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OSCILLATORY BEHAVIOR OF LARGE EIGENVALUES

IN QUANTUM RABI MODELS

ANNE BOUTET DE MONVEL1 AND LECH ZIELINSKI2

Abstract. We investigate the large n asymptotics of the n-th eigenvalue for a class of un-
bounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In
the case of the quantum Rabi model we obtain the first three terms of the asymptotics which
determine the parameters of the model. This paper is based on our previous paper [5] that it
completes and improves.

1. Introduction

1.1. The quantum Rabi model. This paper is motivated by the quantum Rabi model [8]
describing the simplest interaction between radiation and matter (see [17]). It is also called the
Jaynes–Cummings model without the rotating-wave approximation. The Hamiltonian of this
model is a self-adjoint operator HRabi with discrete spectrum defined in Appendix. We refer to
[21] for a list of recent works on this model.

A natural question is whether the spectrum of HRabi determines the values of all the parame-
ters involved in its definition. These parameters are listed in the Appendix and denoted by ω, E,
and g. The answer to this question is positive. In [6] we explain how to recover the values of all
the parameters from the spectrum of HRabi. The method described in [6] is based on the three
term asymptotics for large eigenvalues of HRabi. This asymptotic formula can be easily deduced
from the formula (1.4a) of this paper using the well known fact (see [19,20,22]) that HRabi can be
written as the direct sum of two Jacobi matrices (see Appendix) to which Theorem 1.1 applies.

Further on J denotes an infinite real Jacobi matrix

J =















d(1) a(1) 0 0 . . .
a(1) d(2) a(2) 0 . . .
0 a(2) d(3) a(3) . . .
0 0 a(3) d(4) . . .
...

...
...

...
. . .















. (1.1)

To treat the Jacobi matrices representing the quantum Rabi model we have to consider entries
{d(k)}∞k=1 and {a(k)}∞k=1 of the form

{

d(k) = k + (−1)kρ,

a(k) = a1k
1/2,

(1.2)

where ρ ∈ R and a1 > 0 are some constants.
The Jacobi matrix (1.1) defines the self-adjoint operator J that acts on l2(N∗) by

(Jx)(k) = d(k)x(k) + a(k)x(k + 1) + a(k − 1)x(k − 1) (1.3)
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2 A. BOUTET DE MONVEL AND L. ZIELINSKI

where, by convention, x(0) = 0 and a(0) = 0. We denote by N∗ the set of positive integers and
by l2(N∗) the Hilbert space of square summable complex sequences x = (x(k))∞k=1 equipped with

the scalar product 〈x, y〉 =
∑∞

k=1 x(k)y(k). The operator J is defined on D :=
{

x ∈ l2(N∗) :
∑∞

k=1 d(k)
2|x(k)|2 <∞

}

.
Under our assumptions, in particular under (1.2), the self-adjoint operator J is bounded from

below with compact resolvent. Its spectrum is therefore discrete and one can find an orthogonal
basis {wn}∞n=1 such that Jwn = λn(J)wn where {λn(J)}∞n=1 is the non-decreasing sequence of
its eigenvalues:

λ1(J) ≤ · · · ≤ λn(J) ≤ λn+1(J) ≤ . . .

The aim of this paper is to describe the asymptotic behavior of λn(J) when n→ ∞.

Theorem 1.1 (Quantum Rabi model). Let J be defined by (1.3) with {a(k)}∞k=1 and {d(k)}∞k=1

given by (1.2). Let λn(J) denote the n-th eigenvalue of J . Then, for any ε > 0 we have the large
n asymptotic formula

λn(J) = n− a21 + r(n) + O(n−1/2+ε), (1.4a)

where

r(n) = (−1)nρ
cos
(

4a1
√
n− π

4

)

√
2πa1

n−1/4. (1.4b)

1.2. Comments. In this section J denotes the Jacobi operator defined by (1.3)-(1.2).

1.2.1. The three-term asymptotics (1.4) improves the two-term asymptotics proved by Yanovich
[22] (see also an earlier version in [20]):

λn(J) = n− a21 +O(n−1/16). (1.5)

1.2.2. The large n behavior of λn(J) was already investigated by Schmutz [16]. Let J0 denote
the operator defined by (1.3)-(1.2) when ρ = 0, i.e.,

(J0x)(k) = kx(k) + a1
√
k x(k + 1) + a1

√
k − 1 x(k − 1). (1.6)

As noticed by Schmutz, J0 can be diagonalized in the canonical basis by means of the Bogoliubov
transformation:

L0 := eiBJ0e
−iB = diag(k − a21)

∞
k=1

defined by B = a1(â−â†), where â and â† are the annihilation and creation operators, respectively
(see Appendix A). Since J = J0 + V with V = diag

(

(−1)kρ
)

, its eigenvalues are the same as
those of

L := eiBJe−iB = L0 + Ṽ ,

where Ṽ := eiBV e−iB. Then, decay properties of the entries of Ṽ should allow to expect the
large n behavior

λn(J) = λn(L) ≈ λn(L0) = n− a21. (1.7)

1.2.3. The asymptotic behavior of the matrix elements Ṽ (j, k) expressed by means of Laguerre
polynomials was considered by I. D. Feranchuk et al [9] who proposed to apply the 0th order
perturbation theory (see the book [10]) and suggested the following improvement of (1.7):

λn(J) = λn(L) ≈ λn(L0) + Ṽ (n, n). (1.8)

The approximation (1.8) was discovered independently by Irish [12]. Following Irish, (1.8) is
called the Generalized Rotating-Wave Approximation (GRWA) in the physical literature. We
observe that one can prove that

Ṽ (n, n) = r(n) + O(n−1/2+ε), (1.9)

where r(n) is given by (1.4b).



OSCILLATORY BEHAVIOR OF LARGE EIGENVALUES IN QUANTUM RABI MODELS 3

1.2.4. The first step of our analysis uses an analog of the Bogoliubov transformation. In order
to simplify the remainder estimates with respect to the large parameter n we work with Jacobi
operators indexed by n and write

eiBnJne
−iBn = L0,n + Ṽn +Rn

where L0,n is diagonal, ‖Rn‖ = O(n−1/2), and

Ṽn(n, n) = r(n) + O(n−1/2+ε). (1.10)

The definitions of Jn, L0,n, and Ṽn are given in Section 2.2. Propositions 2.1 and 2.3 ensure
the fact that the asymptotic formula for J can be reduced to an analogous formula for Jn and
Ln = L0,n + Ṽn.

1.2.5. The asymptotic behavior of λn(Jn) is deduced from the trace estimate described in Sec-
tion 2.3 by means of a Tauberian type result [5, Proposition 11.1] slightly adapted in Proposi-
tion 2.5. We begin the proof of the trace estimate in Section 4 by reducing the problem to large
n estimates of a Dyson expansion similarly as in [5]. We notice that Section 4 is the only part
of this paper where we rewrite proofs from [5] in a slightly more general form. We complete the
proof by an analysis of the Dyson expansion in Sections 5-8 and to perform this analysis we need
to use a certain number of auxiliary results from [5, Section 10]. In order to avoid unnecessary
overlaps we refer to [5] for the proofs of these auxiliary results.

1.2.6. In Section 1.3 we describe a class of more general type of operators for which we can
obtain an analogous large n asymptotic formula. Following [1] we replace the sequence ρ(−1)k by
a general sequence of period N and we give the corresponding asymptotic formula in Theorem 1.2.
Since in practice the proofs of Theorem 1.1 and Theorem 1.2 require the same arguments, we
chose to present the proof in the more general framework, i.e., for the class of operators described
in Section 1.3. For readers interested only in the result of Theorem 1.1 we indicate that the
only simplification with respect to Theorem 1.2 consists in the fact that the proof of (1.9) is
simpler in the case of period N = 2. Indeed, an additional symmetry of this case allows us to
express an approximation of Ṽn(k, k) by oscillating integrals with very simple phase functions
(see Section 3.2) and to obtain (1.9) immediately from the stationary phase formula. Thus the
proof of Theorem 1.1 ends in Section 8.1. In the case of Theorem 1.2 the proof of (1.9) involves
more complicated phase functions and is given in Section 8.2.

1.2.7. Our approach works the same way in the proofs of Theorems 1.1 and 1.2. Therefore, it
does not distinguish whether or not the corresponding model is integrable in the sense of Braak
[7]. For this reason, it makes no contribution to the Braak conjecture.

1.3. Quantum Rabi type models. We consider the following assumptions on the entries of J :

Assumption (H1). There exist constants 0 < γ ≤ 1
2 , C, C′, C′′, and c > 0 such that

ckγ ≤ a(k) ≤ Ckγ , (H1a)

|δa(k)| ≤ C′kγ−1, (H1b)

|δ2a(k)| ≤ C′′kγ−2 (H1c)

for any k ∈ N∗. Here, δa(k) := a(k + 1)− a(k) and δ2a(k) := a(k + 2)− 2a(k + 1) + a(k).

Remark. (H1) is satisfied if a(k) has the large k behavior

a(k) = a1k
γ + a′1k

γ−1 +O(kγ−2).
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Assumption (H2). The diagonal entries of J are of the form

d(k) = k + v(k) (H2a)

where v : N∗ → R is real-valued and periodic of period N , i.e.:

v(k +N) = v(k) for any k ∈ N
∗. (H2b)

Moreover, we assume

ρN <

{

1
2 if N = 2,

1
π
√
N

if N ≥ 3,
(H2c)

where

ρN = ρN (v) := max
1≤k≤N

|v(k)− 〈v〉|. (1.11)

Here 〈v〉 := 1
N

∑

1≤k≤N v(k) denotes the “mean value” of v.

To compare with the hypotheses of Theorem 1.1 we reformulate these as follows:

Assumption (H0). The diagonal and off-diagonal entries of J are of the form
{

d(k) = k + v(k), with v(k) = (−1)kρ,

a(k) = a1k
γ , with γ = 1

2 ,

where ρ is a real constant. In particular, v is periodic of period N = 2, 〈v〉 = 0, and ρN = |ρ|.

Remark. (H0) is a special case of (H1) and (H2), except that there is no restriction on ρN = |ρ|.

Let v be as in (H2). By N -periodicity we can expand it as follows:

v(k) = α0 +

⌊N/2⌋
∑

m=1

αm cos 2mπk
N +

⌊(N−1)/2⌋
∑

m=1

α̃m sin 2mπk
N , (1.12)

where

• ⌊s⌋ := max{k ∈ Z : k ≤ s} is the integer part of s,
• all coefficients α0 = 〈v〉, αm, and α̃m are real constants.

Theorem 1.2 (Quantum Rabi type model). Let J be defined by (1.3) with {a(k)}∞k=1 and
{d(k)}∞k=1 satisfying assumptions (H1) and (H2), respectively. Then, for any ε > 0 we have the
large n asymptotic formula:

λn(J) = n+ a(n− 1)2 − a(n)2 + α0 + r(n) + O(n−γ+ε). (1.13a)

where α0 = 〈v〉 and

r(n) =

⌊N/2⌋
∑

m=1

αmrm(n) +

⌊(N−1)/2⌋
∑

m=1

α̃m r̃m(n), (1.13b)

with αm, α̃m as in (1.12) and rm(n), r̃m(n) defined by

rm(n) :=
cos
(

4a(n) sin mπ
N − π

4

)

√

2πa(n) sin mπ
N

cos
(

2mπn
N + 2a(n)δa(n) sin 2mπ

N

)

, (1.13c)

r̃m(n) :=
cos
(

4a(n) sin mπ
N − π

4

)

√

2πa(n) sin mπ
N

sin
(

2mπn
N + 2a(n)δa(n) sin 2mπ

N

)

. (1.13d)
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Remark. For N = 2, the expression of r(n) reduces to

r(n) = ρ r1(n) = (−1)nρ
cos(4a(n)− π

4 )
√

2πa(n)
.

Moreover, in the case of the quantum Rabi model, a(n) = a1
√
n, hence a(n− 1)2 − a(n)2 = −a21.

Then, (1.13) becomes the asymptotic formula (1.4) in Theorem 1.1.

Assumption. Further on, we make the assumption

〈v〉 = α0 = 0. (1.14)

Indeed, since λn(J) = α0 + λn(J − α0I) it suffices to prove Theorem 1.2 for J − α0I.

1.4. Plan of the paper. As in [5] the main ingredient of our approach is a trace estimate
(Proposition 2.4). In Section 2 we show the implication

Propositions 2.1 & 2.3

Propositions 2.4 & 2.5

Lemmas 2.2 & 2.7











=⇒ Theorems 1.1 & 1.2. (1.15)

Section 2 gives the proofs of Propositions 2.1, 2.3, and 2.5, and of Lemma 2.7. Notice that Propo-
sition 2.5 was proved in [5] and Propositions 2.1 and 2.3 were proved in [5] under Assumptions
(H1) and (H2). Thus, it remains to prove Lemma 2.2 and the trace estimate from Proposition
2.4.

The proof of Lemma 2.2 under Assumption (H0) is given in Section 3. The proof of Lemma 2.2
under Assumptions (H1) and (H2) is given in Section 8.2.

The remaining part of the paper is devoted to the proof of the trace estimate (Proposition 2.4).
This result is a refinement of a less precise trace estimate [5, Proposition 5.2] and is obtained
from the analysis of a suitable evolution t→ Un(t) based on Fourier transform, as in [5, Section
6]. This reduction is presented in Section 4 where we give details which are more involved than
in [5]. More precisely, in Section 4 we state Proposition 4.1 which gives O(n−γ+ε) estimates
for the diagonal entries from the Neumann series expansion of t → Un(t) and we show that
Proposition 4.1 implies Proposition 2.4. The proof of Proposition 4.1 is given in Section 7 and
is based on approximations by oscillatory integrals (Lemma 6.1). In Section 8 we observe that
the construction of these approximations was already made in [5, Section 10] and give the proof
of the regularity properties claimed in Lemma 6.1.

Concerning the proof of Proposition 4.1 we observe that the principal difficulty consists in
the control of oscillatory integrals with phase functions depending on parameters. In particular
these phase functions can be identically zero for some values of the parameters but an additional
integration allows us to neglect the contribution of these bad cases. More precisely the phase
functions appear with a large parameter proportional to nγ (see Section 6.2.1) and the results
of [5] were based on the fact that the decay of the corresponding oscillatory integrals is of order
n−γ/2. To obtain the results described in this paper we apply the formula of the asymptotic
expansion for oscillatory integrals stated in Lemma 3.1. In Section 7 we investigate the special
structure of the main term (of order n−γ/2) and error terms (of order n−γ) and we manage to
control their dependence on parameters by using an auxiliary estimate proved in Section 5.

1.5. Notations. Throughout the paper, we use the following notations:

• B(H) is the algebra of linear bounded operators on a Hilbert space H.
• N = {0, 1, . . .} is the set of non-negative integers, N∗ = {1, 2, . . .} is the set of positive integers.
• l2(Z) is the Hilbert space of square-summable complex sequences x : Z → C equipped with the

scalar product 〈x, y〉 =∑k∈Z
x(k)y(k) and with the norm ‖x‖l2(Z) :=

√

〈x, x〉.
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• {ek}k∈Z is the canonical basis of l2(Z), i.e., ek(j) = δk,j .
• H(j, k) := 〈ej , Hek〉, j, k ∈ Z denote the matrix elements of an operator H acting on l2(Z) and

defined on its canonical basis.
• l2(N∗) is the Hilbert space of square-summable complex sequences x : N∗ → C equipped with

the scalar product 〈x, y〉 =
∑

k∈N∗ x(k)y(k) and the norm ‖x‖l2(N∗) :=
√

〈x, x〉. It can be

identified with the closed subspace of l2(Z) generated by {en}n∈N∗ , i.e., with the subspace
defined by the conditions x(k) = 0 for any k ≤ 0.

We use specific notations for some operators acting on l2(Z):

• The shift S ∈ B(l2(Z)) is defined by (Sx)(k) = x(k − 1), k ∈ Z. Thus, Sek = ek+1.
• Λ acts on l2(Z) by (Λx)(k) = kx(k), k ∈ Z for any x such that (kx(k))k∈Z ∈ l2(Z).
• For any q : Z → C we define the linear operator q(Λ) by functional calculus, i.e., q(Λ) is the

closed operator acting on l2(Z) and characterized by q(Λ)ek = q(k)ek, k ∈ Z.
• If L is a self-adjoint operator which is bounded from below with compact resolvent its spectrum

is discrete and we denote

λ1(L) ≤ · · · ≤ λk(L) ≤ λk+1(L) ≤ . . .

its eigenvalues, enumerated in non-decreasing order, counting multiplicities.

Finally, we also use the following notations:

• S(R) denotes the Schwartz class of rapidly decreasing functions χ : R → C.
• The Fourier transform χ̂ of a function χ ∈ S(R) is defined by

χ̂(t) :=

∫ ∞

−∞
χ(λ)e−itλ dλ

2π
.

• T denotes the unit circle {z ∈ C : |z| = 1}.
• τω : T → T, where ω ∈ R denotes the translation eiξ 7→ ei(ξ−ω).
• Cm(T), m = 0, 1, 2, . . . is the space of functions b : T → C of class Cm equipped with the norm

‖b‖Cm(T) := max
0≤k≤m

sup
ξ∈R

∣

∣∂kξ b(e
iξ)
∣

∣.

Throughout the paper n ∈ N∗ is the large parameter involved in the asymptotics (1.4a) or
(1.13a). All error estimates are considered with respect to n ∈ N∗ and some statements will be
established only for n ≥ n0, for some large enough constant n0.

2. Scheme of the proof of Theorems 1.1 and 1.2

2.1. Plan of Section 2. In Section 2.2 we introduce auxiliary operators Jn, Ṽn, and Ln and
state Propositions 2.1 and 2.3 ensuring that λn(J) is well approximated for large n by suitable
eigenvalues of Jn and Ln. Moreover, we state Lemma 2.2 which gives the asymptotics of the
n-th diagonal entry of Ṽn. In Section 2.3 we first state Proposition 2.4 which gives a trace
estimate for Ln. To derive from this estimate the asymptotic behavior of eigenvalues of Ln we
prove Lemma 2.7 which allows us to apply Proposition 2.5. Finally in Section 2.4 we check the
implication (1.15).

Remark. Proposition 2.5 was already proved in [5]. Propositions 2.1 and 2.3 were proved in [5]
under assumptions (H1) and (H2). Lemma 2.7 is proved in Section 2.3.3. Lemma 2.2 is proved in
Section 3 under assumption (H0) and in Section 8 under assumptions (H1) and (H2). Sections 4,
5, 6, and 7 are devoted to the proof of Proposition 2.4 (trace estimate).

2.2. Auxiliary operators Jn, Ṽn, and Ln.
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2.2.1. Cut-off function. These operators were already introduced in [5]. Their definition depends
on the choice of a cut-off function θ0 ∈ C∞(R) such that











θ0(t) = 1 if |t| ≤ 1
6 ,

θ0(t) = 0 if |t| ≥ 1
5 ,

0 ≤ θ0(t) ≤ 1 otherwise.

(2.1a)

From now on such a cut-off is fixed and for any τ > 0 we denote

θτ,n(s) := θ0

(

s− n

τ

)

. (2.1b)

Finally we define vn, an : Z → R by

vn(k) := v(k)θn,n(k)
2, (2.2a)

an(k) := (a(n) + (k − n)δa(n)) θ2n,n(k). (2.2b)

2.2.2. Operators Jn. As in [5, Section 2.2] we define the self-adjoint operator Jn on l2(Z) by

(Jnx)(k) = (k + vn(k))x(k) + an(k)x(k + 1) + an(k − 1)x(k − 1) (2.3a)

for any x such that (kx(k))k∈Z ∈ l2(Z). Using notations of Section 1.5 we can write

Jn = Λ + vn(Λ) + an(Λ)S
−1 + San(Λ), (2.3b)

to compare with the similar expression for J . Each operator Jn is a finite rank perturbation of
Λ, hence its spectrum σ(Jn) is discrete and can be written

σ(Jn) = {λk(Jn)}k∈Z (2.4)

where (λk(Jn))k∈Z denotes the non-decreasing sequence of eigenvalues of Jn counted with their
multiplicities, well labeled up to translation.

Proposition 2.1. Let J and Jn be defined by (1.3) and (2.3), respectively. Assume we are in
one of the following two cases:

(a) (H0) is satisfied.
(b) (H1) for some 0 < γ ≤ 1

2 and (H2) are satisfied.

Let n0 ∈ N be large enough. Then, for any n ≥ n0 we can enumerate the eigenvalues of Jn as in
(2.4) so that we have the large n estimate

λn(J) = λn(Jn) + O(n3γ−2), (2.5)

where γ = 1
2 in case (a).

Proof. Case (b) is already proven in [5, Proposition 12.1]. Case (a) requires a new proof, since
in that case there is no restriction on ρN = |ρ|.

Let J+
n be the restriction of Jn to the subspace l2(N∗) which is invariant under Jn. The

operator J+
n is self-adjoint and bounded from below with compact resolvent. Its spectrum is

discrete: σ(J+
n ) = {λk(J+

n )}k≥1, where λ1(J
+
n ) ≤ · · · ≤ λk(J

+
n ) ≤ λk+1(J

+
n ) ≤ . . . denote its

eigenvalues, enumerated in non-decreasing order, counting multiplicities. Since Jnek = kek for
k ≤ 0 we can write

σ(Jn) = {k ∈ Z : k ≤ 0} ∪ σ(J+
n ) = {k ∈ Z : k ≤ 0} ∪ {λk(J+

n )}k≥1. (2.6)

Step 1. We will show the estimate

sup
n,k≥1

|λk(J+
n )− k| <∞. (2.7)
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Let J+
0,n denote the operator acting on l2(N∗) by

(J+
0,nx)(k) = kx(k) + an(k)x(k + 1) + an(k − 1)x(k − 1).

Since J+
n − J+

0,n = diag (vn(k))
∞
k=1 with |vn(k)| ≤ |ρ|, the min-max principle applies and gives

sup
n,k≥1

|λk(J+
n )− λk(J

+
0,n)| <∞. (2.8)

Hence, to get (2.7) it suffices to show

sup
n,k≥1

|λk(J+
0,n)− k| <∞. (2.9)

In [5, Proposition 3.1] we proved the large n estimate

sup
k∈N∗

|λk(J+
0,n)− ln(k)| = O(n3γ−2), (2.10)

where

ln(k) := k + an(k − 1)2 − an(k)
2, k ≥ 1. (2.11)

Hence, to obtain (2.9) it suffices to show

sup
n,k≥1

|ln(k)− k| <∞. (2.12)

To prove (2.12) we denote

a1,n(k) := ln(k)− k = an(k − 1)2 − an(k)
2. (2.13)

By estimate an(n− 1)2 − an(n)
2 = a(n− 1)2 − a(n)2 +O(n2γ−2) from [5, (2.5)] we get

ln(n) = n+ a(n− 1)2 − a(n)2 +O(n2γ−2).

In case (a), γ = 1
2 and a(n) = a1

√
n, and thus we obtain

a1,n(n) = ln(n)− n = −a21 +O(n−1). (2.14)

Moreover, in [5, Section 3.3] we proved the estimate

|δa1,n(k)| ≤ Cn−1, (2.15)

and thus

|a1,n(k)− a1,n(n)| ≤ |k − n|Cn−1, (2.16)

By definition, a1,n(k) = 0 for any k ≥ 2n, and (2.16) ensures

sup
n,k≥1

|a1,n(k)− a1,n(n)| <∞.

Using (2.14) which implies a1,n = O(1) we finally get (2.12):

sup
n,k≥1

|a1,n(k)| <∞.

Step 2. Now we will prove that

sup
n,k≥1

|λk(J̃+
n )− k| <∞. (2.17)

where the operator J̃+
n acts on l2(N∗) by

(J̃+
n x)(k) = dn(k)x(k) + ãn(k)x(k + 1) + ãn(k − 1)x(k − 1), (2.18a)

with

ãn(k) =

{

a(k) if n− C1(n+ 1)γ ≤ k ≤ n+ C1(n+ 1)γ ,

an(k) otherwise,
(2.18b)
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and with a large enough constant C1. Estimate [5, (12.8)] ensures that

sup
k∈N∗

|λk(J̃+
n )− λk(J

+
n )| = O(n3γ−2). (2.19)

Thus, (2.7) and (2.19) for γ = 1/2 give (2.17).

Step 3. Taking C1 > 3 in the definition (2.18) we have the property

n− 3nγ ≤ k ≤ n+ 3nγ =⇒ Jek = J̃+
n ek.

Then [5, Proposition 12.5] applies and for any ν > 0 there exists n(ν) such that the inequalities

card{k ∈ N
∗ : λ′ + λ−ν < λk(J̃

+
n ) ≤ λ− λ−ν} ≤ card{k ∈ N

∗ : λ′ < λk(J) ≤ λ}, (2.20a)

card{k ∈ N
∗ : λ′ < λk(J) ≤ λ} ≤ card{k ∈ N

∗ : λ′ − λ−ν < λk(J̃
+
n ) ≤ λ+ λ−ν}, (2.20b)

hold if n − 2nγ ≤ λ′ < λ ≤ n + 2nγ and n ≥ n(ν). Let {∆κ
n}n≥1, 0 < κ < 1 be the family of

intervals defined by

∆κ
n = (n− a21 − κ, n− a21 + κ].

Using (2.20a) with λ′ = n−a21− 3
4 , λ = n−a21+ 3

4 , and (2.20b) with λ′ = n−a21− 1
4 , λ = n−a21+ 1

4
we get that for some n0 and any n ≥ n0 we have the inequalities

card{k ∈ N
∗ : λk(J̃

+
n ) ∈ ∆1/2

n } ≤ card{k ∈ N
∗ : λk(J) ∈ ∆3/4

n }, (2.21a)

card{k ∈ N
∗ : λk(J̃

+
n ) ∈ ∆1/2

n } ≥ card{k ∈ N
∗ : λk(J) ∈ ∆1/4

n }. (2.21b)

Step 4. Yanovich estimate (1.5) gives λn(J) = n− a21 + o(1). Hence, for any 0 < κ < 1 and n(κ)
large enough

n ≥ n(κ) =⇒ σ(J) ∩∆κ
n = {λn(J)}. (2.22)

Thus we can find n1 ≥ n0 such that the right hand sides of (2.21) are both equal to 1 for n ≥ n1.
Hence, inequalities (2.21) imply

n ≥ n1 =⇒ card{k ∈ N
∗ : λk(J̃

+
n ) ∈ ∆1/2

n } = 1. (2.23)

Let k(n) = n+m(n), m(n) ∈ Z, n ≥ n1, be the unique k such that λk(J̃
+
n ) ∈ ∆

1/2
n :

n ≥ n1 =⇒ σ(J̃+
n ) ∩∆1/2

n = {λn+m(n)(J̃
+
n )}.

The eigenvalues λn+m(n)(J̃
+
n ) are of multiplicity one. Moreover, by (2.17) there exist ñ0, m0 ∈ N∗

large enough such that

n ≥ ñ0 =⇒ |m(n)| ≤ m0. (2.24)

Step 5. Using (2.20b) with λ′ = λn(J)− λn(J)
−ν , λ = λn(J) we find that, for any fixed ν > 0,

λn+m(n)(J̃
+
n ) = λn(J) + O(n−ν). (2.25)

Then, using (2.19) with γ = 1
2 and (2.25) with ν = 1

2 we get

λn+m(n)(J
+
n ) = λn(J) + O(n−1/2). (2.26)

Let n ≥ ñ1 with ñ1 large enough. Then, according to (2.6) and (2.24) we can label the eigenvalues
of Jn in nondecreasing order, counting multiplicity, so that

λn(Jn) = λn+m(n)(J
+
n ). (2.27)

The proof of (2.5) is then completed by combining (2.26) with (2.27). �
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2.2.3. Operators Ṽn. As in [5, Section 5.2] we define self-adjoint operators Bn, Ṽn ∈ B(l2(Z)) by

Bn := i
(

an(Λ)S
−1 − San(Λ)

)

, (2.28a)

Ṽn := eiBnvn(Λ)e
−iBn , (2.28b)

where {an(k)}k∈Z and {vn(k)}k∈Z are defined in (2.2), and we denote by {gn(k)}k∈Z the sequence

of diagonal entries of Ṽn:

gn(k) := Ṽn(k, k). (2.29)

Notice that Ṽn and gn depend on both sequences {a(k)}∞k=1, {v(k)}∞k=1, and on the cut-off θ0.

Lemma 2.2. Let Ṽn be defined by (2.28) and assume we are in one of the following two cases:

(a) (H0) is satisfied.
(b) (H1) and (H2) with 〈v〉 = 0 are satisfied.

Then for any ε > 0 one has the large n asymptotics

gn(n) = r(n) + O(n−γ+ε). (2.30)

where r(n) is given by (1.4b) in case (a) and by (1.13b) in case (b).

Proof. See Section 3.3 for case (a) and Section 8.2 for case (b). �

2.2.4. Operators Ln. As in [5, Section 5.2] we introduce operators Ln acting on l2(Z) by

Ln := ln(Λ) + Ṽn, (2.31a)

where Ṽn is defined by (2.28) and ln(k) is as in (2.11):

ln(k) := k + an(k − 1)2 − an(k)
2. (2.31b)

Since ln(Λ) is a diagonal operator with discrete spectrum and Ṽn is bounded, the spectrum of
Ln is discrete and can be written

σ(Ln) = {λk(Ln)}k∈Z (2.32)

where (λk(Ln))
∞
k∈Z

denotes the non-decreasing sequence of eigenvalues of Ln counted with their

multiplicities, well-labeled up to translation. Moreover, the subspace l2(N∗) is invariant by Bn,

hence by Ṽn and Ln, and Lnek = kek if k ≤ 0.

Proposition 2.3. Let Jn and Ln be defined by (2.3) and (2.31), respectively. We assume we
are in one of the following two cases:

(a) (H0) is satisfied.
(b) (H1) for some 0 < γ ≤ 1

2 and (H2) are satisfied.

Then, the eigenvalues of Ln can be enumerated in nondecreasing order, counting multiplicity, so
that one has the large n estimate

λn(Jn) = λn(Ln) + O(n3γ−2), (2.33)

where γ = 1
2 in case (a).

Proof. We indeed have ‖Jn − Ln‖ = O(n3γ−2), see [5, proof of Proposition 5.1]. Hence, we can
enumerate the eigenvalues of Ln in (2.32) so that

sup
k∈Z

|λk(Jn)− λk(Ln)| = O(n3γ−2). �

Summary. In both cases (a) and (b), Propositions 2.1 and 2.3 imply the large n estimate λn(J) =
λn(Ln) + O(n3γ−2). Since γ ≤ 1

2 we also get

λn(J) = λn(Ln) + O(n−γ). (2.34)
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2.3. Trace estimate and its consequences.

2.3.1. The trace estimate. Further on we denote

l̃n(k) := ln(k) + gn(k) (2.35)

where ln and gn are given by (2.31b) and (2.29), respectively. Then, for χ ∈ S(R) we consider

G̃0
n :=

∑

j∈Z

(

χ
(

λn+j(Ln)− ln(n)
)

− χ
(

l̃n(n+ j)− ln(n)
)

)

(2.36a)

with Ln as in (2.31a). Writing k = j + n in (2.36a) we get the expression

G̃0
n =

∑

k∈Z

(

χ(λk(Ln)− ln(n))− χ(l̃n(k)− ln(n))
)

. (2.36b)

Introducing the diagonal operators

L0,n := ln(Λ), (2.37a)

L̃0,n := l̃n(Λ) = L0,n + gn(Λ) (2.37b)

we see that the r.h.s. of (2.36b) is the trace of an operator:

G̃0
n = tr

(

χ(Ln − ln(n))− χ(L̃0,n − ln(n))
)

. (2.38)

Notice that G̃0
n depends on χ ∈ S(R). It also depends on {a(k)}∞k=1, {v(k)}∞k=1, and θ0.

Warning. This trace G̃0
n differs from the trace G0

n considered in [5, formulas (5.10)], that uses

L0,n instead of L̃0,n, and thus does not involve gn.

Proposition 2.4 (trace estimate). Let G̃0
n be the trace defined by (2.36a) under the additional

assumption that χ ∈ S(R) has Fourier transform with compact support. Then, under assumption
(H0) or assumptions (H1) and (H2) and for any ε > 0 one has the large n estimate

G̃0
n = O(n−γ+ε). (2.39)

Proof. See Section 4.3 where the proof is reduced to that of Proposition 4.1. See also Section 7
where the proof of Proposition 4.1 is given. �

2.3.2. Comparison of the asymptotic behavior of two sequences. As before (ln(k))k∈Z is defined
by (2.31b) where (an(k))k∈Z is given by (2.2b) under assumption (H1).

Proposition 2.5. Let (ln(k))k∈Z be defined by (2.31b) under assumption(H1) for some 0 < γ ≤
1
2 . For each j ∈ Z let (r0n(j))

∞
n=1 and (r1n(j))

∞
n=1 be real valued sequences such that

sup
j∈Z, n≥1

(

|r0n(j)|+ |r1n(j)|
)

<∞.

Assume they also satisfy

sup
|j|≤nγ0

|rin(j +N)− rin(j)| ≤ Cnγ−1 (i = 0, 1), (2.40a)

sup
n>n0

sup
|j|≤nγ0

(

|r0n(j)|+ |r1n(j)|
)

≤ ρ′ (2.40b)

for some γ0 > 0, n0 ∈ N, and ρ′ > 0 such that

ρ′ <

{

1
2 when N = 2,

1
π
√
N

when N ≥ 3.
(2.41)
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Assume moreover that for some ε > 0
∑

j∈Z

(

χ(ln(n+ j) + r1n(j)− ln(n))− χ(ln(n+ j) + r0n(j)− ln(n))
)

= O(n−γ+ε) (2.42)

holds for any χ ∈ S(R) whose Fourier transform has compact support. Then

r1n(0) = r0n(0) + O(n−γ+ε). (2.43)

Proof. It suffices to adapt the proof of [5, Proposition 11.1] as follows. Remove the first two lines,
define Gχn as the l.h.s. of (2.42) and replace the error terms O(n−γ/2 lnn) by O(n−γ+ε). �

2.3.3. Application of Proposition 2.5. We will apply Proposition 2.5 to the case where the two
sequences (r0n(j))

∞
n=1 and (r1n(j))

∞
n=1 are given by

r0n(j) := gn(n+ j), (2.44a)

r1n(j) := λn+j(Ln)− ln(n+ j). (2.44b)

Proposition 2.6. Let Ln and l̃n(k) be given by (2.31a) and (2.35), respectively. We assume we
are in one of the following two cases:

(a) (H0) is satisfied, γ = 1
2 .

(b) (H1) for some 0 < γ ≤ 1
2 and (H2) are satisfied.

Then, for any ε > 0 one has the large n estimate

λn(Ln) = l̃n(n) + O(n−γ+ε). (2.45)

Proof. We first show that Proposition 2.5 applies to the case where r0n and r1n are given by (2.44).

In this case the l.h.s. of (2.42) is G̃0
n as defined by (2.36a) and thus the trace estimate (2.39) in

Proposition 2.4 says that assumption (2.42) is satisfied for any ε > 0 and any χ ∈ S(R) whose
Fourier transform has compact support. That the conditions (2.40) are also satisfied is proven in
Lemma 2.7 below. Thus, Proposition 2.5 applies and the assertion (2.43) is exactly (2.45) since

in that case r1n(0)− r0n(0) = λn(Ln)− l̃n(n). �

Lemma 2.7. The sequences r0n and r1n given by (2.44) satisfy the conditions (2.40) in each of
the following two cases:

(a) (H0) is satisfied, N = 2, γ = 1
2 , γ0 = 1

4 , any 0 < ρ′ < 1
2 , and n0 ∈ N large enough.

(b) (H1) and (H2) are satisfied, 0 < γ ≤ 1
2 , γ0 = γ, any ρ′ > ρN satisfying (2.41), and n0 ∈ N

large enough.

Proof. We first prove (2.40b).

Step 1 (estimate of r0n(j) in cases (a) and (b)). First note that r0n(j) = gn(n+ j). Then, taking
t1 = 0 and j + n instead of j in [5, Lemma 6.3 (i)] we get

sup
|j|≤nγ

|r0n(j)| = sup
|j|≤nγ

|gn(n+ j)| = O(n−γ/2). (2.46)

We indeed have the relation g1,n,j(0) = ign(j) with g1,n,j defined in [5, (6.16)].

Step 2 (estimate of r1n(j) in case (a)). It suffices to show

sup
|j|≤n1/4

|r1n(j)| = O(n−1/16). (2.47)

To obtain (2.47) we introduce the quantity

r̃1n(j) := λn+j(J)− (n+ j − a21) (2.48)



OSCILLATORY BEHAVIOR OF LARGE EIGENVALUES IN QUANTUM RABI MODELS 13

and observe that the Yanovich estimate (1.5) ensures

sup
|j|≤n1/4

|r̃1n(j)| = O(n−1/16). (2.49)

Due to (2.49) to complete the proof of (2.47) it suffices to show the estimate

sup
|j|≤n1/4

|r1n(j)− r̃1n(j)| = O(n−1/2). (2.50)

In order to get (2.50) we first show the estimate

sup
|j|≤n1/4

|λn(J)− λn(Jn−j)| = O(n−1/2). (2.51)

For this purpose we observe that the proof given in [5, Section 12.5] still holds if J̃+
n is replaced

by J̃+
n−j with |j| ≤ n1/4 and all estimates are uniform with respect to j. Hence we can replace

Jn by Jn−j in (2.5), and (2.51) is proved. Moreover, replacing n by n+ j we can write (2.51) in
the form

sup
|j|≤n1/4

|λn+j(J)− λn+j(Jn)| = O(n−1/2). (2.52)

Then we complete the proof of (2.50) by showing

sup
|j|≤n1/4

|ln(n+ j)− (n+ j − a21)| = O(n−3/4). (2.53)

In order to show (2.53) we consider a1,n(k) = ln(k)− k as in (2.13). Using (2.15) we get

|ln(n+ j)− ln(n)− j| = |a1,n(n+ j)− a1,n(n)| ≤ |j|Cn−1,

hence

sup
|j|≤n1/4

|ln(n+ j)− ln(n)− j| = O(n−3/4),

and (2.53) follows by using (2.14) in the last estimate.

Step 3 (estimate of r1n(j) in case (b)). In [5, Section 11.3] where r1n is denoted by rn (see
[5, (11.16)]) we have shown the estimate

sup
j∈Z

|r1n(j)| ≤ ρN + C1n
3γ−2. (2.54)

We indeed have the relation g1,n,j(0) = ign(j) with g1,n,j defined in [5, (6.16)]. Using (2.54), (2.46)

and taking γ0 = γ we can estimate the l.h.s. of (2.40b) by ρN + C1n
3γ−2 + C2n

−γ/2. Moreover,
by assumption (H2c) on ρN we can choose ρ′ > ρN satisfying (2.41). We conclude that (2.40b)

holds if n0 satisfies C1n
3γ−2
0 + C2n

−γ/2
0 ≤ ρ′ − ρN , and that is possible since 0 < γ < 2

3 .

We now prove (2.40a).

Step 4 (proof of (2.40a) for i = 0). Since gn(k +N) = 〈ek, S−N ṼnSNek〉 it suffices to prove

‖S−N ṼnS
N − Ṽn‖ = O(nγ−1). (2.55)

In order to show (2.55) we first observe that S−Nv(Λ)SN = v(Λ+N) = v(Λ) and ‖S−Nθn,n(Λ)SN−
θn,n(Λ)‖ = ‖θ0((Λ +N)/n− I)− θ0(Λ/n− I)‖ = O(n−1) ensure

‖S−Nvn(Λ)S
N − vn(Λ)‖ = O(nγ−1). (2.56)

Similarly, ‖S−Nan(Λ)SN − an(Λ)‖ = ‖an(Λ +N)− an(Λ)‖ = O(nγ−1) implies

‖S−Ne±iBnSN − e±iBn‖ = O(nγ−1) (2.57)

and (2.55) follows from (2.56) and (2.57).
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Step 5 (proof of (2.40a) for i = 1 in case (b)). In [5, Section 11.3] where r1n is denoted by rn we
already checked that (2.40a) holds for i = 1.

Step 6 (proof of (2.40a) for i = 1 in case (a)). We observe that if 0 < κ < 1 then combining
(2.22) and (2.52) we can choose nκ large enough to ensure

n ≥ nκ and |j| ≤ n1/4 =⇒ σ(Jn) ∩ (n+ j − a21 − κ, n+ j − a21 + κ] = {λn+j(Jn)} (2.58)

and (2.58) allows us to obtain (2.40a) for i = 1 following the proof given in [5, Section 11.3]. �

2.4. Proof of Theorems 1.1 and 1.2. Recall that Propositions 2.1 and 2.3 give the large n
estimate λn(J) = λn(Ln) + O(n−γ). Combining this estimate (2.34) with estimate (2.45) of
λn(Ln) in Proposition 2.6 we obtain

λn(J) = l̃n(n) + O(n−γ+ε) (2.59)

for any ε > 0. The desired estimates (1.4a) and (1.13a) follow from (2.59), using the estimate
(2.30) of gn(n), and from

ln(n)− n = an(n− 1)2 − an(n)
2 = a(n− 1)2 − a(n)2 +O(n2γ−2)

whose last estimate comes from [5, Section 2.3, (2.5)]. �

3. Proof of Lemma 2.2 (a)

In section 3.1 we prove a stationary phase formula for some type of oscillatory integral (Lemma
3.1). Then we assume that the diagonal and off-diagonal entries of J satisfy (H1) and d(k) =
k + v(k) with v(k) = (−1)kρ. In section 3.2 we prove an approximation result of gn(n) by
an oscillatory integral of the above type (Lemma 3.2). Finally, in section 3.3 we derive the
asymptotics (2.30) of gn(n):

Lemma 3.1

Lemma 3.2

}

=⇒ Lemma 2.2 (a).

3.1. Stationary phase formula.

Lemma 3.1. For b ∈ C2(T), η0 ∈ R and µ > 0 we consider the oscillatory integral

I(b, µ, η0) :=

∫ 2π

0

eiµ cos(η−η0)b(eiη)
dη

2π
. (3.1)

If we write

I(b, µ, η0) =
∑

κ=±1

eiκ(µ−π/4)√
2πµ

b(κeiη0) + rb(µ, η0) (3.2a)

then the remainder rb(µ, η0) satisfies the estimate

|rb(µ, η0)| ≤
C0

µ
‖b‖C2(T) (3.2b)

for some constant C0.

Proof. Let χ ∈ C∞(T) be such that χ(ei(ξ+η0)) = 1 if |ξ| ≤ π/4 and χ(ei(ξ+η0)) = 0 if 3π/4 ≤
|ξ| ≤ 5π/4. Since the integrands are 2π-periodic the change of variable η = ξ + η0 gives

I(χb, µ, η0) =

∫ 2π

0

eiµ cos ξ(χb)(ei(ξ+η0))
dξ

2π
.

Denoting b+(ξ) := b(ei(ξ+η0)) and χ+(ξ) := χ(ei(ξ+η0)), we can express

I(χb, µ, η0) =

∫ π

−π
eiµ cos ξ(χ+b+)(ξ)

dξ

2π
.
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Let b−(ξ) := b(ei(ξ+η0−π)) and χ−(ξ) := 1 − χ(ei(ξ+η0−π)). We still have χ−(ξ) = 1 if |ξ| ≤ π/4
and χ−(ξ) = 0 if 3π/4 ≤ |ξ| ≤ 5π/4. Then the change of variable η = ξ + η0 − π gives

I((1− χ)b, µ, η0) =

∫ π

−π
e−iµ cos ξ(χ−b−)(ξ)

dξ

2π
.

We have [−π, π] ∩ suppχ± ⊂ [− 3π
4 ,

3π
4 ]. Next we observe that |ξ| ≤ 3π/4 allows us to write

b±(ξ) = b±(0) + q±(ξ)ξ = b±(0) + q̃±(ξ) sin ξ

with q̃±(ξ) := q±(ξ)
ξ

sin ξ . Moreover, χ±(0) = 1 and the standard stationary phase formula ensures
∣

∣

∣

∣

∫ π

−π
e±iµ cos ξχ±(ξ)b±(0) dξ −

e±i(µ−π/4)
√
2πµ

b±(0)

∣

∣

∣

∣

≤ Cχ±

µ
|b±(0)|.

Then writing e±iµ cos ξ sin ξ = ±i
µ ∂ξe

±iµ cos ξ and integrating by parts we obtain
∫ π

−π
q̃±(ξ) sin ξe

±iµ cos(ξ)χ±(ξ) dξ =
±i

µ

∫ π

−π
e±iµ cos ξ∂ξ

(

(q̃±χ±)(ξ)
)

dξ . (3.3)

Since the absolute value of the right hand side of (3.3) can be estimated by C1

µ ‖b±‖C2(R) the

proof is complete. �

3.2. Approximation of gn(n) by an oscillatory integral. Recall that gn(k), k ∈ Z is defined

in (2.29) as the k-th diagonal entry of Ṽn := eiBnvn(Λ)e
−iBn . We define ϕ̃n : Z× T → C by

ϕ̃n(k, e
iξ) := −4 (a(n) + (k − n)δa(n)) (sin ξ + δa(n) sin 2ξ) (3.4)

Lemma 3.2. We assume that the diagonal entries of J are of the form d(k) = k + (−1)kρ and
the off-diagonal entries a(k) satisfy (H1) for some 0 < γ ≤ 1

2 . Let gn(k), k ∈ Z be defined by
(2.29). If gn(k), k ∈ Z is defined by

gn(k) := (−1)kρ

∫ 2π

0

eiϕ̃n(k,e
iξ) dξ

2π
, (3.5a)

with ϕ̃n as above, then

sup
|k−n|≤nγ

|gn(k)− gn(k)| = O(n−γ lnn). (3.5b)

Proof. As in [5] we denote

Θn := θn,n(Λ) = θ0(Λ/n− I).

Then it is easy to check the estimate ‖[Bn,Θn]‖ = O(nγ−1). Writing

[e±iBn ,Θn] =

∫ 1

0

e±itBn [±iBn,Θn] e
±i(1−t)Bndt

we deduce

‖[e±iBn ,Θn]‖ = O(nγ−1). (3.6)

We recall that Ṽn = eiBnΘnv(Λ)Θne
−iBn and observe that (3.6) ensures

‖Ṽn −Θne
iBnv(Λ)e−iBnΘn‖ = O(nγ−1). (3.7)

Further on we assume that |k − n| ≤ nγ . Using v(Λ) = ρ eiπΛ and (3.7) we obtain

gn(k) = ρ 〈ek, eiBneiπΛe−iBnek〉+O(nγ−1). (3.8)

However, eiπΛS±1e−iπΛ = −S±1 implies eiπΛBne
−iπΛ = −Bn, hence

eiBneiπΛ = eiπΛe−iBn . (3.9)
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Using (3.8) and (3.9) we obtain

gn(k) = ρeiπk 〈ek, e−2iBnek〉+O(nγ−1)

Let Qtn be the operators introduced in [5, proof of Proposition 8.1]. For t ∈ [−2, 2] and k ∈ N
∗

we have

|〈ek,ΘneitBnek〉 − 〈ek, Qtnek〉| ≤ ‖ΘneitBn −Qtn‖ ≤ Cnγ−1 lnn. (3.10)

Moreover,

Qtn(k, k) = θn(k)

∫ 2π

0

eiψ̃
t
n(k,e

iξ) dξ

2π
(3.11)

where ψ̃tn is given by [5, (8.5a)]. Observe now that ϕ̃n given by (3.4) coincides with ψ̃tn for t = −2.
Thus, to complete the proof of (3.5b) it suffices to use (3.10) and (3.11) with t = −2. �

3.3. End of the proof of Lemma 2.2 (a). By definitions (3.5a) and (3.4) we have

gn(n) = (−1)nρ

∫ 2π

0

e−4ia(n) sin ξ bn(e
iξ)

dξ

2π
,

where

bn(e
iξ) := e−4ia(n)δa(n) sin 2ξ.

Thus, using notation (3.1) we can write

gn(n) = (−1)nρ I(bn, 4a(n),−π/2).
By (H1a) and (H1b) with 0 < γ ≤ 1

2 we have ‖bn‖C2(T) = O(1). We also have O(a(n)−1) =

O(n−γ) by (H1a) and bn(±e−iπ/2) = 1. Then the stationary phase formula of Lemma 3.1 gives

gn(n) = (−1)nρ
∑

κ=±1

eiκ(4a(n)−π/4)

2
√

2πa(n)
bn(κe

−iπ/2) + O(a(n)−1)

= (−1)nρ
cos(4a(n)− π/4)

√

2πa(n)
+ O(n−γ)

= r(n) + O(n−γ)

with r(n) as in (1.4b). This estimate, together with the estimate

|gn(n)− gn(n)| = O(n−γ lnn)

from Lemma 3.2, gives gn(n) = r(n) + O(n−γ+ε) for any ε > 0, i.e. estimate (2.30), in case
(a). �

4. Trace estimate: a first reduction

In this section we reduce the proof of Proposition 2.4 to that of Proposition 4.1 using the
representation of functions of operators by means of Fourier transform. This representation
allows us to investigate the quantity G̃0

n using the Neumann series of

Un(t) := e−itln(Λ)eitLn (t ∈ R). (4.1)

The proof of this reduction is based on Lemma 4.2 which develops our ideas from [5, Section 6]
and allows us to conclude in Section 4.3:

Proposition 4.1

Lemma 4.2

}

=⇒ Proposition 2.4.
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4.1. Properties of the evolution Un(t). Using (4.1) and Ln − ln(Λ) = Ln − L0,n = Ṽn, we
get

−i ∂tUn(t) = Hn(t)Un(t)

where

Hn(t) := e−itL0,n Ṽne
itL0,n . (4.2)

The Neumann series gives the expansion

Un(t) = I + i

∫ t

0

Hn(t1) dt1 +
∞
∑

ν=2

iν
∫ t

0

dt1· · ·
∫ tν−1

0

Hn(t1) . . . Hn(tν) dtν .

For ν ≥ 1 and t = (t1, . . . , tν) ∈ Rν we denote

Hn(t) := Hn(t1) . . . Hn(tν)

and

gν,n,j(t) := iνHn(t)(j, j). (4.3)

Note that 〈ej , Hn(t)ej〉 = 〈eitL0,nej , Ṽne
itL0,nej〉 = 〈eitln(j)ej , Ṽneitln(j)ej〉 = 〈ej , Ṽnej〉, i.e.

Hn(t)(j, j) = gn(j). (4.4)

For t ∈ R we denote

un,j(t) := Un(t)(j, j). (4.5)

Then, using (4.4), we get the expansion

∂tun,j(t) = ign(j) +

∞
∑

ν=2

uν,n,j(t), (4.6)

where

u2,n,j(t) := −
∫ t

0

〈ej , Hn(t)Hn(t2)ej〉dt2,

uν,n,j(t) := iν
∫ t

0

dt2· · ·
∫ tν−1

0

〈ej , Hn(t)Hn(t2) . . . Hn(tν)ej〉dtν for ν ≥ 3.

Proposition 4.1. Let t0 > 0 and ε > 0.
(a) We can find C > 0 such that

sup
|j−n|≤nγ

−t0≤t≤t0

|u2,n,j(t)| ≤ Cn−γ+5ε. (4.7a)

(b) If ε < 1/8, then we can find C̃ > 0 such that the estimate

sup
|j−n|≤nγ

∫ t0

−t0
dtν−1

∣

∣

∣

∣

∫ tν−1

0

〈ej , Hn(t1) . . . Hn(tν)ej〉dtν
∣

∣

∣

∣

≤ C̃νn−γ+5ε (4.7b)

holds whenever 3 ≤ ν ≤ nε and t1, . . . , tν−2 ∈ [−t0, t0].

Proof. See Section 7. �

Remark. In [5, estimate (6.17b)] the constant in the right hand side should be Cν instead of C.
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4.2. Use of the Fourier transform. In this section we prove the desired trace estimate pro-
vided assumption (4.8) is satisfied, and in the next section we show that Proposition 4.1 precisely
implies this assumption.

Lemma 4.2. Let gn be defined by (2.29) and un,j by (4.5). Let ε > 0 be fixed and assume that
for every t0 > 0 one has the estimate

sup
|j−n|≤nγ

−t0≤t≤t0

|∂tun,j(t)− ign(j)| = O(n−γ+5ε). (4.8)

Let G̃0
n be defined by (2.36a) by means of a function χ ∈ S(R) whose Fourier transform has

compact support. We have then the estimate

G̃0
n = O(n−γ+6ε). (4.9)

Proof. It consists in four steps.

Step 1. Let θ0 be as in (2.1a) and θnγ ,n(s) := θ0(
s−n
nγ ) according to (2.1b). We claim that

‖(I − θnγ ,n(L̃0,n))χ(Ln − ln(n))‖B1(l2(Z)) = O(n−γ), (4.10a)

‖(I − θnγ ,n(L̃0,n))χ(L̃0,n − ln(n))‖B1(l2(Z)) = O(n−γ), (4.10b)

where ‖T ‖B1(l2(Z)) = tr
√
T ∗T is the trace class norm on the algebra B1(l

2(Z)) of trace class

operators on l2(Z). It suffices to apply [5, Proof of Lemma 6.1] with L̃0,n instead of L0,n.

Step 2. The assertions (4.10) of Step 1 ensure that

G̃0
n − G̃n = O(n−γ) (4.11)

holds with

G̃n := tr
(

θnγ ,n(L̃0,n)
(

χ(Ln − ln(n))− χ(L̃0,n − ln(n))
)

)

.

Thus it remains to prove G̃n = O(n−γ+6ε).

Step 3. Let t0 > 0 be such that supp χ̂ ⊂ [−t0, t0]. Then the inverse Fourier formula

χ(λ) =

∫ ∞

−∞
χ̂(t)eitλdt =

∫ t0

−t0
χ̂(t)eitλdt

allows us to express

χ(Ln − ln(n))− χ(L̃0,n − ln(n)) =

∫ t0

−t0
χ̂(t) e−itln(n)

(

eitLn − eitL̃0,n
)

dt

and

G̃n =

∫ t0

−t0
χ̂(t) e−itln(n) tr

(

θnγ ,n(L̃0,n)e
itL0,n(Un(t)− eitgn(Λ))

)

dt.

We thus have G̃n =
∑

j∈Z
G̃n(j) with

G̃n(j) :=
∫ t0

−t0
χ̂(t) eit/2 eit(ln(j)−ln(n)−1/2)θnγ ,n(l̃n(j))

(

un,j(t)− eitgn(j)
)

dt.

Integrating by parts as in [5, Section 6.3] we find

G̃n(j) = iG̃1,n(j) + iG̃2,n(j)
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with

G̃1,n(j) =

∫ t0

−t0
χ̂(t) eit(ln(j)−ln(n)) θnγ ,n(l̃n(j))

ln(j)− ln(n)− 1
2

∂t
(

un,j(t)− eitgn(j)
)

dt,

G̃2,n(j) =

∫ t0

−t0
∂t
(

χ̂(t) eit/2
)

eit(ln(j)−ln(n)−1/2) θnγ ,n(l̃n(j))

ln(j)− ln(n)− 1
2

(

un,j(t)− eitgn(j)
)

dt

and we can estimate

|G̃1,n(j)| ≤ C
θnγ ,n(l̃n(j))

1 + |j − n| sup
−t0≤t≤t0

∣

∣

∣∂t

(

un,j(t)− eitgn(j)
)∣

∣

∣ ,

|G̃2,n(j)| ≤ C
θnγ ,n(l̃n(j))

1 + |j − n| sup
−t0≤t≤t0

∣

∣

∣un,j(t)− eitgn(j)
∣

∣

∣ .

Step 4 (last step). Since |l̃n(j) − j| ≤ C we can find n0 such that θnγ ,n(l̃n(j)) 6= 0 implies
|j − n| ≤ nγ for n ≥ n0. Combining this fact with

sup
−t0≤t≤t0

∣

∣

∣un,j(t)− eitgn(j)
∣

∣

∣ ≤ |t0| sup
−t0≤t≤t0

∣

∣

∣∂t

(

un,j(t)− eitgn(j)
)∣

∣

∣

we can estimate

|G̃n| ≤
∑

|j−n|≤nγ

C0

1 + |j − n| sup
−t0≤t≤t0

∣

∣

∣∂t

(

un,j(t)− eitgn(j)
)∣

∣

∣ . (4.12)

By (2.46) we have the estimate
∣

∣eitgn(j) − 1
∣

∣ ≤ |tgn(j)| ≤ C|t|n−γ/2 for |j − n| ≤ nγ , and thus

sup
|j−n|≤nγ

−t0≤t≤t0

∣

∣

∣∂te
itgn(j) − ign(j)

∣

∣

∣ = O(n−γ). (4.13)

Therefore combining assumption (4.8) with (4.13) we find

sup
|j−n|≤nγ

−t0≤t≤t0

∣

∣

∣∂t

(

un,j(t)− eitgn(j)
)∣

∣

∣ = O(n−γ+5ε). (4.14)

Using
∑

|k|≤nγ

1

1 + |k| ≤ 1 + 2 ln(n) = O(nε)

and (4.14) we can estimate the r.h.s. of (4.12) by O(n−γ+6ε), hence (4.9) follows from (4.11). �

4.3. Proof of Proposition 4.1 =⇒ Proposition 2.4. Since ε > 0 is arbitrary, it is clear that
it suffices to prove G̃0

n = O(n−γ+6ε) instead of (2.39). Thus by Lemma 4.2 it only remains to
check that the assertions of Proposition 4.1 imply estimate (4.8), i.e.,

sup
|j−n|≤nγ

−t0≤t≤t0

|∂tun,j(t)− ign(j)| = O(n−γ+5ε).

We first note that (4.6) and (4.4) give the expansion

∂tun,j(t)− ign(j) =

∞
∑

ν=2

uν,n,j(t). (4.15)

We then observe that (4.7b) for ν = 3 yields

sup
|j−n|≤nγ

−t0≤t≤t0

|u3,n,j(t)| ≤ C̃3n−γ+5ε. (4.16)
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For any 4 ≤ ν < nε and t ∈ [−t0, t0], estimate (4.7b) gives

sup
|j−n|≤nγ

|uν,n,j(t)| ≤ C̃νn−γ+5ε

∫

∆t

dt2· · ·
∫

∆tν−3

dtν−2 = C̃νn−γ+5ε |t|ν−3

(ν − 3)!
, (4.17)

where ∆t := [0, t] when t ≥ 0 and [t, 0] when t ≤ 0. Therefore, by using (4.7a), (4.16), and (4.17)
we get

sup
|j−n|≤nγ

−t0≤t≤t0

∑

2≤ν<nε

|uν,n,j(t)| ≤ Cn−γ+5ε +
∑

3≤ν<nε

C̃νtν−3
0 n−γ+5ε

(ν − 3)!
≤
(

C + C̃3eC̃t0
)

n−γ+5ε. (4.18a)

To complete the proof it remains to consider indices ν ≥ nε. We observe that ‖Hn(t)‖ = ‖Ṽn‖ =
‖Vn‖ ≤ ρN . Therefore,

|〈ej , Hn(t)Hn(t2) . . . Hn(tν)ej〉| ≤ ρνN

and

|uν,n,j(t)| ≤
∫

∆t

dt2· · ·
∫

∆tν−1

|〈ej , Hn(t)Hn(t2) . . . Hn(tν)ej〉| dtν ≤ ρνN
|t|ν−1

(ν − 1)!
.

We thus get

sup
|j−n|≤nγ

−t0≤t≤t0

∑

ν≥nε

|uν,n,j(t)| ≤
∑

ν≥nε

ρνN t
ν−1
0

(ν − 1)!
≤ ρNeρN t0(ρN t0)

⌊nε⌋−1

(⌊nε⌋ − 1)!
= O(n−m) (4.18b)

for any integer m. Estimates (4.18) with (4.15) show that assumption (4.8) in Lemma 4.2 is
valid. �

5. Estimate of some oscillatory integrals

5.1. Main result. In this section we consider oscillatory integrals of the following type:

J (b, t1, t2, ζ, µ) :=

∫ t2

t1

eiµ
√

4 sin2(t/2)+ζ2

(4 sin2(t/2) + ζ2)1/4
b(t) dt, (5.1)

where b ∈ C1(R), µ ∈ R∗, ζ ≥ 0 and t1 ≤ t2 are real numbers. Notice that in the case ζ = 0 the
function t→ |2 sin(t/2)|−1/2 is Lebesgue integrable on any bounded interval of R and so (5.1) is
still well defined.

Lemma 5.1. Let ∆0 ⊂ R be a bounded interval. Then there is a constant C∆0
> 0 such that

for any interval [t1, t2] ⊂ ∆0, µ ∈ R∗, ζ ≥ 0 and b ∈ C1(R) one has the estimate

|J (b, t1, t2, ζ, µ)| ≤ C∆0

1 +
√
ζ

√

|µ|
M(b, [t1, t2]), (5.2)

where for any bounded interval ∆ ⊂ R

M(b,∆) := sup
t∈∆

|b(t)|+
∫

∆

|b′(t)|dt. (5.3)

This lemma is used in the proof of Proposition 4.1. It serves in Section 7.3.4 to prove estimate
(7.19) of some oscillatory integral.

Proof. The proof is given in the next subsections. It is based on van der Corput lemma. �
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Lemma 5.2 (van der Corput). Assume that h0 : (t1, t2) → R is smooth and its second derivative
satisfies h′′0(t) ≥ c0 for t1 < t < t2 and some constant c0 > 0. Assume also that µ0 ∈ R

∗ and
b0 ∈ C1

(

(t1, t2)
)

, and consider the oscillatory integral

J(b0, t1, t2, h0, µ0) :=

∫ t2

t1

eiµ0h0(t)b0(t) dt. (5.4)

Then there is a constant C0 depending only on c0 such that we have the estimate

|J(b0, t1, t2, h0, µ0)| ≤
C0
√

|µ0|

(

|b0(t1)|+
∫ t2

t1

|b′0(t)| dt
)

≤ C0
√

|µ0|
M(b0, [t1, t2]).

Proof. See [18, Section VIII.1.2, p. 354]. �

5.2. Proof of Lemma 5.1 in case ∆0 = [0, 2π/3].

5.2.1. Change of variable. By our assumption [t1, t2] ⊂ [0, 2π/3] and the change of variable

t = 2 arcsin(s/2) (5.5)

parametrize [0, 2π/3] by s ∈ [0,
√
3]. If t ∈ [t1, t2] then s ∈ [s1, s2] where si := 2 sin(ti/2), i = 1, 2.

In particular,
√

4 sin2(t/2) + ζ2 =
√

s2 + ζ2 and the change of variable (5.5) gives

J (b, t1, t2, ζ, µ) = J1(b1, s1, s2, ζ, µ),

where

J1(b1, s1, s2, ζ, µ) :=

∫ s2

s1

eiµ
√
s2+ζ2

(s2 + ζ2)1/4
b1(s) ds

with

b1(s) :=
b(2 arcsin(s/2))
√

1− s2/4
.

Since there is a constant C0 such that M(b1, [s1, s2]) ≤ C0M(b, [t1, t2]), to get (5.2) for any
interval [t1, t2] ⊂ [0, 2π/3], µ ∈ R∗, ζ ≥ 0, and b ∈ C1([t1, t2]) it suffices to prove the following

Statement. There is a constant C > 0 such that for any µ ∈ R∗, ζ ≥ 0, [s1, s2] ⊂ [0,
√
3], and

b1 ∈ C1([s1, s2]) we have the estimate

|J1(b1, s1, s2, ζ, µ)| ≤
C
√

|µ|
M(b1, [s1, s2]). (5.6)

To prove this statement we distinguish three cases: ζ ≥ s2, ζ ≤ s1, and s1 ≤ ζ ≤ s2.

5.2.2. Proof of (5.6) in case ζ ≥ s2. Using the notations

h1(s, ζ) := ζ
√

ζ2 + s2

and (5.4) from Lemma 5.2 we can write

J1(b1, s1, s2, ζ, µ) =
√

ζ

∫ s2

s1

eiµζ
−1h1(s,ζ)h1(s, ζ)

−1/2b1(s) ds

=
√

ζ × J
(

b1h̃1( · , ζ), s1, s2, h1( · , ζ), µζ−1
)

where

h̃1(s, ζ) := h1(s, ζ)
−1/2 =

1√
ζ(ζ2 + s2)1/4

.

Next we observe that ζ ≥ s ensures

∂2sh1(s, ζ) =
ζ3

(s2 + ζ2)3/2
≥ ζ3

(2ζ2)3/2
= 2−3/2
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and thus we can apply Lemma 5.2. It gives the estimate

|J1(b1, s1, s2, ζ, µ)| ≤
C0ζ
√

|µ|
M
(

b1h̃1( · , ζ), [s1, s2]
)

.

Thus to get (5.6) it suffices to show

M
(

b1h̃1( · , ζ), [s1, s2]
)

≤ 2
M(b1, [s1, s2])

ζ
.

For this purpose we first observe that h1(s, ζ) := ζ
√

ζ2 + s2 ≥ ζ2. Then

0 < h̃1(s, ζ) ≤
1

ζ
, (5.7)

hence

sup
s1≤s≤s2

|b1(s)h̃1(s, ζ)| ≤ sup
s1≤s≤s2

|b1(s)|
ζ

≤ M(b1, [s1, s2])

ζ
.

Next we claim that
∫ s2

s1

|∂sh̃1(s, ζ)| ds ≤
1

ζ
. (5.8)

Indeed, since ∂sh̃1(s, ζ) ≤ 0, we can estimate the left hand side of (5.8) using (5.7):
∫ s2

s1

(−∂sh̃1)(s, ζ) ds = h̃1(s1, ζ)− h̃1(s2, ζ) ≤
1

ζ
.

Finally it remains to show
∫ s2

s1

|∂s(b1h̃1)(s, ζ)| ds ≤
M(b1, [s1, s2])

ζ
. (5.9)

The left hand side of (5.9) is indeed
∫ s2
s1

|b′1(s)h̃1(s, ζ)+ b1(s)∂sh̃1(s, ζ)| ds. Thus, using (5.7) and

(5.8) we get
∫ s2

s1

|∂s(b1h̃1)(s, ζ)| ds ≤ sup
s1≤s≤s2

|h̃1(s, ζ)|
∫ s2

s1

|b′1(s)| ds+ sup
s1≤s≤s2

|b1(s)|
∫ s2

s1

|∂sh̃1(s, ζ)| ds

≤ 1

ζ

(

sup
s1≤s≤s2

|b1(s)|+
∫ s2

s1

|b′1(s)| ds
)

=
M(b1, [s1, s2])

ζ
.

5.2.3. Proof of (5.6) in case ζ ≤ s1. We denote s̃i := (s2i + ζ2)1/4, i = 1, 2 and consider the
change of variable

s =
√

s̃4 − ζ2 for s̃ ∈ [s̃1, s̃2]

which gives
√

s2 + ζ2 = s̃2. By applying this change of variable to the integral

J1(b1, s1, s2, ζ, µ) =

∫ s2

s1

eiµ
√
s2+ζ2(s2 + ζ2)−1/4b1(s) ds

we find

J1(b1, s1, s2, ζ, µ) =

∫ s̃2

s̃1

eiµs̃
2

b2(s̃, ζ)h̃2(s̃, ζ) ds̃ = J
(

b2h̃2( · , ζ), s̃1, s̃2, h0, µ
)

,

with b2(s̃, ζ) := b1(
√

s̃4 − ζ2), h0(s̃) = s̃2 and

h̃2(s̃, ζ) :=
1

s̃
∂s̃(
√

s̃4 − ζ2) =
2s̃2

√

s̃4 − ζ2
.
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Then Lemma 5.2 applies and gives

|J1(b1, s1, s2, ζ, µ)| ≤
C0
√

|µ|
M(b2h̃2, [s̃1, s̃2]). (5.10)

We observe that s ≥ s1 ≥ ζ ensures s̃ ≥ (2ζ2)1/4, hence ζ ≤ s̃2/
√
2. Using the fact that h̃2(s, ζ)

is increasing with ζ we have the estimate

s ≥ s1 ≥ ζ =⇒ h̃2(s̃, ζ) ≤ h̃2(s̃, s̃
2/
√
2) = 2

√
2. (5.11)

Moreover, ∂s̃h̃2(s̃, ζ) = −4ζ2s̃(s̃4 − ζ2)−3/2 ≤ 0 and as in the proof of estimate (5.8) we find
∫ s̃2

s̃1

|∂s̃h̃2(s̃, ζ)| ds̃ = h̃2(s̃1, ζ)− h̃2(s̃2, ζ) ≤ 2
√
2. (5.12)

Estimate (5.10) leads to the desired estimate (5.6) if we prove

M(b2h̃2, [s̃1, s̃2]) ≤ 4
√
2M(b2, [s̃1, s̃2]) = 4

√
2M(b1, [s1, s2]).

The last equality is easy. For the inequality we first observe that by (5.11)

sup
s̃1≤s̃≤s̃2

|b2h̃2(s̃, ζ)| ≤ 2
√
2 sup
s̃1≤s̃≤s̃2

|b2(s̃, ζ)| ≤ 2
√
2M(b2, [s̃1, s̃2]).

Moreover, using (5.11) and (5.12) we find
∫ s̃2

s̃1

|∂s̃(b2h̃2)(s̃, ζ)| ds̃ ≤ sup
s̃1≤s̃≤s̃2

|h̃2(s̃, ζ)|
∫ s̃2

s̃1

|∂s̃b2(s̃, ζ)| ds̃+ sup
s̃1<s̃<s̃2

|b2(s̃, ζ)|
∫ s̃2

s̃1

|∂s̃h̃2(s̃, ζ)| ds̃

≤ 2
√
2

∫ s̃2

s̃1

|∂s̃b2(s̃, ζ)| ds̃+ 2
√
2 sup
s̃1<s̃<s̃2

|b2(s̃, ζ)|

= 2
√
2M(b2, [s̃1, s̃2]).

5.2.4. Proof of (5.6) in case s1 < ζ < s2. This case reduces to the previous ones. For s1 < ζ < s2
we indeed have

J1(b1, s1, s2, ζ, µ) = J1(b1, s1, ζ, ζ, µ) + J1(b1, ζ, s2, ζ, µ),

M(b1, [s1, ζ]) +M(b1, [ζ, s2]) ≤ 2M(b1, [s1, s2]).

5.3. Proof of Lemma 5.1 in case ∆0 = [2π/3, π]. Denoting

h(t, ζ) :=

√

4 sin2(t/2) + ζ2

we can write

J1(b, t1, t2, ζ, µ) :=

∫ t2

t1

eiµ
√

4 sin2(t/2)+ζ2

(4 sin2(t/2) + ζ2)1/4
b(t) dt =

∫ t2

t1

eiµh(t,ζ)
b(t)

h(t, ζ)1/2
dt

=

∫ t2

t1

ei
µ

1+ζ (1+ζ)h(t,ζ) b̃(t, ζ) dt = J
(

b̃, t1, t2, h̃, µ̃
)

,

where b̃(t, ζ) := b(t)h(t, ζ)−1/2, µ̃ := µ/(1 + ζ), h̃(t, ζ) := (1 + ζ)h(t, ζ), and J is as in (5.4). We
get

∂th(t, ζ) =
sin t

h(t, ζ)
, −∂2t h(t, ζ) = − cos t

h(t, ζ)
+

sin2 t

h(t, ζ)3
.

Since 2π/3 ≤ t ≤ π implies 1/2 ≤ − cos t ≤ 1, we get

2π/3 ≤ t ≤ π =⇒ −∂2t h̃(t, ζ) ≥ − (1 + ζ) cos t

h(t, ζ)
≥ 1 + ζ

2
√

4 + ζ2
≥ 1

4
.
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Hence, Lemma 5.2 applies to estimate J
(

b̃, t1, t2, h̃, µ̃
)

. To get (5.2) it suffices to show that there

exists a constant C̃, independent of ζ, t1, t2 such that

M(b̃, [t1, t2]) ≤ C̃M(b, [t1, t2]).

For 2π/3 ≤ t ≤ π we have 2 sin(t/2) ≥
√
3 so that h(t, ζ) ≥

√

3 + ζ2 ≥
√
3. Hence,

sup
t1≤t≤t2

|b̃(t, ζ)| = sup
t1≤t≤t2

|b(t)|
√

h(t, ζ)
≤ 1

4
√
3

sup
t1≤t≤t2

|b(t)|.

Moreover,

|∂tb̃(t, ζ)| =
∣

∣

∣

∣

b′(t)

h(t, ζ)1/2
− b(t) sin t

2h(t, ζ)5/2

∣

∣

∣

∣

≤ 1
4
√
3
|b′(t)|+ 1

2
4
√
35

|b(t)| ≤ 1
4
√
3
(|b′(t)|+ |b(t)|).

Thus, using t2 − t1 ≤ π/3,
∫ t2

t1

|∂tb̃(t, ζ)| dt ≤
1
4
√
3

∫ t2

t1

|b′(t)| dt+ π

3 4
√
3

sup
t1≤t≤t2

|b(t)|.

Summarizing,

M(b̃, [t1, t2]) ≤
1
4
√
3

(

1 +
π

3

)

M(b, [t1, t2]).

5.4. Proof of Lemma 5.1: last steps.

5.4.1. Proof of (5.2) in case ∆0 = [0, π]. By Sections 5.2 and 5.3 we know that (5.2) holds if
2π/3 /∈ (t1, t2). The remaining case t1 < 2π/3 < t2 can be deduced from the previous ones by
using the additivity properties

J (b, t1, t2, ζ, µ) = J (b, t1, t∗, ζ, µ) + J (b, t∗, t2, ζ, µ), (5.13a)

M(b, [t1, t∗]) +M(b, [t∗, t2]) ≤ 2M(b, [t1, t2]) (5.13b)

with t∗ = 2π/3.

5.4.2. Proof of (5.2) in case ∆0 = [−π, 0]. This case reduces to the previous one by using the
symmetry t  −t. We indeed have J (b, t1, t2, ζ, µ) = J (b̌,−t2,−t1, ζ, µ) and M(b, [t1, t2]) =
M(b̌, [−t2,−t1]) where b̌(t) = b(−t).

5.4.3. Proof of (5.2) in case ∆0 = [−π, π]. By Sections 5.4.1 and 5.4.2 we know that (5.2) holds
if 0 /∈ (t1, t2). The remaining case 0 ∈ (t1, t2) can be deduced from the two previous ones by
using (5.13) with t∗ = 0.

5.4.4. Proof of (5.2) for ∆0 = [(2k − 1)π, (2k + 1)π], k ∈ Z. This case reduces to the previous

one by translation t 7→ t̂ := t − 2kπ. We indeed have J (b, t1, t2, ζ, µ) = J (b̂, t̂1, t̂2, ζ, µ) and

M(b, [t1, t2]) = M(b̂, [t̂1, t̂2]) where b̂(t) := b(t+ 2kπ).

5.4.5. Proof of (5.2) for arbitrary ∆0. We know (5.2) holds if (t1, t2) ∩ (2Z + 1)π = ∅. If
(t1, t2)∩ (2Z+1)π = {t1∗, t2∗, . . . , tk∗} where t2∗ = t1∗ +2π, . . . , tk∗ = t1∗ +2(k− 1)π, k ∈ Z then (5.2)
follows by using repeatedly properties (5.13):

J (b, t1, t2, ζ, µ) = J (b, t1, t
1
∗, ζ, µ) + J (b, t1∗, t

2
∗, ζ, µ) + · · ·+ J (b, tk∗ , t2, ζ, µ),

M(b, [t1, t
1
∗]) +M(b, [t1∗, t

2
∗]) + · · ·+M(b, [tk∗ , t2]) ≤ (k + 1)M(b, [t1, t2]). �
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6. Approximation by oscillatory integrals

6.1. Decomposition of Hn(t) into components Hω,t
n

. We assume α0 = 0 in (1.12) and

denote Ω∗ = {2πm/N}N−1
m=1. Thus, we can expand

v(Λ) =
∑

ω∈Ω∗

cωe
iωΛ

where cω ∈ C are constants. Since Hn(t) := e−itL0,n Ṽne
itL0,n with Ṽn = eiBn(θ2n,nv)(Λ)e

−iBn we
can expand Hn(t) as follows:

Hn(t) = e−itL0,neiBn(θ2n,nv)(Λ)e
−iBneitL0,n =

∑

ω∈Ω∗

cωH
ω,t
n

with
Hω,t
n := e−itL0,neiBnθ2n,n(Λ)e

iωΛe−iBneitL0,n .

More generally, for any integer ν ≥ 1, ω = (ω1, . . . , ων) ∈ (Ω∗)ν , and t = (t1, . . . , tν) ∈ Rν ,

Hn(t) := Hn(t1) . . . Hn(tν) =
∑

ω∈(Ω∗)ν

cωH
ω,t
n (6.1)

where cω := cω1
. . . cων and

Hω,t
n := H ω1,t1

n . . .H ων ,tν
n . (6.2)

Let gν,n,j(t) := iνHn(t)(j, j) be as in (4.3). Using (6.1) we can expand gν,n,j(t) as follows:

gν,n,j(t) = iν
∑

ω∈(Ω∗)ν

cω g
ω,t
n (j), (6.3a)

where
gω,tn (j) := Hω,t

n (j, j). (6.3b)

6.2. Approximation of gω,t
n

(j) by an oscillatory integral. For j ∈ [n − nγ , n + nγ ] we

approximate the j-th diagonal entry g
ω,t
n (j) of H

ω,t
n by an oscillatory integral of type

gω,tn (j) := eij|ω|1
∫ 2π

0

eiψ
ω,t
n,1 (e

iη)bω,tn (j, eiη)
dη

2π
. (6.4)

Here, |(ω1, . . . , ων)|1 := ω1 + · · ·+ ων , the phase ψ
ω,t
n,1 : T → R is defined in the next subsection,

and b
ω,t
n (j, · ) : T → C is chosen as indicated in Lemma 6.1 below.

6.2.1. Definition of ψ
ω,t
n,1 . For (ω, t) ∈ (Ω∗)ν × R

ν the phase ψ
ω,t
n,1 is given by

ψ
ω,t
n,1(e

iξ) := 2a(n) Im
(

z(ω; t)eiξ
)

, (6.5)

where z(ω; t) will be defined by induction on ν.
We first assume ν = 1. For ω ∈ Ω, t ∈ R we define

z(ω; t) :=
(

e−iω − 1
)

e−it = −2 sin ω
2 eiπ/2−iω/2−it. (6.6)

Thus the definition of ψω,tn,1 : T → R is as in [5, (9.10b)]:

ψω,tn,1(e
iξ) := 2a(n) Im

(

z(ω; t)eiξ
)

= −4a(n) sin ω
2 cos(ξ − t− ω

2 ). (6.7)

Moreover, if τω : T → T is the translation eiξ 7→ ei(ξ−ω) and ψ−ω,t
n,1 := ψ2π−ω,t

n,1 we have the relation

ψω,tn,1 = −ψ−ω,t
n,1 ◦ τω. (6.8)

Assuming now ν ≥ 2 and using induction with respect to ν, we define

z(ω; t) = z(ω′; t′)e−iων + z(ων; tν), (6.9)
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where

ω = (ω′, ων) ∈ (Ω∗)ν = (Ω∗)ν−1 × Ω∗,

t = (t′, tν) ∈ R
ν = R

ν−1 × R.
(6.10)

By (6.9) and (6.8) we observe that ψ
ω,t
n,1 can also be defined by induction as in [5, (10.7) and

(10.6)]:

ψ
ω,t
n,1 = ψ

ω′,t′

n,1 ◦ των + ψων ,tν
n,1 = (ψ

ω′,t′

n,1 − ψ−ων ,tν
n,1 ) ◦ των , (6.11)

6.2.2. Approximation of g
ω,t
n (j) by g

ω,t
n (j).

Lemma 6.1. Let t0 > 0 and 0 < ε < 1
8 be fixed. Let g

ω,t
n (j) be the oscillatory integral defined

by (6.4) for |j − n| ≤ nγ with ψ
ω,t
n,1 as in (6.5). If Ĉ = Ĉ(t0, ε) > 0 is large enough, then

for any ν ∈ N∗, (ω, t) ∈ (Ω∗)ν × [−t0, t0]ν , n ≥ ν
1
ε , and j ∈ [n − nγ , n + nγ ] we can choose

b
ω,t
n (j, · ) : T → C in (6.4) such that g

ω,t
n (j) satisfies

sup
|j−n|≤nγ

|gω,tn (j)− gω,tn (j)| ≤ Ĉn−γ+4ε, (6.12)

with

|bω,tn (j, eiη)| = 1, (6.13a)

‖bω,tn (j, · )‖C2(T) ≤ Ĉn4ε, (6.13b)

‖∂tνbω,tn (j, · )‖C0(T) ≤ Ĉnε, ν ≥ 2. (6.13c)

Proof. See Section 8.1, in particular Section 8.1.1 and (8.7) for the actual choice of b
ω,t
n (j, · ). �

6.3. Properties of z(ω; t). Let z(ω; t), ω ∈ (Ω∗)ν , t ∈ Rν be as in Section 6.2.1. We write

z(ω; t) = |z(ω; t)|eiα(ω;t), (6.14)

where 0 ≤ α(ω; t) < 2π is the argument of z(ω; t). If ν ≥ 2 we write ω = (ω′, ων) ∈ (Ω∗)ν−1×Ω∗,
t = (t′, tν) ∈ Rν−1 × R as in (6.10) and define

ẑ(ω; t′) :=
z(ω′; t′)

2 sin(ων/2)
, (6.15)

α̂(ω; t′) := α(ω′; t′)− ων/2− π/2. (6.16)

For the next lemma we also introduce the function h : R× C → R+ by

h(t, z) :=

√

4|z| sin2(t/2) + (1− |z|)2. (6.17)

Lemma 6.2. We assume ν ≥ 2. Then for ω = (ω′, ων) ∈ (Ω∗)ν−1×Ω∗ and t = (t′, tν) ∈ Rν−1×R

we have the relation

|z(ω; t)| = 2 sin(ων/2) h(tν + α̂(ω; t′), ẑ(ω; t′)), (6.18)

where h is given by (6.17), ẑ(ω; t′) by (6.15), and α̂(ω; t′) by (6.16). Moreover,

|z(ω; t)| ≥ 2 sin(ων/2)

π
|tν + α̂(ω; t′)|2π (6.19)

where |t|2π := dist(t, 2πZ) and
∣

∣

∣∂tν e
iα(ω; t)

∣

∣

∣ ≤ 6

|z(ω; t)| . (6.20)

Proof. The proof consists of four steps.
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Step 1. We first claim that for t ∈ R and z ∈ C

∣

∣|z| − e−it
∣

∣ = h(t, z). (6.21)

Indeed, the left hand side of (6.21) is
√

(|z| − cos t)2 + sin2 t =
√

2|z|(1− cos t) + (1− |z|)2

which is h(t, z) defined by (6.17) due to 1− cos t = 2 sin2(t/2).

Step 2. Now we will show (6.18). Combining (6.6), (6.9) with (6.14) we obtain

z(ω; t) = |z(ω; t′)|eiα(ω′;t′)−iων − 2 sin(ων/2) e
−i(tν+ων/2−π/2). (6.22)

Using (6.15) and (6.16) in the right hand side of (6.22) we find

z(ω; t) = 2 sin(ων/2)
(

|ẑ(ω; t′)| − e−i(tν+α̂(ω;t
′))
)

eiα(ω
′;t′)−iων ,

hence

|z(ω; t)| = 2 sin(ων/2)
∣

∣

∣
|ẑ(ω; t′)| − e−i(tν+α̂(ω;t

′))
∣

∣

∣
. (6.23)

Denoting z := ẑ(ω; t′), t := tν + α̂(ω; t′) and using (6.21) we can express the right hand side of
(6.23) in the form

2 sin(ων/2)
∣

∣|z| − e−it
∣

∣ = 2 sin(ων/2) h(t, z),

which completes the proof of (6.18).

Step 3. Here we will show (6.19). Combining

h(t, z) ≥
√

(4|z|+ (1− |z|)2) sin2(t/2) = (1 + |z|)|sin(t/2)| (6.24)

with (6.18) we obtain

|z(ω; t)| ≥ 2 sin(ων/2)
∣

∣sin 1
2 (tν + α̂(ω; t′))

∣

∣ .

Thus (6.19) follows from |sin(t/2)| ≥ 1
π |t|2π.

Step 4. Finally we show (6.20). We begin by writing

∂tν
z(ω; t)

|z(ω; t)| =
1

|z(ω; t)|

(

∂tνz(ω; t)−
z(ω; t)

|z(ω; t)|∂tν |z(ω; t)|
)

.

Since |∂tνz(ω; t)| = |∂tνz(ων ; tν)| = 2 sin(ων/2) ≤ 2, the proof of (6.20) is completed if we show

|∂tν |z(ω; t)|| ≤ 4. (6.25)

However using (6.18) we obtain

∂tν |z(ω; t)| = 2 sin(ων/2) ∂tνh(tν + α̂(ω; t′), ẑ(ω; t′))

Then using (6.24) we have

|∂th(t, z)| =
|z| |sin t|
h(t, z)

≤ |z| |sin t|
(1 + |z|)|sin(t/2)|

and (6.25) results from the inequality |sin t| ≤ 2
∣

∣sin t
2

∣

∣. �
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7. Proof of Proposition 4.1.

7.1. First reductions. In this section 0 < ε < 1
8 and t0 > 0 are fixed. As in (6.2) we denote by

H
ω,t
n the operator H ω1,t1

n . . . H ων ,tν
n for (ω, t) ∈ (Ω∗)ν ×Rν and by g

ω,t
n (j) its j-th diagonal entry.

We first observe that instead of (4.7) it suffices to prove the estimates
∣

∣

∣

∣

∫

∆1

gω,tn (j) dt2

∣

∣

∣

∣

≤ Cn−γ+5ε (ν = 2), (7.1a)

∫

∆2

∣

∣

∣

∣

∫

∆1

gω,tn (j) dtν

∣

∣

∣

∣

dtν−1 ≤ Cn−γ+5ε (3 ≤ ν ≤ nε) (7.1b)

for any intervals ∆1, ∆2 ⊂ [−t0, t0], (ω, t) ∈ (Ω∗)ν × [−t0, t0]ν , and j ∈ [n− nγ , n+ nγ ].

Further on, g
ω,t
n (j) is given by (6.4) with b

ω,t
n (j, · ) as in Lemma 6.1, |j − n| ≤ nγ , (ω, t) ∈

(Ω∗)ν × [−t0, t0]ν , and 2 ≤ ν ≤ nε. Then due to Lemma 6.1, instead of proving estimates (7.1)
it suffices to prove these ones:

∣

∣

∣

∣

∫

∆1

gω,tn (j) dt2

∣

∣

∣

∣

≤ Cn−γ+5ε (ν = 2), (7.2a)

∫

∆2

∣

∣

∣

∣

∫

∆1

gω,tn (j) dtν

∣

∣

∣

∣

dtν−1 ≤ Cn−γ+5ε (3 ≤ ν ≤ nε). (7.2b)

To estimate
∫

∆1
g
ω,t
n (j) dtν it suffices to consider the following two cases:

1) ∆1 ⊂ [−n−γ , n−γ ] + 2πZ− α̂(ω; t′),
2) ∆1 ⊂ [n−γ , 2π − n−γ ] + 2πZ− α̂(ω; t′),

where α̂(ω; t′) := α(ω′; t′)− ων/2− π/2 as in (6.16).

7.2. Case 1). We assume ν ≥ 2. The definition of H
ω,t
n shows that its diagonal entries satisfy

|gω,tn (j)| ≤ 1. Then, since |j − n| ≤ nγ , estimate (6.12) from Lemma 6.1 applies and gives

|gω,tn (j)| ≤ C1n
4ε (7.3)

for some constant C1 > 0. Since ∆1 is a subinterval of [−t0, t0] satisfying

∆1 ⊂ [−n−γ , n−γ ] + 2πZ− α̂(ω; t′), (7.4)

its length satisfies |∆1| ≤ 2n−γ and using (7.3) we get the estimate
∣

∣

∣

∣

∫

∆1

gω,tn (j) dtν

∣

∣

∣

∣

≤ C0n
−γ+4ε (7.5)

for some constant C0 > 0. Thus, in case 1) the proof of (7.2) is completed.

7.3. Case 2). We now assume ∆1 is a subinterval of [−t0, t0] satisfying

∆1 ⊂ [n−γ , 2π − n−γ ] + 2πZ− α̂(ω; t′). (7.6)

If tν ∈ ∆1, then |tν + α̂(ω; t′)|2π ≥ n−γ and |z(ω; t)| ≥ (2/π) sin(π/N)n−γ by estimate (6.19)
from Lemma 6.2. In particular, z(ω; t) 6= 0.

7.3.1. Use of the stationary phase formula. Writing z(ω; t) = |z(ω; t)|eiα(ω;t) in (6.5) we find

ψ
ω,t
n,1(e

iξ) = 2a(n)|z(ω; t)| sin(ξ + α(ω; t)).

Using this expression in (6.4) we get

gω,tn (j) = eij|ω|1
∫ 2π

0

e2ia(n)|z(ω;t)| sin(η+α(ω;t))bω,tn (j, eiη)
dη

2π
. (7.7)
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This oscillatory integral is of the type I(b, µ, η0) considered in Lemma 3.1 for b = b
ω,t
n (j, · ),

µ = 2a(n)|z(ω; t)|, and η0 = π/2 − α(ω; t). Since z(ω; t) 6= 0 the stationary phase formula (3.2)
applies:

e−ij|ω|1gω,tn (j) =
∑

κ=±1

eiκ(2a(n)|z(ω;t)|−π/4)

2
√

πa(n)|z(ω; t)|
bω,tn (j, κie−iα(ω;t)) + rω,tn (j) (7.8a)

with

|rω,tn (j)| ≤ C0

a(n)|z(ω; t)| ‖b
ω,t
n (j, · )‖C2(T). (7.8b)

Integrating (7.8a) we find

e−ij|ω|1
∫

∆1

gω,tn (j) dtν = e−iπ/4J ω,t′

n,j,+(∆1) + eiπ/4J ω,t′

n,j,−(∆1) +

∫

∆1

rω,tn (j) dtν (7.9)

where

J ω,t′

n,j,±(∆1) :=

∫

∆1

e±2ia(n)|z(ω;t)|

2
√

πa(n)|z(ω; t)|
bω,tn (j,±ie−iα(ω;t)) dtν . (7.10)

7.3.2. Remainder estimate. We claim that the remainder in (7.9) can be estimated by
∣

∣

∣

∣

∫

∆1

rω,tn (j) dtν

∣

∣

∣

∣

≤ Cn−γ+5ε. (7.11)

Indeed, (H1a), (6.19) and (6.13b) allow us to derive from estimate (7.8b) of |rω,tn (j)| this new
one

|rω,tn (j)| ≤ Cn4ε

nγ |tν + α̂(ω; t′)|2π
,

and to get (7.11) it suffices to observe that
∫

∆1

dtν
|tν + α̂(ω; t′)|2π

≤ 2

∫ π

n−γ

dt

t
= O(lnn).

To complete the proof of (7.2) in case 2) we will prove the following estimates:
∣

∣

∣
J ω,t′

n,j,±(∆1)
∣

∣

∣
≤ Cn−γ+2ε (ν = 2), (7.12a)

∫

∆2

∣

∣

∣J ω,t′

n,j,±(∆1)
∣

∣

∣dtν−1 ≤ Cn−γ+2ε (3 ≤ ν ≤ nε). (7.12b)

According to (7.9) these estimates together with the remainder estimate (7.11) actually imply
(7.2) in case 2).

7.3.3. Transformation of J ω,t′

n,j,±(∆1). If the new variable t = tν + α̂(ω; t′) is introduced, then

(6.18) becomes |z(ω; t)| = 2 sin(ων/2) h(t, ẑ(ω; t
′)) and (7.10) takes the form

J ω,t′

n,j,±(∆1) =

∫

∆1+α̂(ω;t′)

e±iµ̃n(ων)h(t,ẑ(ω;t
′))

√

2πµ̃n(ων)h(t, ẑ(ω; t
′))

b
ω,t′

n,j,±(t) dt (7.13a)

where

µ̃n(ων) := 4a(n) sin(ων/2), (7.13b)

b
ω,t′

n,j,±(t) := bω,(t
′,t−α̂(ω;t′))

n

(

j,±ie−iα(ω;(t′,t−α̂(ω;t′))). (7.13c)

Our goal is to get (7.12). We first observe that in the case ν = 2 we have |z(ω′; t′)| = |z(ω1; t1)| =
2 sin(ω1/2) > 0 for ω1 ∈ Ω∗, hence ẑ(ω; t′) 6= 0. In the case ν ≥ 3 we have to estimate the

integral
∫

∆2
|J ω,t′

n,j,±(∆1)|dtν−1 and we observe that in this integral we can forget the tν−1 such

that ẑ(ω; t′) = 0, or equivalently, z(ω′; t′) = 0 because there are only finitely many. By (6.19)
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they indeed satisfy tν−1 ∈ 2πZ − α̂(ω′; t′′) where t′ = (t′′, tν−1). So, we henceforth assume

ẑ(ω; t′) 6= 0 when estimating J ω,t′

n,j,±(∆1).

Our next step is to write (7.13a) as an integral of the type considered in Section 5. For this
purpose we denote by ζ ≡ ζ(ẑ) the nonnegative number associated to ẑ ∈ C∗ by

ζ :=
∣

∣

∣|ẑ|−1/2 − |ẑ|1/2
∣

∣

∣ . (7.14)

Since (1− |ẑ|)2 = ζ2|ẑ|, we can write h(t, ẑ), ẑ 6= 0 as follows:

h(t, ẑ) :=

√

4|ẑ| sin2(t/2) + (1− |ẑ|)2 =
√

|ẑ|
√

4 sin2(t/2) + ζ2. (7.15)

Then for µ > 0, ζ ≥ 0, and ∆′
1 a bounded interval we introduce the integral

J̃ ω,t′

n,j,±(ζ, µ,∆
′
1) :=

1√
2πµ

∫

∆′
1

e±iµ
√

4 sin2(t/2)+ζ2

(4 sin2(t/2) + ζ2)1/4
b
ω,t′

n,j,±(t) dt. (7.16)

Due to (7.15) we have

J ω,t′

n,j,±(∆1) = J̃ ω,t′

n,j,±(ζ, µ,∆
′
1) (7.17a)

where ∆′
1 = ∆1 + α̂(ω; t′) and

ζ ≡ ζ(ω; t′) :=
∣

∣

∣|ẑ(ω; t′)|1/2 − |ẑ(ω; t′)|−1/2
∣

∣

∣ (7.17b)

µ ≡ µn(ω; t
′) := µ̃n(ων) |ẑ(ω; t′)|1/2 (7.17c)

Thus it remains to investigate J̃ ω,t′

n,j,±(ζ, µ,∆
′
1) with ζ and µ as in (7.17b), and (7.17c), and

∆′
1 ⊂ [n−γ , 2π − n−γ ] + 2πZ. (7.18)

7.3.4. Estimate of J̃ ω,t′

n,j,±(ζ, µ,∆
′
1). In this section ζ and µ are given by (7.17b) and (7.17c) and

∆′
1 is an interval satisfying (7.18). We claim that there is a constant C > 0 such that

|J̃ ω,t′

n,j,±(ζ, µ,∆
′
1)| ≤ C

n2ε

a(n)

(

1 + |ẑ(ω; t′)|−3/4
)

. (7.19)

For this purpose we first observe that J̃ ω,t′

n,j,±(ζ, µ,∆
′
1) coincides with the oscillatory integral

J (b, t1, t2, ζ,±µ) defined in (5.1) for b = 1√
2πµ

b
ω,t′

n,j,±(t) and ∆′
1 = [t1, t2]. Since µ = µn(ω; t

′) > 0,

Lemma 5.1 applies and gives

|J̃ ω,t′

n,j,±(ζ, µ,∆
′
1)| ≤ C

1 + ζ1/2

µ
M(b

ω,t′

n,j,±,∆
′
1). (7.20)

Since
1 + ζ1/2

µ
≤ 1 + |ẑ(ω; t′)|1/4 + |ẑ(ω; t′)|−1/4

4a(n) sin(ων/2)|ẑ(ω; t′)|1/2
≤ 1 + |ẑ(ω; t′)|−3/4

2a(n) sin(ων/2)

we deduce (7.19) from (7.20) if we show the estimate

M(b
ω,t′

n,j,±,∆
′
1) ≤ Cnε lnn. (7.21)

However, using definition (7.13c) we see that relation (6.13a) from Lemma 6.1 gives

|bω,t
′

n,j,±(t)| = 1.

Moreover, by estimate (6.13c) from Lemma 6.1 and estimates (6.20) and (6.19) from Lemma 6.2
we have

|∂tbω,t
′

n,j,±(t)| ≤ ‖∂tνbω,tn (j, · )‖C0(T)‖∂tνe−iα(ω;t)‖C0(T) ≤ Ĉnε
6

|z(ω; t)| ≤ C′nε
(

1 +
1

|t|2π

)

.
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Thus M(b
ω,t′

n,j,±,∆
′
1) := sup∆′

1
|bω,t

′

n,j,±(t)|+
∫

∆′
1

|∂tbω,t
′

n,j,±(t)|dt can be estimated by

M(b
ω,t′

n,j,±,∆
′
1) ≤ 1 + C′nε

(

2π +

∫

∆′
1

dt

|t|2π

)

= 1 + 2C′nε
(

π +

∫ π

n−γ

dt

t

)

= O(nε lnn).

7.3.5. End of the proof of estimates (7.2) in case 2). Due to (7.17), (7.19), (6.15) and (H1a),
there is a constant C > 0 such that

|J ω,t′

n,j,±(∆1)| ≤ Cn−γ+2ε
(

1 + |z(ω′; t′)|−3/4
)

. (7.22)

If ν = 2, then ω′ = ω1 ∈ Ω∗ and |z(ω′; t′)| = 2 sin(ω1/2) ≥ 2 sin(π/N) > 0 and it is clear that
(7.22) implies (7.12a). We then get (7.2a) using (7.12a) and (7.11). This proves assertion (a) in
Proposition 4.1.

If ν ≥ 3, then ω′ = (ω′′, ων−1) ∈ (Ω∗)ν−2 × Ω∗ and t′ = (t′′, tν−1) ∈ Rν−2 × R. If

α̂(ω′, t′′) = α(ω′′, t′′)− ων−1/2− π/2

then tν−1 + α̂(ω′; t′′) /∈ 2πZ implies ẑ(ω; t′) 6= 0 and

J ω,t′

n,j,±(∆1) ≤ C′n−γ+2ε
(

1 + |tν−1 + α̂(ω′, t′′)|−3/4
2π

)

and therefore
∫

∆2

J ω,t′

n,j,±(∆1) dtν−1 ≤ C′n−γ+2ε

∫

∆2−α̂(ω′,t′′)

(1 + |t|−3/4
2π ) dt.

Thus, (7.12b) follows from the fact that the function t→ 1+ |t|−3/4
2π is locally Lebesgue integrable

on R. We then obtain (7.2b) using (7.12b) and (7.11). Assertion (b) in Proposition 4.1 is
proven. �

8. Proofs of Lemmas 6.1 and 2.2 (b)

The proofs of Lemmas 6.1 and 2.2 (b) are completed in Sections 8.1 and 8.2, respectively.
Both proofs are based on properties of phase functions introduced in [5, Section 10].

8.1. Proof of Lemma 6.1. We first fix the definition of b
ω,t
n (j, eiη) to complete that of g

ω,t
n (j).

8.1.1. Definition of b
ω,t
n (j, eiη). Let Q

ω,t
n be the operators introduced in [5, (10.1)]. Their defi-

nition involves a phase ψ̃
ω,t
n ≡ ψ̃

ω,t
n (j, eiη) whose construction is given in [5, (10.5) and Section

10.3]. By [5, Lemma 10.3] these operators satisfy

|Hω,t
n (j, j)−Qω,tn (j, j)| ≤ ν nγ−1+3ε, (8.1)

where ω ∈ (Ω∗)ν , t ∈ [−t0, t0]ν , nε ≥ ν and n ≥ n̂. Recall that g
ω,t
n (j) := H

ω,t
n (j, j). Let similarly

g̃ω,tn (j) := Qω,tn (j, j). (8.2)

Since ν nγ−1+3ε ≤ n−γ+4ε follows from ν ≤ nε and γ ≤ 1
2 , the estimate (8.1) implies

|gω,tn (j)− g̃ω,tn (j)| ≤ n−γ+4ε. (8.3)

If |j − n| ≤ nγ , then [5, Section 10.2.2 and (10.5)] gives the expression

g̃ω,tn (j) = eij|ω|1
∫ 2π

0

ei(ψ
ω,t
n,1+ψ

ω,t
n,2)(e

iη)+i(j−n)(ϕω,t
n,1+ϕ

ω,t
n,2)(e

iη) dη

2π
. (8.4)

By [5, Lemma 10.1] and γ ≤ 1
2 the functions ψ

ω,t
n,1, ϕ

ω,t
n,1 : T → R satisfy

‖ψω,tn,1‖C2(T) ≤ Cν nγ , (8.5a)

‖ϕω,tn,1‖C2(T) ≤ Cν nγ−1 ≤ Cν n−γ . (8.5b)



32 A. BOUTET DE MONVEL AND L. ZIELINSKI

By [5, Lemma 10.2] and γ ≤ 1
2 the functions ψ

ω,t
n,2, ϕ

ω,t
n,2 : T → R satisfy

‖ψω,tn,2‖C2(T) ≤ Cν nε, (8.5c)

‖ϕω,tn,2‖C2(T) ≤ Cν n2(γ−1)+ε ≤ Cn−2γ+2ε, (8.5d)

for nε ≥ ν and n ≥ n̂. We can rewrite (8.4) as

g̃ω,tn (j) = eij|ω|1
∫ 2π

0

eiψ
ω,t
n,1(e

iη) b̃ω,tn (j, eiη)
dη

2π
, (8.6a)

with

b̃ω,tn (j, eiη) := ei(ψ
ω,t
n,2(e

iη)+(j−n)(ϕω,t
n,1+ϕ

ω,t
n,2)(e

iη)). (8.6b)

Let us note that the definition (6.4) of g
ω,t
n (j) is as that of g̃

ω,t
n (j), replacing b̃

ω,t
n by b

ω,t
n in (8.6a).

The definition of ψ
ω,t
n,1 is given in Section 6.2.1, that of ϕ

ω,t
n,1 and ψ

ω,t
n,2 are given in Sections 8.1.3

and 8.1.6, respectively. Concerning ϕ
ω,t
n,2 we observe that (8.5d) ensures (j−n)ϕ

ω,t
n,2 = O(n−γ+2ε)

for |j − n| ≤ nγ , hence (8.3) still holds for these j if we forget (j − n)ϕ
ω,t
n,2 in the r.h.s. of (8.6b),

i.e., if we replace g̃
ω,t
n (j) by g

ω,t
n (j) given by (6.4) with

bω,tn (j, eiη) := ei(ψ
ω,t
n,2(e

iη)+(j−n)ϕω,t
n,1(e

iη)). (8.7)

Further on b
ω,t
n (j, eiη) is given by (8.7). It is obvious that (6.13a) is satisfied and it is easy to

see that the estimates (8.5b) and (8.5c) imply (6.13b). Thus, all that remains to be proved is
(6.13c) and for this it suffices to prove

|∂tϕω,(t
′,t)

n,1 (eiη)| ≤ Ĉ0n
−γ , (8.8a)

|∂tψω,(t
′,t)

n,2 (eiη)| ≤ Ĉ0n
ε. (8.8b)

The proofs of (8.8a) and (8.8b) are given in Sections (8.1.4) and (8.1.7), respectively.

8.1.2. Change of variable ϑn. As in [5, (8.3b)] we define ϕn : T → R by

ϕn(e
iξ) := 2δa(n)

(

1− δa(n) cos ξ
)

sin ξ.

By (H1b) we have δa(n) = O(nγ−1). Thus we can fix n0 = n0({ϕn}) ∈ N large enough to ensure

sup
n≥n0

‖ϕn‖C2(T) ≤
1

2
.

Further on we always assume n ≥ n0. Then we define the bijection ηn : R → R as in [5, (7.10)]:

ηn(ξ) := ξ − ϕn(e
iξ).

As in [5, Section 7.5.1] we denote by ξn : R → R its inverse, i.e. ξn(η) − ϕn(e
iξn(η)) = η and,

η → ξn(η)− η being 2π-periodic, we define ξ̃n : T → R by ξ̃n(e
iη) = ξn(η)− η. Finally, we define

ϑn : T → T as in [5, (7.13a)]:

ϑn(e
iη) := eiηeiξ̃n(e

iη) = eiξn(η).

Moreover, by [5, Lemma 9.2 (a)], there exists a constant C > 0 such that for any q ∈ Cm(T),
m = 1, 2, 3 one has

‖q − q ◦ ϑn‖Cm−1(T) ≤ Cn−γ‖q‖Cm(T). (8.9)
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8.1.3. Definition of ϕ
ω,t
n,1. We first assume ν = 1. If (ω, t) ∈ Ω∗ × R we define ϕω,tn,1 : T → R for

n ≥ n0 as in [5, Section 10.3.1]:

ϕω,tn,1 := (ϕn ◦ τω − ϕn) ◦ ϑn ◦ τt (8.10a)

where ϕn, ϑn, and n0 are as in Section 8.1.2 and τt(e
iξ) := ei(ξ−t). We have then ϕω,tn,1 = ϕω,0n,1 ◦ τt.

For ν ≥ 2 we define ϕ
ω,t
n,1 : T → R for n ≥ n0 by induction on ν as in [5, (10.6)]:

ϕ
ω,t
n,1 := (ϕ

ω′,t′

n,1 − ϕ−ω,t
n,1 ) ◦ τω , (8.10b)

where ω = (ω′, ω) ∈ (Ω∗)ν−1 × Ω∗, t = (t′, t) ∈ Rν−1 × R, and ϕ−ω,t
n,1 := ϕ2π−ω,t

n,1 .

8.1.4. Proof of (8.8a). By (8.10b) we get ∂tϕ
ω,t
n,1 = −∂tϕ−ω,t

n,1 ◦ τω with ϕ−ω,t
n,1 = ϕ−ω,0

n,1 ◦ τt. For

any q ∈ C1(T) we have the estimate

|∂t(q ◦ τt)(eiη)| = |q(1) ◦ τt(eiη)| ≤ ‖q‖C1(T), (8.11)

where q(1)(eiη) := ∂ηq(e
iη). Applying (8.11) for q = ϕ−ω,0

n,1 we get (8.8a) since (8.5b) ensures

‖ϕ−ω,0
n,1 ‖C1(T) ≤ Cn−γ .

8.1.5. Change of variable ϑω,tn . Let ϕω,tn,1 be as above and n1 ∈ N such that

sup
n≥n1

‖ϕω,tn,1‖C2(T) ≤
1

2
. (8.12)

It suffices to choose n1 such that supn≥n1
‖ϕn,1‖C2(T) ≤ 1/4. Indeed, using (8.9) we get

‖ϕω,tn,1‖C2(T) = ‖ϕω,0n,1‖C2(T) ≤ (1 + Cn−γ)(‖ϕn ◦ τω‖C3(T) + ‖ϕn‖C3(T)) ≤ C′n−γ ,

hence (8.12) holds if n1 is chosen so that Cn−γ
1 ≤ 1/2. From now on we assume n ≥ n1 and

introduce the bijection ηω,tn : R → R by

ηω,tn (ξ) := ξ − ϕω,tn,1(e
iξ). (8.13)

Let ξω,tn : R → R be its inverse. Then ξω,tn (η) − ϕω,tn,1(e
iξω,t

n (η)) = η and η → ξω,tn (η) − η is

2π-periodic. As before we can define ξ̃ω,tn : T → R by the formula ξ̃ω,tn (eiη) = ξω,tn (η) − η and
ϑω,tn : T → T by

ϑω,tn (eiη) := eiηeiξ̃
ω,t
n (eiη) = eiξ

ω,t
n (η). (8.14)

Since we can use ϕω,0n,1 in place of ϕn in [5, proof of Lemma 9.2], there is a constant C > 0 such

that for any q ∈ C2(T) one has

‖q − q ◦ ϑω,0n ‖C1(T) ≤ Cn−γ‖q‖C2(T). (8.15)

Lemma 8.1. (a) One has

ϑω,tn = τ−t ◦ ϑω,0n ◦ τt. (8.16)

(b) There is a constant C > 0 such that

|∂tϑω,tn (eiξ)| ≤ Cn−γ . (8.17)

Proof. (a) We first note that (8.10a) implies ϕω,tn,1 = ϕω,0n,1 ◦ τt. Using this relation in (8.13) we

find ηω,tn (ξ) = t + ηω,0n (ξ − t), hence also ξω,tn (η) = t + ξω,0n (η − t). We have then ξ̃ω,tn (eiη) :=

ξω,tn (η) − η = ξω,0n (η − t)− (η − t) = ξ̃ω,0n (ei(η−t)), i.e.,

ξ̃ω,tn = ξ̃ω,0n ◦ τt, (8.18)

and (8.16) follows from (8.18) and (8.14).
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(b) Since ξ̃ω,tn = ξ̃ω,0n ◦ τt the estimate (8.11) ensures

|∂tϑω,tn (eiη)| = |∂tξ̃ω,tn (eiη)| ≤ ‖ξ̃ω,0n ‖C1(T) (8.19)

and the right hand side of (8.19) is O(n−γ) due to [5, Lemma 7.3] with ϕω,0n,1 in place of ϕn. �

8.1.6. Definition of ψ
ω,t
n,2. For ω ∈ Ω∗ we denote

ψωn,I := ψn,2 ◦ τω − ψn,2, (8.20)

ψωn,II := ψω,0n,1 ◦ ϑn − ψω,0n,1 , (8.21)

where ψω,0n,1 (e
iξ) = −4a(n) sin ω

2 cos(ξ − ω
2 ) as in (6.7) and

ψn,2(e
iξ) := −a(n) δa(n) sin 2ξ, (8.22)

as in [5, (9.7c)]. A direct computation gives the expression

ψωn,I(e
iξ) = 2a(n)δa(n) sinω cos(2ξ − ω). (8.23)

For ν = 1, (ω, t) ∈ Ω∗ × R we define ψ ω,tn,2 as in [5, Section 9.3.2], i.e.,

ψ ω,t
n,2 :=

(

ψωn,II + ψωn,I ◦ ϑn
)

◦ τt. (8.24a)

For ν ≥ 2, ω = (ω′, ω) ∈ (Ω∗)ν−1×Ω∗, t = (t′, t) ∈ Rν−1×R, we use the same induction formula
as in [5, (10.12)], i.e.,

ψ
ω,t
n,2 = (ψ−ω,t

n,1 − ψ−ω,t
n,1 ◦ ϑω,tn + ψ

ω′,t′

n,2 − ψ−ω,t
n,2 + ψ

ω′,t′

n,1 ◦ ϑω,tn − ψ
ω′,t′

n,1 ) ◦ τω , (8.24b)

where ψ−ω,t
n,i := ψ2π−ω,t

n,i , i = 1, 2.

8.1.7. End of the proof of Lemma 6.1. We recall that (8.8a) was proved in Section 8.1.4 and

following the remark from Section 8.1.1, it only remains to prove (8.8b), i.e. |∂tψω,tn,2(e
iη)| ≤ Ĉ0n

ε

where t = tν .
If ν = 1 then ψω,tn,2 = ψω,0n,2 ◦ τt and (8.8b) follows from (8.5c) using (8.11).

If ν ≥ 2 then ψ
ω,t
n,2 is given by (8.24b). To estimate ∂tψ

ω,t
n,2 we first observe that

ψ−ω,t
n,1 − ψ−ω,t

n,1 ◦ ϑω,tn = (ψ−ω,0
n,1 − ψ−ω,0

n,1 ◦ ϑω,0n ) ◦ τt

and (8.11) allows us to estimate

|∂t(ψ−ω,t
n,1 − ψ−ω,t

n,1 ◦ ϑω,tn )(eiη)| ≤ ‖ψ−ω,0
n,1 ◦ ϑω,0n − ψ−ω,0

n,1 ‖C1(T). (8.25)

The right hand side of (8.25) can be estimated by a constant C independent of n by using (8.15)

for q = ψ−ω,0
n,1 and (8.5a), i.e., ‖ψ−ω,0

n,1 ‖C1(T) = O(nγ). It remains to estimate

|∂t(ψω
′,t′

n,1 ◦ ϑω,tn )(eiη)| ≤ ‖ψω
′,t′

n,1 ‖C1(T) |∂tϑω,tn (eiη)|. (8.26)

However (8.17) and (8.5a) allow us to estimate the right hand side of (8.26) by Cν ≤ Cnε which
completes the proof of (8.8b). �
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8.2. Proof of Lemma 2.2 (b). This section is devoted to the proof of Lemma 2.2 under
assumptions (H1) and (H2). Let ψωn,I, ψ

ω
n,II be given by (8.20) and (8.21), respectively. Then

ψω,0n,2 = ψωn,I + ψωn,II + rωn (8.27)

holds with
rωn := ψωn,I ◦ ϑn − ψωn,I. (8.28)

Lemma 8.2. We have the estimates

‖rωn‖C0(T) = O(n−γ), (8.29)

|ψωn,II(±eiω/2)| = O(n−γ). (8.30)

Proof. We observe that (8.9) ensures

‖ψωn,I ◦ ϑn − ψωn,I‖C0(T) ≤ Cn−γ‖ψωn,I‖C1(T).

To complete the proof of (8.29) it suffices to observe that ‖ψωn,I‖C1(T) = O(1).

To prove (8.30) we write the Taylor expansion at order 2:

ψωn,II(e
iω/2) = ∂ηψ

ω,0
n,1 (e

iω/2)
(

ϑn(e
iω/2)− eiω/2

)

+ r̃ωn

with

|r̃ωn | ≤ ‖ψω,0n,1‖C2(T)

∣

∣

∣ϑn(e
iω/2)− eiω/2

∣

∣

∣

2

≤ Cnγ |ξ̃n(eiω/2)|2 ≤ C′n−γ .

A similar reasoning can be applied to −eiω/2 instead of eiω/2 and to complete the proof of (8.30)
we observe that ∂ηψn,1(±eiω/2) = 0. �

To begin the proof of (2.30) in case (b) we observe that

gn(n) =

⌊N/2⌋
∑

m=1

αmRe〈en, H2πm/N,0
n en〉+

⌊(N−1)/2⌋
∑

m=1

α̃m Im〈en, H2πm/N,0
n en〉

and Lemma 6.1 in the case ν = 1 ensures

gn(n) =

⌊N/2⌋
∑

m=1

αmRe g2πm/N,0n (n) +

⌊(N−1)/2⌋
∑

m=1

Im g2πm/N,0n (n) + O(n−γ+5ε)

with

gω,0n (n) = eiωn
∫ 2π

0

eiψ
ω,0
n,1(e

iη)bωn(e
iη)

dη

2π

for ω ∈ Ω∗ and

bωn(e
iη) = eiψ

ω,0
n,2(e

iη)

according to (8.7). Then Lemma 3.1 with µ = 4a(n) sin ω
2 and η0 = π + ω

2 gives

gω,0n (n) = eiωn
∑

κ=±1

eiκ(4a(n) sin
ω
2
−π

4 )

2
√

2πa(n) sin ω
2

bωn(−κeiω/2) + O(a(n)−1) (8.31)

and applying Lemma 8.2 we obtain

bωn(±eiω/2) = eiψ
ω
n,I(±eiω/2) +O(n−γ). (8.32)

However using (8.23) we get ψωn,I(±eiω/2) = 2a(n)δa(n) sinω. Thus combining (8.32) with (8.31)

and a(n)−1 = O(n−γ), we obtain

gω,0n (n) =
cos
(

4a(n) sin ω
2 − π

4

)

√

2πa(n) sin ω
2

ei(ωn+2a(n)δa(n) sinω) +O(n−γ). (8.33)
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To complete the proof we observe that (8.33) ensures

Re gω,0n (n) =
cos
(

4a(n) sin ω
2 − π

4

)

√

2πa(n) sin ω
2

cos
(

ωn+ 2a(n)δa(n) sinω
)

+O(n−γ),

Im gω,0n (n) =
cos
(

4a(n) sin ω
2 − π

4

)

√

2πa(n) sin ω
2

sin
(

ωn+ 2a(n)δa(n) sinω
)

+O(n−γ).

Appendix A. The quantum Rabi model

The quantum Rabi model couples a quantized single-mode radiation and a two-level quantum
system.

Let Hfield be a complex Hilbert space equipped with an orthonormal basis {en}∞0 and let â,
â† be the photon annihilation and creation operators defined in Hfield by

â en =
√
n en−1, n = 0, 1, 2, . . . ,

â†en =
√
n+ 1 en+1, n = 0, 1, 2, . . .

(with e−1 = 0). To define the quantum Rabi model we fix four positive parameters:
(i) ω, the frequency of the quantized one-mode electromagnetic field,
(ii) E, the level separation energy,
(iii) g, the coupling constant,
(iv) ~, the Planck constant.
The quantum Rabi Hamiltonian is then the self-adjoint operator in Hfield ⊗ C2 given by

HRabi = ~ω â†â⊗ IC2 + IHfield
⊗ 1

2Eσz + ~g(â† + â)⊗ σx, (A.1)

where σx = ( 0 1
1 0 ) and σz =

(

1 0
0 −1

)

. Then we have the decomposition (see [19] or [6, Section 3.1])

Hfield ⊗ C
2 = H+ ⊕H−, (A.2)

where H+ and H− are invariant under HRabi and the restrictions H± := HRabi|H±
have the form

H± = −1

2
~ω + ~ω J±, (A.3)

where the operator J+ (resp. J−) is defined in an appropriate basis by the Jacobi matrix (1.1)
whose entries are given by (1.2) with a1 = g

ω and ρ = E
2~ω (resp. ρ = − E

2~ω ). Therefore

σ(HRabi) = {λn(H+)}∞n=1 ∪ {λn(H−)}∞n=1,

where

λn(H±) = −1

2
~ω + ~ωλn(J±). �
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