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ABSTRACT
Motivation: Shedding light on the relationships between protein sequences and
functions is a challenging task with many implications in protein evolution, diseases
understanding, and protein design. The protein sequence space mapping to specific
functions is however hard to comprehend due to its complexity. Generative
models help to decipher complex systems thanks to their abilities to learn and
recreate data specificity. Applied to proteins, they can capture the sequence patterns
associated with functions and point out important relationships between sequence
positions. By learning these dependencies between sequences and functions, they can
ultimately be used to generate new sequences and navigate through uncharted area of
molecular evolution.
Results: This study presents an Adversarial Auto-Encoder (AAE) approached, an
unsupervised generative model, to generate new protein sequences. AAEs are tested
on three protein families known for their multiple functions the sulfatase, the
HUP and the TPP families. Clustering results on the encoded sequences from the
latent space computed by AAEs display high level of homogeneity regarding the
protein sequence functions. The study also reports and analyzes for the first time two
sampling strategies based on latent space interpolation and latent space arithmetic to
generate intermediate protein sequences sharing sequential properties of original
sequences linked to known functional properties issued from different families and
functions. Generated sequences by interpolation between latent space data points
demonstrate the ability of the AAE to generalize and produce meaningful biological
sequences from an evolutionary uncharted area of the biological sequence space.
Finally, 3D structure models computed by comparative modelling using generated
sequences and templates of different sub-families point out to the ability of the latent
space arithmetic to successfully transfer protein sequence properties linked to
function between different sub-families. All in all this study confirms the ability of
deep learning frameworks to model biological complexity and bring new tools to
explore amino acid sequence and functional spaces.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence
Keywords Latent space arithmetic, Latent space exploration, Protein sequence, Protein function

INTRODUCTION
Protein diversity, regarding sequence, structure, or function, is the result of a long
evolutionary process. Protein fitness and natural selection lead to the current observation
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of only a fraction of all possible amino acid sequence combinations and therefore,
structures, and functions (Dryden, Thomson &White, 2008). These observed sequences are
also referred to the amino acid sequence space. The sequence space is difficult to
computationally explore due to its huge size and thus the constrains between sequence
positions are hard to understand (Axe, 2004; Luisi, Chiarabelli & Stano, 2006; Dryden,
Thomson & White, 2008; Marchi et al., 2019). The classification of amino acid sequences
into protein domain families allows to organize the sequence space and reduce its
complexity.

Many resources have been developed sover the years to group amino acid sequences
into families whose members share sequence and structural similarities (Dawson et al.,
2016; Pandurangan et al., 2018; El-Gebali et al., 2018). Thus, protein families permit to
organize the sequence space. The sequence space area between these families is however
mostly uncharted (Das, Dawson & Orengo, 2015) in spite of very remote evolutionary
relationships between families (Alva et al., 2010). Navigating the sequence space with
respect to the functional diversity of a family is therefore a difficult task. This difficulty is
even increased by the low number of proteins with experimentally confirmed function. In
this regard, computer models are needed to explore the relationships between sequence
space and functional space of the protein families (Goldstein & Pollock, 2016; Tian et al.,
2018; Copp et al., 2018; Salinas & Ranganathan, 2018; Tubiana, Cocco & Monasson, 2019;
Poelwijk, Socolich & Ranganathan, 2019; Russ et al., 2020). Perfect modeling of the
sequence space could have applications in molecular engineering, functional annotation,
or evolutionary biology. It may for example be possible to understand completely the
relationships between amino acid positions of a family responsible of a molecular function
or to navigate the sequence space between families of different functions.

In this study, tools and strategies based on an unsupervised deep learning approach are
proposed to model and navigate the current evolutionary uncharted area of the amino acid
sequence space.

Previous deep learning generative models such as variational autoencoders (VAE) have
been applied on biological and chemical data. They have for example been used to explore
and classify gene expression in single-cell transcriptomics data (Lopez et al., 2018), or to
explore the chemical space of small molecules for drug discovery and design (Rampasek
et al., 2017; Gómez-Bombarelli et al., 2018). Their ability to reduce input data complexity in
a latent space and perform inference on this reduced representation make them highly
suitable to model, in an unsupervised manner, complex systems. Regarding protein
science, VAE have been able to accurately model amino acid sequence and functional
spaces (Sinai et al., 2017), to predict mutational impact (Hopf et al., 2017; Riesselman,
Ingraham & Marks, 2018), to decipher protein evolution and fitness landscape (Ding, Zou
& Brooks, 2019) or to design new proteins (Greener, Moffat & Jones, 2018). In this study,
Adversarial AutoEncoder (AAE) network (Makhzani et al., 2015) is proposed as a new and
efficient way to represent and navigate the functional space of a protein family. Unlike
VAE, AAE networks constrain the latent space over a prior distribution. Prior distribution
allows better inference to explore the whole latent distribution which is particularly useful
for travelling through uncharted area (Kadurin et al., 2017).
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Like VAE and other autoencoder architectures, AAEs reduce high dimensional data by
projection, using an encoder, into a lower dimensional space. This space is known as a
latent space, or embedding representation. The latent space can, in turn, be used by the
decoder to reconstruct the initial data. AAE (Makhzani et al., 2015) architecture
corresponds to a probabilistic autoencoder but with a constraint on the latent space of the
encoder. The latent space is constrained to follow a defined prior distribution. This
constraint is applied using a generative adversarial network (GAN) (Goodfellow et al.,
2014) trained to discriminate between the latent space and the prior distribution. It ensures
that meaningful samples can be generated from anywhere in the latent space defined by the
prior distribution. Applied to biological sequences of a protein domain family, it is then
possible to encode the sequence diversity to any prior distribution. Thus, the model is able
to sample and generate new amino acid sequences of the family from any point of the
prior distribution. Ideally, the learned latent space should be representative of the
functions of the protein domain family and even able to dissociate protein sequences with
different sub-functions.

Protein sequences can cluster in the latent space of the AAE network. These clusters
were analyzed to verify their ability to group sequences according to function as observed
with VAE networks. Three protein families including different sub-families were used to
train AAE models. The protein functional annotations of these families were used to
analyze the clustered sequences. The three different protein families selected were the
sulfatases, the HUP (HIGH-signature proteins, UspA, and PP-ATPase) and the TPP
(Thiamin diphosphate (ThDP)-binding fold, Pyr/PP domains) families. The sulfatases are
a group of proteins acting on sulfated biomolecules. This family have been manually
curated into sub-family with specific functions according to substrate specificity
(Barbeyron et al., 2016). They are found in various protein family databases, such as in
Pfam (PF00884). The SulfAtlas database (Barbeyron et al., 2016) is a collection of curated
sulfatases centered on the classification of their substrate specificity. The majority of
Sulfatases (30,726 over 35,090 Version 1.1 September 2017) is found in family S1 and is
sub-divided into 73 sub-families corresponding to different substrate specificities. Sub-
families S1-0 to S1-12 possess proteins with experimentally characterized EC identifiers.

The two other protein families, HUP and TPP families are not manually curated but
were selected as they are known to have multiple functions (Das, Dawson & Orengo, 2015).
Proteins of the HUP family are a very diverse group with functions linked to particular
motifs such as HIGH and KMSKS (nucleotidyl transferases and t-RNA synthetases
activities), ATP PyroPhosphatase motif, or sequence motifs responsible of the hydrolysis of
the alpha-beta phosphate bond of ATP (Bork & Koonin, 1994; Wolf et al., 1999; Aravind,
Anantharaman & Koonin, 2002). The TPP family is made of very similar protein domains
which are probably evolutionary related (Muller et al., 1993; Berthold et al., 2005). They have
pyruvate dehydrogenases, decarboxylate, and binding functions (Muller et al., 1993).

The VAE architecture has previously been used to cluster protein sequences and
interpret the resulting clusters regarding their function or evolutionary history (Sinai et al.,
2017; Hopf et al., 2017; Riesselman, Ingraham & Marks, 2018; Ding, Zou & Brooks, 2019;
Greener, Moffat & Jones, 2018). These experiments have not studied the quality of the
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architecture generative ability for protein sequences. In particular, the performances of
the architecture is not known for the tasks of navigating the sequence space and
transferring features between clusters. In this study, two experiments were carried out in
this direction using latent space interpolation and latent space arithmetic operations.
These experiments were designed as new tools and frameworks for the amino acid
sequence space exploration.

Data point interpolations between protein sequences of different sulfatase sub-families
was used to analyze the latent space coverage of the protein domain family functional space.
The interpolated data points correspond therefore to unseen proteins, i.e. evolutionary
uncharted area between groups of amino acid sequences. A good model should be able to
produce realistic protein sequences from these data points.

This study also explored arithmetic operations with protein sequences encoded in their
latent space to generate new protein sequences. Arithmetic operations on latent space have
previously been reported to transfer features between images of different classes (Radford,
Metz & Chintala, 2015). These operations may therefore have interesting potential for
molecular design and for exploration of the amino acid sequence space. Four different
strategies were explored to combine latent spaces of different sulfatase sub-families. The
generated proteins from the combined latent spaces were analysed in term of sequences
and structures, after being built by comparative modelling.

METHODS
Protein families
The sulfatase family
An initial seed protein multiple sequence alignment (MSA) was computed from sequences
of the protein structures of SulfAtlas (Barbeyron et al., 2016) database sub-families one to
12. This seed was used to search for homologous sequences on the UniRef90 (Suzek et al.,
2014) protein sequence database using hmmsearch (Eddy, 2011) with reporting and
inclusion e-values set at 1e−3.

A label was assigned to each retrieved protein if the protein belonged to one of the 12
known sub-families. The MSA computed with hmmsearch was filtered to remove columns
and sequences with more than 90% and 75% gap characters respectively. Proteins with
multiple hits on different parts of their sequences were also merged into a single entry.
From 105181 initial protein sequences retrieved by hmmsearch, the filtering steps led to a
final set of 41,901 proteins.

HUP and TPP protein families
A similar protocol was followed for the HUP and TPP protein families. Instead of using an
initial seed alignment made of sequences with known 3D structures, the CATH protein
domain HMM (Orengo et al., 1997; Sillitoe et al., 2018) was used to search for homologous
sequences in the UniRef90 database. CATH models 3.40.50.620 and 3.40.50.970
correspond to the HUP and TPP protein families, respectively. A sequence filtering
pipeline identical to the one used for the sulfatase family was applied to each of the
resulting MSAs.
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The final numbers of proteins in each dataset were: 25041 for the HUP family (32,590
proteins before filtering) and 33,693 for the TPP family (13,3701 before filtering).

Deep learning model
Generative adversarial network
A complete description of Generative Adversarial Network can be found in Goodfellow
et al. (2014). To summarize, the GAN framework corresponds to a min-max adversarial
game between two neural networks: a generator (G) and a discriminator (D). The
discriminator computes the probability that an input x corresponds to a real point in the
data space rather than coming from a sampling of the generator. Concurrently, the
generator maps samples z from prior p(z) to the data space with the objective to confuse
the discriminator. This game between the generator and discriminator can be expressed as:

minG maxD Ex�pdata ½logDðxÞ� þ Ez�pðzÞ½logð1� DðGðzÞÞ� (1)

Adversarial auto-encoder
Adversarial autoencoders (AAEs) were introduced by (Makhzani et al., 2015). The
proposed model was constructed using an encoder, a decoder networks, and a GAN
network to match the posterior distribution of the encoded vector with an arbitrary prior
distribution. Thus, the decoder of the AAE learns from the full space of the prior
distribution. A Gaussian prior distribution was used in this study to compute the aggregated
posterior q(z|x) (the encoding distribution). The mean and variance of this distribution was
learned by the encoder network: zi ∼ N(μi(x),σi(x)). The re-parameterization trick
introduced by (Kingma & Welling, 2014) was used for back-propagation through the
encoder network.

Three different architectures were evaluated. The general architecture was as follows
(see Table S1 and Fig. S1 for a representation of architecture number 3). The encoder was
made of one or two 1D convolutional layers with 32 filters of size sevenand a stride of
length two, and one or two densely connected layers of 256 or 512 units. The output of the
last layer was passed through two stacked densely connected layers of hidden size units to
evaluate μ and σ of the re-parameterization trick (Kingma & Welling, 2014).

The decoder was made of two or three densely connected layers of the length of the
sequence family time alphabet units for the last layers and of 256 or 512 units for the first
or the two first layers. The final output of the decoder was reshaped to match the input
shape. A softmax activation function was applied, corresponding to the amino acid
probabilities at each position. To convert the probability matrix of the decoder into a
sequence, a random sampling according to the probability output was performed at each
position. The selected amino acid at a given position was therefore not necessarily the
amino acid with the highest probability but reflect the biological distributions. The
discriminator network was made of two or three densely connected layers. The last layer
had only one unit and corresponds to the discriminator classification decision using a
sigmoid activation function.
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Model training
The network was trained for each protein family independently. Amino acids and gap
symbol of sequence input data were transformed using one-hot-encoding. A batch size of
32 was used to train the network. The autoencoder was trained using a categorical cross-
entropy loss function between the input data and the predicted sequences by the
autoencoder. The discriminator was trained using binary cross-entropy loss function
between the input data encoded and the samples from the prior distribution.

Generated sequences and structures analyses
Dimensionality reduction
The AAE model can be used to reduce the dimensionality of the sequence space by setting
a small latent size. Two dimensionality reductions were tested with latent size of two and
100. Latent size of two can be easily visualized and a larger latent size of 100 should
represent the input data more efficiently as more information can be stored.

Clustering

HDBSCAN (Campello, Moulavi & Sander, 2013; McInnes & Healy, 2017) was used to
cluster the sequences in the latent space due to its capacity to handle clusters of different
sizes and densities and its performances in high dimensional space. The Euclidean distance
metric was used to compute distances between points of the latent space. A minimal
cluster size of 60 was set to consider a group as a cluster as the number of protein
sequences is rather large. The minimal number of samples in a neighborhood to consider a
point as a core point was set to 15 to maintain relatively conservative clusters.

Functional and taxonomic analyses
Enzyme functional annotation (EC ids) and NCBI taxonomic identifiers were extracted
when available from the Gene Ontology Annotation portal (January 2019) using the
UniProt-GOA mapping (Huntley et al., 2014). Proteins without annotation were
discarded.

The annotation homogeneity was computed for each cluster. Considering a cluster, the
number of different EC ids and taxonomic ids were retrieved. The percentage of each EC id
(taxonomic id) was computed by cluster. An EC id (taxonomic id) of a cluster with a value
of 90% indicates that 90% of the cluster members have this EC id (taxonomic id). A cluster
with a high homogeneity value corresponds to functionally or evolutionary related
sequences.

Homogeneous clusters will point out the ability of the AAE model to capture and
distinguish protein sequences with functionally or evolutionary relevant features without
supervision.

Latent space interpolation
Twenty pairs of protein sequences were randomly chosen between all combinations of
sulfatases sub-families with at least 100 labeled members but with less than 1,000 members
(to avoid pronounced imbalance between classes): S1-0 (308 proteins), S1-2 (462 proteins),
S1-3 (186 proteins), S1-7 (741 proteins), S1-8 (290 proteins) and S1-11 (669 proteins).
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The coordinates of the selected sequences in the encoded latent space with 100 dimensions
were retrieved. Spherical interpolations using 50 steps were performed between the pairs.
Spherical interpolation has previously been reported to provide better interpolation for
the generation of images (White, 2016). The interpolated points were given to the decoder
to generate new sequences. Statistical analyses were carried out on the sequence transition
from one family to an other. A model able to learn a generalized latent space should
generate new sequences with smooth transitions between families. Analyses at the amino
acid level were also performed on the interpolated sequences of two Sulfatase sub-families
encoded far from one-another in the latent space.

Shannon entropy computation

Shannon entropy is computed to measure the degree of variability at each position
(column) of the MSA (Jost, 2006).

HðXÞ ¼ �
Xn

i¼1

Pi logPi (2)

with Pi the frequency of symbol i and n the number of characters (20 amino acids and a
gap symbol). The mean entropy per amino acid is computed for MSAs of biological
sequences and generated sequences. Low entropy indicates that the analyzed sequences
have low amino acid variability between each other. High entropy indicates high amino
acid variability.

Latent space arithmetic

It is possible to transfer features between data such as images by using subtraction or
addition between projected data into a latent space (Radford, Metz & Chintala, 2015). This
latent space property was tested on seven Sulfatase sub-families (S1-0, S1-1, S1-2, S1-3, S1-
7, S1-8 and S1-11) selected on the basis of their number of protein sequences. Different
arithmetic strategies (Fig. S2) were tested between latent spaces. The sub-family whose
features are transferred is named the source sub-family. The sub-family receiving the
transferred feature is named the query sub-family.

A first strategy consists in the addition of the mean latent space of the source sub-family
to the encoded sequences of the the query sub-family. The second strategy differs from the
first one by subtracting from the mean background latent space of all sub-families the
latent space of the query sub-family. The third strategy differs from the second by the mean
background strategy being computed using all sub-families except the source and query
sub-families. Finally, in the fourth strategy, the subtraction is performed using a local KD-
tree to only remove features shared by the closest members of a given query and the
addition is performed by randomly selecting a member of the source family and its closest
10 members.

For each strategy, new sequences were generated using the latent spaces of all query
proteins in the sub-families. The generated sequences by latent space arithmetic are
compared to the initial query and source sub-families in terms of sequence and structural
properties.
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The protein sequence similarities were computed between the generated sequences by
latent space arithmetic and the biological sequences of the two initial sub-families using
a Blosum 62 substitution matrix. The sequence similarities were also computed inside a
sub-family, between sub-families, and between generated sequences. The distributions of
sequence similarities allow to explore the abilities of the latent space arithmetic operations
and of the decoder to produce meaningful intermediate protein sequences from data
points not corresponding to biological sequences. These data points correspond to an
uncharted sequence space.

Protein structural models were computed using the structures of the initial sub-families
as templates for MODELLER (Webb & Sali, 2014) and evaluated using the DOPE score
(Shen & Sali, 2006). Models were computed using the generated sequences by latent space
arithmetic on template structures from their source and query sub-families. The DOPE
energies of the modeled structures were compared to structural models computed as
references. The first structural model references were computed using the sequences and
template structures belonging to the same sub-families, which should provide the best
DOPE energies. The second structural model references were computed using the
sequences and template structure belonging to different sub-families (ex: sequences from
source sub-family and template structures from the query sub-family or inversely,
sequences from query sub-family and template structures from the source sub-family),
which should provide the worst DOPE energy. If the generated sequences by latent space
arithmetic correspond to intermediate proteins with properties from two sub-families,
they should have intermediate DOPE energies when compared to the others evaluated
models.

RESULTS
A structurally constrained MSA was computed using Expresso from T-Coffee webserver
(Armougom et al., 2006; Di Tommaso et al., 2011) between sequences of S1 sulfatases
structures. This MSA was processed into a Hidden Markov Model and hmmsearch was
used to retrieve aligned sequence matches against the UniRef90 sequence database. A total
of 76,427 protein sequence hits were found to match the sulfatase HMM in UniRef90. The
sequences were filtered to remove columns and hits with more than 90% and 75%,
respectively, of gap characters. The final MSA comprised 41,901 sequences. The sulfatases
protein dataset was separated into a training, a validation, and a test sets with a split ratio
of: 0.8, 0.1, and 0.1.

The three different AAE architectures (see “Method” section) were trained on the
training set and evaluated on the validation set. The test set was only used on the final
selected architecture. Models were evaluated by computing top k-accuracy, corresponding
to the generation of the correct amino acid in the first k amino acids. Table S2 shows
the top k accuracy metric for k = 1 and k = 3 computed for the different AAEs. The
accuracy scores scaled down with the number of parameters, but without any large
difference. The architecture with the fewest number of parameters (architecture 3) was
therefore selected to avoid over-fitting the data. The final accuracy scores on the test set
were computed and were similar to the values observed during the model training: 62.5%
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and 80.2% (k = 1 and k = 3). The selected architecture was separately trained using the
protein sequences of the HUP and TPP families with identical train, validation, and test
set splits.

Latent space projection
AAE can be used as a dimensional reduction and visualization techniques by fixing the
dimension of the latent space to two or three for plotting purpose. In this section, AAE
network ability to create meaningful projection is tested on Sulfatase, HUP and TPP
families by clustering and analysing protein sequences in terms of enzymatic activity and
phylogenetic diversity.

Starting from the final MSA of the Sulfatase family, an AAE network was trained to
project the sequences in a latent space with two dimensions. A PCA of the MSA was
computed for comparison purpose with the AAE projection using the PCA first two
principal components.

Figure 1 shows the protein sequences encoded by the AAE and the PCA projection.
Each dot corresponds to a protein sequence. The dots are colored according to their
sub-family. Gray dots correspond to protein sequences not belonging to any of the
12 curated sulfatases sub-families. The AAE displays in this figure a better disentanglement
of the S1 family sequence and functional spaces than the PCA. Well-separated gray spikes
can also be observed in the AAE projection. These spikes may correspond to groups of
enzymes sharing common substrate specificity but not yet experimentally characterized.

In some cases, sub-families with identical functions are projected closely on the encoded
space. For instance, sub-families S1-6 (light magenta) and S1-11 (yellow) have both the
EC 3.1.6.14 activity (N-acetylglucosamine-6-sulfatase) and are closely located in the

Figure 1 Projections of the MSA sequences of the SulfAtlas family. Left: projection in the encoding
learned using an AAE (number of latent dimensions: 2). Right: projection using a PCA (two first
components). Gray data points correspond to protein sequences not part of the curated 12 sub-families.
This analysis is also performed for the HUP and TPP families. Results can be found in Fig. S3.

Full-size DOI: 10.7717/peerj-cs.684/fig-1
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encoded space. Moreover, some sub-family projections appear entangled such as the S1-1
sub-family (light blue, Cerebroside sulfatase activity, EC 3.1.6.8), the S1-2 (orange) and the
S1-3 (green) sub-families (Steryl-sulfatase activity, EC 3.1.6.2), the S1-5 (pink) sub-family
(N-acetylgalactosamine-6-sulfatase activity, EC 3.1.6.4), and the S1-10 (gray) sub-family
(Glucosinolates sulfatase activity EC 3.1.6.-). The five families correspond to four different
functions but are made of Eukaryotic protein sequences only and their entanglement may be
due to their shared common evolutionary history. This separation based on the sequence
kingdoms can clearly be visualized in the PCA projections with Eukaryotic sequences on the
right side on sub-families with a majority of Bacteria sequences on the left side. The PCA
projections failled to finely separate protein sub-families based on their functions. The
example of protein B6QLZ0_PENMQ is also interesting. The protein is projected (yellow dot
corresponding to the S1-11 sub-family) at coordinates (0.733,−1.289), inside the space of
the S1-4 family (red). This may look like an error but a closer inspection shows that this
protein is part of both the S1-4 and S1-11 sub-families of the SulfAtlas database.

Projections of sequences into latent spaces using AAE with two dimensions were also
tested on the HUP and TPP families. The AAE projections can be visualized on Fig. S3.
There are fewer functional annotations for these two families than for the sulfatase family.
A strong separation can however clearly be observed between the major functions of the
two families.

Latent spaces were evaluated for each protein family based on enzyme classification
(EC) and taxonomic homogeneity. Given a set of protein sequences, the encoded
sequences in a latent space of a 100 dimensions were clustered using HDBSCAN.

For the sulfatase family, 27 clusters were found, for which taxonomic and EC
annotations could be extracted (Fig. S4 and Table S3). All these clusters displayed
either strong taxonomic or EC homogeneity. Enzymatic homogeneity was higher than
taxonomic homogeneity for 16 clusters, found equal in one cluster and lower for
10 clusters.

In the HUP family, all clusters had very high EC homogeneity (Table S4). Only two
clusters out of 47 could be found with higher taxonomic homogeneity than EC
homogeneity. For these two clusters enzymatic homogeneity values were high and only
marginally different (cluster five, taxonomic homogeneity of 100% an EC homogeneity of
99% and cluster 31, taxonomic homogeneity of 99 % and EC homogeneity of 97%). Five
clusters were found with equal taxonomic and EC homogeneity.

In the TPP family all clusters had also very high EC homogeneity (Table S5). Five
clusters out of 51 could be found with higher taxonomic homogeneity than EC
homogeneity. For these five clusters the differences between taxonomic homogeneity and
EC homogeneity were higher than the differences observed for the HUP clusters. Six
clusters were found with equal taxonomic and EC homogeneity.

The differences between the AAE and the PCA projections together with the general
cluster enzymatic homogeneity highlight the ability of the encoding space to capture
amino acid functional properties.
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Protein latent space interpolation
Interpolation between encoded sequences can be used to “navigate” between proteins of
two sub-families. After the selection of a query sub-family, the sequences of this sub-family
are projected to the latent space and used as the starting points of the interpolation.
The end points of the interpolation correspond to sequences of a target sub-family,
different from the query sub-family, and projected into the latent space. Twenty pairs of
protein sequences were randomly selected between all combinations of protein sub-
families to test the capacity of the encoded space and 50 intermediates, i.e. interpolated,
data points were generated between each query/target pair. The sequence similarities were
computed between the generated protein sequences from the interpolated latent space
and the biological query and target protein sequences of the sub-families. It is thus possible
to measure the amino acid sequence drift from one protein to another one.

The observed amino acid transitions from the query sub-family to the target sub-family
are very smooth for all combinations of sub-families. The sequence similarity distributions
display a logistic function shape as shown in Fig. 2A. The smooth transition between
points demonstrates the ability of AAE network to encode the sequences into a smooth
latent space and thus to correctly “fill” the gap between projected protein sequence
sub-families.

The Shannon entropy was computed for each group of sequences: interpolated
sequences between query and target sub-families, sequences of the query sub-families, and
sequences of the target sub-families. Figure 2B shows the Shannon entropy distribution for
the S1-0 and S1-11 sequences and their interpolated sequences. Interestingly, the figure
shows lower entropy for interpolated sequences than for original sequences. Lower entropy
indicates fewer amino acid variation at each position of the interpolated sequences than in
biological sequences. Fewer amino acid variation at each position for the interpolated
sequences could corresponds to restricted paths to travel between sub-families. This trend

Figure 2 Interpolation analyses between sub-families S1-0 and S1-11. (A) Sequence similarity dis-
tributions (sum of blosum weights, higher the score higher the similarity) between interpolated sequences
and query proteins (blue) or target proteins (orange). (B) Distribution of amino acid Shannon entropy for
interpolated sequences (orange, R2 = 0.64) between sub-families S1-0 (blue, R2 = 0.72) and S1-11 (green,
R2 = 0.76) over the amino acid mean Shannon entropy of query and target sub-families.

Full-size DOI: 10.7717/peerj-cs.684/fig-2
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is true for all interpolated sequences between all sub-families as reported in the Table S6.
This is in agreement with molecular evolution theory and experiments that describe
protein families as basins in fitness landscape (Bornberg-Bauer & Chan, 1999; Sikosek,
Chan & Bornberg-Bauer, 2012; Boucher et al., 2014).

A closer inspection of interpolations between sub-families S1-0 and S1-4 (respectively
blue and red data points in Fig. 1) was also performed to study changes at the amino
acid level. The two sub-families are in “opposite” spaces in the two-dimensional projection.
It can be observed in Fig. S5 that gapped area found in the query sequence but not in
the target sequence (and inversely) are progressively filled (or broken down) starting from
the flanking amino acids to the center of the gap (or inversely from the center to the
flanking amino acids). This indicates an organized and progressive accumulation of amino
acids (or gaps) that extend (or shrink) the region of the sequence previously without
(or with) residues. For instance gap reduction can be observed in the generated sequences
between sequence ID 2 of the sulfatase S1-0 family (query) and sequence ID 2196 of the
sulfatase S1-4 family (target) at positions 75 to 86.

Moreover, family-specific amino acids are progressively replaced in key positions. In the
previous interpolation between query and target sequences, it can thus be observed at
positions 21 and 22 of the MSA a replacement of residues S and C by G and A (Fig. S5).
Most transitions are not abrupt, and do not occur at the 25th-generated intermediate
sequences but are smooth and correspond to plausible sequences. The ability of the AAE to
generate interpolated sequences with emerging or disappearing features of two sub-
families, highlights its capacity to generalize the decoding of latent space points not
corresponding to encoded sequences and thus never observed during training, and outside
the structured organization of the computed latent space.

Protein latent space arithmetic
Latent space arithmetic is able to transfer learned features between different classes
(Radford, Metz & Chintala, 2015). If applied to protein sequence latent space, this
technique could permit to transfer features such as enzymatic activity or part of structure
between protein families. To test this technique different arithmetic strategies (see
“Methods” and Fig. S2) were tested between latent spaces of two Sulfatase sub-families.
After performing the arithmetic operation between latent space coordinates, the protein
sequences corresponding to the new coordinates were generated by the decoder. Protein
structures of the generated sequences were computed using homology modeling The
structure templates correspond to both sub-families. The protein structures of the
generated sequences were compared to computed models using sequences and structures
of the same sub-families and using sequences from one sub-family and structure templates
from the other one. The Sulfatases sub-families S1-0, S1-2, S1-3, S1-7, S1-8 and S1-11 were
chosen to test this technique.

In the following section, the terminology
_
S eq. S1-XmY will correspond to a generated

sequence using a combination of the mean latent space of the sub-family S1-Y added to the
latent space of the sub-family S1-X. The X and Y sub-families will be referred to as the
query and source sub-families.

Bitard-Feildel (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.684 12/22

http://dx.doi.org/10.7717/peerj-cs.684/supp-1
http://dx.doi.org/10.7717/peerj-cs.684/supp-1
http://dx.doi.org/10.7717/peerj-cs.684/supp-1
http://dx.doi.org/10.7717/peerj-cs.684/supp-1
http://dx.doi.org/10.7717/peerj-cs.684
https://peerj.com/computer-science/


First, two Prosite motifs of the Sulfatase family are analyzed from generated and original
sequences. Figure S6 displays logo plots of two regions corresponding to Prosite motifs
PS00523 and PS00149 to illustrate the amino acid content of the generated protein
sequences by latent space arithmetic. These regions correspond to the most conserved
regions of the sulfatase family and have been proposed as signature patterns for all the
sulfatases in the Prosite database.

Different amino acid patterns can be observed between the sequence groups that can
be classified as “competition”, “taking over”, or “balanced” pattern. A competition
pattern of amino acids corresponds to equivalent frequency of two different amino acids in
the generated sequences. A taking over pattern corresponds to an amino acid of one of
the original sequences being the most frequent in the generated sequences. A balanced
pattern corresponds to a maintained equilibrium between amino acids in the generated
sequences. Some other positions are displaying much more complex patterns and cannot
be summarized as a frequency competition between source and query sub-families.
These behaviors can be observed several times through the logo plots but are still
position-specific, meaning that the bits scores pattern observed in the source sub-families
(Panels A and D of Fig. S6) do not necessary allow to predict the amino acids bits scores in
the generated sequences (Panels B and C of Fig. S6).

Protein sequence similarities were computed to evaluate the diversity of the generated
sequences and compare their diversity with the original sub-families. Protein sequence
similarities were computed between: the generated sequences, the sequences of a sulfatase
sub-family used to generate protein sequences, the generated sequences and their query
sulfatase sub-family, the generated sequences and their source sulfatase sub-family, the
query and source sequences of sulfatase sub-families. Figure 3 shows the mean and
variance distribution of computed protein sequence similarities between these different
groups for generated sequences computed using the first strategy. The first, second, and
third strategies display a similar pattern and their corresponding figures are available in the
Supplementary Information (Figs. S10, S12 and S14).

Protein sequence similarities between different sub-families (red upper triangles) have
lower similarity scores and lower variances than the other distributions. Protein sequence
similarities between sequences of a sub-family (blue circles) have the highest mean and
variance values observed. However, since only 6 sub-families were kept for analysis
(sub-families 0, 2, 3, 7, 8, and 11), trends must therefore be taken with precaution.
Generated protein sequences compared to themselves (magenta lower triangles) have
mean and variance protein sequence similarities higher than when compared to their
query or sub-families. The last two (generated sequences compared to query sequences,
orange squares and generated sequences compared to target sequences, green crosses) have
mean and variance values spread between the blue and red distributions.

These distributions indicate that generated protein sequences by latent space arithmetic
have an intrinsic diversity similar to the biological sub-families. Moreover, the generated
sequences are less similar to the sequences from their query and source sub-families
than to themselves. The generated sequences are also globally as similar to the sequences of
their query sub-family as to the sequence of their source sub-family. The generation
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process is therefore able to capture the features of the selected query and source sub-
families and generate a protein sequence diversity similar to the original sub-families.

Finally, protein structure modeling was performed to assess and compare the properties
of the generated sequences by latent space arithmetic and the protein sequences of the
natural sub-families. For each sub-family, 100 original sequences were randomly selected
along the corresponding generated sequences. All the generated sequences were aligned to
protein structures of their corresponding source and query sub-families, and the
alignments were used to create 3D structures models by comparative modeling. The
quality of models was then evaluated with the DOPE function of MODELLER.

Figure 3 Distributions of protein sequence similarities. Blue dots: protein sequence similarity com-
puted between sequences of the same protein sub-family. Orange squares: similarity computed between
generated sequences and the sequences of their query sub-family (ex: S1-0m2 generated sequences and
S1-0 sub-family sequences). Green x: similarity computed between generated sequences and the
sequences of their target sub-family (ex: S1-0m2 generated sequences and S1-2 sub-family sequences).
Red upper triangles: similarity computed between sequences of two different sub-families (ex: S1-0
sequences and S1-2 sequences). Magenta lower triangles: similarity computed between sequences of the
same generated sequence group. The variance and the mean of each distribution are displayed on the
horizontal and vertical axes. Full-size DOI: 10.7717/peerj-cs.684/fig-3
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Figure S7 shows an example of the energy distribution computed from models using
the second strategy with query sub-family S1-0 and source sub-family S1-2. The lowest
energies (best models) were found on modelled structures using the original protein
sequences of a sub-family to the structural templates of the same sub-family (Struct. 0 Seq.
0 and Struct. 2 Seq. 2). Conversely, the highest energies are found on modelled structures
using the original protein sequences of a sub-family to the structural templates of
another sub-family (Struct. 0 Seq. 2 and Struct. 2 Seq. 0). Interestingly, generated sequences
using additions and subtractions of latent spaces have intermediate energy distributions.
This can be clearly observed in Fig. 4, where generated sequences are mostly situated
between the two dotted lines. Dots on the right side of the vertical line at 0 correspond to
modeled structures using sequences of the latent space with lower energy than the modeled
structures using sequences from their original sub-family. Dots on the left side of the
vertical line at 0 are modeled structures using sequences of the latent space with higher
energy than the modeled structures using sequences from their original sub-family. The
diagonal line on the top-left corner corresponds to the difference in energy between
modeled structures using sequences from their original sub-family and modeled structures

Figure 4 Difference between mean DOPE distributions. Mean value for each distribution, such as the
distributions presented in Fig. S7, were computed. The y axis represents the difference between the mean
values computed for query sequences modeled on structures of the same sub-family and mean values
computed for source sequences modeled on structures of the query sub-family (ex: differences between
mean of Struct. 0 Seq. 0 and mean of Struct. 0 Seq. 2 distributions in Fig. S7). The x axis corresponds to
the difference between the mean values computed for query sequences modeled on structures of the same
sub-family and mean values computed for query sequences to which latent spaces of the source sub-
family sequences have been added and modeled on structures of the query sub-family (MQS/Q), or
source sequences to which latent spaces of the query sub-family sequences have been added and modeled
on structures of the source sub-family (MSQ/Q) (ex: differences between mean of Struct. 0 Seq. S1-0m2
and mean of Struct. 0 Seq. 0 distributions in Fig. S7). Points in the red area correspond to mean dis-
tribution values from generated sequences whose modeled structures have a higher energy than models
created using pairs of sequences/structures from different sub-families. Points in the blue area correspond
to mean distribution values from generated sequences whose modeled structures have a lower energy
than models created using pairs of sequences/structures from the same sub-family.

Full-size DOI: 10.7717/peerj-cs.684/fig-4
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using sequences from biological sequences of another sub-family. The energy of generated
sequences modeled using their query sub-family templates (ex: Struct. 0 Seq.S1-0m2
and Struct. 2 Seq. S1-2m0 on Fig. S7 and MQS/Q on Fig. 4) is slightly lower than the
energy of models using their source sub-family templates (ex: Struct. 0 Seq. S1-2m0
and Struct. 2 Seq. S1-0m2 on Fig. S7 and MSQ/Q on Fig. 4). This trend is true for all
query/source pairs of sub-families and all strategies except for generated sequences using
the fourth strategy (local background subtraction of query latent space using a KD-tree and
the addition of source latent space), see Figs. S8, S9, S11, S13 and “Methods”.

In this strategy, the modeled structures using generated sequences do not display energy
distributions in-between the energy distributions of the original sequences modeled on
structures of the query or of the source sub-families (dotted lines). The energy distribution
of generated sequences modeled on structures belonging to the sub-family of their
query latent space sub-family (ex: Struct. 0 Seq.S1-0m2, blue dots MQS/Q) with the fourth
strategy is closer to the energy distribution of the modeled structures using a sequence and
a structure template from the same sub-families. The energy distribution of generated
sequences modeled on structures corresponding to the sub-family of their source latent
space (ex: Struct. 2 Seq.S1-0m2, orange dots MSQ/Q) with the fourth strategy is closer to
the energy distribution of the modeled structures using a sequence and a structure
template from different sub-families. This indicates that the fourth strategy is less robust to
latent space arithmetic than the other three strategies. No clear differences could be
observed between the first, second, and third strategy.

DISCUSSION
In this study, an Adversarial Autoencoder (AAE) architecture is proposed to analyze and
explore the protein sequence space regarding functionality. Previous works based on
Variational Autoencoder (VAE) have successfully reported the ability of this deep learning
framework to model protein sequence and functional spaces (Sinai et al., 2017), predict
amino acid fitness impact (Hopf et al., 2017; Riesselman, Ingraham & Marks, 2018),
look into protein evolution (Ding, Zou & Brooks, 2019) or design new protein (Greener,
Moffat & Jones, 2018). AAE networks have the advantage over VAEs to condition the
latent space over a prior distribution which has previously been reported to have better
efficiency (Kadurin et al., 2017).

Similarly to previous works using VAE architectures, this study has analyzed the
capacity of the AAE architecture to correctly disentangle protein functional spaces of
different families. The generative capacity of the models have been looked into with two
original tasks: protein sequences interpolation between different sub-families and protein
sequence arithmetics to mix properties of two sub-families.

AAEs have been trained on protein sequences of families known to have different sub-
families with specific functions. The results have highlighted the ability of AAEs to separate
sequences according to functional and taxonomic properties for the three studied families.
This result emphasizes the ability of the AAEs to extract biological relevant features and
encode them accordingly into a learned latent space.
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Interpolations in the latent space between encoded sequences of different sub-families
have shown smooth transitions of their amino acids even at the active site positions. The
generated sequences along the interpolation paths can be considered as intermediate
sequences with sequence properties linked to functions similar to their closest sub-families
forming the start or end points of the path. The generated sequences have Shannon
entropy values per amino acid position lower than biological sequences which indicates a
lower amino acid diversity at each position. This trend point out the robustness and
compactness of the latent space as the interpolation method takes the shortest path
between the two points of the sub-families.

Finally, three strategies have been explored to generate protein sequences with features
from two different sub-families. These strategies are based on latent space arithmetic, a
concept previously applied in image generation tasks to produce relevant images with
intermediate features (Radford, Metz & Chintala, 2015). Three out of the four different
experiments carried out have been able to generate sequences with intermediate features as
measured from their protein sequence similarity distributions and modeling energy
assessments. Biological experiments will be needed to confirm the functional relevance of
the transferred features, but the strategies could have many applications should it be
validated.

The absence of measured differences between three out of four strategies used to
generate intermediate sequences may also indicate that more optimal approaches could be
designed. Similarly, the model architecture could also be improved. Currently the
model input is a filtered MSA. An improved model could make use of full protein
sequences of different sizes without filtering. Unfiltered protein sequences may benefit the
generative model by capturing during training important protein specific motifs for
family sub-functions (Das, Dawson & Orengo, 2015) not reaching the filtering thresholds.

Recent advances have been made regarding the protein sequence universe
representation notably using self-supervised approaches, notably with the Transformer
architecture (Alley et al., 2019; Heinzinger et al., 2019; Rao et al., 2019; Rives et al., 2019;
Strodthoff et al., 2020). New models from image synthesis could also provide interesting
approaches for the generation of protein sequences (Vahdat, Kreis & Kautz, 2021).
The reported techniques in this study can be applied to any latent space projection and
it would be interesting to combine them with representation of the protein sequence
universe to navigate and perform feature transfer between protein families. These
techniques could perhaps lead to the rediscovery of evolutionary sequence paths leading to
the current protein families (Alva et al., 2010), improving our understanding of the protein
sequence universe (Dryden, Thomson & White, 2008).

CONCLUSION
This study shows that AAEmodels are able to finely capture the protein functional space of
three different protein families with known sub-functions. The presented experiments
carried out on the sulfatase family provide new insight on the effectiveness of generative
model and protein sequence embedding to study and model protein function and
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evolution. The proposed methods are robust to artifacts and generate consistent sequences
and structures.

The results of this study show that AAE, in particular, and deep learning generative
models in general, can provide original and promising avenues for protein design and
functional exploration.

GLOSSARY
The following glossary defines the different terms and techniques used in this manuscript.

Adversarial Auto
Encoder A neural network architecture used for generative tasks. The

architecture combine an auto-encoder and a generative adversarial
network.

Encoder Part of the AAE used to project the input data to a latent space.

Latent space Input data point representation in a lower dimension.

Decoder Part of the AAE used to reconstruct the input data from the latent
space.

Query sub-family Starting sub-family in interpolation experiments. Sub-family whose
individual sequence latent spaces have been used in combination
with the mean latent space of sequences from a source sub-family in
latent space arithmetic strategies.

Source sub-family Sub-family whose mean latent space has been used in combination
with individual sequence latent space of a query sub-family in latent
space arithmetic strategies.

Target sub-family Sub-family used as end point in interpolation experiments.
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