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Abstract

For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are
becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of
machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a
uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with
a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and
output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental
understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers
are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response
prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.

Introduction
The continued development of new high-throughput molecular
profiling (‘omics’) technologies and their concomitant increased
accessibility for biomedical applications make it increasingly
attractive to study complex biological phenomena using data-
driven and machine learning (ML) approaches [1]. ML is a specific
subset of artificial intelligence that allows automatic learning
from data, and has contributed to a wide range of genomics
research [2]. One particular application of ML is drug response
prediction (DRP), in which phenotypic responses of biological
samples are predicted on the basis of their molecular profiles,
with predictors often providing mechanistic insight.

In the context of biomedical research, DRP has, until now,
largely focused on the response to anticancer drugs, possibly
owing to the importance of cancer as a major public health issue,
and the relative ease with which cancer cells can be cultured
for in vitro drug screening assays. Cancer is a multifactorial
and heterogeneous disease; each tumour typically has its
own unique molecular characteristics, often leading to diverse
responses to the same therapy for patients despite similar
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clinical phenotypes [3]. Hence, personalized, instead of one-
size-fits-all, approaches to therapy are thought to have great
potential to improve the clinical treatment of cancer [4] by
extending survival and reducing side effects [5].

Unlike in other applications of ML, the establishment of
systematic training datasets, e.g. in clinical trials, where a large
number of drugs are evaluated for each of a large number
of patients, is ethically impossible, and practically extremely
expensive to approximate. The systematic datasets used for DRP
therefore come mainly from preclinical models, such as cell lines
[6], organoids [7] and xenograft mice [8]. In contrast to cancer
cell lines, organoids and xenograft mice comprise interactions
with the tumour microenvironment, and are thus considered to
be better models for clinical outcomes [9–11]. Another concern
with cell lines is that they may diverge from the original tumour.
Yet, the observable pharmacological patterns in cell lines, which
are relatively easy to culture, are still considered as rich in
information about the drug mechanisms of action [6, 12, 13],
and encompass clinically relevant genomic alterations [14]. The
relatively good availability of large-scale, systematic, cell line
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DRP datasets [15–18] make them the most frequently used input
for ML-based DRP.

Given the omics data acquired from cell lines or tumours,
along with their phenotypic responses to drugs, various ML
approaches have been employed for DRP, with different inputs,
models and learning processes, and different levels of complex-
ity and interpretability of the resulting DRP models. DRP models
range from established simple linear regression models to recent
and more complex such as deep neural networks (DNNs). In
addition, DRP methods can use biomolecular networks (between,
e.g. genes and cell lines) that represent known or derived rela-
tionships.

The most recent comprehensive review of DRP methods,
published in 2015 [19], naturally does not encompass important
recent developments, such as recommender systems-based DRP.
Other, more recent, reviews focus on specific aspects. Adam
et al. [20] provide a broad view of methods linked to recent tech-
nologies, such as deep learning and single cell sequencing, and
discuss important extensions, such as combination therapy and
the prediction of drug resistance. Ali and Aittokallio [21] focus
on the principled lessons from the NCI-DREAM7 community
challenge [22]. Paltun et al. [23] discuss three specific subclasses
of DRP methods based on data integration approaches. Further-
more, Chen and Zhang [24] provide a systematic performance
evaluation of 17 selected DRP methods.

The present review thus intends to provide a structured, up
to date, panorama of DRP methods from the past 10 years, rather
than deeper technical discussions relating to specific classes of
methods, which can be found in some of the above reviews and
the original and ML literature. While introducing basic biological
and ML concepts when needed, (i) we discuss all major databases
commonly used to learn DRP ML models, together with a system-
atic overview of the drug response measurement that was used,
numbers of drugs/samples, and URLs, (ii) we survey more than
70 DRP methods across 13 subcategories, together with a sys-
tematic overview of used inputs, outputs, evaluation approach,
and code and software availability, and (iii) we discuss common
approaches to evaluate DRP methods.

Databases
A number of ambitious experimental efforts have produced
large pharmacogenomic datasets, i.e. collections of drug responses
of clinical or preclinical samples, along with their molecular
profiles. Box I provides an overview of commonly used preclin-
ical drug response metrics that are used to represent the drug
responses in these datasets.

Pharmacogenomic data have provided insight into the rela-
tionship between clinical and preclinical molecular profiles and
responses to anticancer drugs, and drug response-predictive
biomarkers. In this section, we survey the commonly used large
publicly available pharmogenomic datasets.

The Cancer Genome Atlas (TCGA) [25] provides genomic,
epigenomic, transcriptomic and proteomic features of over
11 000 patients across 33 cancer types. TCGA is a collaborative
effort between the National Cancer Institute and the National
Human Genome Research Institute started in 2006 aiming to
better understand cancer biology and improve cancer treatment
and prevention. In TCGA, patient drug responses are categorized
into four classes of complete response, partial response,
progressive disease and stable disease, based on tumour growth
measured by RECIST, an imaging-based criterion to evaluate
the response in solid tumours [26]. The TCGA dataset can be
downloaded from Genomic Data Commons Data Portal.

Based on the hypothesis that in vitro drug activity on cancer
cell lines can capture essential aspects of in vivo drug activity
on corresponding tumours [12], molecular and drug sensitivity
profiles across a large number of cell lines have been generated;
Table 1 provides an overview. In the late 1980s, a project led
by the US National Cancer Institute measured the ability of
thousands of anticancer drugs to inhibit cell growth across 60
human cancer cell lines [6, 12]. The NCI-60 panel of measure-
ments includes gene expression (GE), copy number variation
(CNV), single nucleotide polymorphism (SNP), DNA methylation
(DM) and proteomics profiles of each cell line. Analysis of this
data resulted in the discovery of a number of gene mutations
that are highly predictive of clinical responses [27] and pro-
vided new insights into drug activity modulators and drug-target
interactions.

Following the NCI-60 effort, two large collaborative datasets
were established: the Cancer Cell Line Encyclopedia (CCLE) [16]
and the Genomics of Drug Sensitivity in Cancer (GDSC) [15]. CCLE
is a collaboration of the Broad Institute and Novartis, and GDSC
is a collaboration between The Cancer Genome Project at the
Wellcome Trust Sanger Institute (UK) and the Center for Molec-
ular Therapeutics at the Massachusetts General Hospital Cancer
Center (USA). Both datasets contain GE, CNV, DM, and mutational
status (MS) of around 1000 human cancer cell lines from various
tumour types, together with pharmacological profiles across a
large fraction of these cell lines, for 24 and 518 drugs, respec-
tively, in CCLE and GDSC. Although several studies pointed at
inconsistencies in the drug response measurements between
CCLE and GDSC [28, 29], others argued that the inconsistencies
disappear under a specific, reasonable, interpretation of the data
[18, 30–33]. To shed more light on this issue, the Genentech Cell
Line Screening Initiative [18] generated profiled 410 cell lines
common to GDSC and CCLE using various approaches, including
RNA-seq GE, MS and CNV, along with their responses to 16 drugs
tested in both studies. The outcomes of this study supported the
previously proposed mode of consistent interpretability across
CCLE and GDSC data. PharmacoDB [34] provides large publicly
available preclinical datasets that have been prepared for inte-
grated use, with special emphasis on consistency.

The Cancer Therapeutics Response Portal (CTRP) [17] pro-
vided another pharmacogenomic dataset with a variety of differ-
ent molecular features of cell lines, including MS, GE, CNV and
tissue type. The last published version of this dataset includes
860 characterized cancer cell lines and their responses to 481
compounds. DepMap is a data repository that aggregates a num-
ber of different preclinical datasets (including GDSC, CCLE and
CTRP).

DRP models
The high complexity of the biological response to drugs and
the increasing feasibility of large-scale molecular profiling
experiments make ML approaches increasingly attractive for
modelling and prediction of drug responses. DRP models are
most often established using a set of known phenotypic drug
responses (supervised learning). Generally, the objective of
DRP models is the prediction of the response of drugs for a
given sample from its molecular profile (Figure 1). Regression
estimates a quantitative drug response (Box I) for each sample,
while classification predicts discrete labels that stratify samples
into sensitive or resistant. To obtain ground truth labels in
preclinical samples, the continuous measure of drug response
is then thresholded by methods such as median-based [35],
maximum concentration-based [14], waterfall-based [16] and
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Table 1. Publicly available drug screening datasets on cell lines

Datasets Drug response
measurement

Sample
size

Drug
number

Tissue
number

Reference URL

NCI60 GI50, IC50,
LC50, TGI

60 <3000 9 Shoemaker et al.
(2006)

https://dtp.cancer.gov/discovery_
development/nci-60/

Genomics of Drug
Sensitivity in Cancer
(GDSC)

IC50, AUC 988 518 36 Garnett et al.
(2012)
Yang et al. (2012)
Iorio et al. (2016)

https://www.cancerrxgene.org

Cancer Cell Line
Encyclopedia (CCLE)

IC50, EC50, AA 504 24 36 Barretina et al.
(2012)

https://portals.broadinstitute.org/
ccle

GRAY GI50 70 90 1 Heiser et al. (2012)
Daemen et al.
(2013)

https://link.springer.com/arti
cle/10.1186/gb-2013-14-10-r110#a
dditional-information

Institute for Molecular
Medicine Finland
(FIMM)

EC50, DSS 106 308 1 Pemovska et al.
(2013)

https://cancerdiscovery.aacrjourna
ls.org/content/3/12/1416.figures-o
nly

Genentech (GNE) IC50 675 >350 17 Klijn et al. (2015) https://www.nature.com/articles/
nbt.3080#MOESM21

Human B-cell Cancer Cell
Lines (HBCCL)

AUC, Sen/Res 26 3 2 Falgreen et al.,
(2015)

https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE53798

Cancer Therapeutics
Response Portal (CTRPv2)

AUC 860 481 25 Seashore-Ludlow
et al. (2015)

http://portals.broadinstitute.org/
ctrp.v2.1/

Genentech Cell Line
Screening Initiative
(gCSI)

AUC, IC50 410 16 23 Haverty et al.
(2016)

https://pharmacodb.pmgenomics.
ca/datasets/4

Head and neck squamous
cell carcinomas cell lines

IC50 8 276 1 Chia et al. (2017) https://www.chip-phenomics.org/
DOWNLOAD/Chia2017/

Texas Southwestern
Medical Center non-small
cell lung cancer cell line

AUC, ED50 100 222 2 McMillan et al.
(2018)

https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE104757

predefined [36–38]. From a practical perspective, discretization
enables the use of classification methods, but it also loses
information, and, if predictions are to be interpreted in a clinical
context, the clinical relevance of the resulting classes requires
special attention.

Feature selection, i.e. the maximal removal of data features
with a minimal loss of problem-relevant information, is an
important part of DRP, as it is a major antidote to the statistical
and computational problems that the high-dimensional omics
input data typically entail. For focused discussions of feature
selection, we refer the reader to Webb and Copsey [39], and, for
their use in DRP, to the study by Koras et al. [40].

Network-based machine learning models are relatively
recent, and increasingly popular for DRP. Here, networks
(often equivalent to mathematical graphs) can refer to sets of
interactions between cell lines, drugs, genes, proteins or their
combination. Networks carry different types of information, and
their use and interpretation vary greatly across the different
uses for DRP.

DRP models can be classified as single-drug learning (SDL)
and multi-drug learning (MDL). To predict the response to a
given drug, MDL leverages data from other drugs; SDL exclusively
uses data about the given drug. SDL and MDL differ in their
capabilities and validation process. Table 2 provides a systematic
overview of all DRP articles covered here.

SDL models

SDL models are trained to predict drug responses for a given
drug, independent of other drugs. In this section, we survey the
SDL approaches in the literature across seven subclasses.

Linear regression

Regression analysis is a set of statistical methods for estimating
the relationship between a dependent variable and one or
more independent variables. As its simplest form, linear
regression uses a linear function to model this relationship,
and enjoys remarkable popularity due to its simplicity and
interpretability.

In DRP, the number of available observations often does not
suffice to determine a unique model. Regularization techniques
address this issue by limiting the possible solutions through
additional assumptions [41, 42], and are therefore a popular
choice for DRP. Shrinkage is a form of regularization in which
parameter values close to zero are preferred when they do not
clearly contribute to the predictive performance of the model.
Ridge regression [43] includes a form of shrinkage, and was used
to assess whether models trained on preclinical samples can
predict clinical drug responses [30, 44]. Ridge regression typically
does not yield sparse models (i.e. models with few independent
variables that are easier to interpret). Lasso regularization, on
the other hand, forces coefficients to zero, their number being
controlled by a hyperparameter [45]. In a recent study, Huang
et al. proposed Tissue-Guided Lasso to derive tissue-specific
models through tissue-specific choices for their hyperparam-
eter. They defined tissue-specific hyperparameters by training
each lasso model on all cell lines, excluding those from the
tissue of interest, and then calibrated the hyperparameter using
data from that tissue [46]. One principled limitation of Lasso
is that the number of non-zero coefficients cannot be higher
than the number of data samples [42]. To derive sparse mod-
els even in cases when the number of features is larger than
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Figure 1. (A) Preclinical samples (e.g. cell lines), on one hand, are profiled to generate omics data, and on the other hand, they are screened over different drugs for

obtaining their sensitivities. This information together is used to train machine learning models. (b) The trained model predicts the sensitivity for a new cell line.

the sample size, the elastic net [41] combines ridge regres-
sion and lasso regularization, and has been also used for DRP
[16, 47–50].

Biomolecular networks represent interactions of biomolecules
in the same functional context that can be leveraged for DRP.
These interactions can be derived from prior knowledge or
independent experimental data. A common use of networks
for DRP is to use them for regularization, by assuming that
model coefficients for functionally related molecules are
similar. Sokolov et al. [51] introduced the generalized elastic
net model that incorporates the Pathway Commons [52]
network in an elastic net approach through a network-based
regularization term.

Partial least squares regression (PLSR) is another type of
linear method, based on latent variable projection [53]. In PLSR,
input and output data are each projected into a (usually low-
dimensional) new space, and then a relationship between them
is established using linear regression. This makes PLSR suitable
for analysing high-dimensional data and DRP [35, 54].

Logistic regression

Instead of predicting drug response as a continuous variable,
samples can also be classified as sensitive or resistant. Logistic
regression is a common classification approach that can be
derived, in a Bayesian framework, from a simple probabilistic
model that expresses drug response as a function of molecular
profiles [30, 44, 55, 56]. Classifiers derived from these models
have linear decision boundaries, i.e. lines or hyperplanes that
separate different classes in the input space [42, 57]. The
assumption of linearity can be a strength in the case of small
datasets, but a limitation when larger datasets would be able to
resolve more complex decision boundaries. Huang et al. [58]

proposed a logistic regression model that is additionally
constrained based on biomolecular networks.

Support vector machines

Support vector machines (SVMs) [42, 57, 59] are ML models that
can be used for classification and regression. SVMs are effi-
ciently learnable, and can employ nonlinear kernels (nonlinear
transformation functions). Dong et al. used a SVM to classify
samples as sensitive and resistant. SVM regression (SVR) [60]
has also been used for drug prioritization [61] and response
prediction [62, 63]. The selection of a kernel function and the
interpretation of SVMs are typically not straightforward.

Nearest neighbour method

Nearest neighbour methods are simple and intuitively under-
standable classification and regression methods. In the K-
Nearest Neighbour (KNN) method, the output for each new
sample is on the basis of the outputs of a smaller number
(commonly denoted by K) of molecular profiles that are the most
similar to the profile of the new sample [42]. Li et al. [64] employed
KNN regression for DRP, in which the sensitivity of a new
sample is modelled as the average of the observed sensitivity
values of its KNNs. Nearest neighbour methods tend to be
problematic in the inadvertent, and typically unknown, presence
of many irrelevant data features, and they are computationally
intensive.

Artificial neural networks and deep learning

Artificial neural networks (ANNs) are powerful ML models that
can approximate arbitrary input–output relationships, given a
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Table 2. Systematic overview of drug response prediction methods

Model Paper Method name Dataset Input Output Evaluation Code/software

availability

Single-drug learning (SDL) models
Linear

Regression

Barretina et al. (2012) - CCLE MAGE, CNV,

Mu, TT

IC50, AA KFCV -

Papillon-Cavanagh et al.

(2013)

- GDSC, CCLE MAGE IC50 KFCV, CDV -

Niepel et al. (2013) - NCI Mu GI50 LOOCV -

Geeleher et al. (2014) - GDSC, three clinical

datasets

MAGE IC50 LOOCV, CDV http://geeleherlab.org/

cgpPrediction/

Falgreen et al. (2015) - HBCCL, GDSC, IDRC,

LLMPP, MDFCI, UAMS

MAGE AUC KFCV, LOOCV -

Covell et al. (2015) - GDSC, CCLE MAGE GI50 CDV -

Li et al. (2015) - OncoPanel, BATTLE MAGE IC50 RRSSCV -

Sokolov et al. (2016) GELnet LBNLBC MAGE GI50 LPOCV https://cran.r-project.o

rg/web/packages/gelnet/i

ndex.html

Aben et al. (2016) TANDEM GDSC MAGE, Mu,

CNV, DM, TT

IC50 KFCV https://cran.r-project.o

rg/web/packages/TANDE

M/index.html

Huang et al. (2020) TG-LASSO GDSC, TCGA MAGE IC50 RRSSCV, CDV https://github.com/ema

d2/TG-LASSO

Logistic

Regression

Geeleher et al. (2014) - GDSC, three clinical

datasets

MAGE Res/Non-Res LOOCV, CDV http://geeleherlab.org/

cgpPrediction/

Falgreen et al. (2015) - HBCCL, GDSC, IDRC,

LLMPP, MDFCI, UAMS

MAGE Sen/Res KFCV, LOOCV -

Ding et al. (2016) - TCGA MAGE, CNV,

DM, miRNA

Sen/Res -

Geeleher et al. (2017) - GDSC, TCGA MAGE IC50 KFCV, CDV https://osf.io/pwm4z/

Ding et al. (2018) - GDSC, CCLE MAGE, CNV, Mu Sen/Res RRSSCV -

Huang et al. (2018) Lq-NLR GDSC, BATTLE MAGE IC50 KFCV -

Maximum

Margin Models

Dong et al. (2015) - GDSC, CCLE MAGE Sen/Res KFCV, CDV -

Gupta et al. (2016) - CCLE MAGE, CNV, Mu IC50 - http://crdd.osdd.net/ra

ghava/cancerdp/

Parca et al. (2019) - GDSC MAGE IC50 KFCV https://github.com/luca

parca/dre

Ensemble

Learning

Methods

Riddick et al. (2010) - NCI-60 MAGE IC50 OOBP -

Daemen et al. (2013) - LBNLBC, TCGA MAGE, DM, ES,

RSGE, PA, CNV

Sen/Res RRSSCV, CDV -

Stetson et al. (2014) - NCI60, CCLE, GDSC MAGE, SNP,

CNV

IC50 KFCV, CDV -

Wan & Pal (2014) - CCLE, NCI-DREAM MAGE, CNV, PA,

DM, RSGE

GI50, IC50 KFCV, LOOCV -

Fang et al. (2018) QRF CCLE MAGE, Mu,

CNV

AA OOBP -

Xu et al. (2019) AutoBorutaRF GDSC, CCLE MAGE, SNP,

CNV

Sen/Res KFCV https://github.com/bioi

nformatics-xu/AutoBoru

taRF

Oskooei et al. (2019) NetBiTE GDSC MAGE IC50 KFCV -

Su et al. (2019) Deep-Resp-

Forest

GDSC, CCLE MAGE, CNV Sen/Res KFCV https://github.com/Ra

nSuLab/Deep-Resp-Fore

st

Kurilov et al. (2020) - GDSC, CCLE, CTRP, gCSI,

NIBR PDXE

MAGE, CNV,

Mu, RSGE, TT

IC50, AUC, V1,

TVC

RRSSCV https://github.com/Roma

HD/DrugRespPrediction

Nearest

Neighbour

Method

Li et al. (2021) GA/KNN GDSC, CCLE, TCGA, GTEx MAGE, RSGE IC50 RRSSCV, CDV -

(Continued)
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Table 2. Continued

Model Paper Method name Dataset Input Output Evaluation Code/software

availability

Artificial

Neural

Networks and

Deep Learning

Sakellaropoulos et al.

(2019)

- GDSC, TCGA, MD

Anderson, OCCAMS,

multiple myeloma

MAGE IC50 KFCV https://github.com/Teo

Sakel/deep-drug-respo

nse

Sharifi-Noghabi et al.

(2019)

MOLI GDSC, PDX, TCGA MAGE, SNP,

CNV

Res/Non-Res CDV https://github.com/ho

sseinshn/MOLI

Ahmed et al. (2020) - NSCLCCLP RSGE AUC, ED50 RRSSCV https://github.com/co

mpbiolabucf/drug-sensi

tivity-prediction

Ma et al. (2021) TCRP GDSC, CCLE, DepMap,

PDTC BioBank, PDX

Encyclopedia

MAGE, Mu AUC, TVC CDV https://github.com/ideke

rlab/TCRP/

Malik et al. (2021) - GDSC, TCGA MAGE, Mu,

CNV, DM

IC50 KFCV, CDV https://github.com/Tea

mSundar/BRCA_multio

mics

Molecular

Network

Similarity-

Based

Methods

Kim et al. (2016) NBC GDSC, CCLE MAGE Sen/Res KFCV -

Stanfield et al. (2017) - GDSC, CCLE SNP CDSS LOOCV, CDV -

Multi-drug learning (MDL) models
Linear

Regression

Costello et al. (2014) Bayesian

multitask MKL

NCI-DREAM, GDSC MAGE, RSGE,

CNV, Mu, DM,

PA

GI50 challenge test

cell lines

https://www.nature.co

m/articles/nbt.2877#MOE

SM3

Yuan et al. (2016) - CCLE, CTRPv2, NCI60 MAGE, CNV, Mu AA, AUC, GI50 KFCV -

Ammad-ud-din et al.

(2017)

MVLR GDSC, FIMM MAGE IC50, CDSS LOOCV https://github.com/sulei

mank/mvlr

Ensemble

Learning

Methods

Matlock et al. (2018) - GDSC, CCLE MAGE, DT, DD AUC RRSSCV -

Liu et al. (2020) - GDSC, CCLE MAGE AA, AUC KFCV https://zenodo.org/reco

rd/1325121#.YNHB_i0Ro

zV

Sharma & Rani (2019) - GDSC, CCLE, NCI-Dream MAGE IC50, GI50 KFCV -

Su et al. (2020) Meta-GDBP GDSC, CCLE MAGE, DD IC50, AA KFCV, CDV https://github.com/Ra

nSuLab/Meta-GDBP

Artificial

Neural

Networks and

Deep Learning

Menden et al. (2013) - GDSC MS, MU, CNV,

DD

IC50 KFCV -

Chang et al. (2018) CDRscan GDSC, CCLP SNP, DD IC50 KFCV -

Li et al. (2019) Deep DSC GDSC, CCLE MAGE, DD IC50 KFCV, LOTO,

LOCO

-

Chiu et al. (2019) DeepDR GDSC, TCGA MAGE, Mu IC50 RRSSCV -

Joo et al. (2019) DeepIC50 GDSC, CCLE, TCGA Mu, DD 3-class

sensitivity

RRSSCV, CDV https://github.com/labna

ms/DeepIC50

Liu et al. (2019) tCNNS GDSC Mu, CNV, DD IC50 RRSSCV, LOTO https://github.com/Lo

wpassfilter/tCNNS-Proje

ct

Manica et al. (2019) MCA GDSC MAGE, DD IC50 KFCV, RRSSCV https://github.com/drugi

lsberg/paccmann

https://ibm.biz/paccma

nn-aas

Choi et al. (2020) RefDNN GDSC, CCLE MAGE, DD Sen/Res KFCV https://github.com/ma

thcom/RefDNN

Zhu et al. (2020) - GDSC, CCLE, CTRP, gCSI MAGE, DD AUC KFCC -

Bazgir et al. (2020) REFINED GDSC, NCI-60 MAGE, DD IC50, GI50,

Sen/Res

KFCV, RRSSCV https://github.com/omi

dbazgirTTU/REFINED

Liu et al. (2020) DeepCDR GDSC, CCLE, TCGA MAGE, Mu, DM,

DD

IC50, Sen/Res KFCV, CDV https://github.com/ki

mmo1019/DeepCDR

(Continued)
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https://github.com/drugilsberg/paccmann
https://ibm.biz/paccmann-aas
https://ibm.biz/paccmann-aas
https://github.com/mathcom/RefDNN
https://github.com/mathcom/RefDNN
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Table 2. Continued

Model Paper Method name Dataset Input Output Evaluation Code/software

availability

Tang & Gottlieb (2021) PathDSP GDSC, CCLE MAGE, CNV,

Mu, DD

IC50 KFCV, CDV https://github.com/Ta

ngYiChing/PathDSP

Nguyen et al. (2021) GraphDRP GDSC Mu, CNV, DD IC50 RRSSCV https://github.com/hau

ldhut/GraphDRP

Recommender

Systems

(neighbourhood-

based)

Zhang et al. (2015) Dual-layer

integrated cell

line-drug

network

GDSC, CCLE MAGE, DD AA, IC50 LOOCV -

Sheng et al. (2015) - GDSC, CCLE MAGE, DD IC50 KFCV, CDV -

Liu et al. (2018) NCFGER GDSC, CCLE MAGE, DD IC50, AA KFCV -

Zhang et al. (2018) HIWCF GDSC, CCLE MAGE, DD, DT IC50, AA KFCV https://github.com/laure

niezhang/HIWCF

Le & Pham (2018) GloNetDRP GDSC, CCLE MAGE, Mu AUC, IC50 KFCV -

Wei et al. (2019) CDCN GDSC, CCLE MAGE, DD AA, Sen/Res LOOCV https://zenodo.org/reco

rd/1403638#.YNHVyi0Ro

zV

Recommender

Systems

(model-based)

Ammad-ud-din et al.

(2014)

KBMF GDSC MAGE, CNV,

Mu, DD, DT

IC50 KFCV https://research.cs.aalto.

fi/pml/software/kbmf/

Ammad-ud-din et al.

(2016)

cwKBMF GDSC, CTRPv1, AMLCLP MAGE, DD IC50, AUC KFCV, CDV https://research.cs.aalto.

fi/pml/software/

cwkbmf/

Wang et al. (2017) SRMF GDSC, CCLE MAGE, DD AA, IC50 KFCV https://github.com/linwa

ng1982/SRMF

Suphavilai et al. (2018) CaDRReS GDSC, CCLE, HNCCLP MAGE IC50 KFCV https://github.com/

CSB5/CaDRReS

Yang et al. (2018) Macau GDSC MAGE, DT IC50 KFCV https://github.com/sae

zlab/Macau_project_1

Guan et al. (2019) WGRMF GDSC, CCLE MAGE, DD IC50, AA KFCV -

Moughari & Eslahchi

(2020)

ADRML GDSC, CCLE MAGE, Mu,

CNV, DD, DT

IC50 KFCV https://github.com/fa

hmadimoughari/ADRML

Emdadi & Eslahchi (2020) DSPLMF GDSC, CCLE MAGE, Mu,

CNV, DD

Sen/Res KFCV https://github.com/emda

di/DSPLMF

Emdadi & Eslahchi (2021) Auto-HMM-

LMF

GDSC, CCLE MAGE, CNV,

Mu, TT, DD

Sen/Res KFCV https://github.com/emda

di/Auto-HMM-LMF

Network

Representation

Learning-

Based

Models

Yang et al. (2019) NRL2DRP GDSC Mu, CNV, DM Sen/Res KFCV https://github.com/U

STC-HIlab/NRL2DRP

Yu et al. (2020) DREMO GDSC, CCLE MAGE, Mu,

CNV, DD, DT

Sen/Res KFCV https://github.com/Lia

ngYu-Xidian/MNDRP

Network

Propagation-

Based

Method

Zhang et al. (2018) HNMDRP GDSC MAGE, DD Sen/Res LOOCV https://github.com/U

STC-HIlab/HNMDRP

AA = activity area; AUC = area under curve; CDSS = custom drug sensitivity score; CDV = cross-dataset validation; CNV = copy number variation; DD = drug descriptors;
DM = DNA methylation; ES = exome sequencing; MAGE = microarray gene expression; KFCV = K-fold cross validation; LOCO = leave-one-compound-out; LOOCV = leave-
one-out cross validation; LOTO = leave-one-tissue-out; LPOCV = leave-pair-out cross validation; miRNA = micro-RNA; MS = microsatellite; Mu = mutation; OOBP = out-
of-bag prediction; PA = protein abundance; Res/Non-Res = responder/non-responder; RSGE = RNA-seq gene expression; RRSSCV = repeated random sub-sampling cross
validation; Sen/Res = sensitive/resistance; SNP = single nucleotide polymorphism; TT = tissue type; TVC = tumor volume changes; V1 = viability at 1 μm.

large and diverse enough set of training samples. Multilayer
feedforward neural networks are one of the most commonly
used ANNs that consist of multiple layers [57]; each layer
consists of a number of computational units, called neurons
(Figure 2A). These ANNs are usually fully connected, i.e. the first
layer of neurons receives the input data, and the outputs of all

neurons in any given layer are used as inputs for all neurons in
the next layer.

In their generic form, ANNs require more input data than
simpler models. Ma et al. [65] used a transfer learning approach
to address the problem of relatively little available DRP data
for advanced preclinical models. In a first pre-training phase
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https://github.com/USTC-HIlab/HNMDRP
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Figure 2. Artificial neural networks in drug response prediction can be configured as (A) single drug learning (SDL) or (B, C) multi-drug learning (MDL). SDL ANNs learns

the response of a single drug for a sample using omics data, whereas MDL ANN learns the response to multiple drugs, which can have (B) multiple outputs, such that

each output corresponds to the prediction for a specific drug, or (C) single output with the additional input of drug features.

of their TCRP method, a multilayer ANN is learned using a
larger number of basic preclinical training samples (cell lines).
In the following learning phase, a small dataset from advanced
preclinical models is used to recalibrate the model to the new
context.

ANNs with many layers are called DNNs. Deep learning has
recently attracted considerable attention across many fields and
has become popular for DRP as well [66–68]. Encoders are partic-
ular types of ANNs, typically used in DNNs for feature reduc-
tion, i.e. the encoding of higher dimensional information using
fewer dimensions with no or little loss of information. Stacked
encoders–decoder networks can be trained simultaneously as
autoencoders without the need for output data [69, 70]. Ding
et al. trained a four-layer autoencoder, and the output of each
layer was separately used to train a logistic elastic net to predict
drug responses [56]. Sharifi-Noghabi et al. [71] introduced a DNN
that learns encoders of different molecular data types separately,
and whose outputs are fed to a multilayer neural network for
DRP. Determining the best structure of ANNs and interpreting
the resulting models are non-trivial, and learning ANNs tends to
be computationally expensive.

Graph neural networks (GNNs) are ANNs that operate on
graphs (i.e. sets of interactions) as inputs. Recently, deep GNNs
have been used to learn low-dimensional representations of
biomolecular networks [72, 73]. Ahmed et al. [74] employed two
different GNN methods to use GE and a gene co-expression
network, i.e. a network representing the correlation between
the expression of gene pairs, to construct a GNN. In contrast
to the use of GNNs for MDL (discussed in Section ANNs
and Deep Learning below), GNNs have not been shown to
improve significantly over the SDL performance of classical ML
models.

Network similarity-based methods

Network similarity-based methods are based on the assumption
that cell lines with similar network-level information respond
similarly to the same drug. Class-specific networks, typically a
sensitive network and a resistant network are then constructed
to capture features characteristic for the samples from both
classes. Although the above assumption underlying this rel-
atively recent class of methods is simple, its validity needs
to be established for each particular interpretation of network
similarity.

Stanfield et al. [75] construct a ‘base network’ of genes and
cell lines, in which cell lines are linked to their mutated genes,
which, in turn, are connected by BioGRID protein–protein inter-
actions [76]. To inject information about drug responses, the base
network is then augmented with links between cell lines and
the drug they are sensitive to, to obtain a sensitive network, and,
analogously, a resistant network. The augmentation is designed
to lead to tighter network connectivity between the drug, cell
lines and genes involved in sensitivity or resistance, respectively.
A new cell line is then classified based on the similarity of
the connectivity of its base network with each of the class-
specific networks. Kim et al. [77] proposed another biomolecular
network-based classifier that exploits the presence of class-
specific gene co-expression patterns. First, sensitive and resis-
tant gene co-expression networks are constructed from the GE
values of the corresponding cell lines. Next, for each gene in
each of these networks, class-specific SVR models are trained to
predict GE values on the basis of the GE of neighbouring genes in
the class-specific network. For a new sample, the accuracy of the
class-specific SVR prediction for any given gene is then evalu-
ated, and interpreted as evidence for, or against, the membership
of the new sample in the corresponding class.
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Ensemble learning methods

By aggregating the predictions of multiple models, ensemble
learning methods are often able to improve over the perfor-
mance of any individual model [78]. Random forests (RFs) are
established ensemble learning models that aggregate several
regression or classification trees [79]. Trees are nonlinear ML
models that predict the output by partitioning the input space
into a hierarchical set of rectangles in the input space. The
predicted output for the classification problem is the class label
associated with the rectangle that corresponds to a new input.
For the regression problem, the output is commonly the average
value of the training outputs corresponding to each rectangle.
RF trees are constructed from a random selection of the sam-
ples, and the remaining samples, called out-of-bag samples, can
be used for validation. Riddick et al. [80] and Daemen et al.
[81] initially used RF to predict drug sensitivity and identify
molecular features associated with drug responses. Stetson et al.
[82] selected differentially expressed genes between the most
sensitive and resistant cell lines, and then used to train three
classifiers using RF, SVM and logistic elastic net. Wan & Pal
[83] proposed a RF regression-based approach using multiple
omics data. To this end, they trained multiple RF regressions
for different data types, and combined the individual predic-
tions using linear regression. Moreover, Xu et al. [84] proposed
a method called AutoBorutaRF, which employs an autoencoder-
based feature selection algorithm and the Boruta algorithm [85]
to improve the performance of RF.

To incorporate biological prior knowledge into the RF, Oskooei
et al. [86] presented NetBiTE, in which a RF is biased towards using
the known drug targets and their STRING PPI [87] interactors
based on a network diffusion algorithm, i.e. a mathematical
transformation of omics data that allows the detection of hypo-
thetically relevant network regions [88]. Zhou & Feng [89] pro-
posed an ensemble method called gcForest, whose performance
was found to be competitive with DNNs. A modified version of
gcForest, was used for drug response classification [38].

Fang et al. [90] argue that, due to the uncertainty inherent in
DRP prediction, clinical applications benefit from richer output
than a single predicted drug response. Their RF-based predictor
is adapted to non-standard output distributions, and yields pre-
diction intervals that, as they argue, may provide a better basis
for the choice of appropriate treatments.

MDL models

MDL models use data from multiple drugs to predict the
response of a given drug. This may lead to improved predictions
for drugs with training data, and, potentially, the prediction of
responses to drugs for which no training data are available.

Multitask linear regression

Linear regression is also employed for MDL. In a DRP challenge
competition performed by NCI-DREAM [22] the best-performing
method was Bayesian multi-task multiple kernel learning (MKL),
in which multiple data types (including original omics datasets
and computationally derived data) are first kernelized (i.e. con-
verted into nonlinear transfer functions), and then a global
similarity matrix is constructed as their weighted sum. Next,
a set of drug-specific weights, determined through multitask
linear regression, are used to provide the final drug response
values. Ammad-ud-din et al. [91] pointed out that, although ker-
nels may enhance the model predictions, the resulting models
are typically hard to interpret, in terms of the relationship of

their inputs to their outputs. To address this issue, they created
the MVLR model, which aggregates groups of molecular features
that are known to be biologically connected, and use them as
inputs to a multitask linear regression. In another study, Yuan
et al. [92] jointly trained multilinear regression models based on
trace norm regularization, which can increase the dependencies
between model parameters to yield a more manageable number
of biologically meaningful features.

ANNs and deep learning

ANNs are widely used in MDL. Through shared model param-
eters, MDL models can leverage information between different
drugs and reduce the problem of overfitting, i.e. the learning of
parameters driven by characteristics of the training data that are
not necessarily present in other data. MDL ANNs have either
single or multiple outputs. Each output of a multi-output ANN
predicts the response for a specific drug (Figure 2B). Chiu et al.
[93] proposed a multitask DNN model for DRP called DeepDR.
Their method is composed of mutation and GE encoders that
reduce data dimensionality, followed by a multilayer ANN with
multiple outputs.

Single-output ANNs, on the other hand, accept omics data
along with drug features as input (e.g. chemical descriptors
and biological targets; Figure 2C). Unlike multi-output ANNs,
they share all model parameters among multiple drugs. The
potential advantage of single-output ANNs is their ability to
provide predictions for new drugs whose data have not been
used during the training phase. Menden et al. [94] employed a
fully connected ANN to predict drug response. DeepDSC [95] first
reduces the dimension of GEs using an encoder whose output
is combined with the chemical drug features to be fed to a
multilayer neural network. RefDNN [96] trains, for each drug,
an SDL logistic elastic net regression model that predicts the
probability of drug resistance. To predict the resistance of a given
cell line to a new query drug, the vector of predicted resistance
probabilities is then weighted by a structure similarity profile of
the query drug with all the drugs as an input to a neural network
to classify the response as sensitive or resistant. In an effort to
leverage the observed activity of signalling pathways, Tang &
Gottlieb [97] proposed a pathway-based method named PathDSP.
In their approach, drug structure data along with the pathways
enriched for drug targets, GE, somatic mutation and CNV are
fed as inputs to a DNN. Zhu et al. [98] used transfer learning to
overcome the challenge of learning with limited amounts of data
by pre-training their model on a dataset from a related context,
and then finalizing the training process in the context in which
the model is designed to predict.

Convolutional neural networks (CNNs) are specific types of
non-fully connected feedforward ANNs that can exploit natural
adjacency structures in the data (such as physical or temporal
adjacency) to more efficiently detect global patterns in the input
data. CNNs work well for the inputs that contain spatial or
temporal patterns (such as images) [70, 99, 100]. Joo et al. [101]
proposed a CNN method, called DeepIC50, to predict three classes
of high, intermediate and low responsiveness based on mutation
status and drug descriptors. Moreover, in CDRscan [102], the
mutation data of cell lines and the molecular fingerprints of
drugs are fed to five different versions of a CNN, whose average
predicted output value is reported as the final output. Liu et al.
[103] introduced a model named tCNNS, in which two CNN
branches are respectively used for cell line and drug features to
predict drug sensitivities. Bazgir et al. [104] proposed a method
called REFINED to convert GE profiles to an image that encodes
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relevant patterns of the molecular features in specific regions.
The resulting images are then fed to a CNN for DRP.

GNNs can be used to encode drug features as points in
a low-dimensional space, in which similar drugs are close to
each other, by representing molecular structure of compounds
as networks formed by sets of chemical bonds between atoms
[105, 106]. In DeepCDR [107] and GraphDRP [108], deep drug fea-
tures learnt by GNNs are concatenated with deep multi-omics
features, to be fed to feedforward ANNs for DRP. Manica et al.
[109] proposed the MCA approach, in which genes are selected
based on a network diffusion algorithm [86]. Attention-based
convolutional encoders are a recent new development from the
field of natural language processing that has been useful to
reduce the dimensionality of the GE and drug chemical data, to
be used as input to a fully connected neural network for DRP
[110].

Recommender systems

Recommender systems (RS) are algorithms that yield a set of
personalized item suggestions to a user. RS were developed in
the 1990s to automatically recommend movies and other prod-
ucts to users, based on their similarity of previously observed
choices by the same user, or to the choices of other users with
similar preferences [111, 112]. When transposed to DRP, this
principle implies that a cell line is highly sensitive to a drug
when similar cell lines are highly sensitive to similar drugs.
Generally, RSs can be neighbourhood based or model based [111].
The main input used for the RS-based DRP models is a cell line-
drug sensitivity matrix of sensitivity values of cell lines to the
screened drugs. Complementary information, such as cell line
molecular features and drug descriptor features, can also be
used since they can enhance the similarity between different cell
lines or different drugs.

Neighbourhood-based RS. Neighbourhood-based methods (also
called memory-based methods) are simple types of RS, in which
the cell line-drug sensitivity prediction is based on the sensitiv-
ities of cell lines with similar characteristics to similar drugs,
on the basis of cell line similarity network and drug similarity
networks (Figure 3A) [113].

Zhang et al. [114] constructed cell line similarity and drug
similarity networks using pairwise correlation of GEs and pair-
wise correlation of quantitative drug features, respectively. For
a given cell line-drug pair, the predicted response is based on
a weighted average of the known responses of cell lines to
the given drug and all the drugs to the given cell line. These
weights are normalized versions of cell line similarities and drug
similarities. Le and Pham [115] tried to improve on this by basing
their prediction upon all input cell line-drug responses.

One important drawback of the above approaches is their
inability to predict in the case that drugs and cell lines are new
(i.e. not part of the training data). To address this issue, Wei et al.
[116] proposed an extension of Zhang’s method called CDCN.
Conversely, Sheng et al. [117] raised the possibility that distinct
drug responses between two cell lines might only manifest as
GE differences in a few specific genes directly related to the
drug resistance. To take this into account, they defined cell line
similarity scores based on drug-specific sets of genes. To identify
this set of genes for any given drug, their method first identifies
drugs that are similar in terms of their chemical structures.
Second, for each of those similar drugs, those genes whose
GEs are highly associated with drug response are determined.
Third, the similarity of all other cell lines to the given cell line
is defined, based on the expressions of those genes. Finally, a
similarity-weighted average of the IC50 values observed in other

cell lines, based on the drug and cell line similarities, is used to
predict the most sensitive drugs for the given cell line.

The cell line similarity and drug similarity measures in the
above studies are only based on the molecular features of cell
lines and drug descriptors, respectively. Conversely, the observed
cell line-drug responses can also be used to compute meaningful
similarity measures [118, 119].

Overall, neighbourhood-based RSs yield results based on a
simple and intuitive principle. However, these methods tend to
be heuristic in nature, due to their, typically ad hoc, selection of
similarity measures and their subsequent heuristic downstream
use. Further drawbacks of these methods are their typically high
memory consumption and computational cost for testing sam-
ples, as well their difficult application on sparse input response
matrices [113].

Model-based RS. In contrast to neighbourhood-based methods,
model-based RSs require an explicit model and a training pro-
cess that determines the model parameters. Once learned, mod-
els are fast to apply to new data, and relatively little memory
is needed to store model parameters. In addition, model-based
RSs typically perform better in cases where the cell line-drug
sensitivity matrix is sparse [113].

Different learning algorithms can be used to train parameters
of model-based methods. Typical RS-based methods for DRP
are matrix factorization methods that construct latent factor
models [113]. Such methods commonly represent the cell line-
drug sensitivity matrix as a product of two matrices, allowing an
interpretation of cell lines and drugs as vectors in a latent space
(Figure 3B).

Ammad-ud-din et al. [120] extended a kernelized Bayesian
matrix factorization (KBMF) method that was originally devel-
oped for drug-protein interaction analysis [121], to combine
different omics data and drug properties for DRP. Here, kernels
allow capturing nonlinear relationships between drug response
and both omics and drug features. To improve model inter-
pretability, they further introduced component-wise MKL. In this
method, biological pathway-based groups of features are used as
model inputs, thus incorporating prior biological knowledge in
the model [122].

Similarity-regularized matrix factorization by Wang et al.
[123] employs regularization by GE-based cell line similarity and
chemical feature-based drug similarity measures. More recently,
a modified regularization term for an analogous model was
proposed by Moughari and Eslahchi [124]. They showed that cell
line similarities based on GE and drug similarity-based drug
targets provide the best performance among a variety of cell
line and drug features. To account for redundant information in
similarities, the WGRMF method [125] approximates the cell line
similarity and drug similarity matrix with a sparse matrix.

As the three above methods do not define any transformation
matrix that projects cell lines and drug features into a latent
space, they cannot predict drug sensitivity for new cell lines or
drugs. Using a cell line projection matrix, Suphavilai et al. [126]
developed a matrix factorization-based RS, which enables the
prediction for new cell lines. In addition, Yang et al. [127] used a
drug projection matrix that additionally enables the prediction
for a new drug. They used a method called MACAU [128] to incor-
porate GE and drug target information to train parameters. More-
over, to make predictions for new cell lines, Emdadi & Eslahchi
[129] employ a neighbourhood-based approach, in which the
latent vector for the new cell line is calculated as the average
latent vector of its neighbours. Their DSPLMF method trains a
classification model based on logistic matrix factorization to
predict the probability of a cell line being sensitive to a drug. Such
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Figure 3. Two principal types of recommender systems (RS) for drug response prediction. (A) Neighbourhood-based RSs, which use cell line similarity and drug similarity

measures to predict the response of a cell line to a drug. (B) Model-based RSs for DRP, which typically use matrix factorization (left), in which the cell line and drugs

are represented as vectors in a latent space (right). The response of a cell line to a drug is then modelled to be proportional to the length of each of the vectors, and a

decreasing function of the angle between cell line vector and the drug vector.

models can be categorized as hybrid model-/neighbourhood-
based RS. To further improve the performance of their method,
they developed a feature selection method called Auto-HMM-LMF
[130].

Network representation learning-based models

Network representation learning methods project networks into
a low-dimensional space [131] which can be used as the input
features for ML. Yang et al. [132] proposed a method, in which
a response network is first constructed by combining cell line
genetic aberrations, drug responses and a PPI network. In the
response network, cell lines with similar drug responses are
close to each other. Next, a graph representation learning algo-
rithm is used to learn a projection of the cell lines from the
response network to a space that preserves their neighbour-
hood proximity. Finally, an SVM is trained on the representation
vector of cell lines for each drug to predict the drug response
of cell lines. The idea behind this method is that the cell lines
with similar neighbourhood topology profiles have similar drug
responses. The DREMO method by Yu et al. [133] constructs two
multilayer similarity networks for cell lines and drugs based on
different molecular data types, and then diffusion component
analysis [134] is used to represent the cell lines and drugs into
low-dimensional feature vector spaces. Finally, the sensitivity of
the cell lines to each drug is predicted using logistic regression.

Network diffusion-based methods

Zhang et al. [135] proposed a DRP method on the basis of network
diffusion on a heterogeneous network, consisting of cell line
similarities, drug similarities, target similarities, cell line-drug
sensitivities and drug–target interactions. Their target similarity

network is obtained by merging PPIs and co-expression net-
works. In this method, a diffusion algorithm, called information
flow-based method [136], is used to infer unknown cell line-drug
response to be sensitive on the basis of the known responses by
considering the density of the connectivities associated with the
cell lines sensitive to drugs.

Ensemble learning methods

Ensemble learning (introduced for SDL models in Section Ensem-
ble Learning Methods) can also be applied for MDL models. Mat-
lock et al. [137] used an ensemble of RF, KNN and ANN methods
for DRP. Liu et al. integrated a low-rank matrix completion and
a ridge regression model for DRP [138]. Sharma & Rani [139]
proposed another ensemble learning approach incorporating
KBMTL [140], STREAM [141], L21 [142] and multitask regression.
They first trained four different regression methods for predict-
ing drug responses and then combined the output of each model
using weighted averaging. Su et al. [143] proposed the two-level
Meta-GDBP method. The first level contains four independent
predictive models, based on GE, chemical properties of drugs,
biological processes (based on GO terms [144]) and biological
pathways (based on KEGG pathways [145]). For each of these
information sources, they evaluated the performances of elastic
net and SVR predictors. The second-level model is a weighted
linear combination of the outputs of the best-performing models
in the first level.

Evaluation of DRP models
Model evaluation, i.e. the assessment of the expected perfor-
mance of a trained model on future data, needs to occur on test

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab408/6383559 by BIU

S Jussieu user on 13 O
ctober 2021



12 Firoozbakht et al.

Figure 4. Different MDL model validation schemes. (A) Known cell line/new

drug; (B) new cell line/known drug; (C) new cell line/new drug; (D) known cell

line/known drug.

data that are independent from the training data. Otherwise,
during training, the learned model parameters may be better
adapted to the test data than could be expected for future data,
thus leaving the test data evaluation optimistically biased. Data
leakage, e.g. the—sometimes subtle—presence of information
about the test data in the training data, may, for instance, occur
when very similar data, such as drugs with similar structures,
are present between training and test sets, or when the entire
dataset is used for data preprocessing, e.g. for normalization
across cell lines. There are different common ways of splitting
a single dataset into training and test data [57]. In repeated
random subsampling, the dataset is randomly split into training
and test datasets repeatedly, typically, of given sizes. In each
iteration, the model is trained on the training set and an evalua-
tion metric (e.g. mean square error) is calculated on the test set.
Finally, the model performance is estimated as the average eval-
uation metric over all iterations. In k-fold cross validation, the
dataset is split into k subsets (folds, typically of identical size). In
k iterations, each fold is used as a test set, and the remaining data
are used for training. K-fold cross validation ensures that each
data sample will appear in both train and test sets with the same
frequency, and avoids stochastic fluctuations, particularly for
small datasets. Moreover, in cases when k-fold cross validation
would lead to training sets that are too small, typically, leave-
one-out cross validation (LOOCV) is used, in which test sets
of only a single sample are used in each iteration. It is worth
noting that LOOCV is not recommended for large datasets since
it is computationally expensive and leads to estimates of the
model performance with high statistical variance [146]. Leave-
pair-out cross validation (LPOCV) is a special case where only
two samples are held out. Finally, there is a validation method
specifically for RF called out-of-bag validation (refer to section
Ensemble Learning Methods). In models with hyperparameters,
an additional subset of the training data (validation set) is typi-
cally split-off from the training set before training to evaluate the
model under different hyperparameter values before its version
with the best hyperparameter is evaluated on the test set.

As the performance of MDL models for new data may depend
on whether both drugs and cell lines are present or not in the
training data (i.e. known or new), four different evaluation modes
exist (Figure 4):

1. Known cell line/new drug. The prediction on new drugs
typically uses known drug features. Leave-one-compound-out is
a special case where only one drug is left out.

2. New cell line/known drug: This case is typical for person-
alized medicine applications. Leaving all cell lines derived from
one tissue out as the test set is called leave-one-tissue-out.

3. New cell line/new drug: This evaluation corresponds to the
most ambitious prediction task.

4. Known cell line/known drug: This evaluation corresponds
to the least ambitious prediction task, which can be used to
impute missing values.

Training and test sets can also be selected from different
datasets. Cross-dataset evaluation thus also incorporates poten-
tial batch effects, i.e. systematically different characteristics
between datasets, such as scale. In many real-world cases,
heterogeneous output data present an additional challenge. For
instance, regression models that predict IC50 values observed
on cell lines may be difficult to evaluate against the drug effects
as they are commonly characterized in clinical datasets.

In biomedical classification scenarios, the amount of avail-
able data may strongly vary across the different classes, which
presents special challenges for learning and evaluation. To bal-
ance classes before learning, one can undersample the majority
class, over-sample the minority class with replacement, or use
synthetic data (e.g. SMOTE) [145, 146]. For a discussion of sub-
tleties and pitfalls of these approaches, we refer the reader to
the review by Chawla [147].

Discussion and outlook
Machine learning is a subfield of artificial intelligence whose
classification and prediction algorithms learn patterns underly-
ing the data from examples. Omics data usable for DRP consists
of different types of molecular profiles, typically from genomics,
epigenomics, transcriptomics and proteomics. The different
available data types capture different (potentially overlapping)
facets of the biological drug response. Comparative studies
found that, among different individual data types, GE enables
the best predictive performance, which can then be improved
only slightly by adding other data types [22, 24, 50, 148]. Iorio
et al. [14] reported that GE is an individual data type that leads
to the best prediction performance across a large set of cancers.
Interestingly, they also show that the prediction performance
of GE is highly correlated with tissue types [14]. However,
employing tissue types along with GE as model input so far
did not lead to performance improvements [40, 46, 50, 148]. In a
study on myeloma, GE did not provide satisfactory results [149].
When considering a broader set of cancer types by themselves,
genomic features appear to be the most informative single data
type [14].

Simple linear regression methods are easily interpretable
and have been used for drug-specific biomarker detection [16];
however, they cannot capture more complex associations in the
data. On the other hand, the complexity of the output of many
more advanced DRP ML methods—for instance, those based on
many different transcripts—limits their use for the development
of drug resistance biomarkers, and the extraction of new knowl-
edge about the molecular mechanisms behind drug responses.
We expect that ongoing improvements in the interpretation of
ANNs [150, 151] will continue to be reflected in new approaches
to DRP [65, 67].

DRP ML models can be categorized as single-drug and multi-
drug models. MDLs can leverage data from multiple drugs, thus
conferring robustness and the ability to predict responses to new
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drugs. MDL models have also been seen empirically to show
better prediction performance than SDLs [94, 116, 126, 129], and
to lead to more robust biomarkers [126]. Overall, RS and deep
learning have been the most widely MDL methods used for DRP.
The results reported in the literature suggest the superiority
of RSs [24, 114, 116, 123, 124, 126, 129, 130] and deep learning
methods [93, 96, 101, 104, 107] over more traditional approaches,
such as linear regression, RF and SVM.

At this stage, statements about the current performance of
ML-based DRP methods overall are difficult to make. In the
clinic, molecular patient data are already an established input
for treatment decisions [152], and the potential of ML-based DRP
models to predict tumoral responses to anticancer drugs has
been established [30, 44, 46, 58, 67, 71, 101]. However, ML-based
DRP seems to be rarely used in clinical practice.

One major reason for the currently limited utility of DRP
in the clinic may be the difficulty of addressing random and
systematic variations between datasets, which is an issue in
many applications of ML. Another reason may be the lack of
interpretability of many DRP models in the context of other rich,
and often unstructured, relevant additional clinical information
that is currently not used by DRP models.

The future of drug prioritization in the clinic will undoubtedly
be influenced by ML [153]. We believe that future improve-
ments—especially, towards the use of DRP models in the clinic—
will be catalyzed in a few distinct ways. Firstly, it can be expected
that, as in other ML applications, larger systematic datasets
will be able to drive performance increases, especially if new
datasets are aimed at the more comprehensive characterization
of the relevant biology. This is particularly true if one considers
the current paucity of systematic data outside of the cell line
context. Future datasets with the largest positive impact on DRP
performance may therefore well come from advanced preclinical
models. Although more, and more diverse, data can be thought
to help in any ML approach, it is in particular deep learning,
as a maximally flexible class of models, that is fundamentally
capable of capturing the more subtle characteristics of larger
datasets. The increasing availability of computing power—and
computing as a part of the biomedical research enterprise—will
likely enable the continued application of new, and computa-
tionally ambitious, ML technology to DRP.

A second, complementary, route towards higher performance
of DRP models is the incorporation of prior knowledge. Until now,
the incorporation of prior knowledge through biomolecular net-
works has led to only slight overall improvements at best [44, 49,
60]. However, Oskooei et al. [84] has found clear improvements for
specific drugs, when additional information about drug targets
was provided.

Various missing aspects of drug responses in the clinic may
be addressable by either large datasets, or the incorporation
of knowledge (or a combination of both), as long as various
current systematic limitations of data and models are addressed.
A first, major, systematic limitation of most DRP models is
their focus on the short-term drug response in homogeneous
cell populations. Neither the available cell line input data nor
the learning approaches themselves currently address the com-
plex evolutionary process that often leads to drug resistance in
heterogeneous tumours [154]. Further development of clinically
relevant machine learning-based DRP models may require the
use of input data, such as genomic and transcriptomic single-
cell data, that resolve the subclonal tumour structure [155], and
explicit modelling of tumour evolution [156].

Another aspect of biological complexity that is typically
not addressed by current data-driven approaches to DRP, or
data, is the immune system, which plays a major part in many

diseases, including cancer [157]. The state of the immune system
in relevant tissue can be highly associated with chemotherapy
resistance [158], and immunomodulators have, in the last
decade, become major weapons themselves against cancer and
other diseases [159]. The dbGap database [160] covers immune
responses to drugs with RECIST parameters, and thus provides
future opportunities for the incorporation of the immune system
into DRP.

The microbiome is yet another complex part of human phys-
iology known to regulate many aspects of human health, and,
increasingly, it is also recognized as a mediator of drug effects
[161, 162]. Evolving insight into the microbiome and its role
in drug action may stimulate the adoption of the microbiome
as part of DRP models [163], or lead to models in which the
microbiome can then either act as an enhancer, or even become
itself an active part of therapy through the molecules it secretes
[164]. Related datasets, such as TCGA [25] microbiome data have,
so far, not been included in DRP approaches.

Another area of potential future significance for machine
learning-based DRP is the prediction of unwanted side effects or
adverse drug reactions. Although methods for the prediction of
more general adverse patient events currently appear to focus
on electronic health records [165], increasing insight into the
molecular basis of adverse drug reactions [166] and associated
data may also permit the future integration with principles used
today for DRP.

Eventually, DRP methods and their underlying principles may
also be applicable to the study of environmental- or food-related
molecules on human health. Perhaps spurred by the human
genome as the exhaustive parts list of human biomolecules,
environmental science has started to adopt comprehensive
approaches to profile exogenous chemicals, and to study their
impact on human health [167].

As the effects of environmental chemicals on human biology
can, at some level, be considered as similar to drug effects, DRP
principles and methods to predict the impact of drug combina-
tions on human health may be transposable to the prediction of
the effects of chemical mixtures, where, similarly to drug combi-
nations, exhaustive testing of chemical mixtures is typically not
possible. Analogously, the study of interactions between drugs
and environmental and food-related chemicals [168] will have to
rely on mechanistic insight and data-driven models increasingly
obtained with the help of machine learning methods, such as
those developed for DRP.

Box I. Common Preclinical drug response metrics

Several common drug sensitivity metrics are used in DRP
input data. All are obtained from sigmoidal dose–response
curves that record cell viability (the activity of a specific
biological process, or the number of cells) across a range of
drug concentrations. Drug sensitivity is commonly deter-
mined relative to two reference values: control (i.e. cell
viability in the absence of the drug) and maximal response
(the maximally observed difference of cell viability, rel-
ative to control). Based on these two concepts, pharma-
cogenomic databases use a variety of metrics to quantify
growth inhibition [169, 170], the most important being:

• IC50 (inhibition concentration of 50%): the drug con-
centration at which cell viability is reduced to the half
of control.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab408/6383559 by BIU

S Jussieu user on 13 O
ctober 2021



14 Firoozbakht et al.

• GI50 (growth inhibition of 50%): the drug concentra-
tion that reduces growth by half.

• EC50 (effective concentration of 50%): the drug con-
centration that causes the half of the maximal
response. Also called ‘relative IC50’.

• AUC (area under the dose–response curve): the area
under the dose–response curve.

• AA (Activity area): the area over the dose–response
curve.

It is worth noting that the cell lines that are sensitive to
a drug will get lower IC50, GI50, EC50 and AUC values, and
higher AA value.

Key Points
• Biological knowledge can be leveraged for machine

learning of drug response prediction, e.g. through
biomolecular networks.

• Recent advances in machine learning, e.g. in the areas
of deep learning and multitask learning, have trans-
lated into increased performance of drug response
prediction.

• Large-scale pharmacogenomic datasets for advanced
preclinical models are urgently needed for the future
development of data-driven drug response prediction.
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