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Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor, which 
stands fourth in rank of cancer-related deaths worldwide. The incidence of HCC 
is constantly increasing in correlation with the epidemic in diabetes and obesity, 
arguing for an urgent need for new treatments for this lethal cancer refractory to 
conventional treatments. HCC is the paradigm of inflammation-associated cancer, 
since more than 80% of HCC emerge consecutively to cirrhosis associated with a 
vast remodeling of liver microenvironment. In the recent decade, immunomodu-
latory drugs have been developed and have given impressive results in melanoma 
and later in several other cancers. In the present review, we will discuss the recent 
advancements concerning the use of immunotherapies in HCC, in particular those 
targeting immune checkpoints, used alone or in combination with other anti-
cancers agents. We will address why these drugs demonstrate unsatisfactory 
results in a high proportion of liver cancers and the mechanisms of resistance 
developed by HCC to evade immune response with a focus on the epigenetic-
related mechanisms.

Key Words: Liver cancer; Immunotherapies; Epigenetics; Resistance; Hepatocellular 
carcinoma
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Core Tip: Although our understanding of hepatocellular carcinoma (HCC) pathogenesis 
has improved, this aggressive tumor is still devoid of effective treatments and remains 
a major health problem. Despite the justified hopes on immunotherapies, only a limited 
number of HCC patients respond to treatments. The characterization of the molecular 
mechanisms displayed by tumor cells to evade immune response will help to consider 
new combinations of therapies. In recent years, a growing body of evidence argues for 
a modulation of tumor immune privilege by several epigenetic events and renders 
drugs targeting these regulators as a partner of choice for immunotherapy combination 
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common primary liver tumor with 800000 
newly diagnosed people per year in the world[1]. HCC also stands fourth in rank of 
deaths related to cancer worldwide, accounting for more than 700000 deaths per year. 
Liver cancer incidence has tripled since the 80s and reaches a high incidence in 
western countries consequently to obesity and diabetes epidemic, supporting the need 
of novel effective strategies for this cancer refractory to the majority of conventional 
anticancer treatments. HCC is a complex disease but its mutational landscape has been 
extensively uncovered these two last decades with advances in deep-sequencing 
technologies. The most recurrent mutations identified in HCC are mutations in TERT, 
CTNNB1 and TP53[2], but other frequent mutations in epigenetic modifiers and 
chromatin remodelers are also encountered (e.g., ARID1A, ARID2, MLL2)[3,4]. Other 
crucial epigenetic modulators, the non-coding RNAs (ncRNAs), are also largely 
deregulated during hepatocarcinogenesis, reprogramming tumor cells but also 
modifying the surrounding cells and secondary sites of metastasis via their secretion
[5].

Integrating outside and inside signals in time and space, the epigenetic regulations 
of gene expression is a crucial determinant of tumor cell fate regarding differentiation, 
proliferation, metabolism, migration and immunosurveillance. Epigenetic modific-
ations are categorized into three main mechanisms: DNA methylation, histone 
modifications mainly on H3 and H4 histones (acetylation, methylation, etc.) and 
control by ncRNAs. There is a growing body of evidence that epigenetic modifiers 
play key roles during cancer, including in HCC. Therefore, they constitute attractive 
therapeutic options, alone or in combination with other anti-cancer agents, such as 
drugs targeting DNA methylation and histone acetylation, which have already been 
approved for hematological cancers[6]. These recent years, it has been extensively 
documented that the immune response is epigenetically controlled and plays critical 
roles in tumor immunosurveillance. Among others, epigenetic changes impact 
macrophage polarization, myeloid-derived suppressor cell (MDSC) function, genesis 
of cancer-associated fibroblasts and function of T cell populations, either CD4+, CD8+ 
and T regulators (Tregs). Of note, subsets of inflammatory gene promoters have been 
found epigenetically deregulated in cancer. In particular, aberrant DNA methylation 
of interferon-γ (IFNγ) is associated with exhausted phenotype of T cells[7]. The 
cytokines involved in TH response have been found epigenetically inhibited by EZH2 
(Enhancer of zeste homolog 2) and DNMT1 (DNA methyltransferase 1)[8]-infiltration 
of CD8+ cells being inversely associated with the high expression of EZH2. In addition 
to cytokines, the expression of immune checkpoints such as the program cell death 1 
(PD-1)/program cell death ligand 1 (PD-L1) axis is also regulated by epigenetic 
modifications. DNA methylation in the promoter region of CD274 encoding PD-L1 
predicts patient survival in multiple cancers. EZH2 modifies its H3K27 trimethylation 
status in hepatoma cells[9], while the BET protein BRD4 (bromodomain-containing 
protein 4), found overexpressed in HCC and enriched on super-enhancers driving 
oncogene expression[10], suppressed PD-L1 expression[11].

HCC is the paradigm of inflammation-associated cancer, since more than 80% of 
HCC emerge consecutively to cirrhosis associated with a vast remodeling of liver 
microenvironment. Immune cell remodeling is a consequence of chronic hepatitis or 
liver disease associated with alcohol consumption, genotoxic exposure or metabolic 
disorders[12]. Even if liver parenchyma harbors a specialized and protective immune 
system to manage its constant exposure to toxins and bacteria susceptible to trigger 
deleterious inflammation, the chronicity of hepatic injuries sensitizes to HCC. In liver 
cancers, as in a number of other cancers, tumor microenvironment differs accordingly 
to the driven oncogenic mutations and thus impacts response to treatments, notably to 
immunomodulatory drugs[13]. Cancers with CTNNB1 mutations have been defined as 
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cold tumors with lower immune cell infiltration and refractoriness to immune 
checkpoint inhibitors (ICIs)[14,15]. Indeed, the Wnt/β-catenin pathway plays a major 
role in the specification of a multitude of immune cells including macrophages, 
dendritic cells (DC) and lymphocytes[16].

In the present review, we will discuss the recent advances on immunotherapies in 
clinical practice, successfully used alone or in combination with other anti-cancers 
agents in several cancers. We will also address why these drugs demonstrate unsatis-
factory results in a high proportion of liver cancers, which shown innate or acquired 
resistance to immunomodulatory agents. We will thus detail the mechanisms of 
resistance developed by HCC and particularly the epigenetic-related mechanisms.

MECHANISMS OF T CELL ACTIVATION AND ATTENUATION
T cell activation needs two signals from antigen presenting cells (APC). The initial 
signal is based on antigen recognition through interaction between T cell receptor 
(TCR) complexed to CD3 subunits on T lymphocytes and its cognate antigen/MHC 
(major histocompatibility complex) on APC (Figure 1). This interaction promotes CD3 
phosphorylation on ITAM motifs (immunoreceptor tyrosine-based activation motifs) 
which serve as docking sites for the recruitment of ZAP-70 (TCR-ζ chain-associated 70-
kDa tyrosine phosphoprotein) and subsequent phosphorylation by Lck (lymphocyte-
specific protein tyrosine kinase) and autophosphorylation. Once fully activated ZAP-
70 phosphorylates LAT (linker of activated T cells) and SLP-76 (SH2 domain-
containing leukocyte protein of 76 kDa), two adaptors for the assembly of the complete 
TCR signalosome. Secondary signals are required to fully activate LAT. The costimu-
latory signals are mostly provided by members of the immunoglobulin superfamily 
such as CD80(B7-1)-CD86(B7-2) bound to CD28, ICOSL to ICOS (inducible T-cell 
costimulator) (respectively on APC and T cell), or those of the tumor necrosis factor 
(TNF) receptor superfamily (e.g., OX40L-OX40, CD40/CD40L).

To avoid excessive immune response, co-inhibitory molecules, including CTLA-4 
(cytotoxic T lymphocyte antigen 4), PD-1 and LAG-3 (lymphocyte-activation gene 3), 
act as negative immune counterweights (Figure 1). Inhibitory receptors mediate their 
negative regulation through inhibitory motifs located in their cytoplasmic tails such as 
immunoreceptor-based inhibitory motif (ITIM) to recruit phosphatases containing Src 
homology-2 domains, such as SHP-1 and SHP-2 (small heterodimer partner). The 
recruited phosphatases dephosphorylate several molecules involved in the TCR 
signaling such as the TCR itself or ZAP-70. This interrupts downstream cascades such 
as the PI3K (phosphoinositide-3-kinase)/AKT and the rat sarcoma virus (Ras)/rapidly 
accelerated fibrosarcoma (Raf)/mitogen activated protein kinase kinase (MEK)/ 
extracellular signal regulated kinase (ERK) and leads to reduction in T cell activation, 
proliferation, metabolism, differentiation, survival, and cytokine production. In 
addition, PD-1 as well as CTLA-4 are also able to directly regulate signaling pathways 
in lymphocytes such as the PI3K and MAP kinase pathways[17-19]. While CTLA-4 is 
the leading player of the ICIs limiting priming of naive T cells notably in lymph nodes, 
PD-1/PD-L1 interaction results in exhaustion of activated T cells in peripheral tissues 
and within the tumor microenvironment.

PD-1/PD-L1 axis
PD-1, also known as CD279, is low or undetectable in naive T cells and rapidly 
induced following TCR activation, in a process partially regulated by transforming 
growth factors β (TGF-β)[20]. PD-1 is also expressed on other several cells such as B 
lymphocytes, natural killer (NK), macrophages, DC and monocytes and tumor-specific 
T cells. At the transcriptional level, PD-1 expression is regulated by nuclear factor of 
activated T-cells (NFAT)[21], forkhead box O (FOXO)[22] and interferon regulatory 
factor 9 (IRF9)[23], STAT3/4 (signal transducer and activator of transcription 3 and 4) 
and CTCF (CCCTC- binding factor)[24] (Figure 2). PD-1 content is also dependent on 
microRNAs (miRNAs) such as miR-28[25], miR-138 and miR-4717 in glioma[26] and 
HCC respectively[27]. Differential level of the repressive H3K9me3 mark has been 
observed in the promoter region of PD-1 in colorectal cancer[28].

PD-1 triggers immunosuppressive signals upon binding to its ligands, PD-L1 
(CD274 or B7-H1) and PD-L2 (CD273). A soluble form of PD-L1 (sPD-L1) is secreted in 
the blood and could compete for PD-1 binding with membranous PD-L1. PD-L2 is 
restricted to APCs and B lymphocytes, while PD-L1 is usually expressed by 
macrophages, DC, epithelial cells, activated T cells and B cells. To escape anti-tumor 
response, PD-L1 expression is highly induced in tumor cells. This could result from 
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Figure 1 Overview of the main immune checkpoint and their respective targeted therapies. Made with biorender.com. APC: Antigen presenting cell; 
LT: T lymphocyte; MDSC: Myeloid derived suppressive cell; NK: Natural killer; Treg: Lymphocyte T regulator; LAG-3: Lymphocyte-activation gene 3; PD-L1: Program 
cell death ligand 1; TCR: T cell receptor.

genomic alterations such as amplification of translocation including in HCC[29]. Gain 
in PD-L1 copy number is also a frequent alteration across many cancers, which 
influences PD-L1 expression levels and correlates with higher number of mutated 
genes[30]. Nevertheless, such a correlation is not observed in HCC. CD274 expression 
is controlled by DNA methylation and could constitute a prognosis factor in colon[31] 
or prostate cancers[32]. Several signaling pathways are also well documented to 
induce PD-L1 expression in tumor microenvironment such as interferon signaling, 
PI3K-AKT, MEK-ERK, JAK-STAT, c-MYC and NF-kB (nuclear factor-kappa B)[33]. 
This transcriptional regulation is regulated by a plethora of cytokines and growth 
factors such as IFN-γ, interleukin (IL)-6, IL-17, IL-25, TNF-α or epidermal growth 
factor (EGF)[34]. PD-L1 expression is also regulated by several miRNAs found 
implicated in cancers: miR-15/miR-16/miR-193a[35], miR-17[36], miR-34[37], the miR-
25/miR-93/miR-106b cluster[38], miR-138-5p[39], miR-140[40], miR-142-5p[41], miR-
152[42], miR-197[43], miR-200[44], miR-217[45], miR-324-5p/miR-338-5p[46], miR-424
[47], miR-513[48], and miR-570 in HCC[49].

CTLA4/CD80-CD86 axis
CTLA-4 is a CD28 homolog which interacts with CD80 and CD86 with higher affinity 
and avidity than CD28. Therefore, CTLA-4 enters in competition and prevents the 
stimulatory signals induced by CD28:CD80/CD86 complexes. Membranous CTLA-4 
expression is very low in resting T cells, consequently to clathrin-dependent recycling, 
and increases following T-cell activation[50]. CTLA-4 is thus mostly localized in 
intracellular compartments such as lysosomal and endosomal vesicles and the trans 
Golgi network. CTLA-4 expression is also regulated at the transcriptional level by 
NFAT[51]. Importantly, CTLA-4 expression has also been detected on tumor cells, 
including melanoma, colon and renal cancers[52]. In cancer cells, notably in 
melanoma, CTLA-4 expression is regulated by IFN-γ signaling pathway and DNA 
methylation[53] but also induced by β-catenin binding on a lymphoid enhancer factor-
1 (LEF-1) binding site in its promoter region[54]. In line with these regulations, the 
CTLA4 gene displays several SNPs (single-nucleotide polymorphism) associated with 
disease and cancer in its promoter as well as in its first exon. In particular, the CTLA-4 
318C > T SNP creates a LEF-1 binding site in its promoter and increase CTLA-4 
expression and antitumor activity[55]. CTLA-4 expression is also epigenetically 
regulated with lower level of repressive H3K27me3 mark detected in CTLA-4 
promoter in colorectal cancers[28]. CTLA-4 expression is also post-transcriptionally 
regulated by miR-9/miR-155[56], miR-138[26] and miR-487a-3p[57].
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Figure 2 Overview of the main epigenetic and transcriptional regulations of program cell death 1, program cell death ligand 1 and cytotoxic T lymphocyte antigen 4. Made with biorender.com. Ac: Acetylation; Me: 
Methylation of DNA or histone; EGFR: Epidermal growth factor receptor; GFR: Growth factor receptor; ILR: Interleukin receptor; IFNR: Interferon receptor; TCR: T cell receptor; TGN: Trans-Golgi Network; TLR: Toll like receptor; TNFR: Tumor necrosis 
factor receptor.
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Regarding CTLA-4 ligands, contrary to PD-L1, CD80 and CD86 are restricted to 
lymphoid cells. While CD80 is generally poorly detected on resting cells and 
upregulated after activating signals, CD86 is ubiquitously expressed on DCs, 
monocytes and activated B cells and induced at high levels upon activation. The 
regulation of these molecules is less detailed. In DCs, CD80 expression is reduced in 
response to miR-424[47]. Low levels of CD80 and CD86 have been detected on 
melanoma and colon cancer cells, where low level of CD80 expression favors tumor 
growth[58] but also on HCC cells, as shown by a pioneer study supporting the 
potential of CTLA-4 axis targeting as anticancer therapy[59].

MECHANISMS OF IMMUNE ESCAPE AND IMMUNOTHERAPY
The goal of immunotherapies is to boost ability of the immune system to detect tumors 
and limit their progression. They might counteract the evasion mechanisms mediated 
by the suppressive molecules rolled out by tumor cells. Different therapeutic strategies 
have been developed but ICIs, designed to block the co-inhibitory signals of T-cell 
activation (e.g., CTLA-4, PD-1 and PD-L1), are the preferred methods in clinical 
practice. These drugs have given very impressive results with cancers of bad prognosis 
and with few therapeutic options, such as melanoma, and have been rapidly tested in 
several other tumors with high clinical efficacy in most cases.

Mechanisms of tumor immune evasion
Tumor development and progression is a complex process resulting from the interplay 
between cancer cells and its surrounding environment including endothelial cells, 
fibroblasts, and a plethora of immune cells with suppressive, regulatory, killing and 
either anti or pro-inflammatory functions. All types of immune cells are present in the 
tumor or in the invasive margin, including macrophages, DCs, mast cells, NK cells, 
naive and memory lymphocytes, B cells, and effector T cells (e.g., Th1, Th2, Th17, Treg 
and cytotoxic T cells). Therefore, the strength of anti-tumor immune response is 
governed by the level and the composition of immune cell infiltrated in the tumors 
and the degree of T cell activation.

As previously mentioned, tumor cells are able to express co-inhibitory ligands such 
as PD-L1 or PD-L2, and sometimes inhibitory receptors such as PD-1 including in 
HCC[60,61]. This prevents T cell activation and modulates the activity of recruited 
immune cells, which express the cognate molecules and play suppressive activities 
such as tumor-associated macrophages (TAM), myeloid-derived suppressive cells or 
Tregs[62] (Figure 3). Accumulation of suppressive cells and T dysfunction are also 
sustained by several molecules secreted by tumor cells such as PGE2 (prostaglandin 
E2), COX2 (cyclooxygenase 2), nitric oxide, TGF-β and IL-10[63]. Additionally, 
multiple cancers are associated with chronic inflammation, particularly HCC related to 
hepatitis infection. Chronic disease results in an ineffective T response and T cell 
exhaustion mostly due to persistent inflammatory signals, antigen exposure and 
suppressive cytokines such as IL-10 and TGF-β. It has also been described that chronic 
disease modifies PD-1 promoter status in exhausted T cells that remains demethylated 
and poised to facilitate its rapid expression[64,65]. Progressively, exhausted T cells lose 
their proliferative capacity and effector function related to decrease in IL-2, TNF-α and 
IFN-γ.

Tumor cells are also able to modify T cell expansion through metabolic alterations. 
In particular, an overexpression of IDO (indoleamine-2,3-dioxygenase), an enzyme 
involved in tryptophan conversion, is frequently observed in tumors[66] as well as 
overexpression in arginase, particularly in MDSC[67]. The depletion of tryptophan 
and arginine in tumor microenvironment reduces T cell proliferation[68,69].

Tumor immune privilege is also the consequence of decrease in the expression of 
recognition molecules including MHC, tumor-associated antigens (TAA) and tumor-
specific antigens. It is well described that changes in antigens expressed by tumor cells 
are detected by the immune system, which further develop autoantibodies against 
TAAs as reporters to control the transformation process. The typical antigen with 
autoantibodies identified in cancer is p53[70]. Antigens in HCC could be categorized 
from cancer testis origin such as SSX-2 (synovial sarcoma, X breakpoint 2) and MAGE 
(melanoma antigen gene), or oncofetal antigens such as α-fetoprotein and glypican 3 or 
overexpressed tumor antigens such as annexin A2 and epithelial cell adhesion 
molecule. They constitute promising targets for adoptive cell therapies such as 
chimeric antigen receptor T cells or tumor-infiltrating lymphocytes (TILs)[71]. A 
higher expression of TAAs in HCC patients is correlated with higher immune infilt-



Sanceau J et al. Immunotherapy resistance in hepatocellular carcinoma

WJH https://www.wjgnet.com 985 September 27, 2021 Volume 13 Issue 9

Figure 3 Overview of the main mechanisms involved in tumor evasion to immune response. Made with biorender.com. APC: Antigen presenting 
cell; ICI: Immune checkpoint inhibitors; LT: T lymphocyte; MHC: Major histocompatibility complex; MDSC: Myeloid derived suppressive cell; NK: Natural killer; 
NKG2D: Natural killer group 2D; NO: Nitric oxide; TAA: Tumor-associated antigens; TAM: Tumor-associated macrophage; TSA: Tumor-specific antigen; Treg: 
Lymphocyte T regulator.

ration and better prognosis[72]. The loss or modification of antigens promote immune 
evasion via a defect of tumor recognition. Shedding of natural killer group 2D 
(NKG2D) ligands into the tumor microenvironment is another way to evade immune 
recognition. Following proteolysis by matrix metalloproteinases, tumor cell death or 
exosome secretion, the soluble form of NKG2D ligand induces internalization and 
degradation of NKG2D and decrease the subsequent cytotoxic effects of T cells[73].

Independently from tumor microenvironment, tumor cells resist to destruction 
through additional mutations in oncogenes (BRAF, EGFR, HER2, etc.) that give prolif-
erative advantage. Inversely, mutations in tumor suppressive molecules in particular 
in damage sensors and pro-apoptotic actors (TP53, BCL2, etc.) also limits the cytotoxic 
activity of the immune system[74].

Tumor-infiltrating immune cells
Tumor immune response and subsequent efficacy of ICI treatment is also highly 
dependent on the immune cell spectrum and its localization within or around the 
tumors. Indeed, pathological characterization of various solid tumors has shown a 
great diversity in immune cell types and density between tumors, which could be 
dependent on driver oncogenes. Three groups have been characterized either as 
immune desert, immune excluded or inflamed tumors – each group being associated 
with differential response to ICIs[75].

The inflamed tumors are characterized by the presence of CD8+ and CD4+ T cells 
with suppressive cells including macrophages, MDSC and Treg that promote T cell 
dysfunction and exhaustion[76]. In immune-excluded tumors, aggregates of immune 
cells are at the tumor boundaries. Immune cells are not recruited in the vicinity of 
tumors consequently to physical hindrance associated with dense and stiff 
extracellular matrix fibers, defect in neo-vasculature, hypoxia, low level of chemo-
attractive molecules for T cells such as C-X-C motif chemokine ligand 9 (CXCL9) and 
CXCL10, insufficient level of antigens or exposure to microbes or virus. In immune 
desert or cold tumors, there is a low density of immune cells inside and outside the 
tumors. Tregs, MDSCs and macrophages interplay to inhibit DC maturation and 
impair T cell expansion and activation. Growing body of data have shown that EMT 
(epithelial-to-mesenchymal transition) and mesenchymal traits of tumor cells favor 
immune exclusion and resistance to ICIs[77].

In 2017, a new molecular HCC classification has been proposed on the basis of 
immune traits, with approximately 30% of HCCs enriched in TILs and defined as HCC 
immune class[15]. Thirty percent of patients inversely showed exclusion of TILs and 
frequent mutations in CTNNB1 gene. This subgroup of tumors are resistant in first-
intention to ICIs[13], as it was previously observed in melanoma[78]. This was 
confirmed with a hydrodynamic mouse model of HCC in which β-catenin activation 
promotes immune evasion and resistance to anti-PD-1 therapy[79].
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In addition to CD8 T cells, the distribution pattern of myeloid cells has also been 
associated with HCC prognosis. A recent work of Wu and collaborators proposed a 
myeloid response score (MRS) associated with T cell activity and which could serve as 
a prognosis signature[80]. HCC were classified as HCCs with low, intermediate, and 
high MRS, which displayed patterns of immunocompetent, immunodeficient, and 
immunosuppressive microenvironment. MRSlow tumors present an intratumor contex-
ture equivalent to the peritumor tissue containing CD169+CD163+CD14+CD11blow/- 

macrophages with antitumor activity and CD8+ T cells. Inversely, as compared to non-
tumor tissue MRShigh tumors are enriched in CD11b+CD15+ polymorphonuclear 
leukocytes and CD169-CD11b+CD163+ myeloid cells associated with pro-tumoral 
activation of TAM. These tumors are also characterized by gene signatures related to 
immunosuppression.

The expression of co-inhibitory molecules within the tumor is an important 
prognosis factor. HCC with high expression of PD-L1 on tumor/immune cells in 
immunohistochemistry together with high expression of PD-1 on lymphocytes also 
exhibit markers of aggressiveness such as poor differentiation and vascular invasion
[81]. In addition, if PD-L1 is overexpressed by HCC cells, this predicts early 
recurrence. Importantly, in this study, no correlation between glutamine synthetase, a 
direct positive target of the β-catenin, and PD-L1 labeling was observed meaning that 
the immunosuppressive activity of the Wnt/β-catenin could thus be linked to an 
immune checkpoint other than PD-L1/PD-1 axis. Another study performing 
cytometry analysis on HCC tumors confirmed that PD-L1 was both expressed by 
tumor cells and immune cells and mostly on CD68+ myeloid cells[82]. The presence of 
PD-L1 on tumor cells correlates with tumor progression, while PD-L1+ macrophages 
play a protective role in HCC associated with immune response and T activation 
signature. Recently, a TCGA analysis showed that a high correlation between all 
negative checkpoints such as PD-L1, PD-1, CTLA-4, LAG-3 and T infiltration in tumors 
is associated with an immunosuppressive and exhausted tumor microenvironment
[83]. Nevertheless, the application of ICIs would be of survival benefit for these 
patients.

IMMUNOTHERAPY SUCCESSES AND LIMITATIONS IN HCC
Development of immune checkpoints inhibitors constitutes a major breakthrough in 
oncology that leads to revisit therapeutic strategies and clinical practice for various 
cancers particularly those of poor prognosis with few therapeutic options, following 
impressive results obtained in melanoma. ICIs have resulted in increased patient 
survival in melanoma, kidney and non-small cell lung cancer as well as Hodgkin’s 
lymphoma in comparison with conventional chemotherapies. Other cancers present a 
more heterogenous response to ICIs such as ovarian, breast, pancreatic and liver 
cancers. More promising data have been obtained with combination of treatments 
including ICIs. Microsatellite instability has been evidenced as a biomarker for ICI 
response[84]-tumors with a low mutation rate having less neoantigens and thus being 
less immunogenic. Another biomarker is TMB (Tumor mutational burden) has been 
recently found correlated with ICI sensitivity[85].

Anti-CTLA-4 therapy is the first generation of ICI since antitumor regression after 
blocking co-inhibitory molecules was firstly evidenced with the anti-CTLA-4 antibody 
ipilimumab in melanoma[86]. It was the first ICI approved by the Food and Drug 
Administration (FDA) for the treatment of advanced melanoma. Therapeutic strategies 
against PD-1 are the second generation of ICI with nivolumab and pembrolizumab 
lately approved by FDA for advanced melanoma[87]. Since then, the impacts of both 
therapies have been explored in various cancers and several others surface molecules 
have been targeted: Inhibitory co-receptors such as VISTA (V-domain Ig suppressor of 
T cell activation)[88], TIGIT (T Cell Immunoreceptor With Ig And ITIM Domains)[89], 
TIM-3 (T cell immunoglobulin and mucin domain-containing protein 3)[90] and LAG-
3[91] or costimulatory receptors like CD28, OX40[92] or GITR (glucocorticoid-induced 
TNFR-related protein)[93].

Ipilimumab was the first blocking antibody to significantly promote a regression of 
lesions in metastatic melanoma with a complete remission in some patients[94]. A 3-
year overall survival (OS) rate of around 20% was observed[95]. In HCC, the first anti-
CTLA-4 tested was tremelimumab, a fully human IgG2 monoclonal antibody. 
Response rates were more modest in advanced hepatitis C virus-related HCC, with a 
median OS of 8.2 mo and survival rate of 43% at 1 year[96]. Another study conducted 
on hepatitis B virus and hepatitis C virus-associated HCC combined tremelimumab 
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with tumor ablation at day 36[97]. Twenty-six percent of patients achieved a partial 
response with an OS of 12.3 mo. Inversely to melanoma, extensive studies were not 
conducted in HCC with anti-CTLA-4 antibodies as monotherapies. Ipilimumab is now 
approved, in combination with the anti-PD-1 nivolumab for previously treated 
advanced HCC, as detailed below.

The significant results obtained with anti-CTLA-4 therapies are also accompanied 
with severe adverse events. Dogmas that patients with immune-related adverse events 
have higher response rates have not been confirmed. Adverse events are mainly 
immune-related such as rash, thyroiditis and frequent complications of the 
gastrointestinal tract, including aphthous ulcers, esophagitis, gastritis, diarrhea and 
colitis in around 20% of patients[98]. These adverse effects could be linked to high 
expression of CTLA-4 on mucosal Tregs[99]. Liver toxicity with ICI-related hepatitis is 
also a severe adverse effect of anti-CTLA-4 treatment that could be life-threatening in 
case of delayed management[100]. Oral glucocorticoids or additional immunosup-
pressants are usually administered to those patients. After adverse effects, an 
important question is to restart treatment or not. The decision depends on the severity 
of the complications and the cancer status[101]. Importantly, retreated patients could 
develop the same adverse event and others new complications. However, an 
alternative ICI could be administered to patients with adverse effects, i.e. anti-PD-1 is 
safety after deleterious ipilimumab treatment in melanoma patients[102].

To limit those toxicities, targeting TILs rather than peripheral populations will be 
preferred with antibodies against the PD-1/PD-L1 axis, which exhibit less severe 
adverse events[103]. In addition to fewer immune related adverse events, PD-1/PD-L1 
inhibitors also produced greater anticancer activity. Since PD-1 is more broadly 
expressed than CTLA-4, on tumor cells in particular, and its expression is also induced 
by chronic antigen exposure, anti-PD-1 antibodies may exert additional anti-tumor 
effects and exhibits superior clinical activity and safety when compared to anti-CTLA4
[104]. The rationale of combining anti-CTLA-4 with anti-PD-1 therapies is also 
supported by the differential immune patterns observed in individual monotherapies
[105].

Another important decision is the selection of anti-PD-1 or anti-PD-L1 therapies. 
Indeed, PD-L1 inhibition preserves the interaction between PD-1 and its other ligand 
PD-L2, while it blocks its interactions with CD80, an alternative interaction that has 
been recently reported to promote T-cell responses[106]. Conversely, PD-1 inhibition 
blocks the interaction of PD-1 with its two ligands but preserves anti-tumor PD-
L1/CD80 complexes. Therefore, these antibodies may drive differential anti-tumor 
immune response. For instance, in non-small-cell lung carcinoma, anti-PD-1 therapies 
exert better anti-tumor response, while anti-PD-L1 antibodies demonstrate less severe 
adverse effects[107]. In HCC, three drugs are currently authorized in the United States: 
The two anti-PD1 nivolumab and pembrolizumab for advanced HCC and one anti-
PD-L1, atezolizumab approved in combination with the anti-vascular endothelial 
growth factor (anti-VEGF) bevacizumab. Nivolumab and pembrolizumab approval 
has been accelerated by FDA after promising results obtained in preclinical studies on 
sorafenib refractory HCCs, respectively in Checkmate 040[108] and KEYNOTE-224
[109] (20% of overall response rate and 60% of disease control rate). However, in phase 
3 trials both agents did not achieve statistical significancy according to the registered 
statistical plan (CheckMate-459[110] and KEYNOTE-240[111]). New phase 3 trials are 
conducted for these two drugs as an adjuvant in CheckMate-9DX for nivolumab 
(NCT03383458), and for pembrolizumab KEYNOTE-937 (NCT03867084) or in second-
line with pembrolizumab KEYNOTE-394 (NCT03062358). New anti-PD-1 antibodies 
are also currently under investigation. The anti-PD-1 tislelizumab, an antibody 
designed to limit FcγR-mediated phagocytosis, demonstrated a good antitumor 
activity in a phase 1 trial — a phase 3 trial is ongoing in various solid cancers including 
non-small cell lung cancer, esophageal squamous cell carcinoma and HCC 
(RATIONALE 301)[112]. Camrelizumab is also an alternative, which has been tested in 
China on 220 patients from multiple centers. At a median follow-up at 12.5 mo, the 
objective response rate (ORR) was 14.7% and 6-mo OS rate was 74.4%. No complete 
response was observed, 17.6% of patients present partial response and 23.1% a stable 
disease. The median progression free survival (PFS) was only of 2.6 mo, shorter than 
other ICIs. Grade 3 and 4 adverse events occurred in 22% of patients[113].

Strategies combining anti-PD-1/PD-L1 with anti-CTLA-4 antibodies have been 
evaluated in various cancers and in March 2020 FDA have granted approval for 
nivolumab/ipilimumab (1 and 3 mg/kg) in advanced HCC patients who have priorly 
received sorafenib. In Checkmate-040, at a median follow-up of 30.7 mo, the 
combination arm demonstrated 29% ORR. The median duration of response was 21.7 
mo. No adverse effects were observed for 79% of patients. An ORR of 31% with 7 
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complete responses was provided by Blinded independent central review per RECIST
[114]. Nonetheless, it has been shown that a combination of ipilimumab and 
nivolumab leads to higher incidence of ICI-related hepatitis in different cancers 
including melanoma with 6% to 9% as compared to 1% in single therapies[115]. Rapid 
diagnosis and management are thus crucial for better outcomes. Another PD-1/CTLA-
4 blocking strategy combining durvalumab with tremelimumab is currently under 
investigation in a randomized, multi-center phase 3 study called HIMALAYA 
(NCT03298451) to compare combination against durvalumab or sorafenib alone as a 
first-line therapy for advanced HCC.

Another combination of ICI successfully tested in HCC is atezolizumab plus 
bevacizumab (anti-VEGF) in first-line in patients with unresectable HCC. A phase III 
trial (IMbrave150) showed improved progression-free survival of 6.8 mo vs 4.3 mo for 
sorafenib with an OS at 12 mo of 67.2% vs 54.6%[116]. Hypertension, a typical adverse 
effect of bevacizumab, occurred in 15.2% of patients receiving the combination 
therapy.

Another intensively tested strategy is to combine ICIs with locoregional treatment, 
which have demonstrated synergistic activities. Tumor destruction by locoregional 
treatments releases TAAs promoting immune cell priming, which could be even more 
enhanced by ICIs. Phase 1, 2 and 3 clinical trials are now conducted with anti-PD-1 or 
anti-PD-L1, alone or combined with anti-CTLA-4 or anti-angiogenic agents, together 
with transarterial chemoembolization, hepatic artery infusion chemotherapy or 
external beam radiation therapy[117] (Table 1). Until now, the combination of ICIs 
with tyrosine kinase inhibitors such as sorafenib was not concluding. Three phase 3 
clinical trials are now conducted to evaluate the benefit of such combinations 
(NCT04194775, NCT04344158, NCT03755791). However, these recent years, 
combination of epigenetic drugs with ICIs have emerged as potent therapeutic 
avenues in hematologic and solid tumors, a point that we will develop in the next 
paragraph.

EPIGENETICS AND HCC
These recent decades, epigenetic mechanisms have emerged as crucial decision-
makers of cell fate determination and deregulations of epigenetic mechanisms could 
lead to modifications of gene transcription in the cell, which could favor the initiation 
and progression of cancers. Conventionally, the epigenetic code is divided into three 
major mechanisms: ncRNA driven-regulations, DNA methylation and histone 
modifications mainly occurring on H3 and H4 histones. Many studies have been 
focusing on miRNA implications in HCC but few data are currently available 
concerning the clinical used of ncRNA-based therapies in combination with ICIs. We 
will thus develop the promising results obtained regarding approaches targeting DNA 
methylation and histone modifiers in HCC, alone or in combination with ICIs 
(Figure 4).

DNA methylation and DNMT inhibitors
DNA methylation in somatic cells is regulated by DNA methyltransferases that add, in 
CpG dinucleotide, a CH3 group on the 5’ position of the pyrimidine ring in cytosine 
residue. This modification in methylation will monitor the binding of transcription 
factors and DNA accessibility in the DNA regulatory region, inevitably leading to 
modulate gene transcription[118]. The DNMT family is composed of DNMT1, 
DNMT2, DNMT3A, DNMT3B and DNMT3L. DNMT1 is known to act mainly as a 
“maintenance” methyltransferase during DNA synthesis and DNMT3A and DNMT3B 
act as “de novo” methyltransferase during development. But DNMT1 can also act as a “
de novo” methyltransferase for genomic DNA and DNMT3A and DNMT3B can also act 
as “maintenance” methyltransferase during replication[119,120]. The catalytically 
inactive DNMT3L stimulates the activity of the DNMT3A and DNMT3B enzymes by a 
direct binding to their respective catalytic domains. Overexpression of DNMTs and 
their mutations in a variety of tumors, including HCC, modify DNA methylation 
profiles[121]. Inversely, modification of enzymes involved in DNA demethylation 
such as TETs (Ten-eleven translocation) is also frequently observed[122]. DNA 
hypomethylation associated with genome instability and locus-specific hyperme-
thylation of CpG islands are an epigenetic hallmark of cancer, associated with 
uncontrolled cell proliferation and survival leading to tumor growth. In HCC, DNA 
methylation is increasingly altered from cirrhosis to preneoplastic lesions and to HCC, 
without etiology differences, and could be associated with tumor recurrence and 
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Table 1 Main clinical trials on immunotherapies and epigenetic agents in monotherapies or in combination

Clinical trial Phase Drugs Line/setting Cancer type

NCT033834581 3 Nivolumab vs placebo ADJ HCC

NCT038670841 3 Pembrolizumab vs placebo ADJ HCC

NCT030623581 3 Pembrolizumab + BSC vs placebo + BSC ADJ HCC

NCT034127731 3 Tislelizumab vs sorafenib 1 HCC

NCT037557912 3 Cabozantinib + atezolizumab vs sorafenib 1 HCC

NCT044870672 3 Atezolizumab + bevacizumab 1 HCC

NCT043107092 2 Regorafenib + nivolumab 1 HCC

NCT044433092 1-2 Lenvatinib + camrelizumab 1 HCC

NCT043932202 2 Nivolumab + bevacizumab 1 HCC

NCT037789573 3 TACE + durvalumab + bevacizumab 1 HCC

NCT042461773 3 Lenvatinib + pembrolizumab + TACE 1 HCC

NCT043401933 3 Nivolumab + ipilimumab + TACE 1 HCC

NCT042688883 2-3 Nivolumab + TACE/TAE 1 HCC

NCT034821023 2 Durvalumab + tremelimumab + radiation 1 HCC

NCT032984514 3 Durvalumab + tremelimumab and 
durvalumab vs sorafenib

1 HCC

NCT040396074 3 Nivolumab + ipilimumab vs SOC 1 HCC

NCT036057065 3 Camrelizumab + FOLFOX4 1 HCC

NCT034398915 2 Sorafenib + nivolumab 1 HCC

NCT032577616 1 Guadecitabine + durvalumab 2 Liver, pancreatic, bile duct or gallbladder 
cancer

NCT028160216 2 Azacitidine + pembrolizumab 1 Melanoma

NCT045412776 2 Tislelizumab + DNMTi +/- 
chemotherapy

1 AML

NCT025304636 2 Nivolumab and/or ipilimumab +/- 
azacitidine

1/2 Myelodysplastic Syndrome

NCT035523806 2 Entinostat + nivolumab + ipilimumab 2 Kidney

NCT031799306 2 Entinostat + pembrolizumab 2 Lymphoma

NCT026976306 2 Pembrolizumab + entinostat 1 Metastatic uveal melanoma

NCT032502736 2 Entinostat + nivolumab 2 Cholangiocarcinoma and pancreatic 
adenocarcinoma

NCT029155236 1/2 Avelumab +/- entinostat 1/2 Ovarian cancer

NCT038380426 1/2 Nivolumab + entinostat 1/2 CNS, solid tumors

NCT030244376 1/2 Atezolizumab with entinostat and 
bevacizumab

1/2 Kidney

NCT019285766 2 Nivolumab +/- entinostat + azacitidine 2 NSCLC

NCT029018996 2 Guadecitabine and pembrolizumab 2 Ovarian, primary peritoneal, or fallopian tube 
cancer

NCT031799436 2 Atezolizumab + guadecitabine 2 Urothelial carcinoma

NCT035769636 1/2 Guadecitabine + nivolumab 2 Metastatic colorectal cancer

NCT033083966 1/2 Durvalumab + guadecitabine 1/2 Kidney

NCT029353616 1/2 Guadecitabine + atezolizumab 2 Myelodysplastic syndrome or chronic 
myelomonocytic leukemia

1Immune checkpoint inhibitor (ICI) monotherapy.
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2Combination ICI with anti-angiogenic agents.
3Combination ICI with locoregional treatment.
4ICI combination.
5Other ICI combinations.
6ICI + epigenetic drugs.
AML: Acute myeloid leukemia; BSC: Best supportive care; CNS: Central nervous system; HCC: Hepatocellular carcinoma; NSCLC: Non-small-cell lung 
carcinoma; SOC: Standard of care; TACE: Transarterial chemoembolization; TAE: Transarterial embolization.

Figure 4 Overview of the main epigenetic mechanisms in hepatocellular carcinoma and their inhibitors. Made with biorender.com. A: DNA 
methylation; B: Histone modification. DNMT: DNA methyltransferase; TET: Ten-eleven translocation; DNMTis: DNA methyltransferase inhibitors; HAT: Histone acetyl 
transferase; HDAC: Histone deacetylase; HDACis: Histone deacetylase inhibitors; HMT: Histone methyl transferase; HDM: Histone demethylase; HMTis: Histone 
methyl transferase inhibitors; HCC: Hepatocellular carcinoma.

survival[123-125]. Promoter hypermethylation related to gene silencing is also often 
observed on tumor-suppressor genes and regulators of cell proliferation and survival 
such as APC, CDH1, CDKN1A and CDKN2A[126].

To counteract the tumoral effect of DNA methylation, several DNMT inhibitors 
(DNMTi) have been extensively studied and under clinical trials for hematologic 
cancers and increasingly tested in solid tumors. First generation DNMTis like 5-
azacytidine (5-aza) and decitabine, can be incorporated into DNA and favor DNMT1 
degradation by irreversible binding leading to DNA demethylations. Patients with 
advanced HCC treated with decitabine show significant clinical benefit from this 
treatment and a favorable toxicity profile[127]. Second generation DNMTis that are 
more stable in vivo, have shown interesting results. Zebularine treatment is potentially 
less toxic, since it does not incorporate into DNA, and gives promising results on an 
HCC mouse model with high degree of CpG methylation[128]. Guadecitabine was also 
successfully tested under the clinical trial NCT01752933 on patients which were not 
responsive to sorafenib with an average PFS of 2.7 mo and an OS of 8 mo[129]. 
Interestingly, guadecitabine promotes an innate immune response through 
reactivation of epigenetically silenced endogenous retroviruses and thus could 
improve ICI sensitivity[130].
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HISTONE MODIFICATIONS AND TARGETING DRUGS
Another central epigenetic mechanism is the posttranslational modifications of 
histones, which control gene expression by modulating chromatin accessibility. 
Histone-modifying enzymes target specific residues on histone tails by acetylation, 
phosphorylation or methylation. Other modifications of histone residue exist but are 
less common, such as ubiquitination, citrullination, ADP-ribosylation, butylation[131]. 
First, histone acetylation is based on a reversible addition of an acetyl group on histone 
lysine residues that are added by histone acetyltransferases (HATs) and removed by 
histone deacetylases (HDACs) (Figure 4). Histone acetylation is often associated with a 
positive gene transcription. Secondly, like DNA methylation, histone methylation is 
based on the addition of a methyl group on a lysine or an arginine residue in the 
histone tails by histone methyl transferases (HMTs). Histone demethylases (HDMs) 
are responsible for methyl removing. Some histone methylation marks are associated 
with an active gene transcription, like H3K4me3[132], H3K36me3[133] and H3K79me3
[134] and others are rather repressive marks, like H3K27me3[135], H3K20me3[136] and 
H3K9me3[137]. The expression of several histone modifiers is deregulated in HCC and 
associated with tumor progression and prognosis, such as HAT with hMOF[138], a 
plethora of HDAC (HDAC1, 2, 4 and 5, and SIRT1, 2 and 7)[139]. HMT are also 
concerned with the best characterized EZH2 promoting gene repression through 
H3K27 trimethylation, G9a[140] and SUV39H1[141] mainly associated with gene 
repression through H3K9 modifications. Regarding histone modifications, another key 
actor is BRD4, which reads H3K27ac marks highly enriched in large clusters of 
enhancers. BRD4 was found overexpressed in HCC and required for super-enhancer-
mediated expression of oncogenes[10].

As DNMTi, HDAC inhibitors (HDACi) have also been evaluated in clinical trials for 
hematological malignancies but also in solid cancers such as HCC. HDACis bind the 
zinc-containing catalytic domain of HDACs and thus modify histone acetylation status 
and gene transcription through HDAC inhibition. An interesting phase 2 clinical study 
of Yeo et al[142] (NCT00321594) shows the beneficial effect of belinostat in unresectable 
HCCs. Belinostat, a pan-HAC inhibitor against zinc-dependent HDACs, could increase 
PFS to 2.6 mo and OS to 6.6 mo with tumor stabilization. The SHELTER study 
(NCT00943449) combining sorafenib with resminostat, another pan-HDACi targeting 
HDAC 1, 2 and 3, doubles the OS of advanced HCC patients (8 mo instead of 4.1 mo)
[143]. Interestingly, some epigenetics drugs have shown interesting results in HCC 
experimental studies regarding their impact on tumor microenvironment and tumor 
response to ICIs. The BET bromodomain inhibitor i-BET762 significantly reduces the 
level of Monocytic-MDSCs and enhances TILs, alone or in combination with anti-PD-
L1, and consequently decreases tumor growth in two fibrotic HCC mouse models
[144]. In the same way, the co-inhibitor of G9a and DNMT1 called CM-272 favors 
differentiated HCC and impairs the pro-tumorigenic effects of the surrounding fibrotic 
stroma[145]. Together, these data support the potent therapeutic benefit of targeting 
microenvironment remodeling together with epigenetic reprogramming during HCC, 
in a context of fibrogenesis in particular.

THERAPEUTIC STRATEGIES COMBINING ICI WITH EPIGENETIC DRUGS
Most immunotherapies are based on the targeting of immune checkpoints and the 
enhancement of immune system reaction to eradicate cancer cells but not all the 
patients are good responders to those cures. As mentioned previously, several 
treatments targeting epigenetic mechanisms allow to modify tumor progression and 
response to treatment. Epigenetic drugs that target DNMTs and HDACs, can in 
particular upregulate the expression of several immune signaling components in 
cancer cells such as TAAs[146], stress- and death-induced ligands and receptors, 
expression of co-stimulatory molecules at the cell surface but also expression of 
checkpoint ligands[147,148]. Therefore, epigenetic drugs have been used as 
neoadjuvant agent or in combination with immunotherapies to prime the immune 
system and create a better response to ICIs.

As previously detailed, cancer cells can evade immune surveillance by a lack of 
expression of TAAs. Cancer testis antigens (CTAs) are the best characterized TAAs 
that are regulated by epigenetic events. They are expressed in embryonic and germ 
cells but silenced by methylation of their promoter in mature somatic and cancer cells. 
The use of DNA methylation inhibitors such as DNMTis have proved CTAs re-
expression in several solid tumors[146,147,149]. HDACis can also induce the re-
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expression of CTAs but in a less extent than DNMTis, in human cancer cell lines[150]. 
Several clinical trials are already ongoing (Table 1). Other TAAs are sensitive to several 
DNMTis or HDACis depending on cancer type and once again DNMTis are more 
efficient than HDACis[151]. Those drugs can also be used to compensate the 
methylation deregulation of the promoter region of the APM (antigen processing 
machinery) component, like TAP-1, TAP-2, LMP-2, LMP-7 and MHC molecule in 
various tumors[152-154]. Epigenetics drugs can also facilitate tumor cells death by 
inducing the expression of death receptors, stress induced ligands and co-stimulatory 
molecules that will sensitize tumor cells to immune-mediated cells lysis[155-161]. 
Those drugs can also sensitize cancer cells to immune checkpoint therapies targeting 
PDL-1 and PDL-2, PD-1 and CTLA-4 by increasing their expression on both cancer 
cells and TILs favorizing their response to ICI[153,154]. Woods and collaborators show 
on a mouse model of melanoma that a pretreatment with HDACis upregulates PD-L1 
and PD-L2 expression and favor the effect of the anti-PD1 treatment, slowing tumor 
progression and increasing mouse survival[162]. The co-inhibition of H3K27me3 and 
CTLA-4 reduces the number of Tregs in a mouse model of melanoma and limits tumor 
size[163]. An interesting work of Goswami and collaborators also shows that the 
pharmacologic inhibition of EZH2 with CPI-1205 on human T cells altered their Treg 
phenotype and function and enhanced T cytotoxic activity[164]. They also observe in 
patients with melanoma or prostate cancer that the anti-CTLA-4 ipilimumab increases 
EZH2 expression in peripheral T cells. Finally, they could demonstrate in their murine 
models that EZH2 targeting in T cells could improve the antitumor response mediated 
by an anti-CTLA-4 therapy. EZH2 appears to be a target of choice since several others 
works have unveiled its implication in ICI response. Zhou et al[165] also show in an 
anti-PD1 resistant model of head and neck cancers that EZH2 targeting can restore 
response to anti-PD1 treatment by increasing antigen specific CD8+ T cell prolif-
eration. Additionally, EZH2 and DNMT1 co-inhibition increases the expression of the 
Th1 chemokines CXCL9 and CXCL10 in the ID8 ovarian cancer mouse model. This 
leads to an increase in CD8+ T cell infiltration and improves response to anti-PD-L1 
treatment[8]. As previously mentioned, DNMTis also constitute promising partners 
for ICI, and particularly 5-azacytidine. In a transplantable mammary carcinoma and 
mesothelioma murine models, the use of 5-azacytidine increases the anti-CTLA-4 anti-
tumor efficiency[166]. A combination of anti-CTLA-4 and anti-PD-1 together with the 
two epigenetic modulatory drugs 5-azacytidine and the HDACi entinostat could 
eradicate tumors in mice with colorectal or metastatic breast cancers. These combined 
strategies mainly inhibit the suppressive activity of Granulocytic-MDSCs against 
intratumor T cell killing[167]. Many phase 2 trials are currently testing the impact of 
entinostat with ICI in several cancers (Table 1).

HCC tumors arise in fibrotic livers enriched in MDSCs with less infiltrating 
lymphocytes inside the tumor[168]. MDSC enrichment is also correlated with an 
aggressive tumor phenotype and a poor survival rate. Liu et al[144] show on a fibrotic-
HCC mouse model that inhibiting monocytic MDSCs with a combination of 
molibresib, a BET bromodomain inhibitor, with an anti-PD-L1 therapy could enhance 
TILs and extend mouse survival even with a complete tumor regression[144]. 
Inhibition of EZH2 and DNMT1 by DZNep and 5-azacytidine respectively, led to 
tumor regression after anti-PD-L1 treatment of a subcutaneous HCC cell mouse model 
(HepG2, G-Hep3B and Hepa1-6). This increases cytotoxic T lymphocyte trafficking 
and promotes cancer cell apoptosis[169]. A second generation of DNMTi molecule, 
guadecitabine, shows interesting optimization of immunotherapy treatment. 
Guadecitabine is actually under a clinical trial as a monotherapy in HCC patients and 
shows a better stability and performance than the first generation DNMTis[130]. Other 
clinical trials with this DNMTi are actually ongoing in combination with ICI including 
in HCC (Table 1). HDACi have also been tested in HCC. In a subcutaneous Hepa129 
murine model, Llopiz et al[170] demonstrate that the HDACi belinostat increases the 
anti-tumor activity of anti-CTLA-4 therapy. This combination enhances IFN-γ 
production by T-cells and decreases the number of Tregs. It also induces an early 
upregulation of PD-L1 on tumor-specific APCs and delay PD-1 expression on TILs. 
Furthermore, belinostat combined to CTLA-4 and PD-1 blockade leads to a complete 
tumor rejection[170].

CONCLUSION
The liver is a highly complex organ which orchestrates fundamental metabolisms 
finely regulated at the transcriptional and epigenetic level. Liver parenchyma also 
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harbors a specialized immune system playing a central role in liver homeostasis with 
the constant management of toxins, diet or bacteria susceptible to trigger deleterious 
inflammation. However, when toxin and pathogenic insults get into chronicity, liver 
inflammation could sensitize to cancer development in part by immune suppression 
mechanisms. Thus, this peculiar tumor microenvironment constitutes an interesting 
opportunity to therapeutic avenues based on ICIs. Due to its high complexity, HCC 
response to conventional therapies is quite heterogeneous and frequently associated 
with poor outcome, rendering this cancer one of the deadliest cancers in the world. 
While several solid tumors are good responders to immunotherapy, ICIs in HCC show 
disappointing results, especially on β-catenin mutated HCCs, even if ICIs have given 
better results than tyrosine kinase inhibitors particularly in terms of prolonged 
response. Contrary to other solid tumors, personalized therapies for HCC are more 
complex to define, in particular because of tumor appearance in a context of cirrhotic 
livers with high level of inflammation and damages. Even if genomic analyses of the 
tumor mutational background have already classified HCCs, a translational approach 
taking into account the immune cell pattern, inside and outside the tumor, but also 
their respective epigenetic state, regarding DNA methylation level or histone marks, 
will be of therapeutic benefit to select the more efficient therapy for each patient. The 
bi-therapy combining immunotherapies either with anti-angiogenic agents or 
epigenetic drugs currently appears as the most promising to treat HCC patients. It is 
now well known that multiple epigenetic modulations can lead to the modification of 
tumor microenvironment by expressing TAAs, immune checkpoint ligands, costimu-
latory molecules and death-induced ligands or receptors at the cell surface. Therefore, 
using epigenetic agents to prime the microenvironment before immunotherapy may 
favor a better outcome for patients with a re-polarization of immune cells towards an 
efficient anti-cancer response. Several clinical studies have already shown that these 
bi-therapies are efficient in different solid tumors like pulmonary cancer, melanoma 
and colon cancers. Recently, results from clinical trials with epigenetic drugs and 
immunotherapy on advanced HCC patients showed interesting results with an 
extension of patient OS. These new combined therapies could be the new hope for 
HCC treatment. However, these clinical trials were only performed on advanced 
HCCs and it would be necessary to test these on HCC of lower grade because these 
treatments may be more efficient on these subgroups. The important point in close 
future is to identify predictive biomarkers, based on patient responses during clinical 
trials, to predict patient that will respond to treatment or not. Correlative studies are 
thus a prerequisite to create guidelines for personalized treatments and sequencing 
therapies to counteract immune dysfunction and overcome the current barriers to 
immunotherapies in HCC.
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