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Abstract

The one-fifth success rule is one of the best-known and most widely accepted techniques
to control the parameters of evolutionary algorithms. While it is often applied in the literal
sense, a common interpretation sees the one-fifth success rule as a family of success-based
updated rules that are determined by an update strength F and a success rate. We analyze
in this work how the performance of the (1+1) Evolutionary Algorithm on LeadingOnes
depends on these two hyper-parameters. Our main result shows that the best performance
is obtained for small update strengths F = 1 + o(1) and success rate 1/e. We also prove
that the running time obtained by this parameter setting is, apart from lower order terms,
the same that is achieved with the best fitness-dependent mutation rate. We show similar
results for the resampling variant of the (1+1) Evolutionary Algorithm, which enforces to
flip at least one bit per iteration.

1 Introduction

One of the key challenges in applying evolutionary algorithms (EAs) in practice is in choosing
suitable values for the population sizes, the mutation rates, the crossover probabilities, the
selective pressure, and possibly other parameters that determine the exact structure of the
heuristic. What complicates the situation is that the optimal values of these parameters may
change during the optimization process, so that an ideal parameter setting requires to find not
only good initial values, but also suitable update rules that adjust the parameters during the
run. Parameter control [EHM99] is the umbrella term under which such non-static parameter
settings are studied.

Parameter control is indispensable in continuous optimization, where the step size needs to
be adjusted in order to obtain good convergence to solutions of high quality. In this context,
non-static parameter choices are therefore standard since the early seventies. In discrete opti-
mization, however, parameter control has received much less attention, as commented in the
recent surveys [KHE15,AM16]. This situation has changed substantially in the last decade, both
thanks to considerable advances in reinforcement learning, which could be successfully lever-
aged to control algorithmic parameters [CFSS08,FCSS10,KEH14], but also thanks to a number
of theoretical results rigorously quantifying the advantages of dynamic parameter settings over
static ones, see [DD20] for a summary of known results.

∗An extended abstract announcing the results presented in this work has been communicated at
GECCO’19 [DDL19].
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In continuous optimization, one of the early and still widely used parameter update rule
is the one-fifth success rule, which was independently designed in [Rec73, SS68, Dev72]. The
one-fifth success rule is derived from the idea that it is desirable to maintain a success rate of
around 20%, measured by the frequency of offspring having at least the same fitness than the
current-best individual. Theoretical justification for this rule was given by Rechenberg, who
showed that such a success rate is optimal for controlling the step size of the (1+1) Evolution
Strategy (ES) optimizing the sphere function [Rec73]. Based on this finding, several parameter
update rules were designed that decrease the step size when the observed success rate is smaller
than this target rate, and which increase it for success rates larger than 20%.

An interpretation of the one-fifth success rule which is suitable also for parameter control
in discrete domains was provided in [KMH+04]. Kern et al. propose to decrease the step size σ
to σ/F after each successful iteration, and to increase it to σF 1/4 otherwise. They propose to
consider an iteration successful if the offspring y created in this iteration is at least as good as
its parent x, i.e., if f(y) ≤ f(x) in the context of minimizing the function f . With this rule, the
step size remains constant when one out of five iterations is successful, since in this case after the
fifth iteration σ has been replaced by σ(F 1/4)4/F = σ. This version of the one-fifth success rule,
typically using constant update strengths F > 1, was shown to work efficiently, e.g., in [Aug09].
In [DD18] it was proven to yield asymptotically optimal linear expected optimization time when
applied to the (1 + (λ, λ)) GA optimizing OneMax. It is also shown in [DD18] that this linear
expected running time is optimal up to constant factors, and that no static parameter choice
can achieve this efficiency (i.e., all static variants of the (1 + (λ, λ)) Genetic Algorithm (GA)
require super-linear expected optimization times).

Other success-based multiplicative update rules had previously been studied in the theory
of evolutionary algorithms (EAs). For example, Lässig and Sudholt [LS11] showed that, for the
four classic benchmark problems OneMax, LeadingOnes, Jump, and unimodal functions, the
expected number of generations needed to find an optimal solution can be significantly reduced
when multiplying the offspring population size λ by two after every unsuccessful iteration of
the (1 + λ) EA and when reducing λ to λ/2 otherwise. Similar rules, which also take into
account the number of improving offspring, were empirically shown to be efficient in [JDJW05]
(for (1 + λ) EA operating on discrete problems) and in [HGO95] for the (1, λ) ES optimizing
the continuous hyper-plane and hyper-sphere problems. Recently, Doerr and Wagner [DW18]
showed that success-based multiplicative updates are very efficient for controlling the mutation
rate of the (1 + 1) EA>0, the resampling (1 + 1) EA variant proposed in [CD17] which enforces
to flip at least one bit per each iteration. More precisely, they analyze the average optimization
times of the (1 + 1) EA>0(A, b) algorithm, which increases the mutation rate p by a factor of
A > 1 when the offspring y satisfies f(y) ≥ f(x) (i.e., when it replaces its parent x) and which
decreases p to bp, 0 < b < 1 otherwise. Their experimental results show that this algorithm has
a very good empirical performance on OneMax and LeadingOnes for broad ranges of update
strengths A and b.

1.1 Our Results

In this work, we complement the empirical study [DW18] and rigorously prove that, for suitably
chosen hyper-parameters A and b, the (1 + 1) EA using this multiplicative update scheme attains
the asymptotically optimal expected optimization time across all fitness-dependent mutation
rates on the LeadingOnes function Lo : {0, 1}n → [0..n] = {0} ∪ N≤n, x 7→ max{i ∈ [0..n] |
∀j ≤ i : xj = 1}, where in this work we refer to an optimization time as “asymptotically
optimal” when it is optimal up to lower order terms among all dynamic choices of the mutation
rate, and we use optimization time and running time interchangeably. For the (1 + 1) EA>0 we
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also rigorously prove a bound on the expected optimization time on LeadingOnes, which we
show by numerical evaluations to coincide almost perfectly with the performance achieved by
the (1 + 1) EA>0 with optimal fitness-dependent mutation rates.

Following the above-described suggestion made in [KMH+04], and adapting to the common
notation, we formulate our theoretical results using the parametrization A = F s and b = 1/F ,
where F > 1 is referred to as the update strength and s is referred to as the success ratio. As
seen above, a success ratio of 4 corresponds to a one-fifth success rule.

We prove that for the (1 + 1) EA the optimal success ratio is e− 1 (i.e., a 1/e success rule).
More precisely, we show that the expected running time of the self-adjusting (1 + 1) EA with
constant success ratio s > 0 and small update strength F = 1 + o(1) on LeadingOnes is at
most s+1

4 ln(s+1)n
2 + o(n2). For F = 1 + o(1) and s = e − 1, the expected running time of the

self-adjusting (1 + 1) EA is hence ≈ 0.68n2 + o(n2), which is asymptotically equivalent to the
one of the (1 + 1) EA with optimal fitness-dependent mutation rate [BDN10].1

A key ingredient in our proof is a lemma proving that the mutation rate used by the
(1 + 1) EA with self-adjusting mutation rates is, at all times during the optimization process,
very close to the target mutation rate ρ∗(Lo(x), s) ≈ ln(s + 1)/Lo(x), which we define as the
unique mutation rate that leads to success probability 1/(s+ 1).

We also extend our findings to the (1 + 1) EA>0 considered in [DW18]. This resampling
(1 + 1) EA variant is technically more challenging to analyze, since the probabilities of the
conditional standard bit mutation operator (which enforces to flip at least one bit) are more
complex to handle, but also because the concept of target mutation rates ceases to exist for
fitness levels ` ≥ s

s+1n: it is impossible to achieve success rates of 1/(s + 1) or higher for
such values of ` without accepting duplicates as offspring. In this regime, the mutation rate
approaches zero, and the (1 + 1) EA>0 resembles Randomized Local Search (RLS), which flips
in each iteration exactly one randomly chosen bit. This behavior is desirable since the optimal
number of bits to flip in solutions x with Lo(x) ≥ n/2 is indeed equal to one.

In contrast to the unconditional (1 + 1) EA, our bound for the expected running time of
the self-adjusting (1 + 1) EA>0 does not seem to have a straightforward closed-form expression.
A numerical evaluation for dimensions up to n = 10 000 shows that the best running time
is achieved for success ratio s ≈ 1.285. With this choice (and using again F = 1 + o(1)),
the performance of the self-adjusting (1 + 1) EA>0 is almost indistinguishable from that of the
(1 + 1) EA>0,opt, i.e., the (1 + 1) EA>0 using the optimal fitness-dependent mutation rate. Both
algorithms achieve an expected running time for n = 10 000 which is around 0.404n2.

For both algorithms, the self-adjusting (1 + 1) EA and the self-adjusting (1 + 1) EA>0, we do
not only bound the expected optimization time but we also prove stochastic domination bounds,
which provide much more information about the running time [Doe19]. We only show upper
bounds in this work, but we strongly believe that our bounds are tight, since for the (1 + 1) EA
we obtain an asymptotically optimal running time, and for the self-adjusting (1 + 1) EA>0 the
numerical bounds are almost indistinguishable from those of the (1 + 1) EA>0,opt.

Finally, we take into account suggestions made in [CD17, BDDV20] and briefly comment

1In the preliminary version [DDL19] of this work, we made the stronger claim that our algorithm is asymp-
totically optimal among all dynamic choices of the mutation rate of the (1 + 1) EA. While we still believe this
to be true, we note that this claim is more substantial than we originally thought. The main difficulty is that it
is less obvious than thought whether the result of [BDN10] extends to all dynamic choices of the mutation rate,
in other words, that no asymptotically non-negligible performance gains can be made from letting the mutation
rate not only depend on the fitness of the parent, but on the whole history of the process. We strongly believe
that such a statement can be shown with the theory of Markov decision processes. Since this would be a deep
mathematical analysis not focused on the center of this work (the analysis of multiplicative update rules), we
prefer to not conduct this proof and rather reduce our original optimality claim. We are thankful for a comment
of an anonymous reviewer that led to the discovery of this gap in our previous optimality statement.
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on the fixed-target optimization times, i.e., the number of evaluations needed by the different
algorithms to sample for the first time a solution that satisfies a minimal quality requirement.
Since our proofs are based on fitness-level arguments, such statements can be obtained rather
straightforwardly.

1.2 Related Work

In [LOW17, LOW20], variants of RLS flipping a deterministic, but dynamic number of bits
were analyzed on LeadingOnes. These schemes, which take inspiration from the literature
on hyper-heuristics, differ from our rather simple multiplicative parameter updates in that
they require additional book-keeping and that they consider a small discrete set of possible
parameter values only. The approach is taken further in [DLOW18], where a hyper-parameter
from [LOW17] is dynamically adapted by a rule inspired by the one-fifth success rule. This
algorithm is analyzed in the case that the algorithm may choose between flipping either one or
two bits, and it is proven that it achieves an asymptotically optimal expected running time on
LeadingOnes among all algorithms which are restricted to these two choices. However, the
resulting algorithm is considerably more complicated than our simple scheme. Moreover, while
the algorithm in [DLOW18] is asymptotically optimal among all algorithms which—based only
on the fitness of the current best solution—use either one-bit flips or two-bit flips and while the
ones from [LOW20] are asymptotically optimal among all fitness-dependent algorithms choosing
between 1 and a constant number k of bits to flip, we prove asymptotic optimality among all
algorithms with fitness-dependent standard bit mutation for which the number of flipped bits is
random and can attain any value between 0 (1 in the case of the resampling (1 + 1) EA) and n.

2 The Self-Adjusting (1+1) EA

We study the optimization time of the (1 + 1) EA with self-adjusting mutation rates, which is
summarized in Algorithm 1. The self-adjusting (1 + 1) EA starts the optimization process with
an initial mutation rate ρ = ρ0 and a random initial solution x ∈ {0, 1}n. In every iteration,
one new solution candidate y ∈ {0, 1}n is created from the current-best solution x through
standard bit mutation with mutation rate ρ, i.e., the offspring y is created from x by flipping
each bit, independently of all other decisions, with probability ρ. If y is at least as good as
its parent x, i.e., if f(y) ≥ f(x), x is replaced by y and the mutation rate ρ is increased to
min{F sρ, ρmax}, where F > 1 and s > 0 are two constants that remain fixed during the entire
execution of the algorithm and 0 < ρmax ≤ 1 is an upper bound for the range of admissible
mutation rates. If, on the other hand, y is strictly worse than its parent x, i.e., if f(y) < f(x),
then y is discarded and the mutation rate is decreased to max{ρ/F, ρmin}, where 0 < ρmin is
the smallest admissible mutation rate. The algorithm continues until some stopping criterion
is met. Since in our theoretical analysis we know the optimal function value fmax, we use as
stopping criterion that f(x) = fmax.

Standard Bit Mutation. Since we will also consider the (1 + 1) EA>0, which requires
that each offspring y differs from its parent x in at least one bit, we use in lines 3 and 4 the
equivalent description of standard bit mutation, in which we first sample the number k of bits
to flip and then apply the mutation operator flipk, which flips k pairwise different, uniformly
chosen bits in x.

Success Ratio vs. Success Rule. We recall from the introduction that we call F the
update strength of the self-adjustment and s the success ratio. The success ratio s = 4 is
particularly common in evolutionary computation [KMH+04, Aug09, DD18]. With this choice
s = 4 the parameter update mechanism is well known as the one-fifth success rule, in the
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Algorithm 1: The self-adjusting (1 + 1) EA with update strength F , success ratio s,
initial mutation rate ρ0, minimal mutation rate ρmin, and maximal mutation rate ρmax.
The formulation assumes maximization of the function f : {0, 1}n → R as objective.

1 Sample x ∈ {0, 1}n uniformly at random and compute f(x);
2 Set ρ = ρ0;
3 while stopping criterion not met do
4 Sample k from Bin(n, ρ);
5 y ← flipk(x);
6 evaluate f(y);
7 if f(y) ≥ f(x) then
8 x← y and ρ← min{F sρ, ρmax}
9 else

10 ρ← max{ρ/F, ρmin}

interpretation suggested in [KMH+04]: if one out of five iterations is successful, the parameter
ρ stays constant (since it will have been updated to ρ(F 1/4)4/F = ρ). Note that a success ratio
of s corresponds to a one-(s+ 1)-th success rule. We choose to work with success ratios instead
of success rates for notational convenience.

Hyper-Parameters. Altogether, the self-adjusting (1 + 1) EA has five hyper-parameters:
the update strength F , the success rate s, the initial mutation rate ρ0, and the minimal and
maximal mutation rates ρmin and ρmax, respectively. It is not difficult to verify that for update
strengths F = 1 + ε, ε = Ω(1), the mutation rate deviates, in at least a constant fraction of
all iterations, from the optimal one by at least a constant factor, which results in a constant
factor overhead in the running time. We therefore consider F = 1 + o(1) only. Apart from this,
we only require that ρmin = o(n−1) ∩ ω(n−c) for an arbitrary constant c and, for mathematical
simplicity, we set ρmax = 1. Note though that for practical applications of the algorithm, we
suggest to bound ρmin ≥ 1/n2 and ρmax ≤ 1/2.

With these specifications, we are left with the success ratio s. Our main interest is in
bounding the running time of the self-adjusting (1 + 1) EA in dependence of this parameter.

Finally, we note that Algorithm 1 generalized the classic (1 + 1) EA with static mutation
rate ρ, which we obtain by setting F = 1 and ρ0 = ρ.

Improvement vs. Success Probability. We study in this work the performance of the
self-adjusting (1 + 1) EA on the LeadingOnes function

Lo : {0, 1}n → R, x 7→ max{i ∈ [0..n] | ∀j ≤ i : xj = 1},

which counts the number of initial ones in a bit string. By the unbiasedness of the algorithms
studied in this work in the sense of [LW12] all our results also hold for perturbed versions
of LeadingOnes that are obtained by any transformation of the search space that preserves
Hamming distances. We build our analysis on results presented in [BDN10, Doe19], which
reduce the study of the overall running time to analyzing the time spend on each fitness level.
More precisely, for a random solution x ∈ {0, 1}n with f(x) =: ` we study the time T` that it
takes the self-adjusting (1 + 1) EA to reach for the first time a solution y of fitness f(y) > `.
We call the probability to create such a y the improvement probability pimp(ρ, `) of mutation
rate ρ on level `. For fixed mutation rate ρ, this improvement probability is easily seen to equal
(1−ρ)`ρ, since the first ` bits should not flip, the (`+ 1)-st should, and it does not matter what
happens in the tail of the string.
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Another important probability is the success probability psuc(ρ, `) := (1− ρ)` of creating an
offspring y that is at least as good as x, since this is the probability of increasing the mutation
rate from ρ to min{F sρ, ρmax}.

We note that several other works studying self-adjusting parameter choices assume that
the adjustment rule distinguishes whether or not a strict improvement has been found. In
the analysis of the self-adjusting (1 + (λ, λ)) GA in [DD18], for example, it is assumed that
λ ← λ/F if and only if f(y) > f(x), while λ is updated to λF 1/4 otherwise. While formally
analyzing the impact of this choice (which requires a quantification of the expected running
time for the self-adjusting (1 + 1) EA using such an alternative update rule) goes beyond the
scope of this present work, it is certainly desirable to develop general guidelines which update
rule to prefer for which type of problems. The empirical investigations of the two alternatives
reported in [RABD19] suggests that such guidelines are non-trivial to derive.

Asymptotic analysis: Our result is an asymptotic running-time analysis, that is, we are
interested in the running-time behavior for large problems sizes n. More formally, we view the
running time T as a function of the problem size n (even though we do not explicitly write T (n))
and we aim at statements on its limiting behavior. As usual in the analysis of algorithms, we use
the Landau symbols O(·), Ω(·), Θ(·), o(·), and ω(·) to conveniently describe such limits. When
using such a notation, we shall always view the expression in the argument as a function of n
and we use the notation to describe the behavior for n tending to infinity. We note that already
the algorithm parameters ε and ρmin are functions of n (which is very natural since it just means
that we use different parameter values for different problem sizes). Different from ε and ρmin, we
take s as a constant (that is, not depending on n). Success rates varying with the problem size
have been shown useful in [DLOW18], but generally it is much more common to have constant
success rates and we do not see how non-constant success rates could be advantageous in our
setting.

3 Summary of Useful Tools

We shall frequently use the following well-known estimates. Note for (f) and (g) that the
binomial coefficients

(
s
k

)
:= s · . . . · (s− k + 1)/k! are defined for all s ∈ R and k ∈ N.

Lemma 1. (a) For all x ∈ R, 1 + x ≤ ex.

(b) For all x < 1, ex ≤ 1 + x
x−1 .

(c) For all x ∈ [0, 1], e−x ≤ 1− x
2 .

(d) For all x ≥ −1 and s ≥ 1, (1 + x)s ≥ 1 + sx.

(e) For all x ≥ −1 and 0 ≤ s ≤ 1, (1 + x)s ≤ 1 + sx.

(f) For all 0 ≤ x ≤ 1 and s ≥ 2, (1− x)s ≤ 1− sx+
(
s
2

)
x2.

(g) For all 0 ≤ x ≤ 1 and s ≥ 3, (1− x)s ≥ 1− sx+
(
s
2

)
x2 −

(
s
3

)
x3.

Proof. Part (a) to (d) can be found, for example, in [Doe20, Lemmas 4.1, 4.2 and 4.8]. Part (e)
follows easily from (d). For Part (f) and (g), by Taylor’s theorem, e.g. [Tre13, Theorem 2.5.4],
for any function f : R → R that is k + 1 times continuously differentiable on an open interval
I, and for any x, a ∈ I there exists ξ between a and x such that

f(x) = f(a) +

(
k∑
i=1

f (i)(a)

i!
(x− a)i

)
− f (k+1)(ξ)

(k + 1)!
(x− a)k+1.

6



We use this theorem for f(x) = (1−x)s with a = 0. The main term of the expansion corresponds
to the right hand side of (f) and (g) for k = 2 and k = 3 respectively. For (f), since f (3)(ξ) =
−s(s− 1)(s− 2)(1− ξ)s−3, the error term f (k+1)(ξ)/(k + 1)! · (x− a)k+1 is non-positive for all
ξ ∈ [0, x], and the claim follows. Likewise, (f) follows since f (4)(ξ) = s(s−1)(s−2)(s−3)(1−ξ)s−4

is non-negative for all ξ ∈ [0, x].

Sometimes we need more precise error terms. In this case, we resort to the following asymp-
totic expansions around zero. That is, we will use the following expansions in the case that x
and/or y are close to zero.

Lemma 2. Let c1, c2 ∈ R, c1 < c2, and consider the interval I = [c1, c2] ⊆ R. Then we have
the following asymptotic expansions, where the hidden constants only depend on c1 and c2:

(a) For all x ∈ I, e−x = 1− x+ x2/2±O(|x|3).

(b) If c1 > −1 and c2 < 1 then for all x ∈ I, 1/(1 + x) = 1− x+ x2 ±O(|x|3).

(c) If c1 > −1 and c2 < 1 then for all x ∈ I, ln(1 + x) = x− x2/2±O(|x|3). Equivalently, we
may write 1 + x = ex−x

2/2±O(|x|3).

(d) For all 0 < y ∈ I and (for concreteness) all x ∈ [−1/2, 1/2],

1− e−y(1 + x) = (1− e−y) (1− x/y + x/2±O(|yx|))

Note that the lemma explicitly allows negative values of x. To emphasize the exact meaning of
the O-notation, we spell out exemplarily the meaning of the second statement. It says that for
all c1, c2 ∈ R with −1 < c1 < c2 < 1 there exists C > 0 such that for all x ∈ [c1, c2],

1− x+ x2 − C · |x|3 ≤ 1/(1 + x) ≤ 1− x+ x2 + C · |x|3

Proof. Parts (a), (b), and (c) are standard Taylor expansions, see for example [Tre13, Examples
2.5.1-2.5.3]. Part (d) follows from the other parts by the following calculation.

1− e−y(1 + x) = (1− e−y)
(

1− x

1− e−y
+ x
)

(a)
= (1− e−y)

(
1− x

y(1− y/2±O(y2))
+ x
)

(c)
= (1− e−y)

(
1− x

y (1 + y/2±O(y2)) + x
)

= (1− e−y) (1− x/y + x/2±O(|yx|)) .

The following lemma will be helpful to estimate the success probabilities for the
(1 + 1) EA>0.

Lemma 3. For every 0 < b < c, the function f(x) = (1− bx)/(1− cx) is strictly decreasing in
x in the range x ∈ R+.

Proof. We first argue that for all a ∈ R, the auxiliary function g(y) := (e−ay − 1)/y is strictly

increasing in y ∈ R−. To check this, we compute the derivative g′(y) = e−ay

y2
(eay − ay − 1),

which is strictly positive by Bernoulli’s inequality, Lemma 1(d). Thus g is strictly increasing in
R− := {x ∈ R | x < 0}. (It is also strictly increasing in R+, but since it has a pole in 0, it is
not increasing in all of R \ {0}.) In particular, setting a := x and comparing g(y) for y = ln b
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and y = ln c yields (b−x − 1)/ ln b < (c−x − 1)/ ln c, or equivalently (mind that ln b and ln c are
both negative)

(1− bx)cx ln c < (1− cx)bx ln b. (1)

With this preparation, we observe for the derivative of f ,

f ′(x) =
(1− bx)cx ln c− (1− cx)bx ln b

(1− cx)2

(1)
< 0.

This proves the lemma.

We also need the following result showing that a random process with negative additive
drift in the non-negative numbers cannot often reach states that are mildly far in the positive
numbers. In other words, the occupation probability of such states is small. Results of a similar
flavor have previously been obtained in [DWY21], but we do not see how to derive our result
easily from that work.

Lemma 4. Let D be a discrete random variable satisfying |D| ≤ s and E[D] = −φ for some
φ ≤
√

2 s. Let Xt be a random process on R such that

• (Xt) starts on a fixed value x0 ≤ s, that is, we have Pr[X0 = x0] = 1,

• for all t and for all r1, . . . , rt ∈ R with Pr[∀i ∈ [1..t] : Xi = ri] > 0 we have

– if rt ≥ 0, then conditioned on X1 = r1, . . . , Xt = rt, the conditional distribution of
Xt+1 is dominated by rt +D,

– if rt < 0, then Xt+1 −Xt has a discrete distribution with absolute value at most s.

Then for all t and U ≥ s, we have

Pr[Xt ≥ U ] ≤ exp

(
−φ(U − s)

2s2

)(
U − s
φ

+ 1 +
4s2

φ2

)
.

In particular, for U = 6 s
2

φ ln( 1
φ)+s, we have Pr[Xt ≥ U ] ≤ 6φs2 ln( 1

φ)+φ3 +4φs2, an expression
tending to zero for φ→ 0.

Proof. One potential problem in analyzing the process (Xt) is that we have not much infor-
mation about its behavior when it is below zero. We solve this problem via a sequence of
domination arguments.

We think of the process (Xt) as a particle moving on the real line. When the particle
leaves the non-negative part, we ignore what it is doing until it reappears at some later time
at some position in [0, s), which is determined also by the part of the process which we do not
understand.

To gain an upper bound for Pr[Xt ≥ U ], as a first pessimistic simulation of this true process,
we may pessimistically assume that an adversary puts the particle on an arbitrary position in
[0, s) when it reappears. The adversary could make this position depend on the previous walk of
the particle, but clearly there is no gain from this (the adversary should just choose a position
which maximizes Pr[Xt ≥ U ]).

To overcome the difficulty that we do not know when the particle reappears, we regard the
following pessimistic version of the previous process with adversarial reappearances. At each
time t′ ∈ [0..t], the adversary adds a particle to the process (in the interval [0, s)). At each
time step, each previously present particle that is in [0,∞) performs a move distributed as D
(independent for all particles and all times). When a particle enters the negative numbers, it
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disappears. It is clear that the probability that there is some particle at U or higher at time t
is at least Pr[Xt ≥ U ].

To avoid having to deal with the disappearance of particles in the previous process, we do
not let them disappear, but we let them perform a modified walk when in the negative numbers.
Clearly this can only increase the number of particles on each position at each time. In the
modified walk also in the negative numbers the particles perform steps distributed according
to D.

In summary, we regard the process in which at each time step t′ ∈ [0..t] a particle t′ appears
at some prespecified position xt′,t′ . Each previously existing particle i < t′ moves in this time
step t′ to the new position xt′,i = xt′−1,i +D, independent from the past and independently for
all particles. We are interested in the number Yt := |{i ∈ [0..t] | xt,i ≥ U}| of particles that are
in [U,∞) at time t, since we have 1Xt≥U � Yt and hence Pr[Xt ≥ U ] = E[1Xt≥U ] ≤ E[Yt].

After this slightly lengthy preparation, we now quickly estimate E[Yt]. By linearity of
expectation, E[Yt] =

∑t
i=0 Pr[xt,i ≥ U ]. By construction, xt,i ≤ s+

∑t−i
j=1Dj , where the Dj are

independent copies of D. Writing Dt−i =
∑t−i

j=1Dj , we compute

Pr[xt,i ≥ U ] ≤ Pr[Dt−i ≥ U − s]
= Pr[Dt−i ≥ E[Dt−i] + (t− i)φ+ U − s]

≤ exp

(
−((t− i)φ+ U − s)2

2(t− i)s2

)
,

where the last estimate stems from the additive Chernoff bound (e.g., Theorem 10.9 in [Doe20]).
Using the estimates

• Pr[xt,i ≥ U ] ≤ exp(−φ2(t− i)/2s2) for t− i ≥ U−s
φ ,

• Pr[xt,i ≥ U ] ≤ exp(−φ(U − s)/2s2) for t− i < U−s
φ , and

•
∑∞

k=0 exp(−φ2/2s2)k = 1/(1 − exp(−φ2/2s2)) ≤ 1/(1 − (1 − φ2/4s2)) = 4s2/φ2 (using
φ ≤
√

2 s and Lemma 1 (c)),

we obtain

E[Yt] ≤
(
U − s
φ

+ 1

)
exp

(
−φ(U − s)

2s2

)
+

∞∑
k=dU−s

φ
e

exp

(
−φ

2k

2s2

)

≤ exp

(
−φ(U − s)

2s2

)(
U − s
φ

+ 1 +
4s2

φ2

)
.

4 Analysis of the Self-Adjusting (1+1) EA

Theorem 5 summarizes the main result of this section. Before providing the formal statement,
we introduce a quantity that will play an important role in all our computations, the target
mutation rate ρ∗(`, s). We consider as target mutation rate the value of p which leads to the
success probability that is given by the success rule. That is, for each fitness level 1 ≤ ` ≤ n−1
and each success ratio s > 0 the target mutation rate ρ∗(`, s) is the unique value p ∈ (0, 1) that
satisfies psuc(p) = (1 − p)` = 1/(s + 1). For ` = 0 we set ρ∗(`, s) := 1. A key argument in the
following proofs will be that the mutation rate drifts towards this target rate.

9
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Figure 1: Normalized (by the factor 1/n2) expected optimization times of the self-adjusting
(1 + 1) EA for different success ratios s, and assuming F = 1 + o(1).

Following the discussion in [Doe19] we do not only analyze in Theorem 5 the expected
running time, but rather show a stochastic domination result. To formulate our results, we
introduce the shorthand X � Y to express that the random variable X is stochastically dom-
inated by the random variable Y , that is, that Pr[X ≥ r] ≤ Pr[Y ≥ r] for all r ∈ R. We also
recall that a random variable X has a geometric distribution with success rate p, written as
X ∼ Geom(p), when Pr[X = k] = (1− p)k−1p for all k = 1, 2, . . . .

Theorem 5. Let c > 1 be a constant. Consider a run of the self-adjusting (1 + 1) EA with
F = 1 + ε, ε ∈ ω( logn

n ) ∩ o(1), s > 0, ρmin ∈ o(n−1) ∩ Ω(n−c), ρmax = 1, and arbitrary initial
rate ρ0 ∈ [ρmin, ρmax] on the n-dimensional LeadingOnes function. Then the number T of
iterations until the optimum is found satisfies

T � o(n2) +
n−1∑
`=0

X` Geom
(

min{ω( 1
n), (1− o(1))(1− ρ∗(`, s))`ρ∗(`, s)}

)
,

where the X` are uniformly distributed binary random variables and all X` and all geometric
random variables are mutually independent. Further, all asymptotic notation solely is with
respect to n and can be chosen uniformly for all `. In particular,

E[T ] ≤ (1 + o(1))
1

2

n−1∑
`=0

(
(1− ρ∗(`, s))`ρ∗(`, s)

)−1
= (1 + o(1))

s+ 1

4 ln(s+ 1)
n2. (2)

4.1 Numerical Evaluation of the Running-Time Bound in Theorem 5

Figure 1 displays the normalized (by the factor 1/n2) expected optimization time s+1
4 ln(s+1) for

success ratios 0 < s ≤ 10. Minimizing this expression for s shows that a success ratio of s = e−1
is optimal. With this setting, the self-adjusting (1 + 1) EA yields an expected optimization
time of (1± o(1))en2/4, which was shown in [BDN10] to be optimal for the (1 + 1) EA across
all possible fitness-dependent mutation rates. In fact, with this success ratio, it holds that
ρ∗(`, s) ≈ 1/(`+ 1), which is the mutation rate that was shown in [BDN10] to be optimal when
applied to mutating a random solution x satisfying Lo(x) = `.

Using Equation (2) we can also compute that for all success ratios s ∈ [0.78, 3.92] the
expected optimization time of the self-adjusting (1 + 1) EA is better than the 0.77201n2 +
o(n2) one of the best static (1 + 1) EA computed in [BDN10], which uses mutation rate p∗ =
1.5936.../n. We furthermore see that the one-fifth success rule (i.e., using s = 4) performs
slightly worse; its expected optimization time is around 0.7767n2 + o(n2). Note, however, that
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we will see in Section 6 (see also Figure 3), that its fixed-target performance is nevertheless
better than the static one with p∗ for a large range of sub-optimal target values.

Finally, we note that for success ratios s ∈ [0.59, 5.35] the expected optimization time of the
self-adjusting (1 + 1) EA is better than the 0.85914...n2 + o(n2) expected running time of the
static (1 + 1) EA with default mutation rate p = 1/n.

4.2 Proof Overview

The main proof idea consists in showing that in a run of the self-adjusting (1 + 1) EA we
sufficiently often have a mutation rate that is close to the target mutation rate (the unique rate
which gives a success probability of 1/(s+1)). We show this by proving that the self-adjustment
leads to a drift of the mutation rate towards the target rate ρ∗(`, s). This drift is strong when
the rate is far from the target, and we can use a multiplicative drift argument [DJW12] to
show that the rate quickly becomes close to the target rate (Lemma 8). Once close, we use our
occupation probability lemma (Lemma 4) based on additive drift to argue that the rate is often
at least mildly close to the target rate (Lemma 9). We need a careful definition of the lower
order expressions “often”, “close”, and “mildly close” to make this work.

From the knowledge that the mutation rate is often at least mildly close to the target rate,
we would like to derive that the optimization process is similar to using the target rate in each
iteration. This is again not trivial; a main obstacle is that the rate is not chosen independently
in each iteration. Consequently, we cannot argue that each iteration on one fitness level has the
same, independent probability for finding an improvement (which would give that the waiting
time on the level follows a geometric distribution). We overcome this difficulty by splitting
the time spent on one fitness level in short independent phases, each consisting of bringing
the rate into the desired region and then exploiting that the rate will stay there most of the
time (Lemma 11). This approach is feasible because of our relatively good bounds for the
time needed to reach the desired rate range. The final argument is that the expected running
time of the self-adjusting (1 + 1) EA on LeadingOnes is half the sum of the expected times
needed to leave each fitness level. Such a statement has been previously observed for static and
fitness-dependent mutation rates [BDN10,Doe19].

Since we are interested in asymptotic results only, we can and shall assume in the remainder
that n is sufficiently large.

4.3 Proof of Theorem 5

As a first step towards understanding how our EA adjusts the mutation rate, we first determine
and estimate the target mutation rate ρ∗(`, s) introduced in the beginning of Section 4. We
shall use the following result frequently and often without explicit notice.

Lemma 6 (estimates for the target mutation rate ρ∗(`, s)). Let ` ≥ 1 and ρ∗ = ρ∗(`, s). Then
ρ∗ = 1− (s+ 1)−1/` and

ln(s+ 1)

`

(
1 +

ln(s+ 1)

`

)−1

≤ ρ∗ ≤ ln(s+ 1)

`
.

Consequently, ρ∗ = Θ(1
` ) and ρ∗ ≤ ρ∗(1, s) < 1 is bounded away from 1 by at least a constant.

If ` = ω(1), then ρ∗ = (1− o(1)) ln(s+1)
` .

Proof. The precise value for ρ∗ follows right from the definition of ρ∗. Rewriting

ρ∗ = 1− (s+ 1)−1/` = 1− exp(−1
` ln(s+ 1))

11



and using the estimates from Lemma 1 (a) and (b), we obtain the claimed bounds for ρ∗. If

` = ω(1), then ln(s+1)
` = o(1) and both bounds coincide apart from lower order terms, that is,

we have ρ∗ = (1− o(1)) ln(s+1)
` .

We next show that, for ` ≥ 1, the success probability psuc(ρ, `) = (1−ρ)` changes by a factor
of (1 ± Ω(δ)) when we replace the target mutation rate ρ∗ by ρ∗ ± δ. Note that for ` = 0, we
have psuc(ρ, `) = 1 for all ρ.

Lemma 7 (success probabilities around ρ∗). Let ` ≥ 1. Let psuc(ρ) := psuc(ρ, `) = (1− ρ)` for
all ρ ∈ [0, 1].

• For all δ > 0 such that (1 + δ)ρ∗ ≤ 1, we have

psuc((1 + δ)ρ∗) ≤ psuc(ρ∗)(1− 1
2 min{δ, 1

ln(s+1)}ρ
∗`).

• For all 0 < δ ≤ 1, we have

psuc((1− δ)ρ∗) ≥ psuc(ρ∗)(1 + δρ∗`).

Proof. Since ρ 7→ psuc(ρ) is non-increasing, we may assume δ ≤ 1
ln(s+1) to prove the first claim.

We then have `δρ∗ ≤ 1, see Lemma 6, and compute

psuc((1 + δ)ρ∗)

psuc(ρ∗)
=

(
1− (1 + δ)ρ∗

1− ρ∗

)`
=

(
1− δρ∗

1− ρ∗

)`
≤ (1− δρ∗)`

≤ exp(−`δρ∗) ≤ 1− 1
2`δρ

∗

using Lemma 1 (a) and (b).
For the second claim, we simply compute

psuc((1− δ)ρ∗)
psuc(ρ∗)

=

(
1− (1− δ)ρ∗

1− ρ∗

)`
=

(
1 +

δρ∗

1− ρ∗

)`
≥ (1 + δρ∗)` ≥ 1 + `δρ∗,

where the last estimate stems from Bernoulli’s inequality (Lemma 1 (d)).

From the previous lemma we will next derive that we have an at least multiplicative
drift [DJW12] towards a small interval around the target rate ρ∗(`, s), which allows to prove
upper bounds for the time to enter such an interval. For convenience, we show a bound that
holds with probability 1− 1

n even though we shall later only need a failure probability of o(1).
To ease the analysis of the mutation rate adjustment, we shall here and in a few further lem-

mas regard the variant of the self-adjusting (1 + 1) EA which, in case it generates an improving
solution, does not accept this solution, but instead continues with the parent. It is clear that
the mutation rate behaves identical in this variant and in the original self-adjusting (1 + 1) EA
until the point when an improving solution is generated. We call this EA the self-adjusting
(1 + 1) EA ignoring improvements.

Lemma 8. Assume that the self-adjusting (1 + 1) EA is started with a search point of fitness
` ≥ 1 and with the initial mutation rate ρ0 ∈ [ρmin, ρmax] with ρmin ∈ o(n−1) ∩ Ω(n−c) and
ρmax = 1. Let ρ∗ = ρ∗(`, s). Let δ = ω(ε) ∩ o(1). For

t := (1 + o(1))
2(max{ρ0/ρ

∗, ρ∗/ρ0}+ ln(n))

δρ∗`ε
= Θ

(
log n

δε

)
,
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the time T ∗ until a search point with higher fitness is generated or the mutation rate ρT ∗ is in
[(1− δ)ρ∗, (1 + δ)ρ∗] satisfies

Pr [T ∗ ≥ t] ≤ 1
n .

For ` = 0, we have that within d1
s log1+ε

1
ρ0
e + 1 = O( logn

ε ) iterations with probability one
an improvement is found.

Proof. For ` = 0, each iteration of the self-adjusting (1 + 1) EA is a success. Consequently, the
mutation rate is multiplied by (1 + ε)s in each iteration until the maximum possible value of 1
is reached or an improvement is found. Once the mutation rate is 1, surely the next iteration
gives an improvement. This easily gives the claimed result.

Hence let us concentrate on the more interesting case that ` ≥ 1. We shall again use the
shorthand psuc(ρ) := psuc(ρ, `) for all ρ. We regard the (1 + 1) EA ignoring improvements
instead of the original EA. This does not change the time T ∗, the first time an improving
solution is generated or the rate enters the interval [(1 − δ)ρ∗, (1 + δ)ρ∗]. However, it eases
the definition of T := min{t ∈ N | ρt ∈ [(1 − δ)ρ∗, (1 + δ)ρ∗]}, which obviously stochastically
dominates T ∗. Hence we proceed by proving upper bounds for T .

Assume first that ρ0 > ρ+ := (1+δ)ρ∗. In this case, since δ = ω(ε) and n is sufficiently large,
we have T = min{t ∈ N | ρt ≤ (1+δ)ρ∗}. By Lemma 7, we have psuc(ρ) ≤ psuc(ρ

∗)(1− 1
2δρ
∗`) for

all ρ ≥ ρ+. We use this to compute the expected change of the mutation rate. When ρt ≥ ρ+,
then by the statement just derived from Lemma 7 we have

E[ρt+1] = psuc(ρt)ρt(1 + ε)s + (1− psuc(ρt))ρt(1 + ε)−1

≤ psuc(ρ
∗)(1− 1

2δρ
∗`)ρt(1 + ε)s + (1− psuc(ρ

∗)(1− 1
2δρ
∗`))ρt(1 + ε)−1

≤ ρt
(
psuc(ρ

∗)(1− 1
2δρ
∗`)(1 + sε+O(ε2)) + (1− psuc(ρ

∗)(1− 1
2δρ
∗`))(1− ε+O(ε2))

)
= ρt

(
1 + psuc(ρ

∗)sε− (1− psuc(ρ
∗))ε− psuc(ρ

∗) · 1
2δρ
∗`(s+ 1)ε+O(ε2)

)
= ρt

(
1− 1

2δρ
∗`ε+O(ε2)

)
.

Consider now the process (ρ̃t) defined by ρ̃t = ρt for t < T and ρ̃t = 0 otherwise. We have
again E[ρ̃t+1 | ρ̃t] ≤ ρ̃t

(
1− 1

2δρ
∗`ε+O(ε2)

)
for all t. With a simple induction, we see that

E[ρ̃t] ≤ ρ0

(
1− 1

2δρ
∗`ε+O(ε2)

)t
. From Lemma 1 (a) as well as δ = ω(ε) and ρ∗` = Θ(1),

we conclude E[ρ̃t] ≤ ρ0 exp(−(1 − o(1))1
2 tδρ

∗`ε). For t = (1 + o(1))2 ln(ρ0/ρ+)+ln(n)
δρ∗`ε , we have

E[ρ̃t] ≤ ρ+

n and thus Pr[T ≥ t] = Pr[ρ̃t ≥ ρ+] ≤ 1
n by Markov’s inequality.

The case that ρ0 < ρ− := (1−δ)ρ∗ is mostly similar except that we now regard the reciprocal
of the rate. Using Lemma 7 we compute, conditional on ρt ≤ ρ+,

E[ 1
ρt+1

] = psuc(ρt)
1
ρt

(1 + ε)−s + (1− psuc(ρt))
1
ρt

(1 + ε)

≤ 1
ρt

(
psuc(ρ

∗)(1 + δρ∗`)(1 + ε)−s + (1− psuc(ρ
∗)(1 + δρ∗`))(1 + ε)

)
≤ 1

ρt

(
psuc(ρ

∗)(1 + δρ∗`)(1− sε+O(ε2)) + (1− psuc(ρ
∗)(1 + δρ∗`))(1 + ε)

)
≤ 1

ρt

(
1− δρ∗`ε+O(ε2)

)
.

Now a drift argument analogous to above shows that for t = (1 + o(1)) ln(ρ−/ρ0)+ln(n)
δρ∗`ε , we have

Pr[T ≥ t] ≤ 1
n .

Next we will show that the mutation rate of the self-adjusting (1 + 1) EA ignoring improve-
ments (as defined before Lemma 8) is likely to stay within a small interval around ρ∗(`, s).
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Lemma 9. Let δ = o(1) be such that δ/ ln(1/δ) = ω(ε). There is a γ = o(1) such that the
following is true. Let ` ∈ [1..n], ρ∗ := ρ∗(`, s), and ρ0 ∈ [(1 − δ)ρ∗, (1 + δ)ρ∗]. Consider a run
of the self-adjusting (1 + 1) EA ignoring improvements, started with a search point of fitness `
and with the initial mutation rate ρ0. Denote the mutation rate after the adjustment made in
iteration t by ρt. Then for any T = ω(1), with probability 1− o(1) we have

|{t ∈ [1..T ] | ρt /∈ [(1− γ)ρ∗, (1 + γ)ρ∗]}| = o(T ).

Proof. Let ` ≥ 1 in the remainder. Let T = ω(1). We first argue that we have ρt ≥ (1 + γ)ρ∗,
for a γ made precise below, only for a sub-linear number of the t ∈ [1..T ].

We consider the random process Xt := log1+ε(ρt/ρ
+), where ρ+ := (1+δ)ρ∗. By assumption,

X0 ≤ 0. If Xt ≥ 0 for some t, then ρt ≥ (1 + δ)ρ∗. By Lemma 7, we have ρt+1 = ρt(1 + ε)s

with probability at most 1
s+1(1 − 1

2δρ
∗`) =: p, and we have ρt+1 = ρt(1 + ε)−1 otherwise.

Consequently, we have Pr[Xt+1 = Xt + s] ≤ p and Pr[Xt+1 = Xt − 1] = 1− Pr[Xt+1 = Xt + s].
Let D be a random variable taking the value +s with probability p and the value −1 with
probability 1− p. Then, regardless of the outcomes of X1, . . . , Xt (but still assuming Xt ≥ 0),
we have Xt+1 � Xt + D. We compute E[D] = ps − (1 − p) = −1

2δρ
∗` and observe |D| ≤ s. If

Xt < 0, we still know that Xt+1 −Xt takes only the values −1 and s.
Consequently, the process (Xt) satisfies the assumptions of Lemma 4 (with φ = 1

2δρ
∗`).

Taking U = 6 s
2

φ ln( 1
φ) + s, we have Pr[Xt ≥ U ] = o(1) for all t ∈ [1..T ]. Let γ+ be such that

1 + γ+ = (1 + δ)(1 + ε)U . Note that by our assumptions on δ and ε, we have (1 + γ+) ≤
exp(δ+Uε) = exp(o(1)) = 1 + o(1), that is, γ+ = o(1). By construction, Pr[ρt ≥ (1 + γ+)ρ∗] =
Pr[Xt ≥ U ] = o(1) for all t ∈ [1..T ]. By linearity of expectation, E0 := E[|{t ∈ [1..T ] |
ρt ≥ (1 + γ+)ρ∗}|] = o(T ). Setting somewhat arbitrarily ν :=

√
E0/T = o(1), by Markov’s

inequality we have |{t ∈ [1..T ] | ρt ≥ (1 + γ+)ρ∗}| < νT = o(T ) with probability at least
1− E0/(νT ) = 1− ν = 1− o(1).

We now argue that ρt can not be too small too often either. Let ρ− = (1−δ)ρ∗ and consider
the random process (Xt) defined by Xt = log1+ε(ρ

−/ρt). Since ρ0 ≥ (1− δ)ρ∗, we have X0 ≤ 0.
If Xt ≥ 0 for some t, then ρt ≤ ρ− and Lemma 7 shows that we have ρt+1 = ρt(1+ε)s and hence
Xt+1 = Xt−s with probability at least 1

s+1(1+δρ∗`) =: p. Otherwise, we have ρt+1 = ρt(1+ε)−1

and Xt+1 = Xt + 1. Consequently, Xt+1 is stochastically dominated by Xt + D, where D is
such that Pr[D = −s] = p and Pr[D = 1] = 1− p. We have E[D] = −sp+ (1− p) = −δρ∗` and
|D| ≤ s. If Xt < 0, we still have that Xt+1 − Xt is a discrete random variable with values in
[−s, s].

Consequently, the process (Xt) again satisfies the assumptions of Lemma 4, now with φ =

δρ∗`. With U = 6 s
2

φ ln( 1
φ) + s and γ− such that 1− γ− = (1− δ)(1 + ε)−U , we have γ− = o(1)

and Pr[ρt ≤ (1−γ−)ρ∗] = Pr[Xt ≥ U ] = o(1) for all t ∈ [1..T ]. Again by linearity of expectation
and Markov’s inequality, |{t ∈ [1..T ] | ρt ≤ (1− γ−)ρ∗}| = o(T ) with probability 1− o(1).

Taking γ = max{γ−, γ+}, we have γ = o(1) and |{t ∈ [1..T ] | ρt /∈ [(1− γ)ρ∗, (1 + γ)ρ∗]}| =
o(T ). We note that this definition of γ depends on `. However, the dependence can be expressed
as a dependence on ρ∗` only. Since ρ∗` = Θ(1) by Lemma 6, all the values of γ appearing in
the above proof for different values of ` are of the same asymptotic order of magnitude. Hence
we can choose γ independent of `. This complete the proof of this lemma.

We use the following estimate for the improvement probability pimp(ρ, `) := (1 − ρ)`ρ of
generating a better individual from an individual of fitness ` via standard-bit mutation with
mutation rate ρ.

Lemma 10. Let ` ∈ [1..n − 1] and ρ∗ := ρ∗(`, s). Let γ = o(1) and ρ ∈ [(1 − γ)ρ∗, (1 + γ)ρ∗].
Then pimp(ρ, `) ≥ pimp(ρ∗, `)(1−O(γ)).
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Proof. If ρ < ρ∗, then pimp(ρ, `) = (1− ρ)`ρ > (1− ρ∗)`(1− γ)ρ∗ = (1− γ)pimp(ρ∗, `). If ρ > ρ∗,
then in a similar fashion as in the proof of Lemma 7, we compute(

1− (1 + γ)ρ∗

1− ρ∗

)`
=

(
1− γρ∗

1− ρ∗

)`
≥ exp

(
− 2γρ∗

1− ρ∗

)`
= exp

(
− 2γρ∗`

1− ρ∗

)
Lem. 6
≥ exp

(
−2γ ln(s+ 1)

1− ρ∗

)
≥ 1− 2γ ln(s+ 1)

1− ρ∗
.

Consequently,

pimp(ρ, `) = (1− ρ)`ρ ≥ (1− (1 + γ)ρ∗)`ρ∗ ≥ (1− ρ∗)`
(

1− 2γ ln(s+ 1)

1− ρ∗

)
ρ∗

=

(
1− 2γ ln(s+ 1)

1− ρ∗

)
pimp(ρ∗, `).

We now have the necessary prerequisites to show the main ingredient of our running-time
analysis: the time needed to leave fitness level ` is (essentially) at least as good as if the EA
would always use the target mutation rate ρ∗(`, s). This holds not only with respect to the
expectation, but also when regarding distributions.

Lemma 11. Let c be a constant and ρmin ∈ o(n−1)∩Ω(n−c). Let ε = ω( logn
n )∩o(1). Let δ = o(1)

be such that δ/ ln(1
δ ) = ω(ε) and δ = ω( logn

nε ). Assume that the self-adjusting (1 + 1) EA is
started with a search point of fitness ` ∈ [0..n− 1] and an arbitrary mutation rate ρ ≥ ρmin. Let
ρ∗ = ρ∗(`, s). Then the number T` of iterations until a search point with fitness better than ` is
found is stochastically dominated by

T` � o(n) + Geom(min{ω( 1
n), (1− o(1))(1− ρ∗)`ρ∗}).

In particular, E[T`] ≤ o(n) + 1
(1−ρ∗)`ρ∗ .

Proof. For ` = 0, Lemma 8 contains the claimed result. Hence let ` ≥ 1. Let Q := pimp(ρ∗, `) =

(1 − ρ∗)`ρ∗ = ρ∗

s+1 = Θ(1
` ) be the probability of finding an improving solution when using the

mutation rate ρ∗.
We first show that there is a t = o(n) such that the probability that the EA in the first t

iterations does not find an improving solution, is at most o(1) + (1− (1− o(1))Q)t.
By Lemma 8, there is a t0 = O( logn

δε ) ⊆ o(n) such that with probability at least 1− 1
n within

the first t0 iterations a ρ-value in [(1− δ)ρ∗, (1 + δ)ρ∗] is reached or an improvement is found.
Assume that after t0 iterations we have not found an improvement (otherwise we are done)

and that the first time T0 such that the mutation rate is in [(1− δ)ρ∗, (1 + δ)ρ∗] is at most t0.

Let γ = o(1) as in Lemma 9. Let t1 ∈ ω(t0) ∩ o(n), and to be more concrete, let t1 = t
2/3
0 n1/3.

By Lemma 9, with probability 1 − o(1), in all but a lower-order fraction of the iterations
[T0+1..T0+t1] the algorithm ignoring improvements uses a mutation rate in [(1−γ)ρ∗, (1+γ)ρ∗].
By Lemma 10, for any such rate ρ the probability pimp(ρ, `) = (1−ρ)`ρ of finding an improvement
is at least (1 − O(γ))Q. Let us assume for a moment that indeed the mutation rate is in this
range for a 1 − o(1) fraction of the iterations T0 + 1, . . . , T0 + t1. Then the probability of not
finding an improvement in any of these iterations is at most

(1− (1−O(γ))Q)t1(1−o(1)) ≤ (1− (1− o(1))(1−O(γ))Q)t1 = (1− (1− o(1))Q)t1 =: P,

where the inequality stems from Lemma 1 (e).
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Let t = t0 + t1, which is still o(n). Since t = t1(1 + o(1)), again by Lemma 1 (e), we have
P = (1− (1− o(1))Q)t. Taking now also into account the two failure probabilities of order o(1),
we have shown that the probability of not finding an improvement in the first t iterations is at
most o(1) + (1− (1− o(1))Q)t =: P̄ .

If Q ≤ 1
t , then P̄ = (1 + o(1))(1 − (1 − o(1))Q)t = (1 − (1 − o(1))Q)t. If Q > 1

t , then we

redo the above construction with t1 = t
1/3
0 n2/3. We can do so since we have never exploited the

particular size of t. Now Q = ω(1/t) and consequently, P̄ = o(1).
We now repeat such phases of t iterations. Note that if such a phase of t iterations does not

lead to an improvement, then we are in the same situation as initially. Hence the probability
that k such phases do not lead to an improvement is at most P̄ k.

If Q ≤ 1
t and hence P̄ = (1− (1− o(1))Q)t, the probability that k ≥ t iterations do not lead

to an improvement is at most ((1− (1− o(1))Q)t)bk/tc ≤ ((1− (1− o(1))Q)t)(k/t)−1 = (1− (1−
o(1))Q)k−t. Consequently, the time T to find an improvement is stochastically dominated by
t+ Geom((1− o(1))Q).

In the other case that P̄ = o(1), the probability that k ≥ t iterations do not lead to an
improvement is at most P̄ bk/tc ≤ P̄ (k/t)−1 = (P̄ 1/t)k−t. Since P̄ = o(1), we have P̄ 1/t ≤ 1− 1

t =
1 − ω( 1

n). Consequently, the time T to find an improvement is stochastically dominated by
t+ Geom(ω( 1

n)).

In particular, we obtain E[T`] ≤ o(n) + 1+o(1)
(1−ρ∗)`ρ∗ , and by Lemma 6 the o(1)-term gets

swallowed by the o(n) term.

Having shown this bound for the time needed to leave each fitness level, we can now derive
from it a bound for the whole running time. In principle, Wegener’s fitness level method [Weg01]
would be an appropriate tool here, since it – essentially – states that the expected running time
is the sum of the expected times needed to leave each fitness level. For the LeadingOnes
function, however, it has been observed that many algorithms visit each fitness level only with
probability 1/2, so by simply using the fitness level method we would lose a factor of two in the
running-time guarantee. Since we believe that our running-time results are tight apart from
constant factors, we have to care about this factor of two.

The first result in this direction is the precise running-time analysis of the (1 + 1) EA with
static and fitness-dependent mutation rates on LeadingOnes in [BDN10]. The statement
that the running time is half of the sum of the exit times of the fitness levels was stated
(for expected times) before Theorem 3 in [BDN10], but a formal proof (which could easily be
obtained from Theorem 2 there) was not given. In [Sud13, Theorem 4], a refinement of the
fitness-level method was developed. It yields upper bounds for expected running times which
can be below the sum of the improvement times. However, it requires a careful choice of the
method parameters χ, (si)i∈[0..m−1], and (γi,j)i<j . With such a choice, the running time of a
broad class of evolutionary algorithms on LeadingOnes was determined to be the sum of the
improvement times divided by two [Sud13, Section V]. A significantly simpler version of the
fitness level method was recently presented in [DK21]. It was used to give an elementary proof
of the fact that the expected running time of the (1 + 1) EA with general mutation rate on
LeadingOnes is half the sum of the improvement times.

Since we also aim at a stochastic domination result, these results only working with expected
running times are not applicable. A very general result based on stochastic domination was
presented and formally proven in [Doe19]. Unfortunately, this result was formulated only for
algorithms using the same mutation operator in all iterations spent on one fitness level since
this implies that the time to leave a fitness level follows a geometric distribution. This result
is thus not applicable to our self-adjusting (1 + 1) EA. By a closer inspection of the proof, we
observe that the restriction to using the same mutation operator in all iterations on one fitness
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level is not necessary when the result is formulated via geometric distributions. We phrase
the resulting theorem in full generality, i.e., for all unbiased mutations operators (in the sense
introduced by Lehre and Witt [LW12] – we do not present details about this concept, but for
the purpose of this paper it suffices to know that the mutation operators of the (1 + 1) EA and
the (1 + 1) EA>0 satisfy this condition).

Theorem 12. Consider a (1 + 1) EA which may use in each iteration a different unbiased
mutation operator. This choice may depend on the whole history. Consider that we use this
algorithm to optimize the LeadingOnes function. For each ` ∈ [0..n − 1] let T` be a random
variable that, regardless of how the algorithm reached this fitness level, stochastically domi-
nates the time the algorithm takes to go from a random solution with fitness exactly ` to a
better solution. Then the running time T of this (1 + 1) EA on the LeadingOnes function is
stochastically dominated by

T �
n−1∑
`=0

X`T`,

where the X` are uniformly distributed binary random variables and all X` and T` are indepen-
dent. In particular, the expected running time satisfies

E[T ] ≤ 1

2

n−1∑
`=0

E[T`].

Proof. In the proof of Theorem 3 in the full version of [Doe19], equation (1), which is T 0
i =

Geom(qi) + T rand
i+1 , is also valid in the form T 0

i = Ti + T rand
i+1 in our setting, and any following

occurrence of Geom(qi) can be replaced by Ti. This proves our result.

Now Lemma 11 and Theorem 12 easily yield our running-time bound for the self-adjusting
(1 + 1) EA stated in Theorem 5. Both the domination and the expectation version of this
running-time bound are, apart from lower order terms, identical to the bounds which could
easily be shown for the (1 + 1) EA which uses a fitness-dependent mutation rate of ρ(f(x)) :=
ρ∗(f(x), s) when the parent has fitness f(x). This indicates that our self-adjustment tracks the
target mutation rate ρ∗(f(x), s) very well.

Proof of Theorem 5. Choose δ ∈ o(1) such that δ/ ln(1
δ ) = ω(ε) and δ = ω( logn

nε ). Note that

such a δ exists, e.g., δ = max{
√
ε,
√

logn
nε }. Now Lemma 11 gives upper bounds for the times T`

to leave the `-th fitness level, which are independent of the mutation rate present when entering
the fitness level. Hence by Theorem 12, the required stochastic dominance follows.

For the last claim (2) in Theorem 5, the first inequality is an immediate consequence of

the domination statement. For the second one, we use the bound ρ∗ = (1 − o(1)) ln(s+1)
` from

Lemma 6. This implies in particular that for ` = ω(1) we have (1 − ρ∗)` = (1 − o(1))e−ρ
∗` =

(1− o(1)) · 1/(s+ 1). The second step in (2) then follows by plugging in.

5 The Self-Adjusting (1 + 1) EA>0

We now extend our findings for the (1 + 1) EA to the (1 + 1) EA>0, the resampling variant of
the (1 + 1) EA which enforces that offspring are different from their parents by ensuring that at
least one bit is flipped by the standard bit mutation operator. That is, the (1 + 1) EA>0 differs
from the (1 + 1) EA only in the choice of the mutation strength k, which in the (1 + 1) EA
follows the binomial distribution Bin(n, p), and in the (1 + 1) EA>0 follows the conditional
binomial distribution Bin>0(n, p) which assigns every positive integer 1 ≤ m ≤ n a probability
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of
(
n
m

)
pm(1− p)n−m/(1− (1− p)n). The self-adjusting version of the (1 + 1) EA>0 implements

the same change, and can thus be obtained from Algorithm 1 by exchanging line 3 by “Sample
k from Bin>0(n, p)”. Note that this is also the algorithm empirically studied in [DW18].

It is clear that for static mutation rates the (1 + 1) EA>0 is strictly better than the plain
(1 + 1) EA, since it simply avoids the useless iterations in which duplicates of the parent are
evaluated. For example, it reduces the running time of the (1 + 1) EA with static mutation rate
1/n by a multiplicative factor of (e− 1)/e ≈ 0.632 [CD18]. For the self-adjusting (1 + 1) EA>0,
however, it is a priori not evident how the conditional sampling of the mutation strengths
influences the running time. Note that after each iteration in which no bit is flipped by the
(1 + 1) EA (e.g., a (1 − 1/n)n ≈ 1/e fraction of iterations for mutation rate 1/n), the mu-
tation rate is increased by the factor F s. Since these steps are avoided by the self-adjusting
(1 + 1) EA>0, it could, in principle, happen that the actual mutation rates are smaller than
what they should be. We show in this section that this is not the case. Put differently, we show
that the self-adjusting (1 + 1) EA>0 also achieves very efficient optimization times. In contrast
to the results proven in Section 4, however, we derive a bound that is difficult to evaluate in
closed form. For interpreting this bound, we therefore have to resort to a numerical evaluation
of the otherwise formally proven bound. A comparison with the best possible (1 + 1) EA>0

variant using optimal fitness-dependent mutation rates will show that the obtained running
times are very similar, see Section 5.1.

Before we can state the main theorem of this section, Theorem 13, we first need to discuss
how the conditional sampling of the mutation strengths influences the improvement and the
success probabilities. It is not difficult to see that the improvement probability p̂imp(ρ, `) of the
(1 + 1) EA>0, started in an arbitrary search point x with Lo(x) = ` and using mutation rate ρ,
equals

p̂imp(ρ, `) =
(1− ρ)`ρ

1− (1− ρ)n
, (3)

which is the improvement probability of the (1 + 1) EA divided by the probability that the
unconditional standard bit mutation does not create a copy of its input.

Likewise, the success probability p̂suc(ρ, `) of the (1 + 1) EA>0 in the same situation can be
computed as

p̂suc(ρ, `) =
(1− ρ)`(1− (1− ρ)n−`)

1− (1− ρ)n
= 1− 1− (1− ρ)`

1− (1− ρ)n
, (4)

where the probability in the numerator is given by the probability of not flipping one of the
first ` bits times the probability to flip at least one bit in the last n − ` positions (recall here
that flipping 0 bits is not possible with the (1 + 1) EA>0).

As we did for the (1 + 1) EA, we would like to define for the (1 + 1) EA>0 a target mutation
rate ρ̂∗(`, s) to be the one that guarantees that the success probability equals 1/(s + 1). That
is, we would like to set the target rate as the value of ρ̂∗ that solves the equation

p̂suc(ρ̂
∗, `) = 1/(s+ 1). (5)

However, while the corresponding equation for the (1 + 1) EA has always a (unique) solution,
we will show in Lemma 14 that Equation (5) has a solution only if ` < sn/(s+ 1). The reason
is that the mutation operator of the (1 + 1) EA>0 always flips at least one bit, and for the
offspring to be accepted, this flip needs to be in the non-optimized tail of the string. As the
algorithm progresses, the size of the tail decreases and thus the chances of making a successful
mutation decreases as well. In the extreme case of 11 . . . 110, where only the very last bit is
incorrect, the probability of finding this bit is 1/n, even if we condition on flipping exactly one
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bit. In contrast, the (1 + 1) EA always has the “option” not to flip any bits at all, which is
a success by definition. Thus the (1 + 1) EA can achieve success probabilities arbitrarily close
to one by making the mutation rate small enough, while the (1 + 1) EA>0 cannot exceed a
mutation rate of Θ(1/n) for the last steps of optimization.

We therefore have two phases in which the (1 + 1) EA>0 behaves differently. For ` <
sn/(s + 1), our analysis follows closely the one for (1 + 1) EA, except that the algebra gets
considerably more involved. That is, for the regime ` < sn/(s + 1), we define the target
mutation rate ρ̂∗(`, s) via Equation (5) and we show that the mutation rate ρ used by the
(1 + 1) EA>0 approaches ρ̂∗(`, s) quickly, and stays close to ρ̂∗(`, s) until a new fitness level is
reached. For ` ≥ sn/(s+ 1), the mutation rate ρ has negative drift, and quickly reaches values
o(1/n). In this regime, the (1 + 1) EA>0 mimics Randomized Local Search (RLS), which flips
exactly one bit in each round. Indeed, we will show that the time to leave a fitness level is
essentially Geom(1/n)-distributed, as we would expect for the RLS. For technical reasons, we
will set the threshold between the two regimes not at ` = sn/(s+ 1), but at a slightly smaller
value `0. This trick helps to avoid some border cases. More precisely, throughout this section
we fix a positive function η0 = η0(n) = o(1) and `0 ∈ [0, n] such that

`0 := (1− η0)
sn

s+ 1
, where η0 = o(1). (6)

With these preparations, the main result can be stated as follows.

Theorem 13. Let c > 1 be a constant. We consider the self-adjusting (1 + 1) EA>0 with update
strength F = 1 + ε for ε ∈ ω( logn

n ) ∩ o(1), with minimal mutation rate ρmin ∈ o(n−1) ∩Ω(n−c),
maximal mutation rate ρmax = 1, and with arbitrary initial mutation rate ρ0 ∈ [ρmin, ρmax].
Let η0 := max{ε1/6, (εn/ log n)−1/2}, and let `0 := b(1 − η0)sn/(s + 1)c. Then the number
T of iterations until the self-adjusting (1 + 1) EA>0 finds the optimum of the n-dimensional
LeadingOnes function satisfies

T � o(n2) +

`0∑
`=0

X` Geom

(
min

{
ω( 1

n), (1− o(1))
1− (1− ρ̂∗(`, s))n

(1− ρ̂∗(`, s))`ρ̂∗(`, s)

})

+

n∑
`=`0+1

X` Geom((1− o(1))/n),

where the X` are uniformly distributed binary random variables and all X` and all geometric
random variables are mutually independent. Furthermore, all asymptotic notation is solely with
respect to n and can be chosen uniformly for all `. In particular, it holds that

E[T ] ≤ (1 + o(1))
1

2

(
n2

s+ 1
+

`0∑
`=0

1− (1− ρ̂∗(`, s))n

(1− ρ̂∗(`, s))`ρ̂∗(`, s)

)
. (7)

5.1 Numerical Evaluation of the Running-Time Bound in Theorem 13

As mentioned above, the interpretation of the running-time bound (7) is not as straightfor-
ward as the corresponding one of the unconditional (1 + 1) EA. For a proper evaluation,
one would have to compute bounds on ρ̂∗(`, s), and then plug these into the running-time
bound. Since these computations are quite tedious, we will content ourselves with a numer-
ical approximation of ρ̂∗(`, s) and its corresponding running time. The code and selected
results of our numerical computations are available online from our GitHub repository at
https://github.com/CarolaDoerr/2019-LO-SelfAdjusting.
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Figure 2: Optimization times, normalized by the factor 1/n2, of the self-adjusting (1 + 1) EA>0

on the 10 000-dimensional LeadingOnes function for different success ratios s and assuming
an update strength F = 1 + o(1). The chart on the right zooms into the interesting region
around the optimal success ratio.

Before estimating E[T ], we briefly discuss the (1 + 1) EA>0,opt, the (1 + 1) EA>0 variant
that uses in each round the mutation rate p>0,opt(Lo(x)) which maximizes the improvement
probability (3). The performance of this algorithm is a lower bound for the performance of
any (1 + 1) EA>0 variant with fitness-dependent mutation rates, and thus for our self-adjusting
(1 + 1) EA>0. We again do not compute p>0,opt(`) exactly, but only numerically. For n ∈
{100, 1 000, 10 000} and for all 0 ≤ ` < n/2, the numerically computed values are quite close,
but not identical to 1/(` + 1); for n = 10 000 the largest difference between p>0,opt(`) and
1/(` + 1) is 0.0001741 and the smallest is −0.0000382. In Lemma 15 below, we will formally
prove that p>0,opt(`) = Θ(1/`) in this range. For ` ≥ n/2, it is not difficult to see that p>0,opt(`)
is obtained by the limit at 0, in which case the (1 + 1) EA>0 reduces to RLS. The expected
running time of (1 + 1) EA>0,opt is

1 +
1

2

n−1∑
`=0

min

{
n,

1− (1− p>0,opt(`))
n

p>0,opt(`)(1− p>0,opt(`))`

}
For n = 100 (n = 1 000, n = 10 000) this expression evaluates to approximately 0.4077n2

(0.4026n2, 0.4027n2). As a side remark, we note that the expected running time of the best
possible unary unbiased algorithm with fitness-dependent mutation strength distributions for
these problem dimensions has an expected running time of around 0.3884n2 [DW18, Section 3.2].
The (1 + 1) EA>0,opt is thus only around 3.7% worse than this RLSopt heuristic. Put differently,
the cost of choosing the mutation rates from Bin>0(n, p) instead of deterministically using the
optimal fitness-dependent mutation strength is only 3.7%. For comparison, we recall that the
(unconditional) (1 + 1) EA variant using optimal mutation rates has an expected normalized
running time of e/4 ≈ 0.6796, which is about 75% worse than that of RLSopt.

We now estimate how close the performance of the self-adjusting (1 + 1) EA>0 gets to this
(1 + 1) EA>0,opt. To this end, we fix n = 10 000 and compute ρ̂∗(`, s) for different success ratios
s. The expected running times, normalized by the factor 1/n2, are plotted in Figure 2. The
interesting region of success ratios between 1.2 and 1.4 is plotted in the zoom on the right. For
this n, the best success ratio is around 1.285, which gives a normalized expected running time
of around 0.403792. This value is only 0.26% larger than the expected running time of the
(1 + 1) EA>0,opt for n = 10 000. A numerical evaluation for n = 50 000 shows that the optimal
success rate is again around 1.285, giving a normalized expected running time slightly less than
0.40375375.
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5.2 Proof of Theorem 13

We start our proof of Theorem 13 with an elementary lemma, which discusses when Equation (5)
has a solution.

Lemma 14. For every 0 < ` < n, the function p̂suc(ρ, `) given by (4) is strictly decreasing in
ρ in the range ρ ∈ (0, 1], and its extremal values are given by limρ→0 p̂suc(ρ, `) = 1 − `/n and
p̂suc(1, `) = 0.

In particular, if ` < sn/(s + 1) then (5) has a unique solution ρ̂∗(`, s). If ` ≥ sn/(s + 1)
then (5) does not have a solution.

Proof. By Lemma 3, for all 0 < b < c the function f(x) = (1− bx)/(1− cx) is strictly decreasing
in x ∈ R+. Hence, if we compare f(x) for x = ` and x = n then we obtain (1− b`)/(1− c`) >
(1− bn)/(1− cn), or equivalently (1− b`)/(1− bn) > (1− c`)/(1− cn) for all 0 < b < c < 1. Thus
we have shown that the function g(p) := (1− p`)/(1− pn) is strictly decreasing for 0 < p < 1,
and monotonicity of p̂suc follows since it can be expressed via g as

p̂suc(ρ, `) = 1− 1− (1− ρ)`

1− (1− ρ)n
= 1− g(1− ρ).

For the extremal value at ρ = 1, we simply plug in and evaluate p̂suc(1, `) = 0. For ρ → 0, we
use L’Hôpital’s rule to compute

lim
ρ→0

p̂suc(ρ, `) = 1− lim
ρ→0

1− (1− ρ)`

1− (1− ρ)n
= 1− lim

ρ→0

∂
∂ρ(1− (1− ρ)`)

∂
∂ρ(1− (1− ρ)n)

= 1− lim
ρ→0

`(1− ρ)`−1

n(1− ρ)n−1

= 1− `

n
.

The (non-)existence and uniqueness of ρ̂∗ follows immediately from the monotonicity of p̂suc,
since ` < sn/(s + 1) holds if and only if 1/(s + 1) > 1 − `/n, i.e., if and only if the equation
p̂suc(ρ, `) = 1/(s+ 1) has a solution.

Lemma 14 tells us when a target mutation rate ρ̂∗ exists. The following lemma quantifies
ρ̂∗ up to constant factors. This is a slightly less precise analogue of Lemma 6, where we could
obtain ρ∗ up to (1 + o(1)) factors.

Lemma 15 (estimates for ρ̂∗). For 1 ≤ ` < sn/(s+ 1) let ρ̂∗ = ρ̂∗(`, s) be the target mutation
rate, i.e., the unique solution of (5). Then ρ̂∗(`, s) is strictly decreasing in `. Moreover, if n ≥ C
for some sufficiently large constant C = C(s), then p̂suc(ρ, `) satisfies the following bounds.

• Assume that ` = (1− η)sn/(s+ 1) for some 0 < η ≤ 1/(8(s+ 1)2). Then

η

n
≤ ρ̂∗(`, s) ≤ 4η(s+ 1)

n
.

• Assume that ` ≤ (1 − 1
8(s+1)2

) · sn/(s + 1). Let κ = κ(s) := 1
4 ln(s + 1)/ ln(1 +

√
s+ 1).

Then

min{κ/(8(s+ 1)2), 1
4 ln(s+ 1)}

`
≤ ρ̂∗(`, s) ≤ max{s ln(s+ 1)/((s+ 1)κ), ln(s+ 1)}

`
.

In particular, by definition of `0 = (1 − η0)sn/(s + 1), for all 0 < ` ≤ `0 we have ρ̂∗(`, s) ≥
ρ̂∗(`0, s) ≥ η0/n. In the first case we have ρ̂∗(`, s) = Θ(η/n), and in the second case we have
ρ̂∗(`, s) = Θ(1/`), where the hidden constants only depend on s. In particular, in the first case
1− (1− ρ̂∗)` = Θ(η) and 1− (1− ρ̂∗)n = Θ(η), and in the second case 1− (1− ρ̂∗)` = Θ(1) and
1− (1− ρ̂∗)n = Θ(1), with hidden constants that only depend on s.
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Proof. The monotonicity of ρ̂∗ follows since it is defined as the solution of p̂suc(ρ, `) = 1/(s+1),
and p̂suc is strictly decreasing in ρ by Lemma 14, and strictly decreasing in ` by (4). For
the bounds, assume first that ` = (1 − η)sn/(s + 1) for some 0 < η ≤ 1/(8(s + 1)2). Since
p̂suc(ρ, `) is strictly decreasing in ρ, it suffices to show that p̂suc(4η(s + 1)/n, `) ≤ 1/(s + 1) ≤
p̂suc(η/n, `). Then the solution ρ̂∗(`, s) of the equation psuc(ρ, `) = 1/(s + 1) must lie in the
interval [η/n, 4η(s + 1)/n]. In fact, for p̂suc(4η(s + 1)/n, `) we will show for later reference the
slightly stronger statement

p̂suc(4η(s+ 1)/n, `) ≤ 1

s+ 1

(
1− ηs

10

)
. (8)

Let us first note in a preparatory computation by bounding all positive higher order terms with
zero that

(1− η)(1−2ηs `−1
` )(1 + 2η(s+ 1)n−1

n −
8
3η

2(s+ 1)2 (n−1)(n−2)
n2 )

≥ 1 + η − 2(s+ 1)(10
3 s+ 7

3)η2 − 16s(s+ 1)2

3
η4 +O(η/`) +O(η/n) > 1 +

η

10
, (9)

where the last step follows from η ≤ 1/(8(s+ 1)2) if n (and thus ` = Θ(n)) is sufficiently large.
Now we use Lemma 1(f) and (g) to estimate

p̂suc(4η(s+ 1)/n, `) = 1− 1− (1− 4η(s+ 1)/n)`

1− (1− 4η(s+ 1)/n)n

1(f),(g)

≤ 1−
4η(s+ 1)`/n−

(
`
2

)
(4η(s+ 1)/n)2

4η(s+ 1)−
(
n
2

)
(4η(s+ 1)/n)2 +

(
n
6

)
(4η(s+ 1)/n)3

(s+1)`/n≤s
≤ 1− `

n
·

1− 2ηs `−1
`

1− 2η(s+ 1)n−1
n + 8

3η
2(s+ 1)2 (n−1)(n−2)

n2

1/(1−x)≥1+x

≤ 1− `

n
(1− 2ηs `−1

` )(1 + 2η(s+ 1)n−1
n −

8
3η

2(s+ 1)2 (n−1)(n−2)
n2 )

= 1− s

s+ 1
(1− η)(1− 2ηs `−1

` )(1 + 2η(s+ 1)n−1
n −

8
3η

2(s+ 1)2 (n−1)(n−2)
n2 )

(9)

≤ 1− (1 + η/10)
s

s+ 1
=

1

s+ 1

(
1− ηs

10

)
≤ 1

s+ 1
.

Note that the intermediate step also shows the stronger statement (8). For p̂suc(η/n, `), we use
a similar calculation, but with inequalities more in our favor. This time we may simply use
Lemma 1 (d) and (f):

p̂suc(η/n, `) = 1− 1− (1− η/n)`

1− (1− η/n)n
≥ 1− η`/n

η − 1
2η

2
= 1− s

s+ 1
· 1− η

1− η/2
≥ 1− s

s+ 1

=
1

s+ 1
.

This concludes the first bullet point. For the other case, we distinguish two subcases for `.
Assume first that ` ≤ κn. Note that this implies

exp

(
−n ln(s+ 1)

4`

)
≤ exp

(
− ln

(
s√

s+ 1− 1

))
=

√
s+ 1− 1

s
. (10)
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Hence, we obtain for ρ = ln(s+ 1)/(4`),

1− p̂suc

(
ln(s+ 1)

4`
, `

)
=

1− (1− ln(s+ 1)/(4`))`

1− (1− ln(s+ 1)/(4`))n

Lem.1(a),(c)

≤
1− exp

(
− 1

2 ln(s+ 1)
)

1− exp
(
− n ln(s+ 1)/(4`)

)
(10)

≤ 1− 1/
√
s+ 1

1− (
√
s+ 1− 1)/s

=
(s+ 1−

√
s+ 1)/(s+ 1)

(s+ 1−
√
s+ 1)/s

=
s

s+ 1
.

Hence, p̂suc

(
ln(s+1)

4` , `
)
≥ 1/(s + 1), and since p̂suc(ρ, `) is decreasing in ρ, this implies ρ̂∗ ≥

ln(s + 1)/(4`). Since the minimum in the lemma can only be smaller, this yields the first
inequality in this subcase. For the second inequality, we plug in ρ = ln(s+ 1)/` and obtain

1− p̂suc

(
ln(s+ 1)

`
, `

)
=

1− (1− ln(s+ 1)/`)`

1− (1− ln(s+ 1)/`)n

Lem.1(a)

≥
1− exp

(
− ln(s+ 1)

)
1

=
s

s+ 1
,

and analogously as before we may conclude that ρ̂∗ ≤ ln(s + 1)/`, which implies the second
inequality. This concludes the subcase ` ≤ κn. Keep in mind that for this subcase we have
shown the stronger statement ρ̂∗ ≤ ln(s + 1)/`, since we will use this bound for the remaining
case.

So let us turn to the last remaining case, κn ≤ ` ≤ (1− 1
8(s+1)2

)sn/(s+ 1). Since ρ̂∗(`, s) is

decreasing in `, we may make reduce this case to the previous cases as follows.

ρ̂∗(`, s) ≥ ρ̂∗
((

1− 1

8(s+ 1)2

)
sn

s+ 1
, s

)
Case 1
≥ 1

8(s+ 1)2n

`≥κn
≥ κ

8(s+ 1)2`
,

which implies the first inequality. Analogously, using the slightly simpler bound κn ≤ ` ≤
sn/(s+ 1), the second inequality follows from

ρ̂∗(`, s) ≤ ρ̂∗(κn, s) ≤ ln(s+ 1)

κn

`≤sn/(s+1)

≤ s ln(s+ 1)

κ(s+ 1)`
,

which proves the second inequality. This concludes the proof.

In the next lemma we give estimates for how much p̂suc changes for mutation rates which
slightly deviate from ρ̂∗. This gives the analogue of Lemma 7.

Lemma 16 (success probabilities around ρ̂∗). There are constants c = c(s) > 0 and C = C(s) >
0, depending only on s such that the following holds. Let ρ̂∗ = ρ̂∗(`, s) be the target mutation
rate, i.e., the unique solution of (5), and let η0 = η0(n) = o(1) and `0 = (1− η0)sn/(s+ 1) as
in (6). Then for all sufficiently large n, the following holds.

(a) For all 0 < ` ≤ `0 and all δ ∈ [0, c],

p̂suc((1 + δ)ρ̂∗, `) ≤ p̂suc(ρ̂
∗, `) · (1 − 1

2δρ̂
∗`+ C · (δ2 + ρ̂∗2 + δρ̂∗)),

p̂suc((1 + δ)ρ̂∗, `) ≥ p̂suc(ρ̂
∗, `) · (1− sδ + s

2δρ̂
∗`− C · (δ2 + ρ̂∗2 + δρ̂∗)),

p̂suc((1− δ)ρ̂∗, `) ≥ p̂suc(ρ̂
∗, `) · (1 + 1

2δρ̂
∗`− C · (δ2 + ρ̂∗2 + δρ̂∗))

p̂suc((1− δ)ρ̂∗, `) ≤ p̂suc(ρ̂
∗, `) · (1 + sδ − s

2δρ̂
∗`+ C · (δ2 + ρ̂∗2 + δρ̂∗)).

(b) For all 0 ≤ ` ≤ n and all ρ ∈ [ln(2s+ 2)/`, 1].

p̂suc(ρ, `) ≤
1

2
· 1

(s+ 1)
.
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(c) Let ρ0 = ρ0(`) := 1
4 ln((2s+ 2)/(s+ 3))/`, and let ζ = ζ(n) = o(1) be any falling function.

If n is sufficiently large, then the following holds for all 1 ≤ ` ≤ ζn and all ρ ∈ (0, ρ0].

p̂suc(ρ, `) ≥
s+ 3

2s+ 2
=

1

s+ 1

(
1 +

s+ 1

2

)
.

(d) For all `0 < ` ≤ n and all ρ ≥ ρ0 := 4(s+ 1)η0/n,

p̂suc(ρ, `) ≤
1

s+ 1

(
1− η0s

10

)
.

Before we prove Lemma 16, let us briefly comment on the different cases. Part (a)–(c) are
concerned with the case ` < `0. By Lemma 15 we have ρ̂∗ = O(1/`), and even ρ̂∗ = Θ(1/`) if
` is bounded away from `0. Thus part (a) gives bounds that differ only by a factor (1 + o(1))
if δ = o(1) and ` = ω(1), where the latter condition is needed to bound the error term ρ̂∗2 =
O(1/`2). However, for ` = O(1) the bound may be very bad, since then ρ̂∗2 = Ω(1) leads to
a too large error term. Hence, we give bounds in (b) and (c), which are less precise for most
values of `, but which give concrete bounds for ` = O(1). Since these ` constitute a very small
fraction of all values of `, we can afford to work with less tight bounds in this case. Finally, case
(d) deals with the case ` > `0, in which for all ρ ≥ ρ0 = Θ(η0/n) the success rate stays at least
by a factor (1 − Ω(η0)) below the target success rate of 1/(s + 1). We will use this fact later
to argue that the state ρ ≥ ρ0 is unstable, and the algorithm will quickly converge to smaller
values of ρ.

Proof of Lemma 16. (a). The proof will rely on asymptotic expansions of numerator and de-
nominator of p̂suc(ρ, `) = (1− (1− ρ)`)/(1− (1− ρ)n). As we will see, increasing (or decreasing)
ρ by a factor of (1 + δ) will increase (decrease) both numerator and denominator by a factor
of roughly (1 + δ). However, the two factors differ in the second order error term, and this
second order term will dominate the change of the quotient. For this reason we need to make
the asymptotic expansions rather precise, up to third order error terms. Throughout the proof,
all hidden constants in the O-notation are absolute constants that depend only on s.

The asymptotic expansions will rely on Lemma 2. In the following calculations, the short-
hand notation (a), (b), (c) will refer to the corresponding parts of Lemma 2. For convenience,
we repeat part (d) of the lemma, since it is less standard than the expansions of e−x, ln(1− x),
and 1/(1− x).

1− e−y(1 + x) = (1− e−y) (1− x/y + x/2±O(yx)) . (11)

Recall that by Lemma 15 we either have ρ̂∗ = Θ(1/`) if ` is bounded away from sn/(s+1) by
a constant factor, or we have ρ̂∗ = Θ(η/`) = Θ(η/n) if ` = (1− η)sn/(s+ 1), where η ≥ η0. In
both cases, we have ρ̂∗` = O(1). Note that this allows us to remove factors ρ̂∗` from error terms,
as in O(ρ̂∗3`) ⊆ O(ρ̂∗2), which we will use to simplify and unify error terms in the upcoming
calculations. Moreover, the assumptions on ` imply ρ̂∗ = o(1). After these preparations, we can
estimate the term 1− (1− ρ̂∗)` as follows.

1− (1− ρ̂∗)` (c)
= 1−

(
e−ρ̂

∗+
1
2 ρ̂
∗2±O(ρ̂∗3))`

= 1− e−ρ̂∗` · e
1
2 ρ̂
∗2`±O(ρ̂∗3`)

(a)
= 1− e−ρ̂∗`

(
1 + 1

2 ρ̂
∗2`±O(ρ̂∗3`)

)
(11)
= (1− e−ρ̂∗`)(1− 1

2 ρ̂
∗ + 1

4 ρ̂
∗2`±O(ρ̂∗2)).
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We can also turn the approximation around by dividing both sides through the second bracket
on the right-hand side and using the expansion of 1/(1− x):

1− e−ρ̂∗` (b)
= (1− (1− ρ̂∗)`)(1 + 1

2 ρ̂
∗ − 1

4 ρ̂
∗2`±O(ρ̂∗2)). (12)

Now we do an analogous computation for 1− (1− (1 + δ)ρ̂∗)`. Since this part of the calculation
goes through for positive and negative deviations alike, let us momentarily consider any δ ∈
[−c, c]. Then

1− (1− (1 + δ)ρ̂∗)`
(c)
= 1−

(
e−(1+δ)ρ̂∗+

1
2 (1+δ)2ρ̂∗2−O(ρ̂∗3))`

= 1− e−ρ̂∗` · e
1
2 ρ̂
∗2`−δρ̂∗`+δρ̂∗2`±O(ρ̂∗3`+δ2ρ̂∗2`)

(a)
= 1− e−ρ̂∗`

(
1 + 1

2 ρ̂
∗2`− δρ̂∗`+ δρ̂∗2`±O(ρ̂∗3`+ δ2ρ̂∗2`2 + δρ̂∗3`2)

)
(11)
= (1− e−ρ̂∗`)(1− 1

2 ρ̂
∗ + δ + 1

4 ρ̂
∗2`− 1

2δρ̂
∗`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)).

We plug this equation into (12), divide both sides by 1 − (1 − ρ̂∗)` and multiply out the right
hand side, and obtain for all δ ∈ [−c, c],

1− (1− (1 + δ)ρ̂∗)`

1− (1− ρ̂∗)`
= 1 + δ − 1

2δρ̂
∗`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗). (13)

Unfortunately, we cannot easily replicate the calculation for n, since the bound ρ̂∗` = O(1) does
not have an analogue for n. However, we can replicate the calculation for α` instead of `, where
we set α := s+1

s for concreteness. Note that we have chosen α such that n > α`. Now consider
the function

f(δ, x) :=
1− (1− (1 + δ)ρ̂∗)x

1− (1− ρ̂∗)x
.

The same argument as above gives f(δ, α`) = 1 + δ− 1
2δρ̂
∗α`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)

)
. So far we

have considered arbitrary δ, but let us now constrict to δ ∈ (0, c]. Then the function f is of the
form (1− bx)/(1− cx) with b < c, which is strictly decreasing for x ∈ R+ by Lemma 3. Hence,
for δ ∈ (0, c],

1 <
1− (1− (1 + δ)ρ̂∗)n

1− (1− ρ̂∗)n
= f(δ, n) < f(δ, α`) = 1 + δ − 1

2δρ̂
∗α`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗). (14)

Combining this with (13), we obtain for δ ∈ [0, c],

1− (1− (1 + δ)ρ̂∗)`

1− (1− (1 + δ)ρ̂∗)n

/ 1− (1− ρ̂∗)`

1− (1− ρ̂∗)n
≥

1 + δ − 1
2δρ̂
∗`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)

1 + δ − 1
2δρ̂
∗α`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)

(b)
= 1 + 1

2δρ̂
∗(α− 1)`±O(ρ̂∗2 + δ2 + δρ̂∗) =: 1 + β.

Note that the left hand side equals (1− p̂suc((1 + δ)ρ̂∗, `))/(1− p̂suc(ρ̂
∗, `)). Since p̂suc(ρ̂

∗, `) =
1/(s+ 1), we thus have (1− p̂suc((1 + δ)ρ̂∗, `)) ≥ (1 + β)s/(s+ 1), or equivalently

p̂suc((1 + δ)ρ̂∗, `) ≤ 1− s

s+ 1
(1 + β) =

1

s+ 1
(1− sβ) = p̂suc(ρ̂

∗, `) · (1− sβ).

Using α− 1 = 1/s, this proves the first inequality. The second follows by the same calculation,
but using the trivial “> 1” bound from (14). For the other two inequalities, let again δ ∈ [0, c]
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and observe that the function f(−δ, y) is of the form ((1− by)/(1− cy))−1 with b < c, and thus
it is strictly increasing in y. Hence, for δ ∈ (0, c],

1− (1− (1− δ)ρ̂∗)n

1− (1− ρ̂∗)n
= f(−δ, n) > f(−δ, α`) = 1− δ + 1

2δρ̂
∗α`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗), (15)

which yields by plugging in −δ into (13),

1− (1− (1− δ)ρ̂∗)`

1− (1− (1− δ)ρ̂∗)n
/ 1− (1− ρ̂∗)`

1− (1− ρ̂∗)n
≤

1− δ + 1
2δρ̂
∗`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)

1− δ + 1
2δρ̂
∗α`±O(ρ̂∗2 + δ2ρ̂∗`+ δρ̂∗)

= 1− 1
2δρ̂
∗(α− 1)`±O(ρ̂∗2 + δ2 + δρ̂∗) =: 1− β′.

As before, we may deduce p̂suc((1 + δ)ρ̂∗, `) ≥ p̂suc(ρ̂
∗, `) · (1 + sβ′), which proves the third

inequality. For the fourth, we repeat the same calculation, but use that the left hand side
of (15) is trivially at most 1. This concludes the proof of (a).

For later reference, we claim that the same derivation as above also shows that for any
constant c > 0 we may write for all δ ∈ [−c, c] that

1− (1− (1 + δ)ρ̂∗)n−`

1− (1− ρ)n−`
= 1±O(|δ|+ ρ̂∗2), (16)

where the hidden constants may depend on c and s. Indeed, if n− ` ≥ α`, then we may replace
n by n − ` in (15), which is a stronger statement than (16). Otherwise we have ` ≥ (α + 1)n,
and hence n − ` = Θ(n) ⊆ Θ(`), and thus the derivation of (13) remains valid if we replace `
by n− `. This proves (16).
(b). By Lemma 14 the function p̂suc(ρ, `) is strictly decreasing in ρ. Thus we may estimate

p̂suc (ρ, `) ≤ p̂suc

(
ln(2s+ 2)

`
, `

)
≤ 1−

1− (1− ln(2s+2)
` )`

1
=
(

1− ln(2s+ 2)

`

)`
≤ e− ln(2s+2) = 1/(2s+ 2).

(c). Again, by Lemma 14 the function p̂suc(ρ, `) is strictly decreasing in ρ. Hence

p̂suc (ρ, `) ≥ p̂suc (ρ0, `) = 1− 1− (1− ρ0)`

1− (1− ρ0)n
≥ 1− 1− e−2ρ0`

1− o(1)
n large
≥ 1−

(
1− s+ 3

2s+ 2

)
=

s+ 3

2s+ 2

(d). By Lemma 14, the function p̂suc(ρ, `) is strictly decreasing in ρ, and by (4) it is strictly
decreasing in `. Hence,

p̂suc(ρ, `) ≤ p̂suc(ρ0, `0)
(8)

≤ 1

s+ 1

(
1− η0s

10

)
.

This concludes the proof.

As final preparation for the main proof, we estimate the improvement probability for mu-
tation rates that (as we will show) the algorithm is mostly using.

Lemma 17. There is a constant C = C(s) > 0 such that the following holds. Let η0 = o(1), γ =
o(1) and let `0 = (1− η0)sn/(s+ 1).
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(a) If n is sufficiently large, then for all ` ∈ [1..`0] the following holds. Let ρ̂∗ := ρ̂∗(`, s), and
let ρ ∈ [(1− γ)ρ̂∗, (1 + γ)ρ̂∗]. Then

p̂imp(ρ̂∗, `)(1− C(γ + 1/n)) ≤ p̂imp(ρ, `) ≤ p̂imp(ρ̂∗, `)(1 + C(γ + 1/n)).

In other words, p̂imp(ρ, `) = (1±O(γ + 1/n))p̂imp(ρ̂∗, `), uniformly over all ` ∈ [1..`0] and
all ρ ∈ [(1− γ)ρ̂∗, (1 + γ)ρ̂∗].

(b) For all ρ ≤ η0/n and all ` ≥ `0,

1− Cη0

n
≤ p̂imp(ρ, `) ≤ 1 + Cη0

n

In particular, p̂imp(ρ, `) = (1± o(1))/n.

Proof. (a). Consider first the case ` ≥
√
n, where the value

√
n is chosen rather arbitrarily.

We use the formula p̂imp(ρ, `) = p̂suc(ρ, `) · ρ/(1 − (1 − ρ)n−`), and bound all three factors
independently. For the factor ρ, it is trivial that ρ = (1 ± O(γ))ρ̂∗. For the other two factors,
by Lemma 15 we have ρ̂∗` = O(1) ∩ Ω(η0). Thus, by Lemma 16 (a),

p̂suc(ρ, `) = p̂suc(ρ̂
∗, `)(1±O(γρ̂∗`+ γ2 + ρ̂∗2 + γρ̂∗)) = p̂suc(ρ̂

∗, `)(1±O(γ + 1/n)).

For the third term, since n− ` = Ω(n), we have shown in (16) that

1− (1− ρ)n−`

1− (1− ρ̂∗)n−`
= 1±O(γ + ρ̂∗2) = 1±O(γ + 1/n).

Altogether, all three terms give factors of the form 1±O(γ+1/n) if we vary ρ, and so p̂imp(ρ, `)
deviates from p̂imp(ρ̂∗, `) by a factor of the same form.

For ` <
√
n, we directly use the formula p̂imp(ρ, `) = (1−ρ)`ρ/(1− (1−ρ)n). In this regime,

since ρ̂∗ = Θ(1/`) by Lemma 15, we may use trivial bounds on the denominator:

1 ≥ 1− (1− ρ)n = 1− e−Ω(ρn) = 1− e−Ω(
√
n) = 1−O(1/n).

These trivial bounds show that any two expressions of the form 1 − (1 − ρ)n can deviate at
most by a factor 1±O(1/n). For the other two factors of p̂imp(ρ, `), the factor ρ again satisfies
trivially ρ = (1±O(γ))ρ̂∗. Finally, for the factor (1− ρ)` we use the estimate

(1− ρ)`

(1− ρ̂∗)`
=

(
1− ρ− ρ̂∗

1− ρ̂∗

)`
= (1±O(γρ̂∗))` = e±O(γρ̂∗`) = e±O(γ) = 1±O(γ).

Again, all three factors of p̂imp(ρ, `) deviate at most by factors 1±O(γ+ 1/n) if we vary ρ, and
thus p̂imp(ρ, `) = p̂imp(ρ̂∗, `)(1±O(γ + 1/n)).

(b). We will evaluate the formula p̂imp(ρ, `) = (1−ρ)`ρ/(1− (1−ρ)n). For the denominator,
we again use the asymptotic expansion

1− (1− ρ)n = 1− e−(ρ+O(ρ2))n = 1− e−ρn(1−O(η0)) = 1− (1− ρn(1±O(η0)))

= ρn(1±O(η0)).

Similarly, we also get (1− ρ)` = 1−O(ρ`) = 1−O(η0). Hence,

p̂imp(ρ, `) =
(1− ρ)`ρ

(1− (1− ρ)n)
=

(1−O(η0))ρ

ρn(1±O(η0))
= (1±O(η0))

1

n
.
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With Lemmas 16 and 17 at hand, the analysis for 0 ≤ ` ≤ `0 is almost completely analogous
to the case of the (1 + 1) EA, and we only give a sketch.

Lemma 18. Let c > 1 be a constant. Consider a run of the self-adjusting (1 + 1) EA>0 with
update strength F = 1+ε for some ε = ω( logn

n )∩o(1) and with ρmin ∈ o(n−1)∩Ω(n−c), ρmax = 1,

on the n-dimensional LeadingOnes function. Let η0 = max{ε1/6, (nε/ log n)−1/2} and let
`0 = (1 − η0)sn/(s + 1). Assume that the self-adjusting (1 + 1) EA>0 is started with a search
point of fitness ` ∈ [0..`0] and an arbitrary mutation rate ρ ∈ [ρmin, ρmax]. Let ρ̂∗ = ρ̂∗(`, s).
Then the number T` of iterations until a search point with fitness better than ` is found is
stochastically dominated by

T` � o(n) + Geom(min{ω( 1
n), (1− o(1))(1− ρ̂∗)`ρ̂∗/(1− ρ̂∗)n}).

In particular, E[T`] ≤ o(n) + (1−ρ̂∗)n
(1−ρ̂∗)`ρ̂∗ . All hidden factors in the asymptotic notation can be

chosen independently of `.

Proof Sketch. We only outline the parts that differ from the analysis of the (1 + 1) EA. Consider
first the case that ζn ≤ ` ≤ `0, where we choose ζ := ε1/3. Then by Lemma 15 we have
ρ̂∗ = O(1/(ζn)) ∩ Ω(η0/n) and ρ̂∗` = O(1) ∩ Ω(η0). Moreover, we also choose δ = ε1/3. By
Lemma 16 (a),

p̂suc((1 + δ)ρ̂∗, `) ≤ p̂suc(ρ̂
∗, `) · (1− 1

2δρ̂
∗`±O(δ2 + ρ̂∗2 + δρ̂∗)), and

p̂suc((1− δ)ρ̂∗, `) ≥ p̂suc(ρ̂
∗, `) · (1 + 1

2δρ̂
∗`±O(δ2 + ρ̂∗2 + δρ̂∗)).

By our choices, δ2 = δε1/3 ⊆ o(δρ̂∗`) and ρ̂∗2 = O(ρ̂∗/(ζn)) ⊆ o(δρ̂∗`). Therefore, the error
terms are of minor order, and we may bound

p̂suc((1 + δ)ρ̂∗, `) ≤ p̂suc(ρ̂
∗, `) · (1− (1± o(1))1

2δρ̂
∗`), and

p̂suc((1− δ)ρ̂∗, `) ≥ p̂suc(ρ̂
∗, `) · (1 + (1± o(1))1

2δρ̂
∗`).

Note that, up to minor order terms, this is exactly the same expression as for the (1 + 1) EA in
Lemma 7, since we consider δ < 1/ ln(s+ 1). Thus the proof of Lemma 9 carries over, and after
a short initial phase most rounds will be spent with mutation rates ρ ∈ [(1 − δ)ρ̂∗, (1 + δ)ρ̂∗].
Moreover, by Lemma 17 (a), for any ρ ∈ [(1 − δ)ρ̂∗, (1 + δ)ρ̂∗] the improvement probability is
p̂imp(ρ, `) = (1 ± o(1))p̂imp(ρ̂∗, `), where p̂imp(ρ̂∗, `) = (1 − ρ̂∗)`ρ̂∗/(1 − ρ̂∗)n. Thus the proof
of Lemma 11 also carries over, and we obtained the domination statement as claimed. Note
that with our choices we have δ/ log(1/δ) = ω(ε) and δ = ω( logn

nε ), as required in the proof of
Lemma 11.

For 0 < ` < ζn we use the same proof strategy, but don’t need to care about constant
factors anymore, since the expected time to leave the level is o(n). Moreover, we know that
ρ̂∗ = Θ(1/`) in this regime by Lemma 15. By Lemma 16 (b) and (c), there are constants
c1, c2 > 0 such that the mutation rate ρ tends to the interval I := [c1/`, c2/`] in the following
sense. Whenever the mutation rate ρ is larger than c2/` then the success rate p̂suc(ρ, `) is larger
than 1/(s + 1) by a constant factor. As in the proof of Lemma 8, this implies that ρ has a
multiplicative drift with factor 1 − Ω(ε). Similarly, if the mutation rate is smaller than c1/`
then the success rate p̂suc(ρ, `) is smaller than 1/(s + 1) by a constant factor, and 1/ρ has a
multiplicative drift with factor 1− Ω(ε). Consequently, with probability 1− o(1) the mutation
rate will reach the interval I within O(log n/ε) rounds, or a new level is reached. As in the
proof of Lemma 11 we can argue that in each subsequent round, ρ is in the interval I with
probability 1−o(1), and we may translate this property into a domination statement. The only

28



difference is that in the interval I we know ρ only up to a constant factor, so we also know the
improvement probability p̂imp(ρ, `) only up to a constant factor. Hence, we obtain that T` is
dominated by o(n) + Geom(min{ω(1/n), O(p̂imp(ρ̂∗, `))}. Since p̂imp(ρ̂∗, `) = Θ(1/`) = ω(1/n),
we get T` � o(n) + Geom(ω(1/n)), and the claim follows.

The following lemma gives the corresponding statement for the case ` ≥ `0.

Lemma 19. Let c > 1 be a constant. Consider a run of the self-adjusting (1 + 1) EA>0 with
update strength F = 1 + ε for some ε = ω( logn

n ) ∩ o(1) and with ρmin ∈ o(n−1) ∩ Ω(n−c),

ρmax = 1, on the n-dimensional LeadingOnes function. Let η0 = max{ε1/6, (nε/ log n)−1/2}
and let `0 = (1 − η0)sn/(s + 1). Assume that the self-adjusting (1 + 1) EA>0 is started with
a search point of fitness ` ∈ [`0..n] and an arbitrary mutation rate ρ ∈ [ρmin, ρmax]. Then the
number T` of iterations until a search point with fitness better than ` is found is stochastically
dominated by

T` � o(n) + Geom((1− o(1))/n).

In particular, E[T`] ≤ (1 + o(1))n. The hidden constants in the o-notation can be chosen
independently of `.

Proof Sketch. Again the proof is analogous to the proof of Lemma 11, and we only outline the
differences. By Lemma 16, whenever the mutation rate ρ satisfies ρ ≥ ρ0 := η0/n then the
success probability is at most (1 − η0s/10)/(s + 1) = (1 − Ω(η0)) · 1/(s + 1). As in the proof
of Lemma 8, we conclude that 1/ρ has a multiplicative drift towards 1/ρ0 with drift factor
1 − Ω(εη0) = 1 − ω(log n/n). Thus with probability 1 − o(1) the mutation rate falls below ρ0

within O(log n/(εη0)) = o(n) rounds, or a new level is reached. As in the proof of Lemma 11,
in each subsequent round ρ is in the interval I with probability 1 − o(1). By Lemma 17 (b),
in each such round the improvement probability is at least (1 − o(1))/n. Hence, as before we
obtain that T` � o(n) + Geom(min{ω(1/n), (1 − o(1))/n)}. Simplifying the minimum yields
T` � o(n) + Geom((1− o(1))/n)), as claimed.

With the domination statements, our main result on the (1 + 1) EA>0 follows directly from
Theorem 12.

Proof of Theorem 13. Lemmas 18 and 19 give a domination bound on T` for all ` ∈ [0..n].
Theorem 13 thus follows from Theorem 12 in the same way as Theorem 5. Note that the
phrasing in Theorem 12 covers both the (1 + 1) EA and the (1 + 1) EA>0. We omit the
details.

6 Fixed-Target Running Times

Our main focus in the previous sections, and in particular in the sections presenting numerical
evaluations of the self-adjusting (1 + 1) EA variants (i.e., Sections 4.1 and 5.1), was on com-
puting the expected optimization time. We now follow a suggestion previously made in [CD17],
and study the anytime performance of the algorithms, by analyzing their expected fixed-target
running times (a notion introduced already in [DJWZ13]). That is, for an algorithm A we re-
gard for each target value 0 ≤ v ≤ n the expected number E[T (n,A, v)] of function evaluations
needed by algorithm A until it evaluates for the first time a solution x which satisfies Lo(x) ≥ v.

Figure 3 plots these expected fixed target running times of selected algorithms for n = 10 000.
The legend also mentions the normalized expected overall optimization time, i.e., E[T (n =
10 000, A, v)]/n2. We do not plot the (1 + 1) EA>0,opt, since its running time would be indis-
tinguishable in this plot from the self-adjusting (1 + 1) EA>0 with success ratio s = 1.285. For
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Figure 3: Expected fixed target running times for LeadingOnes in dimension n = 10 000. The
curve of (1 + 1) EA>0,opt is indistinguishable from that of the (1 + 1) EA>0 with success ratio
s = 1.285 and the curve of the (1 + 1) EAopt indistinguishable from that of the (1 + 1) EA with
success ratio s = e − 1. The values shown in the legend are the expected optimization times,
normalized by 1/n2.

the same reason we do not plot the (1 + 1) EAopt (i.e., the (1 + 1) EA with optimal fitness-
dependent mutation rate p = n/(` + 1)), whose data is almost identical to that of the self-
adjusting (1 + 1) EA with the optimal success ratio s = e− 1.

We plot in Figure 3 the (1 + 1) EA with one-fifth success rule (i.e., success ratio s = 4).
While its overall running time is the worst of all algorithms plotted in this figure, we see
that its fixed-target running time is better than that for RLS for all targets up to 6 436. Its
overall running time is very close to that of the (1 + 1) EA with the best static mutation rate
p ≈ 1.59/n [BDN10], and for all targets v ≤ 9 017 the expected running time is smaller.

We already discussed that the expected optimization time of the two algorithms
(1 + 1) EAopt and the self-adjusting (1 + 1) EA with success ratio s = e − 1 is around 36%
worse than that of RLS. However, we also see that their fixed-target performances are better
for all targets up to v = 7 357. For example, for v = 5 000 their expected first hitting time is
slightly less than 17 ∗ 106 and thus about 36% smaller than that of RLS.

As we have seen already in Figure 2, the self-adjusting (1 + 1) EA>0 with success ratio s = 4
(i.e., using a one-fifth success rule) has an overall running time similar, but slightly better than
RLS. We recall that its target mutation rate is 0 for values v ≥ 4n/5. In this regime, the slope
of its fixed target running-time curve is thus identical to that of RLS. For the self-adjusting
(1 + 1) EA>0 with s = 1.285 this is the case for v slightly larger than 5 600. The (1 + 1) EA>0,opt

with optimal fitness-dependent mutation rate uses mutation rate p = 0 for v ≥ 4 809.
We also observe that the best unary unbiased black-box algorithm for with fitness-dependent

mutation strength, which is the RLS-variant using in each step the flipk operator with k =
bn/(Lo(x) + 1)c (see [DW18,Doe19] for more detailed discussions), is also best possible for all
intermediate targets v < n. It is not difficult to verify this formally, the main argument being
that the fitness landscape of LeadingOnes is non-deceptive.
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7 Conclusions

We have proven upper bounds for the expected time needed by the (1 + 1) EA and (1 + 1) EA>0

with success-based multiplicative update rules using constant success ratio s and update
strengths F = 1 + o(1) to optimize the n-dimensional LeadingOnes function. In particu-
lar, we have shown that the (1 + 1) EA with one-e-th success rule achieves the running time
of the (1 + 1) EA with optimal fitness-dependent mutation rate up to minor order terms (for
update strengths F = 1 + o(1)). For the (1 + 1) EA>0, numerical evaluations for n = 10 000
and n = 50 000 suggest a success ratio of around 1.285, i.e., a one-2.285-th success rule. With
this success rate the self-adjusting (1 + 1) EA>0 achieves an expected running time around
0.40375n2 + o(n2), which, for n = 10 000, compares to a best possible expected running time
(among all (1 + 1) EA>0 variants using fitness-dependent mutation rates) of 0.4027n2 + o(n2).
Our precise upper bounds are stochastic domination bounds, which allow to derive other mo-
ments of the running time.

Our work continues a series of recent papers rigorously demonstrating advantages of con-
trolling the parameters of iterative heuristics during the optimization process. Developing a
solid understanding of problems for which simple success-based update schemes are efficient,
and which problems require more complex control mechanisms (e.g., based on reinforcement
learning [DDY16], or techniques using statistics for the success rate within a window of itera-
tions [LOW17,DLOW18]) is the long-term goal of our research.
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