 2a ( 
|∂ t b ω,t ′ n,j,± (t)| ≤ ∂ tν b ω,t n (j, • ) C 0 (T) ∂ tν e -iα(ω;t) C 0 (T) ≤ Ĉn ε 6 |z(ω; t)| ≤ C ′ n ε 1 + 1 |t| 2π . Thus M(b ω,t ′ n,j,± , ∆ ′ 1 ) := sup ∆ ′ 1 |b ω,t ′ n,j,± (t)| + ∆ ′ 1 |∂ t b ω,t ′ n,j,± (t)|dt can be estimated by M(b ω,t ′ n,j,± , ∆ ′ 1 ) ≤ 1 + C ′ n ε 2π + ∆ ′ 1 dt |t| 2π = 1 + 2C ′ n ε π + π n -γ dt t = O(n ε ln n).
7.3.5. End of the proof of estimates (7.2) in case 2). Due to (7.17), (7.19), (6.15) and (H1a), there is a constant C > 0 such that

|J ω,t ′ n,j,± (∆ 1 )| ≤ Cn -γ+2ε 1 + |z(ω ′ ; t ′ )| -3/4 . (7.22) If ν = 2, then ω ′ = ω 1 ∈ Ω * and |z(ω ′ ; t ′ )| = 2 sin(ω 1 /2) ≥ 2 
sin(π/N ) > 0 and it is clear that (7.22) implies (7.12a). We then get (7.2a) using (7.12a) and (7.11). This proves assertion (a) in Proposition 4.1.

If ν ≥ 3, then ω ′ = (ω ′′ , ω ν-1 ) ∈ (Ω * ) ν-2 × Ω * and t ′ = (t ′′ , t ν-1 ) ∈ R ν-2 × R. If α(ω ′ , t ′′ ) = α(ω ′′ , t ′′ ) -ω ν-1 /2 -π/2 then t ν-1 + α(ω ′ ; t ′′ ) / ∈ 2πZ implies ẑ(ω; t ′ ) = 0 and J ω,t ′ n,j,± (∆ 1 ) ≤ C ′ n -γ+2ε 1 + |t ν-1 + α(ω ′ , t ′′ )| -3/4 2π
and therefore

∆2 J ω,t ′ n,j,± (∆ 1 ) dt ν-1 ≤ C ′ n -γ+2ε ∆2-α(ω ′ ,t ′′ ) (1 + |t| -3/4 2π ) dt.
Thus, (7.12b) follows from the fact that the function t → 1+|t|

-3/4 2π
is locally Lebesgue integrable on R. We then obtain (7.2b) using (7.12b) and (7.11). Assertion (b) in Proposition 4.1 is proven. 

|H ω,t n (j, j) -Q ω,t n (j, j)| ≤ ν n γ-1+3ε , (8.1) 
where ω ∈ (Ω Further on b ω,t n (j, e iη ) is given by (8.7). It is obvious that (6.13a) is satisfied and it is easy to see that the estimates (8.5b) and (8.5c) imply (6.13b). Thus, all that remains to be proved is (6.13c) and for this it suffices to prove

: T → R satisfy ψ ω,t n,1 C 2 (T) ≤ Cν n γ , (8.5a) ϕ ω,t n,1 C 2 (T) ≤ Cν n γ-1 ≤ Cν n -γ . ( 8 
|∂ t ϕ ω,(t ′ ,t) n,1 (e iη )| ≤ Ĉ0 n -γ , (8.8a) 
|∂ t ψ ω,(t ′ ,t) n,2 (e iη )| ≤ Ĉ0 n ε . (8.8b) 
The proofs of (8.8a) and (8.8b) are given in Sections (8.1.4) and (8.1.7), respectively. Further on we always assume n ≥ n 0 . Then we define the bijection η n : R → R as in [5, (7.10)]:

η n (ξ) := ξ -ϕ n (e iξ ).
As in [5, Section 7.5.1] we denote by ξ n : R → R its inverse, i.e. ξ n (η)ϕ n (e iξn(η) ) = η and, η → ξ n (η)η being 2π-periodic, we define ξn : T → R by ξn (e iη ) = ξ n (η)η. Finally, we define ϑ n : T → T as in [5, (7.13a)]:

ϑ n (e iη ) := e iη e i ξn(e iη ) = e iξn(η) .

Moreover, by [5, Lemma 9.2 (a)], there exists a constant C > 0 such that for any q ∈ C m (T), m = 1, 2, 3 one has 

q -q • ϑ n C m-1 (T) ≤ Cn -γ q C m (T) . ( 8 
ϕ ω,t n,1 := (ϕ n • τ ω -ϕ n ) • ϑ n • τ t (8.10a)
where ϕ n , ϑ n , and n 0 are as in Section 8.1.2 and τ t (e iξ ) := e i(ξ-t) . We have then ϕ ω,t n,1 = ϕ ω,0 n,1 • τ t . For ν ≥ 2 we define ϕ ω,t n,1 : T → R for n ≥ n 0 by induction on ν as in [5, (10.6)]:

ϕ ω,t n,1 := (ϕ ω ′ ,t ′ n,1 -ϕ -ω,t n,1 ) • τ ω , (8.10b) 
where ω = (ω ′ , ω) ∈ (Ω * ) ν-1 × Ω * , t = (t ′ , t) ∈ R ν-1 × R, and ϕ -ω,t n,1 := ϕ 2π-ω,t n,1 .

8.1.4. Proof of (8.8a). By (8.10b) we get ∂ t ϕ ω,t n,1 = -∂ t ϕ -ω,t n,1 • τ ω with ϕ -ω,t n,1 = ϕ -ω,0 n,1 • τ t . For any q ∈ C 1 (T) we have the estimate |∂ t (q • τ t )(e iη )| = |q (1) • τ t (e iη )| ≤ q C 1 (T) , (8.11) where q (1) (e iη ) := ∂ η q(e iη ). Applying (8.11) for q = ϕ -ω,0 n,1

we get (8.8a) since (8.5b) ensures ϕ -ω,0 n,1 It suffices to choose n 1 such that sup n≥n1 ϕ n,1 C 2 (T) ≤ 1/4. Indeed, using (8.9) we get

C 1 (T) ≤ Cn -γ .
ϕ ω,t n,1 C 2 (T) = ϕ ω,0 n,1 C 2 (T) ≤ (1 + Cn -γ )( ϕ n • τ ω C 3 (T) + ϕ n C 3 (T)
) ≤ C ′ n -γ , hence (8.12) holds if n 1 is chosen so that Cn -γ 1 ≤ 1/2. From now on we assume n ≥ n 1 and introduce the bijection η ω,t n : R → R by η ω,t n (ξ) := ξϕ ω,t n,1 (e iξ ). (8.13)

Let ξ ω,t n : R → R be its inverse. Then ξ ω,t n (η)ϕ ω,t n,1 (e iξ ω,t n (η) ) = η and η → ξ ω,t n (η)η is 2π-periodic. As before we can define ξω,t n : T → R by the formula ξω,t n (e iη ) = ξ ω,t n (η)η and ϑ ω,t n : T → T by ϑ ω,t n (e iη ) := e iη e i ξω,t n (e iη ) = e iξ ω,t n (η) . (8.14)

Since we can use ϕ ω,0 n,1 in place of ϕ n in [5, proof of Lemma 9.2], there is a constant C > 0 such that for any q ∈ C 2 (T) one has qq • ϑ ω,0 n C 1 (T) ≤ Cn -γ q C 2 (T) . Proof. (a) We first note that (8.10a) implies ϕ ω,t n,1 = ϕ ω,0 n,1 • τ t . Using this relation in (8.13) we find η ω,t n (ξ) = t + η ω,0 n (ξt), hence also ξ ω,t n (η) = t + ξ ω,0 n (ηt). We have then ξω,t n (e iη ) := ξ ω,t n (η)η = ξ ω,0 n (ηt) -(ηt) = ξω,0 n (e 

|∂ t (ψ -ω,t n,1 -ψ -ω,t n,1 • ϑ ω,t n )(e iη )| ≤ ψ -ω,0 n,1 • ϑ ω,0 n -ψ -ω,0 n,1 C 1 (T) . (8.25)
The right hand side of (8.25) can be estimated by a constant C independent of n by using (8.15) for q = ψ -ω,0 n,1 and (8.5a), i.e., ψ -ω,0 n,1 Proof. We observe that (8.9) ensures ψ ω n,I • ϑ nψ ω n,I C 0 (T) ≤ Cn -γ ψ ω n,I C 1 (T) . To complete the proof of (8.29) it suffices to observe that ψ ω n,I C 1 (T) = O(1). To prove (8.30) we write the Taylor expansion at order 2: A similar reasoning can be applied to -e iω/2 instead of e iω/2 and to complete the proof of (8.30) we observe that ∂ η ψ n,1 (±e iω/2 ) = 0.

C 1 (T) = O(n γ
To begin the proof of (2.30) in case (b) we observe that 

Theorem 1 . 1 (

 11 Quantum Rabi model). Let J be defined by (1.3) with {a(k)} ∞ k=1 and {d(k)} ∞ k=1

  is the space of functions b : T → C of class C m equipped with the norm b C m (T) := max 0≤k≤m sup ξ∈R ∂ k ξ b(e iξ ) .

3. 1 .Lemma 3 . 1 . 0 e

 1310 Stationary phase formula. For b ∈ C 2 (T), η 0 ∈ R and µ > 0 we consider the oscillatory integral I(b, µ, η 0 ) := 2π iµ cos(η-η0) b(e iη )

4 0 e

 40 and χ(e i(ξ+η0) ) = 0 if 3π/4 ≤ |ξ| ≤ 5π/4. Since the integrands are 2π-periodic the change of variable η = ξ + η 0 gives I(χb, µ, η 0 ) = 2π iµ cos ξ (χb)(e i(ξ+η0) ) dξ 2π . Denoting b + (ξ) := b(e i(ξ+η0) ) and χ + (ξ) := χ(e i(ξ+η0) ), we can express I(χb, µ, η 0 ) = π -π e iµ cos ξ (χ + b + )(ξ) dξ 2π . Let b -(ξ) := b(e i(ξ+η0-π) ) and χ -(ξ) := 1χ(e i(ξ+η0-π) ). We still have χ -(ξ) = 1 if |ξ| ≤ π/4 and χ -(ξ) = 0 if 3π/4 ≤ |ξ| ≤ 5π/4. Then the change of variable η = ξ + η 0π gives

. 7 )

 7 Further on we assume that |k -n| ≤ n γ . Using v(Λ) = ρ e iπΛ and (3.7) we obtain g n (k) = ρ e k , e iBn e iπΛ e -iBn e k + O(n γ-1 ).(3.8)However, e iπΛ S ±1 e -iπΛ = -S ±1 implies e iπΛ B n e -iπΛ = -B n , hencee iBn e iπΛ = e iπΛ e -iBn .(3.9)Using (3.8) and (3.9) we obtaing n (k) = ρe iπk e k ,e -2iBn e k + O(n γ-1 ) Let Q t n be the operators introduced in [5, proof of Proposition 8.1]. For t ∈ [-2, 2] and k ∈ N * we have | e k , Θ n e itBn e ke k , Q t n e k | ≤ Θ n e itBn -Q t n ≤ Cn γ-1 ln n. (3.10)

s2 s1 |b ′ 1 1 , 5 . 2 . 3 .

 11523 (s) h1 (s, ζ) + b 1 (s)∂ s h1 (s, ζ)| ds. Thus, using (5.7) and (5.8) we get s2 s1 |∂ s (b 1 h1 )(s, ζ)| ds ≤ sup s1≤s≤s2 | h1 (s, ζ)| [s 1 , s 2 ]) ζ . Proof of (5.6) in case ζ ≤ s 1 . We denote si := (s 2 i + ζ 2 ) 1/4 , i = 1, 2 and consider the change of variable s = s4ζ 2 for s ∈ [s 1 , s2 ]

5. 3 .

 3 Proof of Lemma 5.1 in case ∆ 0 = [2π/3, π]. Denoting h(t, ζ) := 4 sin 2 (t/2) + ζ 2

e

  iψ ω,t n,1 (e iη ) b ω,t n (j, e iη ) (ω 1 , . . . , ω ν )| 1 := ω 1 + • • • + ω ν , the phase ψ ω,t n,1 : T → R is defined in the next subsection, and b ω,t n (j, • ) : T → C is chosen as indicated in Lemma 6.1 below.

8 . 8 . 1 .

 881 Proofs of Lemmas 6.1 and 2.2 (b) The proofs of Lemmas 6.1 and 2.2 (b) are completed in Sections 8.1 and 8.2, respectively. Both proofs are based on properties of phase functions introduced in [5, Section 10]. Proof of Lemma 6.1. We first fix the definition of b ω,t n (j, e iη ) to complete that of g ω,t n (j).

8. 1 . 1 .

 11 Definition of b ω,t n (j, e iη ). Let Q ω,t n be the operators introduced in [5, (10.1)]. Their definition involves a phase ψω,t n ≡ ψω,t n (j, e iη ) whose construction is given in [5, (10.5) and Section 10.3]. By [5, Lemma 10.3] these operators satisfy

8. 1 . 2 .

 12 Change of variable ϑ n . As in [5, (8.3b)] we define ϕ n : T → R by ϕ n (e iξ ) := 2δa(n) 1δa(n) cos ξ sin ξ. By (H1b) we have δa(n) = O(n γ-1 ). Thus we can fix n 0 = n 0 ({ϕ n }) ∈ N large enough to ensure sup n≥n0 ϕ n C 2 (T) ≤ 1 2 .

(8. 15 )

 15 Lemma 8.1. (a) One has ϑ ω,t n = τ -t • ϑ ω,0 n • τ t . (8.16) (b) There is a constant C > 0 such that |∂ t ϑ ω,tn (e iξ )| ≤ Cn -γ . (8.17)

  ψ ω n,II (e iω/2 ) = ∂ η ψ ω,0 n,1 (e iω/2 ) ϑ n (e iω/2 )e iω/2 + rω n with |r ω n | ≤ ψ ω,0 n,1 C 2 (T) ϑ n (e iω/2 )e iω/2 2 ≤ Cn γ | ξn (e iω/2 )| 2 ≤ C ′ n -γ .

e-π 4 2πa(n) sin ω 2 e

 42 iψ ω,0 n,1 (e iη ) b ω n (e iη ) dη 2π for ω ∈ Ω * and b ω n (e iη ) = e iψ ω,0 n,2 (e iη )according to(8.7). Then Lemma 3.1 with µ = 4a(n) sin ω 2 andη 0 = π + ω κe iω/2 ) + O(a(n) -1 ) (8.31)and applying Lemma 8.2 we obtain b ω n (±e iω/2 ) = e iψ ω n,I (±e iω/2 ) + O(n -γ ). (8.32) However using (8.23) we get ψ ω n,I (±e iω/2 ) = 2a(n)δa(n) sin ω. Thus combining (8.32) with (8.31) and a(n) -1 = O(n -γ ), we obtain g ω,0 n (n) = cos 4a(n) sin ω 2 i(ωn+2a(n)δa(n) sin ω) + O(n -γ ).(8.33) 

  Proof of Theorems 1.1 and 1.2. Recall that Propositions 2.1 and 2.3 give the large n estimate λ n (J) = λ n (L n ) + O(n -γ ). Combining this estimate (2.34) with estimate (2.45) of λ n (L n ) in Proposition 2.6 we obtain

		58)
	and (2.58) allows us to obtain (2.40a) for i = 1 following the proof given in [5, Section 11.3].
	2.4. λ n (J) = ln (n) + O(n -γ+ε )	(2.59)
	for any ε > 0. The desired estimates (1.4a) and (1.13a) follow from (2.59), using the estimate
	(2.30) of g n (n), and from	

  Properties of the evolution U n (t). Using (4.1) and L nl n

	4.1.	
		.1)
	The proof of this reduction is based on Lemma 4.2 which develops our ideas from [5, Section 6]
	and allows us to conclude in Section 4.3:	
	Proposition 4.1 Lemma 4.2	=⇒ Proposition 2.4.

  Use of the Fourier transform. In this section we prove the desired trace estimate provided assumption (4.8) is satisfied, and in the next section we show that Proposition 4.1 precisely implies this assumption.

	4.2. Lemma 4.2. Let g n be defined by (2.29) and u n,j by (4.5). Let ε > 0 be fixed and assume that
	for every t 0 > 0 one has the estimate
		sup -t0≤t≤t0 |j-n|≤n γ	|∂ t u n,j (t) -ig n (j)| = O(n -γ+5ε ).	(4.8)
	Let G0 n be defined by (2.36a) by means of a function χ ∈ S(R) whose Fourier transform has compact support. We have then the estimate
		sup -t0≤t≤t0 |j-n|≤n γ	|u 2,n,j (t)| ≤ Cn -γ+5ε .	(4.7a)
	(b) If ε < 1/8, then we can find C > 0 such that the estimate
	t0	tν-1	
	sup |j-n|≤n γ e Proof. See Section 7. -t0 dt ν-1 0
	Remark. In [5, estimate (6.17b)] the constant in the right hand side should be C ν instead of C.

n,j (t) := -t 0 e j , H n (t)H n (t 2 )e j dt 2 , u ν,n,j (t) := i ν t 0 dt 2 • • • tν-1 0 e j , H n (t)H n (t 2 ) . . . H n (t ν )e j dt ν for ν ≥ 3. Proposition 4.1. Let t 0 > 0 and ε > 0. (a) We can find C > 0 such that j , H n (t 1 ) . . . H n (t ν )e j dt ν ≤ Cν n -γ+5ε (4.7b) holds whenever 3 ≤ ν ≤ n ε and t 1 , . . . , t ν-2 ∈ [-t 0 , t 0 ].

  . See [18, Section VIII.1.2, p. 354]. 5.2. Proof of Lemma 5.1 in case ∆ 0 = [0, 2π/3]. 5.2.1. Change of variable. By our assumption [t 1 t 2 ] ⊂ [0, 2π/3] and the change of variable

	t = 2 arcsin(s/2)	(5.5)

parametrize [0, 2π/3] by s ∈ [0, √ 3]. If t ∈ [t 1 , t 2 ] then s ∈ [s 1 , s 2 ]

where s i := 2 sin(t i /2), i = 1, 2.

  Since |∂ tν z(ω; t)| = |∂ tν z(ω ν ; t ν )| = 2 sin(ω ν /2) ≤ 2, the proof of (6.20) is completed if we show First reductions. In this section 0 < ε < 1 8 and t 0 > 0 are fixed. As in (6.2) we denote by H

					7. Proof of Proposition 4.1.
	7.1. ω,t n the operator H ω1,t1 n	. . . H ων ,tν n		
						2 ) sin 2 (t/2) = (1 + |z|)|sin(t/2)|	(6.24)
	with (6.18) we obtain						
	2 (t ν + α(ω; t ′ )) . |z(ω; t)| ≥ 2 sin(ω ν /2) sin 1 Thus (6.19) follows from |sin(t/2)| ≥ 1 π |t| 2π .
	Step 4. Finally we show (6.20). We begin by writing
	∂ tν	z(ω; t) |z(ω; t)|	=	1 |z(ω; t)|	∂ tν z(ω; t) -	z(ω; t) |z(ω; t)|	∂ tν |z(ω; t)| .
					|∂ tν |z(ω; t)|| ≤ 4.	(6.25)
	However using (6.18) we obtain				
		∂ tν |z(ω; t)| = 2 sin(ω ν /2) ∂ tν h(t ν + α(ω; t ′ ), ẑ(ω; t ′ ))
	Then using (6.24) we have					
		|∂ t h(t, z)| =	|z| |sin t| h(t, z)	≤	|z| |sin t| (1 + |z|)|sin(t/2)|
	and (6.25) results from the inequality |sin t| ≤ 2 sin t 2 .

  2 as in (6.16).7.2. Case 1). We assume ν ≥ 2. The definition of H Then, since |j -n| ≤ n γ , estimate (6.12) from Lemma 6.1 applies and gives

	|g	ω,t n n (j)| ≤ C 1 n 4ε n (j)| ≤ 1. |g ω,t ω,t	shows that its diagonal entries satisfy (7.3)

  .6) If t ν ∈ ∆ 1 , then |t ν + α(ω; t ′ )| 2π ≥ n -γ and |z(ω; t)| ≥ (2/π) sin(π/N )n -γ by estimate (6.[START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF]) from Lemma 6.2. In particular, z(ω; t) = 0. This oscillatory integral is of the type I(b, µ, η 0 ) considered in Lemma 3.1 for b = b

	ω,t n (j, • ), µ = 2a(n)|z(ω; t)|, and η 0 = π/2 -α(ω; t). Since z(ω; t) = 0 the stationary phase formula (3.2) applies:
	e -ij|ω|1 g ω,t n (j) =	κ=±1	e iκ(2a(n)|z(ω;t)|-π/4) 2 πa(n)|z(ω; t)|	b ω,t n (j, κie -iα(ω;t) ) + r ω,t n (j)	(7.8a)
	with		|r ω,t n (j)| ≤	C 0 a(n)|z(ω; t)|	b ω,t n (j, • ) C 2 (T) .	(7.8b)
	Integrating (7.8a) we find				
	e -ij|ω|1	∆1	g ω,t n (j) dt ν = e -iπ/4 J n,j,+ (∆ 1 ) + e iπ/4 J ω,t ′ n,j,-(∆ 1 ) + ω,t ′	∆1	r ω,t n (j) dt ν	(7.9)
	where		J n,j,± (∆ 1 ) := ω,t ′	∆1	e ±2ia(n)|z(ω;t)| 2 πa(n)|z(ω; t)|	b ω,t n (j, ±ie -iα(ω;t) ) dt ν .	(7.10)
	7.3.2. Remainder estimate. We claim that the remainder in (7.9) can be estimated by
						∆1	r ω,t n (j) dt ν ≤ Cn -γ+5ε .	(7.11)
	ω,t n (j)| this new Indeed, (H1a), (6.19) and (6.13b) allow us to derive from estimate (7.8b) of |r one |r ω,t n (j)| ≤ Cn 4ε , n γ |t ν + α(ω; t ′ )| 2π and to get (7.11) it suffices to observe that
	7.3.1. Use of the stationary phase formula. Writing z(ω; t) = |z(ω; t)|e iα(ω;t) in (6.5) we find ψ ω,t n,1 (e iξ ) = 2a(n)|z(ω; t)| sin(ξ + α(ω; t)).
	Using this expression in (6.4) we get
			g ω,t n (j) = e ij|ω|1	0	2π	e 2ia(n)|z(ω;t)| sin(η+α(ω;t)) b ω,t n (j, e iη )	dη 2π	.	(7.7)

  as an integral of the type considered in Section 5. For this purpose we denote by ζ ≡ ζ(ẑ) the nonnegative number associated to ẑ ∈ C * by

		ζ := |ẑ| -1/2 -|ẑ| 1/2 .	(7.14)
	Since (1 -|ẑ|) 2 = ζ 2 |ẑ|, we can write h(t, ẑ), ẑ = 0 as follows:	
	h(t, ẑ) := 4|ẑ| sin 2 (t/2) + (1 -|ẑ|) 2 = |ẑ| 4 sin 2 (t/2) + ζ 2 . Then for µ > 0, ζ ≥ 0, and ∆ ′ 1 a bounded interval we introduce the integral J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 ) := 1 √ 2πµ ∆ ′ 1 e ±iµ √ 4 sin 2 (t/2)+ζ 2 (4 sin 2 (t/2) + ζ 2 ) 1/4 b ω,t ′ n,j,± (t) dt.	(7.15) (7.16)
	Due to (7.15) we have			
	where ∆ ′ 1 = ∆ 1 + α(ω; t ′ ) and	ω,t ′ n,j,± (∆ 1 ) = J	J ω,t ′ n,j,± (ζ, µ, ∆ ′ 1 )	(7.17a)
	ζ ≡ ζ(ω; t ′ ) := |ẑ(ω; t ′ )| 1/2 -|ẑ(ω; t ′ )| -1/2	(7.17b)
	(7.17c) 1 ) with ζ and µ as in (7.17b), and (7.17c), and µ ≡ µ n (ω; t ′ ) := μn (ω ν ) |ẑ(ω; t ′ )| 1/2 Thus it remains to investigate J ω,t ′ n,j,± (ζ, µ, ∆ ′

  = O(n -γ+2ε ) for |j -n| ≤ n γ , hence (8.3) still holds for these j if we forget (jn)ϕ

	By [5, Lemma 10.2] and γ ≤ 1 2 the functions ψ n,2 , ϕ ω,t ω,t n,2 : T → R satisfy
	ψ n,2 C 2 (T) ≤ Cν n ε , ω,t ϕ ω,t n,2 C 2 (T) ≤ Cν n 2(γ-1)+ε ≤ Cn -2γ+2ε ,	(8.5c) (8.5d)
	for n ε ≥ ν and n ≥ n. We can rewrite (8.4) as				
	gω,t n (j) = e ij|ω|1	0	2π	e iψ ω,t n,1 (e iη ) b ω,t n (j, e iη )	dη 2π	,	(8.6a)
	with						
	b ω,t n (j, e iη ) := e i(ψ ω,t n,2 (e iη )+(j-n)(ϕ	ω,t n,1 +ϕ	ω,t n,2 )(e iη )) .	(8.6b)
	Let us note that the definition (6.4) of g The definition of ψ ω,t n,1 is given in Section 6.2.1, that of ϕ ω,t n (j) is as that of ω,t gω,t n (j), replacing n,1 and ψ ω,t n,2 are given in Sections 8.1.3 bω,t n by b ω,t n in (8.6a). and 8.1.6, respectively. Concerning ϕ ω,t ω,t n,2 we observe that (8.5d) ensures (j -n)ϕ n,2 ω,t n,2 in the r.h.s. of (8.6b), i.e., if we replace gω,t n (j) by g ω,t n (j) given by (6.4) with
	b ω,t n (j, e iη ) := e i(ψ ω,t n,2 (e iη )+(j-n)ϕ	ω,t n,1 (e iη )) .	(8.7)
								.5b)

  We first assume ν = 1. If (ω, t) ∈ Ω * × R we define ϕ ω,t n,1 : T → R for n ≥ n 0 as in [5, Section 10.3.1]:

	8.1.3. Definition of ϕ ω,t n,1 .
	.9)

  8.1.5. Change of variable ϑ ω,t n . Let ϕ ω,t n,1 be as above and n 1 ∈ N such that

	sup n≥n1	ϕ ω,t n,1 C 2 (T) ≤	1 2	.	(8.12)

  Since ξω,t n = ξω,0 n • τ t the estimate (8.11) ensures |∂ t ϑ ω,t n (e iη )| = |∂ t ξω,t n (e iη )| ≤ ξω,0 n C 1 (T) (8.19) and the right hand side of (8.19) is O(n -γ ) due to [5, Lemma 7.3] with ϕ ω,0 n,1 in place of ϕ n . For ω ∈ Ω * we denoteψ ω n,I := ψ n,2 • τ ωψ n,2 , (8.20) (e iξ ) = -4a(n) sin ω 2 cos(ξ -ω2 ) as in (6.7) andψ n,2 (e iξ ) := -a(n) δa(n) sin 2ξ,(8.22)as in[5, (9.7c)]. A direct computation gives the expressionψ ω n,I (e iξ ) = 2a(n)δa(n) sin ω cos(2ξω). (8.23) For ν = 1, (ω, t) ∈ Ω * × R we define ψ ω,t n,2 as in [5, Section 9.3.2], i.e., End of the proof of Lemma 6.1. We recall that (8.8a) was proved in Section 8.1.4 and following the remark from Section 8.1.1, it only remains to prove (8.8b), i.e. |∂ t ψ (e iη )| ≤ Ĉ0 n ε where t = t ν . If ν = 1 then ψ ω,t n,2 = ψ ω,0 n,2 • τ t and (8.8b) follows from (8.5c) using (8.11). If ν ≥ 2 then ψ ω,t n,2 is given by (8.24b). To estimate ∂ t ψ

	(b) 8.1.6. Definition of ψ n,2 . ψ ω ω,t n,II := ψ ω,0 n,1 • ϑ n -ψ ω,0 n,1 ,	(8.21)
	where ψ ω,0 n,1 ω,t
	n,2 ω,t n,2 we first observe that
	ψ -ω,t n,1 -ψ -ω,t n,1 • ϑ ω,t n = (ψ -ω,0 n,1 -ψ -ω,0 n,1 • ϑ ω,0 n ) • τ t	
	and (8.11) allows us to estimate	
	i(η-t) ), i.e.,	
	ξω,t n = ξω,0 n • τ t , and (8.16) follows from (8.18) and (8.14).	(8.18)

ψ ω,t n,2 := ψ ω n,II + ψ ω n,I • ϑ n • τ t . (8.24a) For ν ≥ 2, ω = (ω ′ , ω) ∈ (Ω * ) ν-1 × Ω * , t = (t ′ , t) ∈ R ν-1 × R,

we use the same induction formula as in [5, (10.12)], i.e.,

ψ ω,t n,2 = (ψ -ω,t n,1ψ -ω,t n,1 • ϑ ω,t n + ψ ω ′ ,t ′ n,2ψ -ω,t n,2 + ψ ω ′ ,t ′ n,1 • ϑ ω,t nψ ω ′ ,t ′ n,1 ) • τ ω ,

(8.24b)

where ψ -ω,t n,i := ψ 2π-ω,t n,i , i = 1, 2.

8.1.7.

  ). It remains to estimate However (8.17) and (8.5a) allow us to estimate the right hand side of (8.26) by Cν ≤ Cn ε which completes the proof of (8.8b).8.2. Proof of Lemma 2.2 (b). This section is devoted to the proof of Lemma 2.2 under assumptions (H1) and (H2). Let ψ ω n,I , ψ ω n,II be given by (8.20) and (8.21), respectively. Then ψ ω,0 n,2 = ψ ω n,I + ψ ω n,II + r ω

	n	(8.27)	
	holds with		
	r ω n := ψ ω n,I • ϑ n -ψ ω n,I .	(8.28)	
	Lemma 8.2. We have the estimates		
	r ω n C 0 (T) = O(n -γ ),	(8.29)	
	|ψ ω n,II (±e iω/2 )| = O(n -γ ).	(8.30)	
	|∂ t (ψ n,1 • ϑ ω,t ω ′ ,t ′ n )(e iη )| ≤ ψ n,1 ω ′ ,t ′	C 1 (T) |∂ t ϑ ω,t n (e iη )|.	(8.26)

To complete the proof we observe that (8.33) ensures

Appendix A. The quantum Rabi model

The quantum Rabi model couples a quantized single-mode radiation and a two-level quantum system.

Let H field be a complex Hilbert space equipped with an orthonormal basis {e n } ∞ 0 and let â, â † be the photon annihilation and creation operators defined in H field by

(with e -1 = 0). To define the quantum Rabi model we fix four positive parameters: (i) ω, the frequency of the quantized one-mode electromagnetic field, (ii) E, the level separation energy, (iii) g, the coupling constant, (iv) , the Planck constant.

The quantum Rabi Hamiltonian is then the self-adjoint operator in H field ⊗ C 2 given by

where σ x = ( 0 1 1 0 ) and σ z = 1 0 0 -1 . Then we have the decomposition (see [START_REF] Tur | Jaynes-Cummings model: solution without rotating wave approximation[END_REF] or [6, Section 3.1])

where H + and H -are invariant under H Rabi and the restrictions H ± := H Rabi | H± have the form

where the operator J + (resp. J -) is defined in an appropriate basis by the Jacobi matrix (1.1) whose entries are given by (1.2) with a 1 = g ω and ρ = E 2 ω (resp. ρ = -E 2 ω ). Therefore σ(H Rabi ) = {λ n (H + )} ∞ n=1 ∪ {λ n (H -)} ∞ n=1 , where λ n (H ± ) = -1 2 ω + ωλ n (J ± ).