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OSCILLATORY BEHAVIOR OF LARGE EIGENVALUES
IN QUANTUM RABI MODELS

ANNE BOUTET DE MONVEL! AND LECH ZIELINSKI?

ABsTrACT. We investigate the large n asymptotics of the n-th eigenvalue for a class of un-
bounded self-adjoint operators defined by infinite Jacobi matrices with discrete spectrum. In
the case of the quantum Rabi model we obtain the first three terms of the asymptotics which
determine the parameters of the model. This paper is based on our previous paper that it
completes and improves.

1. INTRODUCTION

1.1. The quantum Rabi model. This paper is motivated by the quantum Rabi model [§]
describing the simplest interaction between radiation and matter (see [17]). It is also called the
Jaynes—Cummings model without the rotating-wave approximation. The Hamiltonian of this
model is a self-adjoint operator Hg,pn; with discrete spectrum defined in Appendix. We refer to
[21] for a list of recent works on this model.

A natural question is whether the spectrum of Hg.p; determines the values of all the parame-
ters involved in its definition. These parameters are listed in the Appendix and denoted by w, F,
and g. The answer to this question is positive. In [6] we explain how to recover the values of all
the parameters from the spectrum of Hgapi- The method described in [6] is based on the three
term asymptotics for large eigenvalues of Hr,pi. This asymptotic formula can be easily deduced
from the formula ([Zal) of this paper using the well known fact (see [I9,20L22]) that Hgrapi can be
written as the direct sum of two Jacobi matrices (see Appendix) to which Theorem [[T] applies.

Further on J denotes an infinite real Jacobi matrix

d(1) a(l) 0 0
a(l) d2) a2 0 ...

J=1| 0 a2 dB) a@) ...|. (1.1)
0 0 a(3) dd4) ...

To treat the Jacobi matrices representing the quantum Rabi model we have to consider entries
{d(k)}32, and {a(k)}32, of the form

(k) =k + (~1)¥p,
{a(kz) =a1k'/?, (1.2)

where p € R and a; > 0 are some constants.
The Jacobi matrix (1)) defines the self-adjoint operator J that acts on [2(N*) by

(Jz)(k) = d(k)z(k) + a(k)z(k + 1) + a(k — V)z(k — 1) (1.3)

2010 Mathematics Subject Classification. Primary 47B36; Secondary 81T10, 81Q10, 47A75, 47A55.
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where, by convention, £(0) = 0 and a(0) = 0. We denote by N* the set of positive integers and
by 12(N*) the Hilbert space of square summable complex sequences = = (z(k))?2, equipped with
the scalar product (z,y) = >, z(k)y(k). The operator J is defined on D = {z € I*(N*) :
> d(k)?|z (k) < oo}

Under our assumptions, in particular under (L2), the self-adjoint operator J is bounded from
below with compact resolvent. Its spectrum is therefore discrete and one can find an orthogonal
basis {w;,}22; such that Jw, = A\,(J)w, where {\,(J)}32; is the non-decreasing sequence of
its eigenvalues:

The aim of this paper is to describe the asymptotic behavior of A, (J) when n — co.

Theorem 1.1 (Quantum Rabi model). Let J be defined by (L3)) with {a(k)}52, and {d(k)}7,
given by [L2). Let A, (J) denote the n-th eigenvalue of J. Then, for any e > 0 we have the large
n asymptotic formula

An(J) =n — a2 +t(n) + O(n~/2Fe), (1.4a)
where
e(m) = (~1)7p UV =) s

V2maq

1.2. Comments. In this section J denotes the Jacobi operator defined by (L3))-(T2]).

(1.4b)

1.2.1. The three-term asymptotics (4] improves the two-term asymptotics proved by Yanovich
[22] (see also an earlier version in [20]):

An(J) =n —a? +O(n~ Y1), (1.5)

1.2.2. The large n behavior of A, (J) was already investigated by Schmutz [16]. Let Jy denote
the operator defined by (L3)-(L2) when p =0, i.e.,

(Jox)(k) = kz(k) + arVEkx(k + 1) + axvVk — 1z(k — 1). (1.6)

As noticed by Schmutz, Jy can be diagonalized in the canonical basis by means of the Bogoliubov
transformation:

Lo = P Joe P = diag(k — a?)32,
defined by B = a;(a—a'), where @ and a' are the annihilation and creation operators, respectively
(see Appendix [A)). Since J = Jy + V with V = diag ((—1)’“/)), its eigenvalues are the same as
those of

L=¢eBJe B =Lo+V,

where V := ¢BVe 1B, Then, decay properties of the entries of V should allow to expect the
large n behavior

M () = M (L) = My (Lo) = n — a?. (1.7)

1.2.3. The asymptotic behavior of the matrix elements V (4, k) expressed by means of Laguerre
polynomials was considered by I. D. Feranchuk et al [9] who proposed to apply the Oth order
perturbation theory (see the book [I0]) and suggested the following improvement of (L7):

An(J) = An(L) & Mo (Lo) + V(n,n). (1.8)

The approximation (L8) was discovered independently by Irish [12]. Following Irish, (LJ]) is
called the Generalized Rotating-Wave Approximation (GRWA) in the physical literature. We
observe that one can prove that

V(n,n) = t(n) + O(n"1/2%9), (1.9)
where t(n) is given by (L4L).
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1.2.4. The first step of our analysis uses an analog of the Bogoliubov transformation. In order
to simplify the remainder estimates with respect to the large parameter n we work with Jacobi
operators indexed by n and write

eiB" JneiiBn = LO,n + Vn + Rn
where Ly, is diagonal, ||R,|| = O(n~1/2), and
Vi(n,n) = t(n) + O(n~1/2+), (1.10)

The definitions of J,, Lo, and V,, are given in Section Propositions 2.1] and [2.3] ensure
the fact that the asymptotic formula for J can be reduced to an analogous formula for .J,, and
Ly = Lon+ V.

1.2.5.  The asymptotic behavior of A, (J,) is deduced from the trace estimate described in Sec-
tion 23] by means of a Tauberian type result [5, Proposition 11.1] slightly adapted in Proposi-
tion We begin the proof of the trace estimate in Section [ by reducing the problem to large
n estimates of a Dyson expansion similarly as in [5]. We notice that Section [ is the only part
of this paper where we rewrite proofs from [5] in a slightly more general form. We complete the
proof by an analysis of the Dyson expansion in Sections and to perform this analysis we need
to use a certain number of auxiliary results from [5, Section 10]. In order to avoid unnecessary
overlaps we refer to [5] for the proofs of these auxiliary results.

1.2.6. In Section [[3] we describe a class of more general type of operators for which we can
obtain an analogous large n asymptotic formula. Following [I] we replace the sequence p(—1)* by
a general sequence of period N and we give the corresponding asymptotic formula in Theorem [T.2
Since in practice the proofs of Theorem [[L1] and Theorem require the same arguments, we
chose to present the proof in the more general framework, i.e., for the class of operators described
in Section [[3l For readers interested only in the result of Theorem [[LT] we indicate that the
only simplification with respect to Theorem consists in the fact that the proof of (L9) is
simpler in the case of period N = 2. Indeed, an additional symmetry of this case allows us to
express an approximation of Vn(k, k) by oscillating integrals with very simple phase functions
(see Section B2)) and to obtain (LY) immediately from the stationary phase formula. Thus the
proof of Theorem [[T] ends in Section Bl In the case of Theorem [[.2] the proof of (L) involves
more complicated phase functions and is given in Section

1.2.7.  Our approach works the same way in the proofs of Theorems [Tl and Therefore, it
does not distinguish whether or not the corresponding model is integrable in the sense of Braak
[7]. For this reason, it makes no contribution to the Braak conjecture.

1.3. Quantum Rabi type models. We consider the following assumptions on the entries of J:

Assumption (H1). There exist constants 0 < v < %, C, C’, C", and ¢ > 0 such that

ck” <a(k) < CKY, (Hla)
|da(k)| < C"k7H, (H1b)
|62a(k)| < C"kY 72 (Hlc)

for any k € N*. Here, da(k) = a(k + 1) — a(k) and §%a(k) == a(k + 2) — 2a(k + 1) + a(k).
Remark. (H1) is satisfied if a(k) has the large k behavior
a(k) = a1 kY +ai k"™t + O(K772).
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Assumption (H2). The diagonal entries of J are of the form

d(k) =k+v(k) (H2a)
where v: N* — R is real-valued and periodic of period N, i.e.:
v(k + N) =v(k) for any k € N*. (H2D)
Moreover, we assume
1 : _
PN < {i;ﬁ i x ; ; (H2c)
where
pn = pn(v) = max fv(k) — (v)]. (1.11)

Here (v) == + > 1<r<n V(k) denotes the “mean value” of v.

To compare with the hypotheses of Theorem [[LT] we reformulate these as follows:
Assumption (HO). The diagonal and off-diagonal entries of J are of the form

{d(k:) =k +v(k), withv(k)=(—1)%p,
a(k) = a1k", with v = 1,

where p is a real constant. In particular, v is periodic of period N =2, (v) =0, and pn = |p|.
Remark. (HO) is a special case of (H1) and (H2), except that there is no restriction on py = |p|.

Let v be as in (H2). By N-periodicity we can expand it as follows:

[N/2] [(N-1)/2]
v(k) = ap + Z Q, cO8 2Tk 4 Z Gy sin 227K (1.12)
m=1 m=1

where

e |s] :=max{k € Z: k < s} is the integer part of s,
e all coefficients g = (v), o, and &, are real constants.

Theorem 1.2 (Quantum Rabi type model). Let J be defined by (L3) with {a(k)}3>, and
{d(k)}$2, satisfying assumptions (H1) and (H2), respectively. Then, for any e > 0 we have the
large n asymptotic formula:

M (J) =n+a(n —1)? —a(n)? + ag +t(n) + O(n~ 7). (1.13a)
where ag = (v) and
Lv/2] L(N-1)/2]
tn) = Y amtm(n)+ D Gmtm(n), (1.13b)
m=1 m=1

With G, G as in ([LI2) and vy (n), Ty (n) defined by

4 ipmT _ =«
tm(n) = cos(da(n) sin r_ i) cos(%;;m + 2a(n)da(n) sin mTﬂ) (1.13¢)
N

T (n) = nF —§) sin(%}\}m + 2a(n)da(n) sin MT”) (1.13d)
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Remark. For N = 2, the expression of t(n) reduces to
, cos(da(n) — )
o(n) = prr(n) = (—1)rp ) — 1)
2ma(n)
Moreover, in the case of the quantum Rabi model, a(n) = a1y/n, hence a(n —1)? —a(n)? = —a3.
Then, (LI3) becomes the asymptotic formula (I4]) in Theorem [T}

Assumption. Further on, we make the assumption
(v) = ap = 0. (1.14)
Indeed, since A, (J) = o + A\p(J — ) it suffices to prove Theorem [[L2 for J — apl.

1.4. Plan of the paper. As in [5] the main ingredient of our approach is a trace estimate
(Proposition [Z4]). In Section [2 we show the implication

Propositions 211 &
Propositions 241 & — Theorems [T & (1.15)
Lemmas &2

Section 2 gives the proofs of Propositions 211 2.3] and 2.5l and of Lemma 2.7 Notice that Propo-
sition was proved in [5] and Propositions 211 and [2.3] were proved in [5] under Assumptions
(H1) and (H2). Thus, it remains to prove Lemma and the trace estimate from Proposition
24

The proof of Lemma 22l under Assumption (HO) is given in Section[3l The proof of Lemma [2.2]
under Assumptions (H1) and (H2) is given in Section [8.21

The remaining part of the paper is devoted to the proof of the trace estimate (Proposition 2:4)).
This result is a refinement of a less precise trace estimate [B, Proposition 5.2] and is obtained
from the analysis of a suitable evolution t — U, (t) based on Fourier transform, as in [5, Section
6]. This reduction is presented in Section ] where we give details which are more involved than
in [5]. More precisely, in Section Hl we state Proposition 1] which gives O(n~7"¢) estimates
for the diagonal entries from the Neumann series expansion of ¢ — U,(t) and we show that
Proposition £l implies Proposition 2.4l The proof of Proposition 1] is given in Section [7] and
is based on approximations by oscillatory integrals (Lemma [6.1]). In Section [§ we observe that
the construction of these approximations was already made in [5, Section 10| and give the proof
of the regularity properties claimed in Lemma

Concerning the proof of Proposition [£1] we observe that the principal difficulty consists in
the control of oscillatory integrals with phase functions depending on parameters. In particular
these phase functions can be identically zero for some values of the parameters but an additional
integration allows us to neglect the contribution of these bad cases. More precisely the phase
functions appear with a large parameter proportional to n” (see Section [B2.]]) and the results
of [5] were based on the fact that the decay of the corresponding oscillatory integrals is of order
n~7/2. To obtain the results described in this paper we apply the formula of the asymptotic
expansion for oscillatory integrals stated in Lemma [BIl In Section [ we investigate the special
structure of the main term (of order n~7/2) and error terms (of order n~7) and we manage to
control their dependence on parameters by using an auxiliary estimate proved in Section

1.5. Notations. Throughout the paper, we use the following notations:

e B(#H) is the algebra of linear bounded operators on a Hilbert space H.

e N=1{0,1,...} is the set of non-negative integers, N* = {1,2, ...} is the set of positive integers.

e [?(Z) is the Hilbert space of square-summable complex sequences x: Z — C equipped with the
scalar product (z,y) = >, ., (k)y(k) and with the norm ||z||;2(z) = \/(x, z).
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{ex}rez is the canonical basis of [2(Z), i.e., ex(j) = ;.

e H(j k)= (ej, Hey), j, k € Z denote the matrix elements of an operator H acting on (?(Z) and
defined on its canonical basis.

e [?(N*) is the Hilbert space of square-summable complex sequences x: N* — C equipped with
the scalar product (z,y) = ;- 2(k)y(k) and the norm [|z|;2n-) = /(z,2). It can be
identified with the closed subspace of [?(Z) generated by {e,}nen+, i.e., with the subspace
defined by the conditions z(k) = 0 for any k£ < 0.

We use specific notations for some operators acting on [?(Z):

e The shift S € B(I1*(Z)) is defined by (Sz)(k) = #(k — 1), k € Z. Thus, Sej, = ejy1-

e A acts on I?(Z) by (Az)(k) = kx(k), k € Z for any x such that (kz(k))rez € [*(Z).

e For any ¢: Z — C we define the linear operator ¢(A) by functional calculus, i.e., ¢(A) is the

closed operator acting on [?(Z) and characterized by q(A)ey = q(k)e, k € Z.

e If L is a self-adjoint operator which is bounded from below with compact resolvent its spectrum
is discrete and we denote

AM(L) < S M(L) € Apgr (L) <.

its eigenvalues, enumerated in non-decreasing order, counting multiplicities.
Finally, we also use the following notations:

e S(R) denotes the Schwartz class of rapidly decreasing functions x: R — C.
e The Fourier transform ¥ of a function y € S(R) is defined by

W= [ e,

oo 2

e T denotes the unit circle {z € C: |z| = 1}.
e 7,: T — T, where w € R denotes the translation elf 1y el(é—w),
e C"™(T), m =0,1,2,... is the space of functions b: T — C of class C™ equipped with the norm

bl gm ) = Eb(el)].
16/l () Olgr}cagxmilelg\ £b(e')|

Throughout the paper n € N* is the large parameter involved in the asymptotics (L4al) or
(ILI3a)). All error estimates are considered with respect to n € N* and some statements will be
established only for n > ng, for some large enough constant ny.

2. SCHEME OF THE PROOF OF THEOREMS [I.1] AND

2.1. Plan of Section 2. In Section we introduce auxiliary operators J,,, V,,, and L,, and
state Propositions 2.1 and 23] ensuring that A, (J) is well approximated for large n by suitable
eigenvalues of J, and L,. Moreover, we state Lemma which gives the asymptotics of the
n-th diagonal entry of V,,. In Section 23] we first state Proposition 24 which gives a trace
estimate for L,,. To derive from this estimate the asymptotic behavior of eigenvalues of L,, we
prove Lemma 2.7 which allows us to apply Proposition Finally in Section 2.4l we check the

implication (LI3)).

Remark. Proposition was already proved in [5]. Propositions [2Z] and 23] were proved in [5]
under assumptions (H1) and (H2). Lemma[27is proved in Section 233 Lemmal[Z2lis proved in
Section Blunder assumption (HO) and in Section Rl under assumptions (H1) and (H2). Sections[4]
[ [6, and [[ are devoted to the proof of Proposition [2Z4] (trace estimate).

2.2. Auxiliary operators J,, Vn, and L,,.
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2.2.1. Cut-off function. These operators were already introduced in [5]. Their definition depends
on the choice of a cut-off function 6y € C°°(R) such that

Oo(t) =1 if [t] < L
Oo(t) =0 if [t] > £, (2.1a)
0<0o(t) <1 otherwise.

From now on such a cut-off is fixed and for any 7 > 0 we denote

0r.0(s) = 0o (S - ") . (2.1b)

Finally we define v,,, a,: Z — R by
v (k) = (k)0 n(k)?, (2.2a)
an (k) == (a(n) + (k —n)da(n)) O2n n (k). (2.2b)

2.2.2. Operators J,,. As in [5, Section 2.2] we define the self-adjoint operator J,, on [*(Z) by

(Jox)(k) = (k +vn(k))x(k) + an(k)x(k+ 1) + an(k — Dz(k — 1) (2.3a)
for any x such that (kz(k))rez € [*(Z). Using notations of Section we can write
Jn = A+ v,(A) + an(A)S™! + Sa,(A), (2.3b)

to compare with the similar expression for J. Each operator J, is a finite rank perturbation of
A, hence its spectrum o(.J,,) is discrete and can be written

o(Jn) = {(Jn) rez (2.4)

where (A;(Jn))kez denotes the non-decreasing sequence of eigenvalues of J,, counted with their
multiplicities, well labeled up to translation.

Proposition 2.1. Let J and J, be defined by (L3) and [23), respectively. Assume we are in
one of the following two cases:

(a) (HO) is satisfied.

(b) (H1) for some 0 <~ < i and (H2) are satisfied.

Let ng € N be large enough. Then, for any n > ng we can enumerate the eigenvalues of J, as in
@4) so that we have the large n estimate

)\n(‘]) = )‘n(Jn) + O(?’L3772), (25)
where v = 1 in case (@).

Proof. Case (b)) is already proven in |5, Proposition 12.1]. Case (@) requires a new proof, since
in that case there is no restriction on py = |p|.

Let J; be the restriction of J,, to the subspace [?(N*) which is invariant under .J,. The
operator J," is self-adjoint and bounded from below with compact resolvent. Its spectrum is
discrete: o(J;7) = { (1)} e>1, where A\ (JF) < -+ < MNe(J,F) < M1 (J)F) < ... denote its
eigenvalues, enumerated in non-decreasing order, counting multiplicities. Since J,e; = key for
k < 0 we can write

o(Jy)={k€Z : k<0}Uo(J)={ke€Z: k<0}U{N(J)}e>1. (2.6)
Step 1. We will show the estimate

sup |\ (J,5) — k| < oco. (2.7)
n,k>1
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Let Jgf ., denote the operator acting on [2(N*) by
(Jgrnx)(k) =ka(k) + an(k)z(k + 1) + an(k — 1)z (k — 1).
| <

Since J,; — Jy,, = diag (v, (k))p—; with |v, (k)| < |p|, the min-max principle applies and gives

sup [Ar () — A(Jg,)| < o0 (2.8)
n,k>1
Hence, to get ([Z7)) it suffices to show
sup |)\k(JO n) — k| < oo. (2.9)
n,k>1

In [5, Proposition 3.1] we proved the large n estimate

sup [Ak(Jg',) = In (k)| = O(n™72), (2.10)
keN
where
In(k) =k +an(k—1)2 —a,(k)?, k>1 (2.11)
Hence, to obtain ([29) it suffices to show
sup |, (k) — k| < oo. (2.12)
n,k>1

To prove (2I2) we denote

a1 (k) = 1,(k) — k = an(k — 1)% — a,(k)?. (2.13)
By estimate a,(n —1)? — a,(n)? = a(n — 1)? — a(n)? + O(n?~2) from [5, (2.5)] we get

ln(n) =n+a(n—1)% —a(n)* +0n*32).
In case @), v = 4 and a(n) = a;/n, and thus we obtain

arn(n) =1l,(n) —n = —al +0(n1). (2.14)
Moreover, in [B, Section 3.3] we proved the estimate
|0a1,(k)| < Cn™, (2.15)
and thus
lat n (k) — a1, (n)] < |k —n|Cn~?, (2.16)

By definition, a; (k) = 0 for any k > 2n, and ([2.16) ensures

sup |a1,n(k) — a1,n(n)] < oc.
1

77"7 -

Using (ZI4]) which implies ay,, = O(1) we finally get [Z12):
sup |a1n (k)] < 0.

n,k>1

Step 2. Now we will prove that

sup | Mg (J) — k| < oo. (2.17)
n,k>1

where the operator J; acts on [2(N*) by
(JF ) (k) = dp (k)2 (k) 4 an(k)x(k + 1) + an(k — Da(k — 1), (2.18a)
with
if n— 8! 2!
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and with a large enough constant C;. Estimate [5 (12.8)] ensures that

sup A\ (JF) = Me(J5)] = O(n®72). (2.19)
keN*

Thus, 1) and [2.19) for v = 1/2 give 2I1).
Step 3. Taking Cy > 3 in the definition (2I8) we have the property
n—3n"<k<n+3n" = Jekzj{fek.
Then [5, Proposition 12.5] applies and for any v > 0 there exists n(v) such that the inequalities
card{k € N* : X + X7V < M\ (JF) < A= A7} < card{k € N*: N < A\,(J) < A}, (2.20a)
card{k € N* : X' < \p(J) < A} <card{k e N : N =A™ < \(JF) SA+A7), (2.20Db)

hold if n —2n" < N < A <n+2n" and n > n(v). Let {A%},>1, 0 < k < 1 be the family of
intervals defined by

AF = (n—a} —k,n—al+ k|

Using ([Z20a) with X' = n—a?—3, A = n—a?+3, and @2200) with N’ =n—a}—1, A =n—af+1
we get that for some ng and any n > ng we have the inequalities
card{k € N* : \p(JF) € AY/2} < card{k € N* : A\,(J) € A3/4}, (2.21a)
card{k € N* : \p(J) € AY2} > card{k € N* : A\, (J) € AL/4}. (2.21b)

Step 4. Yanovich estimate (LH) gives \,,(J) = n —a} +o(1). Hence, for any 0 < £ < 1 and n(x)
large enough

n>n(k) = o(J)NALY ={\,(J)}. (2.22)
Thus we can find n; > ng such that the right hand sides of ([2:21]) are both equal to 1 for n > n;.
Hence, inequalities ([2:21) imply
n>n; = card{k € N*: \(J;F) € A/2} = 1. (2.23)
Let k(n) = n+m(n), m(n) € Z, n > ny, be the unique k such that Ay (JF) € Ay/*:

n>n = o(J)NAY? = Mg ()}

The eigenvalues A, 4 (n) (/) are of multiplicity one. Moreover, by (ZIT) there exist ng, mo € N*
large enough such that

n>nyg = |m(n)| < meg. (2.24)
Step 5. Using (220D) with X' = A\, (J) — A\ (J) ™Y, A = A\, (J) we find that, for any fixed v > 0,
Angm(m) (J7) = An(J) + O(n™"). (2.25)

Then, using (ZI9) with v = % and ([223) with v = % we get
Mntmin) () = An(J) +O(n™"?). (2.26)

Let n > f; with n; large enough. Then, according to (2.6) and ([224]) we can label the eigenvalues
of J, in nondecreasing order, counting multiplicity, so that

The proof of (Z3)) is then completed by combining (226]) with (Z27). O
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2.2.3. Operators V,,. As in |5l Section 5.2] we define self-adjoint operators By, V;, € B(I%(Z)) by
By, =1i(an(A)S™! = Sa,(A)), (2.28a)
Vi, = elBry, (A)e 1B (2.28Db)

where {a, (k) }rez and {vn(k)}rez are defined in (Z2), and we denote by {g,,(k) }rez the sequence
of diagonal entries of V,:

Notice that Vj, and g,, depend on both sequences {a(k)}2,, {v(k)}52,, and on the cut-off 6.

Lemma 2.2. Let V, be defined by 228) and assume we are in one of the following two cases:
(a) (HO) is satisfied.

(b) (H1) and (H2) with (v) =0 are satisfied.

Then for any € > 0 one has the large n asymptotics

gn(n) = t(n) + O(n= 7). (2.30)
where t(n) is given by (L4D) in case @) and by (LI3D) in case ([@).
Proof. See Section B3 for case (a) and Section B2 for case (b). O
2.2.4. Operators L,. As in [5, Section 5.2] we introduce operators L,, acting on [?(Z) by
Ly =1, (A) + V,, (2.31a)
where V,, is defined by Z28) and [, (k) is as in (ZII):
Ln(k) =k + an(k —1)* — an (k). (2.31b)

Since 1,(A) is a diagonal operator with discrete spectrum and V,, is bounded, the spectrum of
L,, is discrete and can be written

o(Lyn) = {Me(Ln)}rez (2.32)

where (A (Ly))7e, denotes the non-decreasing sequence of eigenvalues of L,, counted with their
multiplicities, well-labeled up to translation. Moreover, the subspace ((N*) is invariant by B,,,
hence by V,, and L, and L,ex = ke if £ < 0.

Proposition 2.3. Let J, and L,, be defined by (Z3) and 231), respectively. We assume we
are in one of the following two cases:

(a) (HO) is satisfied.
(b) (H1) for some 0 <~ < % and (H2) are satisfied.

Then, the eigenvalues of L,, can be enumerated in nondecreasing order, counting multiplicity, so
that one has the large n estimate

)\n(Jn) = )‘n(Ln) + O(n3’y—2), (233)
where v = % in case (@).

Proof. We indeed have ||.J,, — L,|| = O(n®Y~2), see [5, proof of Proposition 5.1]. Hence, we can
enumerate the eigenvalues of L,, in ([Z.32)) so that

sup| Ak (Jn) — Ak(Ln)| = O(n®72). O
kEZ
Summary. In both cases (@) and ([B), Propositions 20l and 23limply the large n estimate A, (J) =
An(Ly) +O0(n*72). Since v < 3 we also get
An(J) = A (Ln) + O(n™7). (2.34)
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2.3. Trace estimate and its consequences.

2.3.1. The trace estimate. Further on we denote

where [, and g, are given by (231D) and ([Z29)), respectively. Then, for y € S(R) we consider
g~2 = Z(X()‘n-i-j (Ln) - ln(n)) - X(in(n + j) - ln(n))) (2'363‘)

JEL
with L,, as in (Z3Ta). Writing k = j + n in (Z36al) we get the expression
G0 = > (XOk(Ln) = ba(n)) = x(Tn (k) = L (n)). (2.36b)
kEZ

Introducing the diagonal operators

Lon = ln(A), (2.37a)
EO,” = Nn(A) = LO,n + gn(A> (237b)

we see that the r.h.s. of ([2.36D) is the trace of an operator:
Gy = tr(X(Ln —1a(n)) = X(Lon — ln(n))). (2.38)

Notice that G depends on x € S(R). It also depends on {a(k)}$,, {v(k)}$2 ,, and 6.

Warning. This trace GO differs from the trace GO considered in |5, formulas (5.10)], that uses
Ly, instead of Ly ,, and thus does not involve g,,.

Proposition 2.4 (trace estimate). Let GO be the trace defined by (2.36a) under the additional
assumption that x € S(R) has Fourier transform with compact support. Then, under assumption
(HO) or assumptions (H1) and (H2) and for any € > 0 one has the large n estimate

GY = 0(n*e). (2.39)
Proof. See Section where the proof is reduced to that of Proposition [£l See also Section [7]
where the proof of Proposition [£1]is given. a

2.3.2. Comparison of the asymptotic behavior of two sequences. As before (I,,(k))rez is defined
by [231D) where (an(k))rez is given by (2.2D) under assumption (H1).

Proposition 2.5. Let (I,(k))rez be defined by [2.31D) under assumption(H1) for some 0 < v <
1. For each j € Z let (r8(4))52, and (r}(4))52, be real valued sequences such that

sup (| ()] + s (4)]) < oo
Z,n>1

j€
Assume they also satisfy
sup [r,(j + N) =, (/) <Cn1 (i=0,1), (2.40a)
|7]<n0
sup sup (|ry (7)] + | (9)]) < 4 (2.40Db)

n>no |j|<n0
for some v >0, ng €N, and p’ > 0 such that
1
5 when N = 2
p < {2 ’ (2.41)

ﬁ when N > 3.
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Assume moreover that for some e > 0
S (xltaln + )+ 720) — L)) = (a4 3) +190) — (m)) = O™"*)  (2.42)
JEZL
holds for any x € S(R) whose Fourier transform has compact support. Then
i (0) =19(0) + O(n™ 7). (2.43)

Proof. Tt suffices to adapt the proof of [5, Proposition 11.1] as follows. Remove the first two lines,
define GX as the Lh.s. of ([Z42) and replace the error terms O(n~7/21nn) by O(n=7+¢). O

2.3.3. Application of Proposition [2.3. We will apply Proposition to the case where the two
sequences (r2(5))%%, and (r}(5))32, are given by

() = gn(n +J), (2.44a)
(1) = Antg (Ln) = In(n + ). (2.44b)

Proposition 2.6. Let L, and I,,(k) be given by 231a) and Z38), respectively. We assume we
are in one of the following two cases:

(a) (HO) is satisfied, v = 3.

(b) (H1) for some 0 <~y < % and (H2) are satisfied.

Then, for any € > 0 one has the large n estimate
An(Lyn) = In(n) + O(n~77F%). (2.45)

Proof. We first show that Proposition 25 applies to the case where rQ and r} are given by (2.44).
In this case the Lh.s. of (ZZ42) is G0 as defined by ([Z36a) and thus the trace estimate (239) in
Proposition [Z4] says that assumption (Z42) is satisfied for any € > 0 and any x € S(R) whose
Fourier transform has compact support. That the conditions (2.40]) are also satisfied is proven in
Lemma 2.7 below. Thus, Proposition applies and the assertion (2.43) is exactly ([2.45) since
in that case rL(0) — r9(0) = A, (Lyn) — In(n). O

Lemma 2.7. The sequences r0 and r} given by 244) satisfy the conditions [240Q) in each of

the following two cases:

(a) (HO) is satisfied, N =2, v =%, 70 =

(b) (H1) and (H2) are satisfied, 0 < v <
large enough.

Proof. We first prove (2.40H).

Step 1 (estimate of 70 (j) in cases @) and (B))). First note that 70(j) = g, (n + 7). Then, taking
t1 = 0 and j + n instead of j in [5l Lemma 6.3 (i)] we get

sup [rp(7)] = sup |gn(n+j)| = O(n~""?). (2.46)
7l <n? 7] <nY

We indeed have the relation g1 ,, ;(0) = ign(j) with g1 ,,; defined in [5, (6.16)].

any 0 < p' < %, and ng € N large enough.

1
4
1.9 =7, any p’ > pn satisfying @A), and ng € N

Step 2 (estimate of r}(j) in case @)). It suffices to show
sup [, (j)| = O(n~1/19). (2.47)

7] <nt/4
To obtain ([2.47) we introduce the quantity
P (7)) = Ansi (J) = (n+ j — af) (2.48)

T
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and observe that the Yanovich estimate (L3 ensures

sup |7y (7)) = O(n~ /1) (2.49)
7| <nt/a
Due to (249) to complete the proof of (2Z.47) it suffices to show the estimate
sup |y (7) — 7 (5)| = O(n~2). (2.50)
7] <ni/4
In order to get ([Z50) we first show the estimate
‘ ‘Sup/ An(J) = An(Jnj)| = O(n=1/2). (2.51)
jl<n1/4

For this purpose we observe that the proof given in |5, Section 12.5] still holds if j{l” is replaced
by J:L ; with l7] < n'/4 and all estimates are uniform with respect to j. Hence we can replace
Jn by Jn—; in (ZH), and (ZEI) is proved. Moreover, replacing n by n + j we can write (Z5]) in
the form

S Pt () = Anis ()] = O(n~Y/2) (2.52)
j]<nt/4
Then we complete the proof of (2.50) by showing
sup [L(n +j) = (n+j — ai)| = O(n=/*). (2.53)
lj]<nt/4

In order to show (Z53) we consider ay (k) = I, (k) — k as in (Z13). Using [ZIH) we get
[l (n+5) = ln(n) = jl = la1n(n + j) = arn(n)| < |j| O™,

hence

sup |ln(n+5) — ln(n) — j| = O(n=3/4),
|| <nt/4

and (Z53) follows by using (2.I4) in the last estimate.

Step 3 (estimate of 71(j) in case (B)). In [5, Section 11.3] where rl is denoted by r, (see
[5L (11.16)]) we have shown the estimate

sup rL ()| < pv + Cin® 72 (2.54)
VIS

We indeed have the relation g; ,, ;(0) = ig,,(j) with g1 ,, ; defined in [5 (6.16)]. Using (Z54)), (Z.46])

and taking 7o = v we can estimate the Lh.s. of 2400) by py 4+ C1n>7~2 + Cyn~7/2. Moreover,

by assumption (H2d) on py we can choose p’ > py satisfying ([241]). We conclude that (2:400)

holds if ng satisfies C’1n8772 + an57/2 < p' — pn, and that is possible since 0 < v < %

We now prove ([2.40a).

Step 4 (proof of (Z40a) for i = 0). Since g, (k+ N) = (e, S~NV,,5Ne;) it suffices to prove
1S~V SN — V|| = O(n 7). (2.55)

In order to show (2.55) we first observe that S~V v(A)SY = v(A+N) = v(A) and ||S™V,, ., (A)SN —

O n(N)]| = [|0o((A + N)/n—1I)—0o(A/n—I)|| = O(n~") ensure

1S~ N v, (A)SYN — v, (A)]| = O(n71). (2.56)
Similarly, [|[S™Va,(A)SY — a,(A)|| = [|an(A + N) — an(A)| = O(n?~1) implies
| S~ NetiBrgN _ oFiBn|| = O(n771) (2.57)

and (Z53) follows from (Z56]) and (Z57]).
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Step 5 (proof of ([Z40a) for i = 1 in case (B))). In |5, Section 11.3] where r. is denoted by 7, we
already checked that (2:40a) holds for i = 1.

Step 6 (proof of ([2Z40al) for i = 1 in case ([@)). We observe that if 0 < x < 1 then combining
(222)) and (2.52) we can choose n,, large enough to ensure

n>n,and |j| <nt/* = o(J)N(n+j—a? —kn+j—a?+r={Msi(Jn)}  (2.58)
and (258) allows us to obtain (2.40al) for ¢ = 1 following the proof given in 5| Section 11.3]. O

2.4. Proof of Theorems [I.1] and Recall that Propositions 2.1 and give the large n
estimate A, (J) = Ap(Lp) + O(n~7). Combining this estimate (Z34) with estimate ([2:45]) of
An(Ly,) in Proposition 226] we obtain
An(J) = In(n) + O(n™7Fe) (2.59)
for any £ > 0. The desired estimates ([4a) and ([I3a) follow from ([2359), using the estimate
@30) of g, (n), and from
ln(n) —n = an(n —1)? —an(n)* = a(n — 1)* — a(n)* + O(n*~2)

whose last estimate comes from [5, Section 2.3, (2.5)]. O

3. PROOF OF LEMMA (a)

In section Bl we prove a stationary phase formula for some type of oscillatory integral (Lemma
BI). Then we assume that the diagonal and off-diagonal entries of J satisfy (H1) and d(k) =
k + v(k) with v(k) = (=1)*p. In section we prove an approximation result of g,(n) by
an oscillatory integral of the above type (Lemma B.2]). Finally, in section B3] we derive the
asymptotics (Z30) of g, (n):

Lemma [31]

2.2 .
Lemma BM —> Lemma [22] (a)

3.1. Stationary phase formula.

Lemma 3.1. Forbd e CQ('H‘), no € R and p > 0 we consider the oscillatory integral

2m
; oy d
(o) = [ et mip(ein 1, (3.1)
0 27
If we write
(o) = 3 S ™) + ) (3.20)
s 14 770) Ke) 4131, 1Mo 2a
k=%1 27T
then the remainder ry(pu,n0) satisfies the estimate
Co
e (12, m0)] < 7||b||02(1r) (3.2b)

for some constant Cy.

Proof. Let x € C(T) be such that x(el€+70)) = 1 if [¢] < 7/4 and x(elé+™0)) = 0 if 37/4 <
|€] < 57/4. Since the integrands are 27-periodic the change of variable n = £ 4 g gives
27
ip cos i d§
3(cbusim) = [ e ueiein) S
O 7T
Denoting by (&) := b(e'€Tm0)) and 1 (£) == x(e!€T)), we can express
T 14 COS d§
I(xb, 11, m0) =/ e (b )(6) 5 -

—T
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Let b_ (&) := b(e!Etm0=™)) and y_ (&) =1 — x(e€10=™)) We still have y_ (&) = 1 if |¢| < 7/4
and x_ (&) = 0if 37/4 < |¢] < 57/4. Then the change of variable n = £ 4+ 19 — 7 gives
" —ipcos d
3((1 = b = [ e b€ 5

We have [—, 7] Nsupp x4+ C [—2F, 3T]. Next we observe that |¢| < 37/4 allows us to write
b£(&) = 0+(0) + ¢x(§)€ = bx(0) + ¢z (§) siné

, X+ (0) = 1 and the standard stationary phase formula ensures

with ¢4 (&) == ¢+ (&) siﬁg

T . eil(# m/4) C
/ eimCOSEXi(E)bi(O) d¢ — Tﬂbi(o)‘ < X+ |bi(0)|

Then writing e*# o5& sin ¢ = %ageii“ o5& and integrating by parts we obtain

T . i e B -
/ G- (€) sin £ <Oy, (€) dE = 7/ O Oe ((qax+)(€)) dE - (3.3)
Since the absolute value of the right hand side of (B3] can be estimated by %Hbﬂ:”CZ(R) the
proof is complete. O

3.2. Approximation of g, (n) by an oscillatory integral. Recall that gn(k), k € Z is defined
in (229) as the k-th diagonal entry of V;, i= e!Bry, (A)e™B». We define ¢,,: Z x T — C by
Gk, %) = —4 (a(n) + (k — n)da(n)) (sin & + da(n) sin 2€) (3.4)

Lemma 3.2. We assume that the diagonal entries of J are of the form d(k) =k + (=1)*p and
the off-diagonal entries a(k) satisfy (H1) for some 0 < v < % Let g, (k), k € Z be defined by

@29). If gn(k), k € Z is defined by

27 - i€ d€
an (k) = (_1)%/ oinkei®) 45 (3.50)
0 27
with ¢, as above, then
sup  |gn(k) — gn(k)| = O(n™ " 1nn). (3.5b)
|[k—n|<nv

Proof. As in [5] we denote
Oy = Opn(A) = Op(A/n—1I).
Then it is easy to check the estimate ||[B,, ©,]|| = O(n7~!). Writing

1
[eiiB",@n] :/ e:I:itB [ian,G ] +i(1—¢t)B ndt
0

we deduce
e, ][ = O(n71). (3.6)
We recall that V,, = e%70,0(A)0,e "B~ and observe that (3.0) ensures
|V — OnelBru(A)e™BrO, || = O(n'™1). (3.7)
Further on we assume that [k —n| < n?. Using v(A) = pe'™ and ([B.1) we obtain
gn(k) = p (ep, eBrel™e=1Bre) 4 O(n 7). (3.8)
However, /™ §+le=imA — _ G+l implies ™ B,,e~ ™ = —B,,, hence
eiBnelmh — oimAe=iBn (3.9)
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Using (B8) and 39) we obtain
gn(k) = pe™ (er, e Frer) + O(n77)

Let Q! be the operators introduced in [5, proof of Proposition 8.1]. For t € [-2,2] and k € N*
we have

|(ex, OneBrey) — (er, Qler)| < |©,eitBr — QL < Cn"tnn. (3.10)
Moreover,
iy dE
QL (k, k) :9n(k)/ ety = (3.11)
0 7T

where !, is given by B, (8.5a)]. Observe now that ¢,, given by (3] coincides with !, for t = —2.
Thus, to complete the proof of ([B.5h) it suffices to use FI0) and FII) with ¢t = —2. O

3.3. End of the proof of Lemma (a). By definitions (35a)) and ([34]) we have

¢

27
n —(—=1)" —4ia(n)sin & bn i
() = (1) [ e () 5.

where
bn(eiﬁ) — e—4ia(n)6a(n) sin 25.
Thus, using notation (B we can write
gn(n) = (—=1)"pI(bn, 4a(n), —7/2).

By (Hla) and (H1b) with 0 < v < % we have [bnllc2(ry = O(1). We also have O(a(n)™") =

O(n~7) by (Hla) and b, (+e~""/2) = 1. Then the stationary phase formula of Lemma B.I] gives
ein(4a(n)fﬂ'/4)

ke /2 a(n)™!
3 Tamey D)+ Olan)™)

— (~1)"p +0(n)

with t(n) as in (L4D). This estimate, together with the estimate
lgn(n) — gn(n)] = O(n™"1nn)

from Lemma [B2 gives gn(n) = t(n) + O(n™77¢) for any € > 0, i.e. estimate (230), in case
(a). O

4. TRACE ESTIMATE: A FIRST REDUCTION

In this section we reduce the proof of Proposition 2.4 to that of Proposition [£]] using the
representation of functions of operators by means of Fourier transform. This representation
allows us to investigate the quantity G° using the Neumann series of

Upn(t) = e tnWeitln (4 ¢ R), (4.1)

The proof of this reduction is based on Lemma [£.2] which develops our ideas from [5, Section 6]
and allows us to conclude in Section A3t

Proposition [£.1]

Lemma } = Proposition 24
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4.1. Properties of the evolution U,(t). Using (1) and L,, — l,(A) = L, — Lo, = Vn, we
get

—10:Up(t) = Hu(t)Upn(t)
where
H,(t) = e thony eltLon, (4.2)

The Neumann series gives the expansion

t 0 t tu—1
Un(t) :I+i/ Hy(t)dty + ) i”/ dtl---/ H,(t1)... Hy(t,)dt,.
0 —2 0 0

For v > 1 and t = (t1,...,t,) € R” we denote

Ho(t) = Ho(t1) ... Ho(t)

and
Gvin (&) = 1"Hn(£) (5, 7)- (4.3)
Note that (e, H,(t)e;) = (etlone;, Vyetlone,) = (eittn(e; Vel Ue;) = (o), Vyej), ie.
Hn(t)(4,4) = gn(5)- (4.4)
For t € R we denote
tn,j(t) = Un(t)(4, 7). (4.5)

Then, using ([@4]), we get the expansion

Optin () = ign(F) + Y thn 5 (1), (4.6)
v=2
where
t
u21n7j(t) = */ <ej,Hn(t)Hn(t2)ej> dtQ,
0

t ty—1
Uy, (t) = i”/ dty- - / (ej, Hp(t)Hp(t2) ... Hy(t,)e;) dt, for v > 3.
0 0
Proposition 4.1. Let tyg > 0 and € > 0.
(a) We can find C > 0 such that
sup  |ugp ()] < On=7H%, (4.7a)
[§—n|<n”

—to<t<to

(b) If e < 1/8, then we can find C > 0 such that the estimate

to ty—1 ~
sup / dt,_, / (ej, Hy(t1) ... Hy(ty)e;) dt,| < CVn=715e (4.7b)
|[7—n|<nY J—to 0
holds whenever 3 <v <n® and t1,...,t,—o € [—to, to].
Proof. See Section [7 O

Remark. In [5l estimate (6.17b)] the constant in the right hand side should be C* instead of C.
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4.2. Use of the Fourier transform. In this section we prove the desired trace estimate pro-
vided assumption (4.8) is satisfied, and in the next section we show that Proposition [£1] precisely
implies this assumption.

Lemma 4.2. Let g, be defined by 229) and u, ; by @I). Let € > 0 be fized and assume that
for every tg > 0 one has the estimate

S |Octn, (1) = ign ()] = O(n™7+%). (4.8)
j—n|<n”
jtoﬁ‘t_ﬁto

Let GO be defined by (236a) by means of a function x € S(R) whose Fourier transform has
compact support. We have then the estimate

G2 = O(n~ 7+, (4.9)
Proof. Tt consists in four steps.

Step 1. Let 6y be as in (ZIa) and 6,7, (s) = 0p(==2) according to (ZIL). We claim that

nYy

(I - Hnw,n(i’O,n))X(Ln — ()8, 2(z)) = O(n™7), (4.10a)
(1 - em,n(EO,n))X(i’O,n —la(m)B,2(z)) = O(n™7), (4.10b)

where ||T||g,(12(z)) = tr VT*T is the trace class norm on the algebra Bi(I*(Z)) of trace class
operators on [2(Z). It suffices to apply [5, Proof of Lemma 6.1] with EO,n instead of Ly .

Step 2. The assertions ([@I0) of Step 1 ensure that
G0 —G,=0(n") (4.11)
holds with
G = 11 (0 Lo.n) (X(Er = 1 (1)) = X(Loun = 1 () ).

Thus it remains to prove G, = O(n=7+69).

Step 3. Let to > 0 be such that supp X C [—to, tp]. Then the inverse Fourier formula
o . to .
W= [ imenar = [ gt
—00 —to

allows us to express

_ to . X s
(L = ) = x(Eo—lam) = [ (00 e — gt ay
—to
and
~ to . ~ . B
Gn = / x(t) e~ ithn(n) ¢ (Gm,n(Lo,n)eltL”'"’(Un (t) — eltgn(A))) dt.
—to

We thus have G, = diez Gn(j) with

~ t() . . . ~ . .
Gn(j) = / (1) olt/2 e‘t(l"(f)*ln(")*l/Q)Hm,n(ln(j))(un,j(t) _ eltgn(a)) dt.

—t9

Integrating by parts as in [5, Section 6.3] we find

Gn(5) = 1G1.n(§) +1G2.n(j)
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with

5 fo s O (10 () .
gl,n(j):/ () it ()1 (0)__nrinlln 0t (6) — 90 )
—to In(g) — ln(n) — % ( J )

; K /2 git(ln O (U () o
Gom j):/ 01 (3(1) €/2) i) —tn (m)=1/2)__Inr.n(ln o 5(8) — 90 dt
( t t( ( ) ) ln(]) *ln(n - % ( J( ) )

and we can estimate

Gin CT oAl
912 () = C 5 F 0] s,

on‘Y ,n Zn .
)
T4+ 1j—n| —to<i<to

o, (Unj( ) — eitgn(j))’ :

G2 (4)] < C

Un,;(t) — eitg"(j)‘ .

Step 4 (last step). Since |I,(j) — j| < C we can find ng such that 6, ,(l,(j)) # 0 implies
|7 —n| <nY for n > ng. Combining this fact with

Uy, j(t) — el (D)

sup
—to<t<to

< [to] sup
—to<t<to

O (tng() = e ) |
we can estimate

5 C
Gul< Y ——*— sup

L+ 17 —n| —to<i<to

) (uw( ) — eitgnﬁ))‘ . (4.12)

|j—n|<n>

By (24G) we have the estimate |e!®9"() — 1| <|tg,(j)| < Cl|tjn=7/% for |j — n| < n?, and thus

sup  |9pe99) —ig, (j ‘ =0(n77). (4.13)
li—n|<n”
—to<t<to
Therefore combining assumption (&8 with (£I3)) we find
sup |0 (13 (t) - eit%(j))‘ — O(n~7+5). (4.14)
j—n|<n”
ljtoﬁ‘t_ﬁto
Using
Z _p <14 2In(n) = O(n®)
\k\SnW + 1A

and ([£I4) we can estimate the r.h.s. of (ZI2) by O(n~7%%¢), hence [@J) follows from EII). O

4.3. Proof of Proposition 4.1l = Proposition [2.4. Since € > 0 is arbitrary, it is clear that
it suffices to prove G0 = O(n~7%5¢) instead of ([239). Thus by Lemma it only remains to
check that the assertions of Proposition 1] imply estimate ([4.38), i.e.,

Sup |8t“7w() ign(j)| = O(n _V+5E)-
lj—n|<n”

—to<t<to

We first note that ([@6) and ([@4]) give the expansion

Ot (t) — ign (4 Zuynj (4.15)
We then observe that (4.7D)) for v = 3 yields
sup  |ug,n ()] < C3n=7T5e (4.16)
li—n|<n”

—to<t<to
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For any 4 < v < n® and t € [—to, to], estimate (L.7D) gives

|t|1/ 3

EEk (4.17)

SUp [y, (t)] < C¥n” V+5E/ dts- - / dt,, N OL A L —
Ay Ay,

[j—n|<nY

where A; := [0,¢] when ¢t > 0 and [¢,0] when ¢ < 0. Therefore, by using (&7al), (£16), and (EI7)
we get

su Upn.i (D) < On~YH5% 4
p Z U, (

vav—3 n—Yt5e =
Ct— < (C + C3eClo)n ™52 (4.18a)

—3)!
i o B )
To complete the proof it remains to consider indices v > n¢. We observe that ||H,(t)|| = |[V,| =

Vol < pn. Therefore,
|<eja Hn(t)Hn(tQ) cee Hn(f,,)ej” < p”N

and
W L
[y, ()] < [ dta- - [(ej, Hn(t)Hn(t2) ... Hn(ty)e;)| dt, < ply :
Ay (1/ — 1)'
We thus get
v—1 t [n]—1
pNto < PN (pto) —m
sup [t (E < =0(n™™) (4.18b)
\j—n|§n7 U;E J e I/ — 1 ' (LTLEJ — 1)'
—to<t<to -

for any integer m. Estimates [{I8) with (£I5) show that assumption (£8) in Lemma 2] is
valid. O

5. ESTIMATE OF SOME OSCILLATORY INTEGRALS

5.1. Main result. In this section we consider oscillatory integrals of the following type:

) to ei,u\/4sin2(t/2)+§2 () d

ot Gy ) = : t)dt, 5.1

j( 1 QC,LL) /t1 (4S1H2(t/2)+g2)1/4 () ( )
where b € CI(R)7 e R* (>0 and t; <ty are real numbers. Notice that in the case ( = 0 the
function ¢ — [2sin(t/2)|~1/? is Lebesgue integrable on any bounded interval of R and so (5.1)) is
still well defined.

Lemma 5.1. Let Ag C R be a bounded interval. Then there is a constant Ca, > 0 such that
for any interval [t1,t2] C Ag, p € R*, ¢ >0 and b € C*(R) one has the estimate

14/

|~7(b7 t17t27Cﬂ:u)| < CAU m M(bv [tlth])a (52)
I
where for any bounded interval A C R
M(b, A) = sup|b(t)| + / 1B (1)) dt. (5.3)
teA A

This lemma is used in the proof of Proposition 1l It serves in Section [[.3.4] to prove estimate
([CI9) of some oscillatory integral.

Proof. The proof is given in the next subsections. It is based on van der Corput lemma. g
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Lemma 5.2 (van der Corput). Assume that ho: (t1,t2) — R is smooth and its second derivative
satisfies h(j(t) > co for t1 < t < to and some constant co > 0. Assume also that po € R* and
bo € Cl((tl, tg)), and consider the oscillatory integral

J(bo, t1,t2, ho, po) = /t2 etrohop (¢) dt. (5.4)
Then there is a constant Cy dependmg only on coy t;uch that we have the estimate
1,20 < 2 () -+ i ar) <~ o 1)
Proof. See [18, Section VIII.1.2, p. 354]. |

5.2. Proof of Lemma [5.9] in case Ag = [0,27/3].
5.2.1. Change of variable. By our assumption [t1,t3] C [0,27/3] and the change of variable

t = 2arcsin(s/2) (5.5)
parametrize [0,27/3] by s € [0,+/3]. If t € [t1,1s] then s € [s1, s2] where s; = 2sin(t;/2), i = 1,2.
In particular, {/4sin®(¢/2) + (2 = \/m and the change of variable (B.5]) gives

j(ba tlatQaC’M) = jl(blaslaSQaCaM)a

where
S2 ei,tn/serC2
Ji(b1, 51, 82,(, 1) = /S1 Wb1(5>d5
vt b(2arcsin(s/2))
arcsin( s
b1(s) = ———*.
1—s2/4

Since there is a constant Cy such that M(by, [s1,s2]) < CoM(b, [t1,12]), to get (B2) for any
interval [t1,t2] C [0,27/3], p € R*, ¢ >0, and b € C'([t1,t2]) it suffices to prove the following

Statement. There is a constant C > 0 such that for any p € R*, ¢ >0, [s1,s2] C [0,4/3], and
by € C'([s1, s2]) we have the estimate

|J1 (b1, 51, 52,C, )] < M(by, [51,52]). (5.6)

\/W

To prove this statement we distinguish three cases: { > s9, ( < 51, and s1 < { < 8.

5.2.2. Proof of (.8 in case ( > so. Using the notations

O = (VEFE

and (4) from Lemma [5.2] we can write
S2 . _1
Filbrssusa,Gop) = VG [ OO (5,012 5)ds
S1
C X H(blﬁl( ] g)a 51,52, hl( : aC)aﬂg_l)

where )
7 - -1/2 _
h1(57C) T hl(S,C) - \/Z(<2+52)1/4 .
Next we observe that ( > s ensures
¢ ¢
92hi(s,() = =27%/2

(52 +C2>3/2 Z (242)3/2 -
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and thus we can apply Lemma It gives the estimate
Co(

VIl

|\71(b155153254aﬂ)| < M(blhl('aC)a[SlaSQ])'

Thus to get (5.6) it suffices to show

~ M(b1,[s1,8
M(brhi(-,€),[s1,82]) < QM .
For this purpose we first observe that hy(s, () = (\/¢? + s2 > (2. Then
~ 1
0 <hi(s, ) < ¢’ (5.7)
hence
~ b b
sup [pr()hn(s.0 < sup L < Muloneal),
s1<s<s2 s1<s<s2 C C
Next we claim that
S2 - 1
/ 0sha (s, ()| ds < & (5.8)
s1
Indeed, since sh(s,¢) < 0, we can estimate the left hand side of (5.8) using (5.7):
S2 - - - 1
[ o). ds = (51,0~ Fals2,0) < 7
s1
Finally it remains to show
S2 - b
[ 0., )l as < Hrel), (5.9)
s1

The left hand side of (5.9) is indeed f:12|b’1(s)ﬁl(s, ¢) +b1(s)dshi(s,¢)| ds. Thus, using (5.7) and
E8) we get

/ 0. (brha) (s, Q) ds < sup [hn(s,C)| / W) s+ sup [ba(s)] / 10,71 (5,0l ds

$1 51<5<s2 51<5<s2
1 52 M(by, [s1,
< _( sup |by(s)] +/ |b'1(3)|d3) _ My [s1,52])
C 51<s<s2 s1 C

5.2.3. Proof of (5.8) in case ¢ < s1. We denote 3; = (s? + ¢(?)/4, i = 1,2 and consider the

change of variable
S =1/ §4 — CQ for 5§ € [51,52]
which gives /s2 4 (2 = 52. By applying this change of variable to the integral

52 H 2 2
Ji(b1,s1,82,(, 1) = VT (52 4 (7)1 4, (s) ds

S1

we find

J1(b1,81,82,C,M)=/ e’ 52(§,C)B2(§,C)d§=3(52ﬁ2('aC),§1,§2,h0,M)a

S1

with ba(3,¢) = b1(1/5* — (2), ho(5) = 3% and
ha(3,¢) = éag(\/gél —?) = 2752.
i
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Then Lemma applies and gives

|J1(b1, 51, 82,C, )| < M(boha, [31, 52]). (5.10)

\/_

We observe that s > s; > ( ensures 5 > (2C2)1/4, hence ¢ < 52/\/5 Using the fact that Bg(s, <)
is increasing with ¢ we have the estimate

5> 51 >¢ = ha(5,¢) < ha(3,52/V2) = 2V2. (5.11)
Moreover, dshs (3, () = —4¢25(3* — ¢2)73/2 < 0 and as in the proof of estimate (5.8) we find
/ |0sha(5,0) A5 = ha(51,C) — ha(52,¢) < 2V2. (5.12)

Estimate (5.10) leads to the desired estimate (5.6) if we prove

M(bzha, (51, 52]) < 4V2M(bs, [31, 52]) = 4V2M (b1, [s1, s2)).
The last equality is easy. For the inequality we first observe that by (5.11))

sup |baha(5,0)] < 2v2 sup  |ba(3,¢)| < 2v2M(by, [51, 52)).

51<8<32 51<5<32
Moreover, using (5I1) and (BI12) we find
[ 10st0ah) 5,015 < sup_[ha(5.0) / 0sb2(5, Ol A5+ sup_[ba(5,0) / 195ha(5,0)] d

31 51<5<52 51<8<32

<2V2 |a ba(3,0)[d5 +2v2 sup |ba(5,Q)]
§1<5<352
= 2\/_M(b2, (31, 52)).
5.2.4. Proof of (@8] in case s1 < ¢ < s2. This case reduces to the previous ones. For 51 < { < $2
we indeed have

jl(blvsla 527C5,U') = jl(blvslacvga,u) + jl(b1;<7527C5,u’)7
M(bl, [Slag]) + M(bla [CaSQ]) < 2M(b15 [SlaSQ])‘

5.3. Proof of Lemma [5.1] in case Ag = [27/3,7]. Denoting

h(t,¢) = 1\/4sin?(t/2) + (2

we can write

to ei,u\/4sin2(t/2)+§2 ta b(t)
bty t = b(t)dt = inh(t:0) 2 (¢
jl( s U1y 2;(7#) /t1 (4SID2(t/2) +42)1/4 ( ) /t1 € h(t,<)1/2
t2 . ~ ~ ~
_ / el The (1+O(t:0) b(t,¢)dt = 3(5, t1,to, h, ﬂ),
t1
where b(t,¢) == b(t)h(t,{)" V2, i = p/(1 +C), h(t,¢) = (14 )h(t,¢), and J is as in (54). We
get
At C) = sint 21 (t,¢) = — cost sin? t

ht.0) W60 RO

Since 27/3 <t < 7 implies 1/2 < —cost < 1, we get
(1+C)cost> 1+¢ S

1
ht.0) T2 /4y 4

2/3<t<m = —OPh(t,¢) > —
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Hence, Lemma applies to estimate 3(5, t1,to, h, [L). To get (5.2)) it suffices to show that there
exists a constant C, independent of ¢, t1, to such that

M(b, [t1,t2]) < CM(b, [t1, L))
For 27r/3 <t < 7 we have 2sin(t/2) > v/3 so that h(t,¢) > /3 + (2 > v/3. Hence,

z _ |b(1)] 1
tlsﬁgzt2|b(t,4)| B tlsﬁgztz h(t,C) = % tlsﬁglﬁ)tzw(t)'-
Moreover,
~ _ b'(t) _ b(t)sint L , 1 1 ,
040(1,0)| = 'h(t,g)m i 57| < 75O+ 3l < O]+ b))

Thus, using to — t1 < 7/3,

ta
/tl 0B(2,0)] it < f [ "’()'d”gftli‘iztz"’(t)"
Summarizing,
M(b, [t ta]) < 7( —)M(b, [t1, 22]).

5.4. Proof of Lemma [5.1} last steps.

5.4.1. Proof of (B.2) in case Ay = [0,7]. By Sections and we know that (5.2) holds if
2m/3 ¢ (t1,t2). The remaining case t; < 27/3 < ty can be deduced from the previous ones by
using the additivity properties

j(b t1,t2,C, ,u) = j(b, t1,ts, C, ,u) + j(b, ti,ta,C, 1), (5.13&)
M(b, [t1,t.]) + M(b, [t ta]) < 2M(b, [t1,t2]) (5.13b)
with ¢, = 27/3.
5.4.2. Proof of ([B2) in case Ay = [—m,0]. This case reduces to the previous one by using the

symmetry ¢ ~» —t. We indeed have J(b,t1,t2,(, pn) = T (b, —ty, —t1,C, ) and M(b, [t1,ts]) =
M(b, [—t2, —t1]) where b(t) = b(—t).

5.4.3. Proof of (B.2) in case Ay = [—m,7]. By Sections 540l and 5.4.21 we know that (5.2]) holds
if 0 ¢ (t1,t2). The remaining case 0 € (t1,t2) can be deduced from the two previous ones by

using (B.I3) with ¢, = 0.

5.4.4. Proof of @2) for Ag = [(2k — 1), (2k 4+ 1)7], k € Z. This case reduces to the previous
one by translation t + £ = t — 2kr. We indeed have J(b,t1,ts,C, ) = J(b,t1,t,¢, 1) and
M(b, [t1,ta]) = M(b, [t1,%2]) where b(t) == b(t + 2k7).

5.4.5. Proof of ([&2) for arbitrary Ao. We know (5.2) holds if (t1,t2) N (2Z + 1)m = 0. If
(t1,t2) N (2Z + V)7 = {t1,12,.. . tF} where t2 =t} + 27, ...tk =t! +2(k — 1), k € Z then (5.2)
follows by using repeatedly properties (.13)):

j(batlatQaCaM):j(b tla 1 C,,U/)—l—j(b tlatia )+ (b t*atQaC ,U,)

M(b, [t1,81]) + M, [t1, 82]) + -+ M(b, [t t2]) < (K + )M(b, [t1,22]). O
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6. APPROXIMATION BY OSCILLATORY INTEGRALS

6.1. Decomposition of H,(t) into components H%t. We assume g = 0 in (LI2) and
denote Q" = {27m/N}N_1. Thus, we can expand
v(A) = Z coewh
wenN*
where ¢, € C are constants. Since H,, (t) := e ton eitlon with V, = e'Br (02 ,v)(A)e B we
can expand H,(t) as follows:
H,(t) = e7thomelBn(92 v)(A)e Preltton = Z coH?
weN*
with
HE b = omithomgiBug2 (A)eiwho=iBngitlon
n n,n .
More generally, for any integer v > 1, w = (w1, ...,w,) € (*)”, and ¢t = (¢1,...,t,) € R,
Hy(t) = Hu(t1)... Ho(ty) = > c H (6.1)
we ()

where ¢, = ¢y, ...cy, and

v

H&L .= gt HPvt, (6.2)
Let gy n,;(t) :==1"H,(t)(j,7) be as in (@3). Using (6.I) we can expand g, ;(t) as follows:

Guni®) =1 > cugt(i), (6.32)

we(Qx)¥
where
9wt (j) = H (4, )- (6.3b)
6.2. Approximation of g¥%(j) by an oscillatory integral. For j € [n — n?,n + n"] we
approximate the j-th diagonal entry g2%(j) of H2* by an oscillatory integral of type
t/ - . 2m ot in oo i dT]
g2l(j) = el]lgll/ eVna (e p@it(j o) e (6.4)
0 ™
Here, |(w1,...,wy)|1 == w1 + -+ + w,, the phase %f : T — R is defined in the next subsection,

and bt(j, -): T — C is chosen as indicated in Lemma B below.

6.2.1. Definition of Q/J%f For (w,t) € (*)” x R” the phase Q/J%f is given by
PEH) = 2a(n) T (=(ws %), (65)

where z(w;t) will be defined by induction on v.
We first assume v = 1. For w € ), t € R we define

z(wit) = (e7¥ —1)e " = —2sin ¥ elm/2—iw/2=it (6.6)
Thus the definition of Q/J:ﬁ: T — R is as in [5] (9.10b)]:
1/);“{ (e'¢) == 2a(n) Im(2(w; t)e’) = —4a(n)sin ¥ cos(é —t — 2). (6.7)

Moreover, if 7,,: T — T is the translation ¢ — ¢!¢=%) and ¢, 4" = 4> we have the relation

.t —w,t
w::,l = _wn,of O Tw- (68)
Assuming now v > 2 and using induction with respect to v, we define

2(w;t) = z(g/;f)efi“’” + z(wy;ty), (6.9)
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where
(g/,wy) c (Q*)u — (Q*)l[—l X Q*7

6.10
(t',t,) e RV =R"7! x R. (6.10)

w =
Z:

By (G9) and (6.8) we observe that Q/J%f can also be defined by induction as in [5, (10.7) and
(10.6)]:

Unt =Unit 0w, +Ung™ = Wnit — R ) 0T, (6.11)
6.2.2. Approzimation of gu'* () by g (5).
Lemma 6.1. Let tg > 0 and 0 < ¢ < % be fized. Let g%’i(j) be the oscillatory integral defined
by @A) for |j — n| < nY with 1/1%’% as in @3). If C = C’(to,s) > 0 is large enough, then

for any v € N*, (w,t) € (%) x [~to, o], n > ve, and j € [n —nY,n + n?] we can choose
bt(j, -): T — C in @A) such that g(j) satisfies

sup |g2t(j) — g2t(j)] < Cn7He, (6.12)
l—n|<n7
with
bt (G, €M) = 1, (6.13a

)

b2, )l c2ry < On*, (6.13b)

100,24, Yoy < Cne, w>2. (6.130)

Proof. See Section B} in particular Section BT Iand (87) for the actual choice of b (j, ). [
6.3. Properties of z(w;t). Let z(w;t), w € (2%)”, t € R” be as in Section [6.2.11 We write

2w t) = |2(w; )| @D, (6.14)

where 0 < a(w;t) < 27 is the argument of z(w;t). If v > 2 we write w = (w',w,) € (2*)V 71 x O,
t=(t,t,) e R" I x R as in (6.I0) and define

fast) = 522 (6.15)
alw;t') = a(w;t) —w,/2 — /2. (6.16)

For the next lemma we also introduce the function h: R x C — Ry by

b(t, 2) = \/4l=] sin(£/2) + (1 — |2])>. (6.17)

Lemma 6.2. We assumev > 2. Then forw = (w',w,) € (%)~ xQ* andt = (t',t,) € R""1xR
we have the relation

|2(w; )| = 2sin(w, /2) h(t, + d(w;t'), 2(w; L)), (6.18)
where § is given by @17, 2(w;t’) by ©I5), and &(w;t’) by @I6). Moreover,
) > 2Dy 4 ), (6.19)
where |t|o, == dist(t,27Z) and
et < oy (6:20)

Proof. The proof consists of four steps.
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Step 1. We first claim that for t € R and z € C
’|z| — e_it’ =h(t, 2).
Indeed, the left hand side of (6.21)) is

\/(|z| — cost)? +sin®t = 1/2|z|(1 — cost) + (1 — |z])2
which is b(t, z) defined by (GI7) due to 1 — cost = 2sin®(¢/2).
Step 2. Now we will show (6.18). Combining (G.6]), (€9) with (GI4) we obtain
2(w;t) = |2(w; )]0 _95in(w, /2) et Fwn/27m/2)
Using (6.10) and (6.16) in the right hand side of ([6.22]) we find
2wit) = 2sin(w,/2) (|2(wit)] — e it ) ol e,

hence
2w )] = 2sin(w,/2) ||a(wit)| - e ),

27

(6.21)

(6.22)

(6.23)

Denoting z = 2(w;t'), t .= t, + &(w;t’) and using ([G21I)) we can express the right hand side of

623) in the form
2sin(w, /2) ||z| — e 7| = 2sin(w,/2) h(t, 2),

which completes the proof of (G.IS]).
Step 3. Here we will show (619). Combining

h(t,z) > \/(4|Z| + (1 —[2)?) sin®(t/2) = (1 + [2[)[sin(t/2)|
with (6I8]) we obtain
2(w; £)| > 2sin(w, /2) [sin 3 (t, + &lw;t))] .
Thus @I9) follows from [sin(t/2)| > L|t]2x.
Step 4. Finally we show ([G20). We begin by writing

zlwst) 1 gy Hwit)
@] - R@D) (a @b = i)

O et ).

(6.24)

Since |0y, z(w; t)| = |0k, 2(wu; ty)| = 2sin(w, /2) < 2, the proof of ([@.20) is completed if we show

|0, |2(w; )] < 4.
However using ([6.I8) we obtain
O, |2(wit)] = 2sin(wy /2) Oy, b(ty + dlw; t'), 2(w;t))
Then using (624 we have

|2 [sint| |z| |sin t]

|0:b(t, )| = h(t,2) — (1+ |2])|sin(t/2)]

and (G25) results from the inequality [sin¢| < 2 |sin §|.

(6.25)
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7. PROOF OoF PROPOSITION [Z.1]

7.1. First reductions. In this section 0 < € <  and to > 0 are fixed. As in (6.2) we denote by
HRt the operator H@tt, . H@w v for (w,t) € ()Y x R” and by gi(5) its j-th diagonal entry.
We first observe that instead of (7)) it suffices to prove the estimates

/ g21(j) dt
Ay
/A2

/ g2L(j) dt,
A4

for any intervals Ay, Ay C [—to, to], (w, 1) € (%)Y x [—to,t0]", and j € [n —nY,n + n7].
Further on, gi*(j) is given by (@) with b (j, -) as in Lemma B} |j — n| < n?, (w,t) €
()" x [—to, to]”, and 2 < v < n°. Then due to Lemma [6]] instead of proving estimates (1))
it suffices to prove these ones:
[ty
Ay

/ / g=t(j) dt,
YA A1

To estimate | A, g%’i(j ) dt, it suffices to consider the following two cases:
1) Al - [7n777n77] +27Z — &(ga I/)a

2) Ay C[n77,2r —n ]+ 27Z — a(w; t),

where &(w;t) = a(w';t') —w,/2 — 7/2 as in ([GI6).

<Cn 7% (v =2), (7.1a)

dt,_1 <Cn~ 7% (3 < v <nf) (7.1b)

<Cn 7 (v =2), (7.2a)

dt,_1 <Cn~ %% (3 < v <nf). (7.2b)

7.2. Case 1). We assume v > 2. The definition of H%* shows that its diagonal entries satisfy
|92E(5)| < 1. Then, since |j — n| < n?, estimate (612) from Lemma B.1] applies and gives

gt (j)] < Cin** (7.3)
for some constant C; > 0. Since A; is a subinterval of [—tg, to] satisfying
Ay C[-n"",n7 "+ 27Z — a(w; t), (7.4)

its length satisfies |A1] < 2n~7 and using (7.3]) we get the estimate

/ g21(j) dt,
Ay

for some constant Cy > 0. Thus, in case 1) the proof of (.2)) is completed.

< Con~HiE (7.5)

7.3. Case 2). We now assume A; is a subinterval of [—tg, o] satisfying

Ay C[n77,2r —n7Y] + 277 — G(w; t). (7.6)
If t, € Ay, then [t, + &(w;t')|2x > n~7 and |z(w;t)| > (2/7)sin(r/N)n~" by estimate (6.19)
from Lemma [62] In particular, z(w;t) # 0.
7.3.1. Use of the stationary phase formula. Writing z(w;t) = |z(w; t)|e!*@?) in ([GH) we find

YEEe') = 2a(n)|2(w; 1) sin(€ + a(w;t)).

Using this expression in (6.4) we get

2
gd(j) = ciileh / Zia(0l=(st) st pad (. o) ;_77 _ (7.7)
0 ﬂ-
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This oscillatory integral is of the type J(b, i, 70) considered in Lemma Bl for b = bﬁ’i(j, ),
= 2a(n)|z(w;t)|, and no = 7/2 — a(w;t). Since z(w;t) # 0 the stationary phase formula (3.2
applies:

eir(2a(n)|z(w;t) |- /4)

e lel qw.t 5y — pust 3 kie i@y 4 pwit(s 7.8a
g2t(5) Fu;l NG (j ) + Tt (4) (7.8a)

with

Co
Integrating (Z.8al) we find
el /A g () dty = T (A1) + T (M) + /A v, (79)
where
jwt/ (A) / eT2ia(n)|z(wit)] pt(j, 4 i t))d (7.10)
w = @b (5 e iowit)) dt,,. :
N NN I

7.3.2. Remainder estimate. We claim that the remainder in (T9) can be estimated by

[ st at,
Ay
Indeed, (Hla), 619) and (I13D) allow us to derive from estimate (Z8D) of |t22%(j)| this new

one

< Cn= 7o, (7.11)

Cn4a

n|t, + a(w;t)|on’

e ()] <

and to get (CIT) it suffices to observe that

dt, Todt
/ A—/§2/ — = 0O(lnn).
Ay Ity +a(ws;t')|2x n-v t

To complete the proof of (T2)) in case 2) we will prove the following estimates:

2L <0 =) (7.120)
[ |Tzisan]an < one <y <n), (r.120)
Ao

According to ([CH) these estimates together with the remainder estimate (II)) actually imply

[T2) in case 2).

7.3.3. Transformation of jngf/i(Al) If the new variable t = ¢, + &(w;t’) is introduced, then
(6I8) becomes |z(w;t)| = 2sin(w, /2) h(t, 2(w;t')) and (TI0) takes the form

eEifin (W)b(t2(wit’))

w,t’ w,t
nf’f (AI) = / — = b;’f (t) dt (713&)
o Avtalwit) V2rfin (@ )bt 2wst)

where
fin(wy) = 4da(n)sin(w, /2), (7.13b)
r%,fi (t) = br%(i',t—&(g;ﬁ)) (4, iie—ia(g;(i’,t—&(g;ﬁ)))_ (7.13c)

Our goal is to get (LI2). We first observe that in the case v = 2 we have |z(w'; )| = |z(w1;t1)| =
2sin(wy/2) > 0 for wy € QF, hence Z(w;t') # 0. In the case v > 3 we have to estimate the
integral | A2|\7§’J%/i(A1)|dtl,_1 and we observe that in this integral we can forget the t,,_; such
that 2(w;t’) = 0, or equivalently, z(w';') = 0 because there are only finitely many. By (G.19)
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they indeed satisfy t,_1 € 27Z — &(w’;t”) where t' = (¢’,t,—1). So, we henceforth assume
2(w;t') # 0 when estimating n—’fi(A ).
Our next step is to write (.I3al) as an integral of the type considered in Section Bl For this

purpose we denote by ¢ = ((£) the nonnegative number associated to 2 € C* by
C=|I172 = 1212 (7.14)

Since (1 — |2])? = ¢?||, we can write (¢, 2), 2 # 0 as follows:

2) = /4l sin2(¢/2) + (1 — |21)% = /] 4 sin?(¢/2) + 2. (7.15)
Then for p > 0, ¢ > 0, and A} a bounded interval we introduce the integral

ot , im\/m wit'
T (Cops AY) \/F /  @sm2(t2) 7 O b,y () dt. (7.16)
Due to ([I8) we have
Tt d) = TG ) (7.17a)
where A} = Ay + &(w;t’) and
¢=Cwit) = [|Bws )2 = 2w t)| 2 (7.17Db)
b= (i) = finlen) |3 )2 (7.17¢)
Thus it remains to investigate J—J-i (¢, 1, A}) with ¢ and p as in (CI7D), and (ZI7d), and
Al C[n77,2r —n77] + 27Z. (7.18)

7.3.4. Estimate of Nn%fi(g,u, A'). In this section ¢ and p are given by (ZI7h) and (ZI7d) and
Al is an interval satisfying (ZI8). We claim that there is a constant C' > 0 such that

2e

TEE (G A < O (1+|2(g;t’)|’3/4)- (7.19)

a(n)
For this purpose we first observe that J% —]- i(C ,u, A") coincides with the oscillatory integral

J(b,t1,t2, ¢, £p) defined in (BI)) for b = ﬁ g, i( ) and A} = [t1,ts]. Since p = py,(w;t’) > 0,
Lemma [5.1] applies and gives

14+ Cl/?

T (G A<C M(b ,g,i’A/) (7.20)
Since
L+ ¢2 L+ BtV + e t)| T L Bt
p o = da(n)sin(w,/2)|2(w; t)|Y2 T 2a(n)sin(w, /2)
we deduce (CI9) from (Z20)) if we show the estimate
M(bf;i, A}) < Cnflnn. (7.21)
However, using definition (Z.I3d) we see that relation (6.I3al) from Lemma [6.1] gives
|bffi( )| = 1.

Moreover, by estimate (G.I3d) from Lemma [6.1] and estimates ([620) and (G.I9) from Lemma [6.2]

we have

6 1
bﬂl < bwt —ia(w;t) < <C'ntl1 )
10:by, 5+ (O] < (10,0575, -l coem)l| O, e llcogry < Cn® T S C'n® {1+ Ton
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Thus M(bffi, Al) = supy, |an L]+ fA’l |8tbffi( )|dt can be estimated by

dt Todt
M(bsgii,Aﬁ) <1+C'n° <27T+/A/ i > =1+42C"n° <7r+/ ?) =O(n®Inn).

7.3.5. End of the proof of estimates (L2) in case 2). Due to ((IT), (TI9), [@I5) and (Hla),

there is a constant C' > 0 such that

(Tt (A) < 07742 (14 |a(w's )7/ (7.22)

If v =2, then w' = w; € Q* and |z(w'; )| = 2sin(w;1/2) > 2sin(r/N) > 0 and it is clear that

(T22) implies (CI12al). We then get (7.2a) using (TI12a)) and (IT)). This proves assertion (a) in
Proposition [£11
If v >3, then W' = (W’ ,wy_1) € (V)2 x Q* and ' = (¢, t,_1) e RV 2 x R. If

oW, t") = a(w’ t") —w,-1/2 —7/2
then ¢,_1 + &(w'; ") ¢ 277 implies 2(w;t') # 0 and
n%fi(Al) < C'n Tt (1 + [ty_1 + a(w', ") ‘3/4)

and therefore

/ n.J, j:(Al)dt” 1< C'n _w_%/ (1 + |t|2 3/4
Az Ax—a(w't")

Thus, (12H) follows from the fact that the function ¢ — 1+ |1f|277r3 s locally Lebesgue integrable
on R. We then obtain (Z.2h) using (C.I2D) and (ZII). Assertion (b) in Proposition 1] is
proven. O

8. PROOFs OF LEMMAS AND (b)

The proofs of Lemmas and (b) are completed in Sections Bl and B2 respectively.
Both proofs are based on properties of phase functions introduced in [5, Section 10].

8.1. Proof of Lemma 6.1l We first fix the definition of b%(j, ¢) to complete that of gi’(;).
8.1.1. Definition of bgé(‘], ”7) Let Q% be the operators introduced in |5, (10.1)]. Their defi-

nition involves a phase Pt = 2% (j, e) whose construction is given in [5, (10.5) and Section
10.3]. By [0, Lemma 10.3] these operators satisfy
[H24 (5, ) — Qt(G, )] < v, (8.1)
where w € (Q*)", t € [—to, to]V, n° > v and n > 7. Recall that gi'(j) = H (4, 7). Let similarly
Ft(s) = Q2. 9)- (8.2)
Since v n? =13 < p =7+ follows from v < n and v < 1, the estimate (1)) implies
g5t (J) — §t () < ”48- (8.3)
If | — n| < n7, then [5, Section 10.2.2 and (10.5)] gives the expression
2m
- . PYRT N A w,t i s w,t w,t i d
Gt (j) = elleh / DA WZE L) (@) i) (P2 402 ) o ’n% , (8.4)
0

By [5, Lemma 10.1] and v < 1 the functions ’L/Jn 1 gon LT — R satisfy
[l 2y < Cvn, (8.5a)
||<Pfﬁ||c2(1r) <Cvn" ' <Cvn7. (8.5b)
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By |5, Lemma 10.2] and v < 3 the functions 9273, ¢25: T — R satisfy

w,t
[¥nzllcz(r) < Cvnf, (8.5¢)
l¢24llc2ry < Cyn?0~D+e < On~21+2, (8.5d)
for n® > v and n > 7. We can rewrite (84) as

dn

2m
ﬁ%’i(j) — eijlgh/ lw;f(e"’) bfﬁ( in m—L (8.6a)
0

o’
with
Bt (], o) 1= WM HG—m (P T+enE) (™), (8.6b)

Let us note that the definition ([B4) of gt(j) is as that of gw’-( ), replacing b2t by b2t in
The definition of 1/)—’- is given in Sectlonm that of ga—’- and 7,/)—’- are given in Sections[R.1.3]

and B0 respectively. Concerning ga—’- we observe that (85d)) ensures (j — )cpﬁ’i = O(n=7+%)
for |7 —n| < n?, hence B3) still holds for these j if we forget (j — n)¢% in the r.h.s. of (B6H),

i.e., if we replace gw(j) by got(j) given by (€4) with
bt(j. o) i GUREET G ) 5.7)
Further on bet(j,e) is given by (B7). It is obvious that (B.I3a) is satisfied and it is easy to

see that the estimates (85b) and (85d) imply (GI3H). Thus, all that remains to be proved is
(6I3d) and for this it suffices to prove

Dugsitt ) (@) < Con ™, (8.8a)
st O ()] < Con®. (8.5b)

The proofs of (BRal) and (8.8D) are given in Sections (B.L4) and (BILT), respectively.
8.1.2. Change of variable ¥,,. As in [5 (8.3b)] we define ¢, : T — R by

©n(e'®) == 26a(n) (1 —da(n)cos€) sin&.
y (H1b) we have da(n) = O(n7~1). Thus we can fix ng = no({¢n}) € N large enough to ensure

N | =

sup [l¢nllcz(r) <

n>ngo

Further on we always assume n > ng. Then we define the bijection 7,,: R — R as in [5, (7.10)]:

M (€) = € — pn(e®).

As in [B Section 7.5.1] we denote by &,: R — R its inverse, ie. &, (n) — ©n (e (M) = 5 and,
n — &,(n) — n being 27-periodic, we define &,: T — R by &, (e) = &,(n) — 7. Finally, we define
Up: T — T asin [5 (7.13a)]:

D (M) 1= eiMeién(e) = gi€n(n)

Moreover, by [5, Lemma 9.2 (a)], there exists a constant C' > 0 such that for any ¢ € C™(T),
m = 1,2, 3 one has

lg —qodnllcm—1(ry < Cn™7|lqllcm(r)- (8.9)
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8.1.3. Definition of @g’i. We first assume v = 1. If (w,t) € Q* x R we define <p;:’1t: T — R for

n,l

n > ng as in |5, Section 10.3.1]:
i = (pnoTw—n)olpom (8.10a)

where @,,, ¥, and ng are as in Section 8.2 and (') := !¢~ . We have then @;f = 50,‘:’10 OT¢.
For v > 2 we define (p%i T — R for n > ng by induction on v as in [5l (10.6)]:

it W't —w,
Pt = (Par — i) o, (8.10D)
where w = (', w) € ()1 x Q*, ¢t = (',t) e R""I x R, and ¢, " = 27 <",

8.1.4. Proof of (BRa). By (BI0D) we get 8@%3{ =~ " o T with 4" = ¢, 4% o 1y, For
any ¢ € C!(T) we have the estimate

10:(a 0 7) ()] = g™ o 7 (€)] < llgl|cr ), (8.11)

where ¢ (') = 9,q(e'). Applying §II) for ¢ = <p;,“1”0 we get (8.3al) since (8.5D) ensures
~w,0 _
e llcrry < Cn™.

8.1.5. Change of variable 9. Let ¢y’ be as above and n; € N such that

: (8.12)

N =

sup ||<Pﬂ||02(1r) <

n>ni

—_

It suffices to choose n; such that sup,,~, [[¢n1lc2(r) < 1/4. Indeed, using (8.9) we get

e llczery = e ez < 1+ Cn7)(llen © Twllcar + lenllcsm) < C'n77,

hence ([BI2) holds if n; is chosen so that Cn] " < 1/2. From now on we assume n > n; and
introduce the bijection n%>*: R — R by

Mt (€) =& — i (€9). (8.13)
Let &': R — R be its inverse. Then £ (n) — @ﬁ:’i(eigi’t(")) =mnand n = £4n) —n is
om-periodic. As before we can define £2f: T — R by the formula £ (e) = ¢*(n) — n and
99t T — T by
99 (el 1= elMeién (€)= & () (8.14)
Since we can use ga‘;:’? in place of ¢, in [5, proof of Lemma 9.2], there is a constant C' > 0 such
that for any ¢ € C? (']T) one has

g —qo 95 llcrry < Cnlallc2qm)- (8.15)
Lemma 8.1. (a) One has
9t =1 09900 (8.16)
(b) There is a constant C' > 0 such that
|9,9< ()] < Cn™7. (8.17)

Proof. (a) We first note that (810a) implies ga‘;;i = @Z:? o 7. Using this relation in B®I3) we
find nwt(¢) = t + nw0(¢ —t), hence also £2(n) = t + £2%(n —t). We have then £ (e) =
&) —n =80 —1t) — (n— 1) =70 7Y), ie.,

&t =&00m, (8.18)

and ([BI0) follows from (BI8) and (8I4).
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(b) Since £9t = €20 o 7, the estimate (&I ensures
100954 (€)] = 10:£57 1 (€)] < 16 Nl ) (8.19)

and the right hand side of (8I9) is O(n~7) due to [5, Lemma 7.3] with ¢’ ¥ in place of ¢,. O

8.1.6. Definition of 7,/)%% For w € Q* we denote

Y1 = P20 Tw — Yn2, (8.20)
Sn= Py o0 — Uy, (8.21)
where wﬁ,’?(eif) = —da(n)sin§ cos({ — %) as in (G.7) and
VY 2(e') == —a(n) da(n) sin 2¢, (8.22)
as in [5 (9.7¢)]. A direct computation gives the expression
zp:;yl(eiﬁ) = 2a(n)da(n)sinw cos(2 — w). (8.23)
For v =1, (w,t) € Q* x R we define w;f; as in [B] Section 9.3.2], i.e.,
w;f; = ( o R R i ﬂn) o Ty. (8.24a)

Forv>2 w=(w,w)e Q) xQ* t=(t,t) € R" ! xR, we use the same induction formula
as in [B, (10.12)], ie.,

UEE = U - UL et e — U e o0 — g o, (8.24D)
where w;f;’t = wffi_w’t, 1=1,2.
8.1.7. End of the proof of Lemma [G1. We recall that (88a) was proved in Section B4l and

following the remark from Section [B.I.1] it only remains to prove (8.8H), i.e. |8ﬂ/}%§(ei")| < Con®
where t = ¢,.

If v =1 then 7,/)7“:; = 1/)‘”’3 o7 and (B8D) follows from (85d) using (BIT).
If v > 2 then 4, is given by (824h). To estimate 8t7,/1;§ we first observe that

—w,t —w,t —w,0 —w,0
wnﬁ) - wn,ul) ° ﬁﬁ’t = (’l/)n,o; - wnﬁ) © 19%,0) OTt

and (8II) allows us to estimate

10 (" = 0 7 0 0NN < 005" 090 = 0 e ny- (8.25)

The right hand side of (IEQH) can be estimated by a constant C' independent of n by using ([8I3])
for ¢ = ¢4 and 854, i.e., ||1/J,:7‘f’0||cl(ﬂ-) = O(n"). It remains to estimate

Ou( £ 0 D) ()] < [l i Nl my |95 ()], (8.26)

However (817) and (85al) allow us to estimate the right hand side of [826]) by Cv < Cn® which
completes the proof of (B.8h). O
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8.2. Proof of Lemma (b). This section is devoted to the proof of Lemma under
assumptions (H1) and (H2). Let ;) 1, ¥y 1 be given by ([8.20) and ([8.21]), respectively. Then

Uny = U+ (8.27)
holds with
o= 0 Un — Yy (8.28)
Lemma 8.2. We have the estimates
75 lcoery = O(n™7), (8.29)
[0 n(e/2)] = O(n™7). (8.30)

Proof. We observe that (89) ensures

1 0Un — Ui 1llcomy < Cn 7145 1l (-
To complete the proof of (829) it suffices to observe that [|¢} 1[lc1(r) = O(1).
To prove ([830) we write the Taylor expansion at order 2:

v (%) = 0,0 (/) (9 (c/2) — /) 47
with
~w w,0 iw/2 iw/2 2 YIE (alw/2Y]2 1o —
7] < Y leacey |On(@/2) = 72| < O /)2 < C'n .

A similar reasoning can be applied to —e'“/? instead of €/ and to complete the proof of (830)

we observe that 0,1, 1(£e'“/?) = 0. 0
To begin the proof of ([2Z230) in case (b) we observe that
[V/2] L[(N—-1)/2]
gn(n) = Z am Relen, H,QL”’"/N’Oen) + Z G Im(ey,, Hi”m/N’Oen>
m=1 m=1
and Lemma in the case v = 1 ensures
[N/2] L[(N—=1)/2]
b = Y anReg?™ 0w+ Y Ingd /() 4 O(n )
m=1 m=1

with )
. T w0 .od
w,0 — alwn 111)”’(1)(6 T’)bw in _77
g 0(m) = e [ i i) £
for w € Q* and _
b (e) = el¥ia(e)
according to (87). Then Lemma B with = 4a(n)sin % and no = 7 + & gives

) eim(4a(n) sin %—Z) )
g 0(n) = " Y bt (—e™“/?) + O(a(n) ") (8.31)
=, 2¢/2ma(n)sing

and applying Lemma we obtain
b2 (£e/?) = el () O(n™7). (8.32)

However using (8.23)) we get 7,/17‘*1’71(:|:ei“’/2) = 2a(n)da(n) sinw. Thus combining (832)) with (R3T])

and a(n)~! = O(n™7), we obtain

cos (4a(n)sin % — 7)

V/2ma(n) sin &

g0 (n) = eien+2a(ma(m)sinw) L (=), (8.33)
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To complete the proof we observe that (833]) ensures

Regy%(n) =

- cos(wn + 2a(n)da(n)sinw) + O(n~7),
27a(n) sin &

cos (4a(n)sin% — T)

(n)si

Im g%(n) = sin(wn + 2a(n)da(n) sinw) + O(n~7).

)
3
)
E
=
(SIS

APPENDIX A. THE QUANTUM RABI MODEL

The quantum Rabi model couples a quantized single-mode radiation and a two-level quantum
system.

Let Hgela be a complex Hilbert space equipped with an orthonormal basis {e,}3° and let a,
a' be the photon annihilation and creation operators defined in Hgeiq by

aep, =+vnen—_1, n=20,1,2,...,
alen =vn—+1leppr, n=0,1,2 ...

(with e_; = 0). To define the quantum Rabi model we fix four positive parameters:
(i) w, the frequency of the quantized one-mode electromagnetic field,
(ii) E, the level separation energy,
(iii) g, the coupling constant,
(iv) ki, the Planck constant.
The quantum Rabi Hamiltonian is then the self-adjoint operator in Hgelq ® C? given by

Hpabi = hwala @ Ice + Iy, ® $Fo. + hg(al + &) ® o, (A.1)
where 0, = ({{) and 0. = (§ ;). Then we have the decomposition (see [L9] or [6] Section 3.1])
Heera ® C* =Hy ®H_, (A.2)

where H4 and H_ are invariant under Hgapi and the restrictions Hy := Hgabi|z, have the form

1
Hy = —ho + o J, (A.3)

where the operator J; (resp. J_) is defined in an appropriate basis by the Jacobi matrix ()

whose entries are given by ([2) with a; = £ and p = 52 (resp. p = —5=-). Therefore

o(Hrabi) = {An(H4) oy U{A(H-) 302,
where 1
An(Hy) =—§hw+hw)\n(Ji). O
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