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Abstract

Runtime analysis aims at contributing to our understanding of evolutionary
algorithms through mathematical analyses of their runtimes. In the context of dis-
crete optimization problems, runtime analysis classically studies the time needed
to find an optimal solution. However, both from a practical and from a theoretical
viewpoint, more fine-grained performance measures are needed to gain a more de-
tailed understanding of the main working principles and their resulting performance
implications. Two complementary approaches have been suggested: fixed-budget
analyses and fixed-target analyses.

In this work, we conduct an in-depth study on the advantages and the limitations
of fixed-target analyses. We show that, different from fixed-budget analyses, many
classical methods from the runtime analysis of discrete evolutionary algorithms yield
fixed-target results without greater effort. We use this to conduct a number of new
fixed-target analyses. However, we also point out examples where an extension of
existing runtime results to fixed-target results is highly non-trivial.

1 Introduction

The classic performance measure in the theory of evolutionary computation [Jan13, DN20]
is optimization time, that is, the number of fitness evaluations that an algorithm uses
to find an optimal solution for a given optimization problem. Often only expected op-
timization times are analyzed and reported, either for reasons of simplicity or because
some analysis methods like certain drift theorems [Len20] only yield such bounds.

Some works give more detailed information, e.g., the expectation together with a tail
estimate [Köt16, Wit14, DG10]. In some situations, only runtime bounds that hold with
some or with high probability are given, either because these are easier to prove or more
meaningful (see, e.g., the discussion in [Doe19b] on such statements for estimation-of-
distribution algorithms), or because the expectation is unknown [DL17] or infinite. The
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use of the notion of stochastic domination [Doe19a] is another way to give more detailed
information on runtimes of algorithms.

Nevertheless, all these approaches reduce the whole optimization process to a single
point in time: the moment in which an optimal solution is found. For various reasons,
more detailed information on the whole process is also desirable, including the following:

(1) Evolutionary algorithms, different from most classic algorithms, are so-called any-
time algorithms. This means that they can be interrupted at essentially any point of time
and they still provide some valid solution (possibly of a low quality). The optimization
time as the only performance measure gives no information on how good an algorithm
is as an anytime algorithm. Such information, however, is of great interest in practice.
It can be used, for instance, if one does not know in advance how much time can be
allocated to the execution of an algorithm, or when it is important to report whenever a
certain milestone (e.g., quality threshold) has been reached.

(2) When several iterative optimization heuristics are available to solve a problem, one
can try to start the optimization with one heuristic and then, at a suitable time, switch
to another one which becomes more powerful at that time. To decide which heuristic to
use up to a certain point of time or solution quality, more detailed information than the
optimization time is needed.

We note that the importance of reporting runtime profiles instead of only optimiza-
tion times has for a long time been recognized in algorithm benchmarking [HAR+20,
DWY+18]. These fine-grained performance analyses have helped to advance our un-
derstanding of evolutionary computation methods, and have contributed significantly to
algorithm development. It is therefore surprising that such more fine-grained notions
play only a marginal role in the runtime analysis literature. The following two notions
have been used in the runtime analysis community.

• Fixed-budget analyses: For a fixed number (“budget”) of fitness evaluations, one
studies the (usually expected) quality of the best solution found within this budget.

• Fixed-target analyses: For a fixed quality threshold, one studies the (usually ex-
pected) time (often measured in terms of function evaluations) needed to find a
solution of at least this quality.

The main goal of this work is a systematic fixed-target runtime analysis. We provide,
in particular, a comparison of different more fine-grained performance measures (Sec-
tion 2), a survey of the existing results (Section 4), an analysis how the existing methods
to prove runtime analysis results can be used to also give fixed-target results (Sections 5
and 6) together with several applications of these methods, some to reprove existing re-
sults, others to prove new fixed-target results. The main insight here is that fixed-target
results often come almost for free when one can prove a result on the optimization time,
so it is a waste to not report them explicitly. However, in Section 7 we also point out
situations in which the runtime is well understood, but the derivation of fixed-target
results appears very difficult.

The preliminary version of this work has been published in proceedings of the GECCO
conference [BDDV20]. In this present version, apart for implementing properly the pieces
that have been shortened or omitted during to the conference page limit and extending
some of the results to evolutionary algorithms with fast mutation operators, we have
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introduced new versions of variable and multiplicative drift theorems that explicitly use
the expected potential at the moment of stopping and hence yield better bounds in the
fixed-target settings.

2 Fine-Grained Runtime Analysis: Fixed-Budget

and Fixed-Target Analyses

Among the notions other than the time required to find an optimum, the first notion
to become the object of rigorous mathematical analysis is fixed-budget analysis [JZ14a].
Fixed-budget analysis asks, given a computational budget b ∈ N, for the expected fitness
of the best solution seen within b fitness evaluations. In the first paper devoted to this
topic (extending results presented at GECCO 2012), Jansen and Zarges [JZ14a] investi-
gated the fixed-budget behavior of two simple algorithms, randomized local search (RLS)
and the (1 + 1) evolutionary algorithm (the (1 + 1) EA), on a range of frequently ana-
lyzed example problems. For these two elitist algorithms, fixed budget analysis amounts
to computing or estimating f(xb), where f is the objective function and xb is the b-th
search point generated by the algorithm. Jansen and Zarges considered small budgets,
that is, budgets b below the expected optimization time, and argued that instead of larger
budgets, one should rather regard the probability to find the optimum within the budget.

Jansen and Zarges [JZ14a] obtained rather simple expressions for the fixed-budget fit-
ness obtained by RLS, but those for the (1 + 1) EA were quite complicated. In [JZ14b],
the same authors evaluated artificial immune systems (AIS). In terms of the classic opti-
mization time, AIS are typically worse than evolutionary algorithms. Interestingly, in the
fixed-budget perspective with relatively small budgets, AIS were proven to outperform
evolutionary algorithms, confirming our claim that fine-grained runtime results can lead
to insights that cannot be (easily) obtained from studying optimization times only.

These first results were achieved using proof techniques highly tailored to the consid-
ered algorithms and problems. Given the innocent-looking definition of fixed-budget
fitness, the proofs were quite technical even for simple settings like RLS optimizing
LeadingOnes. The analyses were even more complicated for the (1 + 1) EA and many
analyses could not cover the whole range of budgets (e.g., for LeadingOnes, only bud-
gets below 0.5n2 were covered, whereas the (strongly concentrated) optimization time is
around 0.86n2, see [BDN10]).

In [DJWZ13], a first general approach to proving fixed-budget results was presented.
Interestingly, it works by estimating fixed-target runtimes and then using strong concen-
tration results to translate the fixed-target result into a fixed-budget result. This might
be the first work that explicitly defines the fixed-target runtime, without however using
this name. The paper [LS15] also uses fixed-target runtimes (called approximation times,
see [LS15, Corollary 3]) for a fixed-budget analysis, but most of the results in the paper
are achieved by employing drift arguments. An explicit collection of drift theorems de-
signed for fixed-budget analyses, along with an application to derive fixed-budget results
for the well-studied LeadingOnes problem, can be found in [KW20].

The first fixed-budget analysis for a combinatorial optimization problem was con-
ducted in [NNS17]. Subsequently, several papers more concerned with classical op-
timization time also formulated their results in the fixed-budget perspective, among
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them [DDY16b, DDY20, DDY16a].
A similar notion of fine-grained runtime analysis, called the unlimited budget anal-

ysis [HJZ19], was recently proposed. It can be seen as either a complement to the
fixed-budget analysis (as its primary goal is to measure how close an algorithm gets to
the optimum of the problem in a rather large number of steps) or as an extension of
fixed-budget analysis which goes beyond using small budgets only.

For the second main fine-grained runtime notion, fixed-target analysis, due to it being
a direct extension of the optimization time, it is harder to attribute a birthplace. As
we argue also in Section 5, the fitness level method is intimately related to the fixed-
target view. As such, many classic papers can be seen as fixed-target works, which is
particularly true for papers where the fitness level method is not used as a black box,
but one explicitly splits a runtime analysis into the time to reach a particular fitness and
the another time to find the optimum, as done, e.g., in [Wit06]. The first, to the best
of our knowledge, explicit definition of the fixed-target runtime in a runtime analysis
paper can be found in the above-mentioned fixed-budget work [DJWZ13, Section 3].
There, for a given algorithm A, a given objective function f (to be maximized), and a
given target k ∈ R, the fixed-target runtime TA,f (k) is defined as the number of fitness
evaluations after which a search point of fitness at least k is found. Since this notion
was merely used as a tool in a proof, the name fixed-target runtime was not used yet.
The paper [CD18] argued that fixed-target results, coined runtime profiles in [CD18],
should be made explicit, to provide more information to practitioners. The name fixed-
target analysis was, in the context of runtime analysis, first used in the GECCO 2019
student workshop paper [VBB+19], the only other work putting fixed-target analysis
into its center. It is also worth noting that certain papers combine theoretical results
for optimization time and experimental fixed-target results, [DYvR+18] being a good
example, which suggests that there is a demand for a method for an easy translation of
the results between these two areas.

In summary, we see that there are generally not too many runtime results that give
additional information on how the process progresses over time. Since fixed-budget anal-
ysis, as a topic on its own, was introduced earlier into the runtime analysis community,
there are more results on fixed-budget analysis. At the same time, by looking over all
fixed-budget and fixed-target results, it appears that the fixed-budget results tend to be
harder to obtain.

From the viewpoint of designing dynamic algorithms, that is, algorithms that change
parameter values or sub-heuristics during the runtime, it appears to us that fixed-budget
results are more useful for time-dependent dynamic choices, whereas fixed-target results
aid the design of fitness-dependent schemes. If algorithm A with a budget of b computes
better solutions than algorithm B with the same budget, then in a time-dependent scheme
one would rather run algorithm A for the first b iterations than B. However, if the runtime
to the fitness target x of algorithm A is lower than that of B, then a fitness-dependent
scheme would use rather A than B to reach a fitness of at least x.

Since we do not see that the increased difficulty of obtaining fixed-budget results is
compensated by being significantly more informative or easier to interpret and since we
currently see more fitness-dependent algorithm designs (e.g., [BDN10, DDE15, DDY16b,
LS20] than time-dependent ones (where, in fact, we are only aware of a very rough proof-
of-concept evolutionary algorithm in the early work [JW06]), we advocate in this work
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Algorithm 1 The (µ+ λ) EA to maximize f : {0, 1}n → R
Require: mutation strength distribution M, initialization distribution D

for i ∈ [µ] do
xi ← sample from D
query f(xi)

end for
X ← {x1, . . . , xµ}
while true do

for i ∈ [λ] do
j ← sample uniformly from [µ]
`← sample from M
yi ← flip ` pairwise different, uniformly chosen bits in xj
query f(yi)

end for
Y ← {y1, . . . , yλ}
X ← µ best solutions from X ∪ Y , breaking ties randomly,

preferring offspring in the case of ties
end while

to rather focus on fixed-target results. We support this view by further elaborating how
the existing analyses methods for the optimization time, in particular, the fitness-level
methods and drift, can easily be adapted to also give fixed-target results.

3 Preliminaries

Throughout the paper we use the notation [a..b] to denote a set of integer numbers
{a, a + 1, . . . , b − 1, b}, and we denote the set [1..n] as [n]. We write Hn for the n-th
harmonic number, that is, Hn =

∑n
i=1 1/i, and H0 = 0 for convenience. Finally, we use

the shorthand [E ] to denote the function that returns 1 if event E holds true, and which
returns 0 otherwise.

We consider simple algorithms, such as the (1 + 1) EA, the (µ+ 1) EA, and the
(1 + λ) EA, which solve optimization problems on bit strings of length n. Due to the
increased interest in mutation operators that do not produce offspring identical to the
parent [CD18], and to mutation operators different to standard bit mutation, such as
the fast mutation operators sampling from heavy-tailed distributions [DLMN17], we con-
sider them in a generalized form, which samples the number of bits to flip from some
distribution M. We also use a distribution over search points D during initialization.
A default choice for D is to sample every bit string with equal probability, however, we
consider also initialization with the search point having smallest possible fitness value.
These algorithms are presented in the most general form in Algorithm 1 as a (µ+ λ) EA
parameterized by M and D.

We consider the following distributions of M for the (1 + 1) EA:

• randomized local search, or RLS: M = 1;
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• the (1 + 1) EA with standard bit mutation: M = B(n, p), where B(n, p) is the
binomial distribution;

• the (1 + 1) EA0→1 using the shift mutation strategy : M = max{1, B(n, p)};

• the (1 + 1) EA>0 using the resampling mutation strategy :
M = [x ∼ B(n, p) | x > 0];

• the fast (1 + 1) EA with parameter β > 1: M = [x ∼ B(n, a/n) | a ∼ Hβ], and
Hβ is a distribution defined as follows:

Pr[x = a | x ∼ Hβ] = a−β · (Cβ
n/2)−1,

where Cβ
n/2 =

∑n/2
i=1 i

−β is the normalization constant.

Note that, in fact, we could have also considered the fast (1 + 1) EA with the shift or
replacement mutation strategy, as well as the version of the fast (1 + 1) EA that directly
samples the number of bits to flip from Hβ without using the binomial distribution as
a proxy. However, since this paper would not benefit from repetitive analyses of very
similar algorithms, we restrict ourselves only to the canonical fast (1 + 1) EA.

Sometimes we are only interested in the probability q of flipping a particular bit while
not flipping any other bit. For problem size n and mutation strength p, the values of q
for the algorithms above are

• RLS: q = 1/n;

• (1 + 1) EA: q = p(1− p)n−1;

• (1 + 1) EA0→1: q = p(1− p)n−1 + (1−p)n
n

;

• (1 + 1) EA>0: q = p(1−p)n−1

1−(1−p)n ;

• fast (1 + 1) EAβ: q = 1
n
· (Cβ

n/2)−1 · γ(n, β) = 1
n
· (Cβ

n/2)−1 · Θ(1), as the factor

γ(n, β) =
∑n/2

i=1 i
1−β(1− i

n
)n−1 is between e−1 and 2π2

3
by [DLMN17, Lemma 5].

We consider the following classical problems on bit strings:

OneMax(x) 7→
∑n

i=1
xi

LeadingOnes(x) 7→
∑n

i=1

∏i

j=1
xi

BinVal(x) 7→
∑n

i=1
2i−1xi.

We also consider the minimum spanning tree (MST) problem. Given a connected
undirected graph G with positive weights on each edge, the MST problem asks to find a
minimum spanning tree of it, that is, a subgraph that connects all vertices of G and that
has the minimum possible weight. This problem was adapted to bit strings as in [NW07]
as follows: each bit corresponds to one edge of G, and the bit value of 1 means that the
edge is included in the subgraph.
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4 Overview of Known Fixed-Target Results

In this section, we comment on the known fixed-target results available in recent papers.
We cover both the results and the techniques which have been used and possibly modified
to achieve these results. Where necessary, we estimate the precision of these results by
comparing them with the actual expected hitting times of the corresponding algorithms.
In the whole section, n is the problem size and k is the target fitness.

4.1 LeadingOnes

LeadingOnes was the first problem for which certain fixed-target results were derived.
The paper [Wit06] studied upper and lower bounds on the runtime of the (µ+ 1) EA
on several benchmark problems. For LeadingOnes, the runtime was proven in [Wit06,
Theorem 1] using a technique similar to fitness levels, where the state space also involved
the number of the best individuals in the population. Then, [Wit06, Corollary 1] bounded
the expectation of the time needed to reach a state of at least k leading ones from above
by µ + 3ek · max{µ ln en, n}, which is a fixed-target result. In the framework of that
paper, this result appeared to be useful in a subsequent part, where the necessity of
having population size µ > 1 was discussed by constructing and analyzing an artificial
problem involving both OneMax and LeadingOnes.

Böttcher et al. [BDN10] proved exact expected runtimes for the (1 + 1) EA on
LeadingOnes, which was an important cornerstone in the studies of LeadingOnes.
In this paper it is proved for the (1 + 1) EA that the expected time to leave a state
with the fitness of i and the mutation probability p is E(Ai) = 1/((1 − p)ip). However,
the next fitness value may be greater than i + 1. The problem-dependent observation,
which simplifies the analysis, is that the bits following the i-th bit have a probability
of exactly 1/2 to equal 1. This yields the expected optimization time to be exactly
((1− p)1−n − (1− p))/(2p2) for a fixed p.

This result was reused in [DJWZ13, Section 4] to prove that the expected time that
the (1 + 1) EA with mutation probability p ∈ (0, 1) needs to hit target k ∈ [n] equals

(1− p)1−k − (1− p)
2p2

. (1)

Technically, the result in [DJWZ13] is given only for p = 1/n, partially because they used
this mutation probability throughout the whole paper. However, their proof does not
depend on the value of p and hence extends to the general case.

Theorem 11 in [CD18] extends this result to similar algorithms: the (1 + 1) EA>0,
the (1 + 1) EA0→1, and RLS. While only upper bounds are claimed in that work, it is
clear from the above that these bounds are exact. As the results of our techniques are
identical, we direct the reader to our Theorem 4.

Finally, in [Doe19a, Corollary 4] an even stronger result is proven about the exact
distribution of the time the (1 + 1) EA needs to hit a certain target. The result is
expressed in terms of random variables Xi for initial bit values and the probabilities qi
to generate a point with a strictly better fitness from a point with fitness i, and reads as∑k−1

i=0 Xi ·Geom(qi), where Geom is the geometric distribution.
The summary of the results for LeadingOnes is given in Table 1.
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Table 1: Summary of the fixed-target results available in literature for LeadingOnes
Algorithm Result Constraints Reference
(µ+ 1) EA ≤ µ+ 3ek ·max {µ ln(en), n} p = 1/n, [Wit06, Cor. 1]

µ = poly(n)

(1 + 1) EA = n2−n
2
·
((

1 + 1
n−1

)k − 1
)

p = 1/n [DJWZ13, Sec. 4]

RLS =(1) kn/2 – [CD18, Th. 11]

(1 + 1) EA =(1) (1−p)1−k−(1−p)
2p2

– [CD18, Th. 11]

(1 + 1) EA0→1 =(1) 1
2

∑n
i=n−k+1

1
p(1−p)n−i+ 1

n
(1−p)n – [CD18, Th. 11]

(1 + 1) EA>0 =(1) 1−(1−p)n
2p2

((1− p)1−k − (1− p)) – [CD18, Th. 11]
(1)Note: [CD18, Th. 11] states only the upper bound. However, using the same arguments
as in [DJWZ13, Sec. 4], it is not difficult to verify that these bounds are exact.

4.2 OneMax

To the best of our knowledge, explicitly formulated fixed-target results regarding
OneMax exist so far only for the (1 + 1) EA and similar algorithms. What is more,
due to the fact that the (1 + 1) EA shows different expected progress for different fitness
values on the same problem, for which it is hard to find sharp bounds, the available
upper and lower fixed-target bounds for OneMax are generally less precise than those
for LeadingOnes. For this reason, we augment the existing theoretical results with the
actual runtime profiles of the (1 + 1) EA, which are given in Figure 1 for three problem
sizes n = 103, 104, 105.

The first result for OneMax appeared in [LS15, Corollary 3], again in a fixed-budget
setting. It is a lower bound, which was proven using fitness levels for lower bounds [Sud13].
This result says that, for the (1 + 1) EA with mutation probability p = 1/n optimizing
OneMax, the expected time until hitting a target k is at least

en ln(n/(n− k))− 2n ln lnn− 16n, (2)

which was used in [LS15] to prove fixed-budget results.
This bound is aimed at estimating the time needed to reach targets which are very

close to the optimum. Since the (1 + 1) EA spends most of its time in these regions, and
because [LS15] is dedicated to fixed-budget estimations, this choice seems reasonable.
However, from the fixed-target perspective, (2) results in a satisfactory lower bound only
for a small fraction of possible conditions. In particular, it turns negative when the target
is smaller than n · (1− (lnn)−2/e), so, for instance, it cannot be used to estimate the time
needed to reach targets of the form cn, where 0 < c < 1 is a constant factor. The
combination of the constant factors also renders it usable only for quite large values of
n: for instance, at n = 104 only five values k ∈ [9996..104] produce nonzero values. For
this reason, Figure 1 contains special subfigures which highlight this particular bound at
targets close to the optimum.

In [CD18, Theorem 10], the first fixed-target upper bounds were given for the
(1 + 1) EA, the (1 + 1) EA>0, the (1 + 1) EA0→1, and for RLS on OneMax. They
cover the whole range of targets, as well as arbitrary mutation probabilities. They are
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Figure 1: The runtime profile of the (1 + 1) EA on OneMax and the applicable bounds.
Plots in the left part of the figure show the general picture for three problem sizes n ∈
{103, 104, 105}, whereas plots in the right part highlight the regions close to the optimum.
The plotted quantity is the expected number of fitness evaluations required to reach the
target fitness value against that (relative) fitness value. The runtime profiles for both
cases regarding (1 + 1) EA were computed exactly using dynamic programming following
the ideas of [BD19]. For the upper and lower bounds, the respective expressions were
evaluated and plotted, disregarding the (1 ± o(1)) factors. The notation in the legend
is as follows: “(1 + 1) EA zero” is the (1 + 1) EA starting at the all-zero bit string,
“(1 + 1) EA rand” is the (1 + 1) EA starting at a randomly generated bit string, “Upper
bound, CD” is the bound from [CD18, Theorem 10], “Upper bound, VBBDD” is the
bound from [VBB+19, Theorem 3.1] applicable to “(1 + 1) EA rand”, and finally “Lower
bound, LS” is the bound from [LS15, Corollary 3].
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Table 2: Insights about the ratio of the upper bound on the fixed-target runtime of the
(1 + 1) EA on OneMax from [CD18, Th. 10] and the actual expected hitting times
computed using dynamic programming following the ideas of [BD19]. We present the
maximum of the ratio across all targets k ∈ [n], as well as the ranges of targets where
the ratio is at least some fixed value (values of 1.5 and 2.5 are used). Note how the left
endpoints of these ranges remain the same as the problem size n grows, whereas the right
endpoints scale linearly with remarkable precision. The maximum ratio slowly grows and
apparently approaches a constant, which resembles e = 2.71 . . . quite closely.

n Maximum Ratio ≥ 2.5 Ratio ≥ 1.5
ratio Min target Max target Min target Max target

103 2.606391 19 221 2 920
104 2.681519 18 2320 2 9205
105 2.706512 18 23306 2 92057

based on simple fitness level arguments, and for simplicity they assume the worst case
regarding initialization, that is, that the algorithm starts at the all-zero bit string. As a
result, all these bounds have a form of of 1

q
(Hn −Hn−k), where Hi is the i-th harmonic

number and q is the lower bound on the probability of flipping exactly one bit. This
bound is exact for RLS and also captures the behavior of other (1 + 1) EA flavors quite
well (see Figure 1 for the example of the standard (1 + 1) EA).

To quantify how much the upper bound for the (1 + 1) EA on OneMax from [CD18,
Theorem 10] differs from the actual times needed for the (1 + 1) EA to hit various targets
when starting at the all-zeros bit string, we reuse the data from Figure 1 to compute the
ratios of the upper bound to the corresponding average target-hitting time. We present
these insights in Table 2, from which one can infer, for instance, that the upper bound
from [CD18, Theorem 10] overestimates the true hitting times at most by a factor that
tends to some constant value.

While being moderately precise for estimating the fixed-target runtimes of the
(1 + 1) EA, and similar algorithms, on OneMax starting from the all-zeros bit string,
these bounds overestimate the fixed-target results much more when these algorithms
start from a randomly generated bit string, which is a more realistic condition.
For random initialization, [VBB+19, Theorem 3.1] proves a similar upper bound of
1
q
(Hn/2−Hn−k)(1− o(1)) for k > n/2 +

√
n lnn using the same technique and additional

arguments to use Hn/2. Technically, this result was proven only for (1 + 1) EA>0,
however, the proof holds also for arbitrary probabilities q of flipping exactly one bit.
Such a bound gives a moderately good approximation, as illustrated in Figure 1 for
the classic (1 + 1) EA. The evaluation of the approximation quality, similar to the one
shown in Table 2, shows that the constant factors in the approximation are better: the
maximum ratio for n = 105 is less than 1.8, and the ratio gets smaller than 1.5 at smaller
k ≈ 0.815n.

In [Wit13, Theorem 6.5], lower bounds for the runtimes of the (1 + 1) EA on OneMax
are proven, assuming arbitrary mutation probabilities p satisfying p = O(n−2/3−ε). For
this, an interval S = [np̃ ln2 n; 1/(2p̃2n lnn)] of distances to the optimum is considered,
where p̃ = max{1/n, p}. Multiplicative drift for lower bounds is applied to this interval
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Table 3: Summary of the fixed-target results available in literature for OneMax
Algorithm Result Constraints Reference
(1 + 1) EA ≥ en ln(n/(n− k))− 2n ln lnn− 16n p = 1/n [LS15, Cor. 3]

RLS ≤ n · (Hn −Hn−k) – [CD18, Th. 10]

(1 + 1) EA ≤ Hn−Hn−k

p(1−p)n−1 – [CD18, Th. 10]

(1 + 1) EA0→1 ≤
Hn−Hn−k

(1−p)n−1(p+1/n−p/n) – [CD18, Th. 10]

(1 + 1) EA>0 ≤ 1−(1−p)n
p(1−p)n−1 (Hn −Hn−k) – [CD18, Th. 10]

(1 + 1) EA>0 ≤ 1−(1−p)n
p(1−p)n−1 (Hn/2 −Hn−k) · (1− o(1)) k > n/2 +

√
n lnn [VBB+19, Th. 3.1]

(1 + 1) EA>0 ≥ (1− o(1))
1−(1−p)n
p(1−p)n−1 ln 1

4p̃3n2 ln3 n
p = O(n−2/3−ε), [VBB+19, Th. 3.4]

where p̃ = max{1/n, p} k ≥ n− np̃ ln2 n

(1 + 1) EA>0 ≥ (1− o(1))
1−(1−p)n
p(1−p)n−1 ln 1

4p̃2n(n−k) lnn p = O(n−2/3−ε), [VBB+19, Th. 3.4]

where p̃ = max{1/n, p} k ≤ n− np̃ ln2 n,

n− k = o(1/(2p̃2n lnn))

to yield the lower bound of

(1− o(1))(1− p)−n(1/p) min{lnn, ln(1/(p3n2))}.

This result was used in [VBB+19] to obtain the fixed-target results for the
(1 + 1) EA>0 on OneMax. The small difference between the (1 + 1) EA and the
(1 + 1) EA>0, from the point of view of the above-mentioned proof, is only in one of the
factors, which depends on p in a slightly different way. The obtained fixed-target results
are piecewise. Indeed, [Wit13, Theorem 6.5] uses the time that the (1 + 1) EA needs to
go through an interval of fitness values S. For this reason, for all targets k that do not
belong to this interval, k ≥ n−np̃ ln2 n, the fixed-target runtime bound does not depend
on k. What is more, the bounds contain a factor 1− o(1) which is hard to estimate well,
and whose value appears to be large enough for practical values of n. For this reason we
do not show the plots for these bounds in Figure 1.

The summary of the results for OneMax is given in Table 3.

4.3 BinVal

The fixed-target bounds for BinVal were proven in [VBB+19] for the (1 + 1) EA>0. The
methods for proving optimization times for linear functions, such as the ones in [Wit13],
were found to be insufficient, so a problem-dependent observation was used. To achieve
a target value k such that 2n− 2t ≤ k < 2n− 2t+1, one requires to optimize the t heaviest
bits, and it is enough to optimize the t+ 1 heaviest bits. As a result, reaching the target
k is equivalent to solving BinVal of size t+O(1) to optimality using a n/t times smaller
mutation rate. The quite complicated bounds from [Wit13] were adapted to the case of
BinVal in [VBB+19, Theorem 4.1]. The summary of these results is given in Table 4.

5 Fitness Levels

In this section we consider the fitness level theorems in the fixed-target context. A key
take-away, implicitly known in the community for years, is that the most important

11



Table 4: Summary of the fixed-target results for BinVal
Algorithm Result Constraints Reference

(1 + 1) EA>0 ≥ (1− o(1))
1−(1−p)n

p(1−p)n− min
{

lnn−, ln 1
p3(n−)2

}
, p = O(n−2/3−ε) [VBB+19, Th. 4.1]

n− = n− dlog2(2n − k)e

(1 + 1) EA>0 ≤
pn+α2(1−p)1−n+

+α
(
ln 1

p
+(n+−1) ln(1−p)+1

)
(1−p)n+−1·p(α−1)·(1−(1−p)n)−1

, p = O(n−2/3−ε) [VBB+19, Th. 4.1]

n+ = n− blog2(2n − k)c,
α arbitrary e.g. ln lnn+

theorems of this sort are already suitable to produce fixed-target results.

5.1 Fitness Level Theorems

In the fitness level method (also known as artificial fitness levels and the method of f -
based partitions [Weg02]), the state of the algorithm is typically described by the best
fitness of an individual in the population. It is transformed into a fitness level, which
may aggregate one or more consecutive fitness values. For the fitness function f (to be
maximized) and two search space subsets A and B one writes A <f B if f(a) < f(b) for
all a ∈ A and b ∈ B. A partition {A1 . . . Am} of the search space, such that Ai <f Ai+1

for all 1 ≤ i < m and Am contains only the optima of the problem, is called an f -based
partition. If the best individual in a population of an algorithm A has a fitness f ∈ Ai,
then the algorithm is said to be in Ai.

Fitness level theorems work best for the algorithms that typically visit the fitness
levels one by one in the increasing order. We summarize below several popular fitness
level theorems. We note that a simpler version of the fitness level theorems in [Sud13]
was recently given in [DK21]. Since this work appeared significantly after the original
preparation of this manuscript, we do not discuss it any further, but note nevertheless that
for future fixed-target analyses it might be easier to use than the theorems from [Sud13].

Theorem 1 (Fitness levels for upper bounds; Lemma 1 from [Weg02]). Let {Ai}1≤i≤m
be an f -based partition, and let pi be a lower bound for the probability that the elitist
algorithm A samples a search point belonging to Ai+1 ∪ . . . ∪ Am provided it currently is
in Ai. Then the expected hitting time of Am is at most

m−1∑
i=1

P [A starts in Ai] ·
m−1∑
j=i

1

pi
≤

m−1∑
j=1

1

pi
. (3)

Theorem 2 (Fitness levels for lower bounds; Theorem 3 from [Sud13]). Let {Ai}1≤i≤m
be a partition of the search space. Let the probability for the elitist algorithm A to transfer
in one step from Ai to Aj, i < j, to be at most ui · γi,j, and let

∑m
j=i+1 γi,j = 1. Assume

there is some χ ∈ [0, 1] such that γi,j ≥ χ
∑m

k=j γi,k for all 1 ≤ i < j ≤ m. Then the
expected hitting time of Am is at least

m−1∑
i=1

P [A starts in Ai] ·

(
1

ui
+ χ

m−1∑
j=i+1

1

ui

)
. (4)

We also use an upper-bound theorem similar to Theorem 2.
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Theorem 3 (Refined fitness levels for upper bounds; Theorem 4 from [Sud13]). Let
{Ai}1≤i≤m be a partition of the search space. Let the probability for the elitist algorithm A
to transfer in one step from Ai to Aj, i < j, to be at least si ·γi,j, and let

∑m
j=i+1 γi,j = 1.

Assume there is some χ ∈ [0, 1] such that γi,j ≤ χ
∑m

k=j γi,k for all 1 ≤ i < j < m.
Further, assume that (1 − χ)si ≤ si+1 for all 1 ≤ i ≤ m − 2. Then the expected hitting
time of Am is at most

m−1∑
i=1

P [A starts in Ai] ·

(
1

si
+ χ

m−1∑
j=i+1

1

si

)
. (5)

Theorems 1–3 are applicable only to elitist algorithms. However, a fitness level the-
orem was proposed in [CDEL18] that can be applied to non-elitist algorithms as well
(see [DK19] for a sharper version of this result).

Observation 1. If one of Theorems 1–3 is proven for a certain algorithm on a certain
problem, it also holds if a new target fitness level m′ is chosen, such that 1 < m′ < m,
and all fitness levels Am′ , Am′+1, . . . , Am are merged.

Proof. This is essentially the same argument as in [LS15].
This modification does not alter the estimations of probabilities to leave fitness lev-

els preceding m′: pi, ui and si for Theorems 1, 2, and 3, respectively. The only affected
locations are the constraints on γi,j. Their affected occurrences on the right-hand sides ef-
fectively merge by summing up, e.g., γ′i,m′ ←

∑m
k=m′ γi,k. Note that only those right-hand

sides, which contain the complete sums from m′ to m, survive after the transformation,
and not just their parts. For the left-hand sides, only those γi,j survive where j = m′, as
all others are either unchanged or cease to exist. However, these occurrences are trivial,
since they are limited only by identity inequalities γi,m′ ≤ χγi,m′ in Theorem 2 and are
not limited by anything in Theorem 3 as their limits are conditioned on j < m′.

It follows from Observation 1 that it is very easy to obtain fixed-target results from
the existing optimization time results whose proofs use the above-mentioned fitness level
theorems.

Note that, technically, Theorems 2, 3 and the theorem from [CDEL18] do not require
the employed partition of the search space to be an f -based partition. Formally speaking,
this enables using them in the fixed-target context as is, contrary to the original formu-
lation of fitness levels for upper bounds, where the last partition must contain optima
and nothing else. However, this alone does not yet allow to reuse the existing optimiza-
tion time results in order to obtain the fixed-target ones. Observation 1 fills this gap by
specifying the sufficient conditions for this to be possible.

We also note that Theorems 2 and 3 only require the transition graph over the em-
ployed partition to be acyclic with regard to the analyzed algorithm, but does not require
that a fitness level Am is reachable from another fitness level An for every n < m. In fact,
Observation 1 may be extended without much effort to allow merging of fitness levels
whose indices do not form a contiguous sequence, provided that one cannot reach a non-
merged fitness level from any of the merged levels. This feature might have applications
in analysis of certain local search algorithms.
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5.2 Applications

5.2.1 Hill Climbers on LeadingOnes

We re-prove here the statements about the fixed-target performance of the algorithms
from the (1 + 1) EA family, which were proven in [DJWZ13, Section 4] and stated, but
not formally proven, in [CD18, Theorem 11]. For this we use Theorems 2 and 3, similarly
to their use in [Sud13] to prove the results from [BDN10] with fitness levels alone.

Lemma 1. In the context of Theorems 2 and 3 for LeadingOnes, assuming the target
fitness is k, the values γi,j = 2i−j when j < k, γi,k = 2i−k+1, and χ = 1/2 satisfy their
requirements.

Proof. Recall that for LeadingOnes, if i is the fitness of an individual, its first i + 1
bits are known, and the bits at indices {i + 2, . . . , n} are uniformly distributed. Thus,
conditioned on mutation being applied and the fitness being improved, the probability
of transferring to fitness level j is γi,j = 2−j+i+[j=n]. Due to [Sud13, Theorem 5], the
constant χ to be used in the theorems above is equal to 1/2.

In the fixed-target context, the transition probabilities γi,j where j < k remain the
same, as the underlying process is not changed, whereas since fitness levels k, k+1, . . . , n
merge, the probability γi,k = γold

i,k +γold
i,k+1 + . . . results in telescoping the inverse powers of

two. Since fitness level merging effectively reduces the problem size from n to k without
affecting anything else, the constant value χ = 1/2 also remains valid.

Lemma 2. Assume that qi is the probability for algorithm A to flip a given bit while not
flipping any of some other i given bits. The expected time for A to reach a target of at
least k on LeadingOnes of size n is:

k−1∑
i=0

P [A starts with fitness i] ·

(
1

qi
+

1

2

k−1∑
j=i+1

1

qj

)
=

1

2

k−1∑
i=0

1

qi
. (6)

Proof. The left-hand side of the lemma statement follows from Lemma 1, Theorems 2
and 3, and Observation 1. The right-hand side follows by recalling that in LeadingOnes,
it holds for all considered algorithms that P [A starts with fitness i] = 2−i−1, and by
reordering the sums as in [BDN10].

We can also derive this result from [Doe19a, Corollary 4].

Theorem 4. The expected fixed-target time to reach a target of at least k when optimizing
LeadingOnes of size n is exactly

• kn
2

for RLS;

• (1−p)1−k−(1−p)
2p2

for the (1 + 1) EA with mutation probability p;

• (1−p)1−k−(1−p)
2p2

(1− (1− p)n) for the (1 + 1) EA>0 with mutation probability p;

• 1
2
·
∑k−1

i=0
1

p(1−p)i+ 1
n

(1−p)n for the (1 + 1) EA0→1 with mutation probability p;

• 1
2
Cβ
n ·
∑k−1

i=0
1∑n/2

j=1 j
−β j

n
(1− j

n
)i

for the fast (1 + 1) EAβ.
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Proof. We use Lemma 2 and note that, for a fitness of i:

• for RLS, qi = 1/n;

• for the (1 + 1) EA, qi = (1− p)i · p;

• for the (1 + 1) EA>0, qi = (1− p)i · p · (1− (1− p)n);

• for the (1 + 1) EA0→1, qi = (1− p)i · p+ 1
n
(1− p)n;

• for the fast (1 + 1) EAβ, qi = (Cβ
n )−1 ·

∑n/2
j=1 j

−β j
n
(1− j

n
)i.

The sums for the (1 + 1) EA and the (1 + 1) EA>0 are simplified as in [BDN10].

Note that the presented expression for the fast (1 + 1) EAβ is complicated, and little
can be understood from it about its behavior, and in particular about the dependency on
β. The simplified upper bound can be obtained by considering only j = 1, in which case
it is greater by a factor of Cβ

n than the corresponding fixed-target time for the (1 + 1) EA,
and this factor is a constant for 1 < β < 2. Lower bounds, however, require much more
work, as, for instance, qi for i = Θ(1) is Θ(n1−β), so the fast (1 + 1) EAβ performs the
first improvements much faster than more conventional versions of the (1 + 1) EA. It is
hence quite hard to obtain closed-form sharp bounds, which we leave for possible future
work.

5.2.2 Hill Climbers on OneMax, Upper Bounds

We now re-prove the existing results for the (1 + 1) EA variants on OneMax. Our
results for the case of random initialization of an algorithm are sharper than in [VBB+19],
because we use the following argument about the weighed sums of harmonic numbers.

Lemma 3. The following equality holds:

n∑
i=0

(
n
i

)
Hi

2n
= Hn −

n∑
k=1

1

k2k
= Hn − ln 2 +O(2−n) = Hn/2 −

1− o(1)

2n
.

Proof. Proven in [DD16, Sec. 2.5] with [Spi07, Identity 14].

Our results are formalized as follows.

Theorem 5. The expected fixed-target time for Algorithm 1 with µ = λ = 1, whose
mutation distribution M selects a single bit to flip with probability q, to reach a target of
at least k on OneMax of size n is at most:

• 1
q
(Hn −Hn−k) when initializing with the worst solution;

• 1
q
(Hn/2 −Hn−k − 1−o(1)

2n
) when initializing randomly, assuming k ≥ n/2 + 2

√
n lnn.
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Proof. Let si be the probability for the algorithm to be initialized at fitness i. Assuming
pessimistically that the fitness does not improve when two and more bits are flipped, we
apply Theorem 1 to get the following upper bound:

k−1∑
i=0

si ·
k−1∑
j=i

1

q(n− j)
=

1

q

k−1∑
i=0

si · (Hn−i −Hn−k) ≤
Hn −Hn−k

q
.

The pessimistic bound above proves the theorem for the algorithms initialized with
the worst solution. For the random initialization, we note that the initial search point
has a fitness i with the probability of

(
n
i

)
/2n. From the equality above we derive:

k−1∑
i=0

(
n
i

)
(Hn−i −Hn−k)

q2n

≤
n∑
i=0

(
n
i

)
(Hn−i −Hn−k)

q2n
+

n∑
i=k

(
n
i

)
(Hn−k −Hn−i)

q2n

=
n∑
i=0

(
n
i

)
Hn−i

q2n
−

n∑
i=0

(
n
i

)
Hn−k

q2n
+

1

q

n∑
i=k

(
n
i

)
(Hn−k −Hn−i)

2n

=
1

q

(
Hn/2 −Hn−k −

1− o(1)

2n

)
+

1

q

n∑
i=k

(
n
i

)
(Hn−k −Hn−i)

2n
,

where the last transformation uses Lemma 3. The second addend is o(1/(qn)), because
Hn−k − Hn−i = O(lnn) when i ≥ k, which is further multiplied by O(n−8/3), since for
k ≥ n/2 + 2

√
n lnn it holds that

1

2n

n∑
i=k

(
n

i

)
≤ exp

(
−

16 lnn
n

n
2

3

)
= n−8/3

by the Chernoff bound. As a result, the fixed-target upper bound for the random initial-
ization is 1

q
(Hn/2 −Hn−k − 1−o(1)

2n
).

5.2.3 Hill Climbers on OneMax, Lower Bounds

We also apply fitness-levels to the lower bounds to improve the result from [LS15].

Theorem 6 (Lower fixed-target bounds on (1 + 1) EA for OneMax). For mutation
probability p ≤ 1/(

√
n log n), and assuming that ` = dn − min{n/ log n, 1/(p2n log n)}e,

the expected time to find a solution with fitness at least k ≥ ` is at least(
1− 18/5

(1− p)2 log n

)
Hn−` −Hn−k

p(1− p)n−1
.

Proof. We use the proof of [Sud13, Theorem 9] with Observation 1. The source of this
formula is located at [Sud13, journal page 428, bottom of left column]. We use this
particular formula, as it gives a good enough precision for a wide range of possible targets
and matches the shape of Theorem 5 quite well.

We conjecture that a similar result can be derived for other versions of the (1 + 1) EA
as well, however, finding the exact constant factors would require additional investigation
into [Sud13, Theorem 9].
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5.2.4 The (µ+ 1) EA on OneMax, Upper Bounds

We now introduce the fixed-target bounds for the (µ+ 1) EA using fitness levels. For
this we adapt [Wit06, Theorem 2] to support fixed targets different from the optimum,
which makes it no longer possible to use certain transitions from the original proof.

Theorem 7. Let µ = poly(n), and assume b = bn(1− 1/µ)c. The expected time to reach
an individual with fitness at least k > 0 on OneMax is:

Tk ≤ µ+
µ

(1− p)n

(
2k − 1− (n− k) ln

n

n− k + 1

)
+

µ

p(1− p)n−1

{
k
n
, k ≤ b+ 1,

b+1
n

+ 1
µ
(Hn−b−1 −Hn−k) otherwise.

Proof. Similarly to [Wit06, Theorem 2], we pessimistically assume that on every fitness
level L the (µ+ 1) EA creates R = min{µ, n/(n − L)} replicas of the best individual,
and then it waits for the fitness improvement. We also assume that the (µ+ 1) EA never
improves the fitness by more than one.

If there are i < R best individuals, the probability of creating a replica is (1− p)ni/µ,
so the expected time until creating R replicas is at most

µ

(1− p)n
R−1∑
i=1

1

i
≤ µ

(1− p)n

L
n−L∑
i=1

1

i
≤ µ

(1− p)n
ln

en

n− L

and the total time the (µ+ 1) EA spends in creating replicas is

Tr ≤
k−1∑
L=0

µ

(1− p)n
ln

en

n− L
=

µ

(1− p)n

(
k ln en+

n∑
x=n−k+1

ln
1

x

)
≤ µ

(1− p)n
(k ln en+ k − 1 + (n− k) ln(n− k + 1)− n lnn)

=
µ

(1− p)n

(
2k − 1− (n− k) ln

n

n− k + 1

)
,

where we use the condition k > 0 and that, for all 1 ≤ a ≤ b,

b∑
x=a

ln
1

x
≤ ln

1

a
+

∫ b

a

ln
1

x
dx = ln

1

a
+

[
x+ x ln

1

x

]b
a

.

Concerning the fitness gain, if there are R replicas of the best individual with fitness
L, the probability of creating new offspring with fitness L+ 1 is at least

R

µ
· (n− L) · p(1− p)n−1 ≥ min {µ(n− L), n}

µ
· p(1− p)n−1,

therefore we can apply Theorem 1 to estimate this part of the fixed-target time:

Tf ≤
k−1∑
i=0

1

pi
=

µ

p(1− p)n−1

k−1∑
i=0

1

min {µ(n− i), n}
.
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Unlike [Wit06], we consider what the min clauses can be. Depending on how the
target k relates to the boundary b = bn(1− 1/µ)c, we write

Tf ≤

{
µ

np(1−p)n−1 · k, k ≤ b+ 1
µ

np(1−p)n−1 · (b+ 1) + Hn−b−1−Hn−k
p(1−p)n−1 , k > b+ 1

which completes the proof, noting that the fixed-target time is µ+ Tr + Tf .

6 Drift Analysis

In this section we consider the drift theorems in the fixed-target context. These theorems
are generally more powerful, but it appears that one should use them for proving fixed-
target results with slightly more care than in the case of fitness levels. We also propose
variations of variable and multiplicative drift theorems that are specifically aimed at
gaining precision in the fixed-target context.

6.1 Drift Theorems

Drift theorems translate bounds on step-wise expected progress into bounds on expected
first-hitting runtimes. They are usually formulated in terms of a random process that
needs to hit a certain minimum value. To this end, the search process of the algorithm
is mapped to real numbers via so-called potential functions. Some of these theorems
prohibit the process from falling below the target, or from visiting an interval between a
target and the next greater value. For this reason, some optimization time results cannot
be converted into the fixed-target results without additional work, as targets different
from the optimum violate the requirements above.

The paper [KK19] contains a discussion of processes which may fall below the target,
and the implications for drift theorems. For instance, [KK19, Example 6] gives an example
of a process with the target 0 and the expected progress of 1 at Xt = 1, which is given by
Xt+1 = −n+ 1 with probability of 1/n and Xt+1 = 1 otherwise. By mistakenly applying
a well-known additive drift theorem from [HY01] to this process, one can get an overly
optimistic upper bound of 1 on the expected runtime, which is, in fact, n.

We start the discussion with the additive drift theorems. We provide their versions
from [KK19] which appear to be preadapted to the fixed-target conditions. For the first of
these theorems we explicitly note that its upper bound is not (X0−k)/δ, but a (generally)
larger value. Indeed, if we define XT to be the value of the process at the hitting time T ,
it is only known that E[XT | X0] ≤ k, and the latter may be far from being an equality.
Proving the bounds for E[XT | X0] seems to be the essential additional work in order to
prove fixed-target results.

Theorem 8 (Additive drift, fixed-target upper bounds; Theorem 7 from [KK19], original
version in [HY01]). Let k be the target value, let (Xt)t∈N be a sequence of random variables
over R, and let T = inf{t | Xt ≤ k}. Suppose that there is some value δ > 0 such that, for
all t < T , it holds that Xt − E[Xt+1 | X0, . . . , Xt] ≥ δ. Then E[T | X0] ≤ (X0 − E[XT |
X0])/δ.
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Theorem 9 (Additive drift, fixed-target lower bounds; Theorem 8 from [KK19]). Let
k be the target value, let (Xt)t∈N be a sequence of random variables over R, and let
T = inf{t | Xt ≤ k}. Suppose that:

• there is some value δ > 0 such that, for all t < T , it holds that Xt − E[Xt+1 |
X0, . . . , Xt] ≤ δ;

• there is some value c ≥ 0 such that, for all t < T , it holds that E[|Xt+1 − Xt| |
X0, . . . , Xt] ≤ c.

Then E[T | X0] ≥ (X0 − E[XT | X0])/δ ≥ (X0 − k)/δ.

For the lower bound, the simplification to (X0 − k)/δ is possible (contrary to the
upper bound), but having a better bound may be desirable. By recalling again [KK19,
Example 6], we can see that taking E[XT | X0] into account can improve the bound
asymptotically. In fixed-target runtime analysis, such an improvement may occur with
very easy targets.

More advanced drift theorems such as the multiplicative drift theorems [DJW12] and
the variable drift theorems [MRC09, Joh10, DFW11, LW21] make it easier to prove sharp
bounds on hitting times for processes with drift that depends on the current value, a
situation that occurs rather frequently in evolutionary computation. Most of the popular
drift theorems of this sort can be classified using the following properties: they estimate
the time for a process to either reach a certain target value k or to surpass a certain
threshold value k′, and they also may or may not require the process to never fall below
the target or to never visit a region between the threshold and the ultimate termination
state (usually zero).

The case analysis of four variants of drift theorems presented in [KK19] revealed that
only two of these four variants are suitable to be used for fixed-target research: theorems
for upper bounds which require to surpass a threshold k′, and theorems for lower bounds
which require to reach a target k. The former contain an extra addend in their statement
(such as “1+” or “xmin/h(xmin)”), while the latter do not. This seems to be closely related
to the E[XT | X0] issue in additive drift theorems, which the “good” theorems pessimize
to the right direction.

We now present or reformulate certain drift theorems for upper bounds, which can be
used out of the box for proving the fixed-target results.

Theorem 10 (Multiplicative drift, upper bounds [DJW12] adapted to fixed-target set-
tings). Let k′ be the threshold value, let (Xt)t∈N be a sequence of random variables over
R, and let T = inf{t | Xt < k′}. Furthermore, suppose that:

• X0 ≥ k′, and for all t ≤ T , it holds that Xt ≥ 0;

• there is some value δ > 0 such that, for all t < T , it holds that Xt − E[Xt+1 |
X0, . . . , Xt] ≥ δXt.

Then E[T | X0] ≤ (1 + ln(X0/k
′))/δ.

Proof. Apply [DJW12] to the new potential function X ′t := Xt/k
′.
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Theorem 11 (Variable drift, fixed-target upper bounds; Theorem 10 from [KK19]). Let
k′ be the threshold value, let (Xt)t∈N be a sequence of random variables over R, and let
T = inf{t | Xt < k′}. Furthermore, suppose that:

• X0 ≥ k′;

• for all t ≤ T , it holds that Xt ≥ 0;

• there is a monotonically increasing function h : [k′;∞) → R+ such that, for all
t < T , it holds that Xt − E[Xt+1 | X0, . . . , Xt] ≥ h(Xt).

Then E[T | X0] ≤ k′

h(k′)
+
∫ X0

k′
1

h(z)
d(z).

In all these theorems, the conditions are the same as for their corresponding
optimization-time variants. We now present a drop-in replacement version of [DFW11,
Theorem 7] that enables obtaining lower bounds on fixed-target hitting times by using
the same functions and conditions that were used for proving the lower bounds on the
optimization time using that theorem. Note that, for technical reasons, this version does
not support setting the target to the optimum value.

Theorem 12 (Variable drift, fixed-target lower bounds; adapted from Theorem 7
from [DFW11]). Let k > 0 be the target value, let (Xt)t∈N be a sequence of monotonically
decreasing random variables over R+

0 , and let T = inf{t | Xt ≤ k}. Suppose that there
are two continuous monotonically increasing functions c, h : R+

0 → R+, and that for all
t < T it holds that

• Xt+1 ≥ c(Xt);

• E[Xt −Xt+1 | Xt] ≤ h(c(Xt)).

Then E[T | X0] ≥
∫ X0

k
1

h(z)
d(z).

Proof. We proceed similarly to how it was done in the proof of [DFW11, Theorem 7],
however, with a different additive drift theorem in mind.

Let g : R→ R be the function defined by

g(z) =

{
z−k
h(k)

if z < k;∫ z
k

1
h(x)

dx if z ≥ k.

This function is strictly monotone increasing and continuous on R. Moreover, it is dif-
ferentiable on R with

g′(z) =

{
1

h(k)
if z < k;

1
h(z)

if z ≥ k.

Using x := Xt and y := Xt+1, the monotonicity of the sequence (Xt)t∈N and the condition
Xt+1 ≥ c(Xt), we get that c(x) ≤ y ≤ x. According to the mean-value theorem, for all
x ≥ k there exists ξ ∈ (y, x) such that

g′(ξ) =
g(x)− g(y)

x− y
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which implies

g(x)− g(y)

x− y
≤ g′(y) ≤ g′(c(x)) =

1

h(c(x))

since g′ decreases monotonically.
In terms of the function g, the hitting time T describes the smallest t with g(Xt) ≤ 0.

As g is monotone and invertible, it holds for all t < T that

E[g(Xt)− g(Xt+1) | g(Xt)] ≤ E

[
Xt −Xt−1

h(c(Xt))
| Xt

]
≤ 1,

where the last inequality comes from the theorem condition E[Xt−Xt+1 | Xt] ≤ h(c(Xt)).
We apply Theorem 9 for g(Xt) and the zero target to complete the proof.

6.2 Overshoot-Aware Drift Theorems

We have already shown, using additive drift as an example, that in order to obtain good
fixed-target bounds, an expected overshoot value E[XT | X0] needs to be considered.
However, more advanced theorems cannot easily make an advantage out of this idea,
although it may be desired (especially when analyzing easy targets, or in the case when
the hardest part of the optimization process is not near the optimum, as it may happen
for the (µ+1) genetic algorithm on certain monotone functions [LZ19]). Here, we present
variations of the variable drift and multiplicative drift theorems for upper bounds which
explicitly contain the overshoot term E[XT | X0] in the expression for the hitting time,
for which reason we call them overshoot-aware.

Theorem 13 (Overshoot-aware variable drift, upper bounds). Let k′ be the threshold
value, let (Xt)t∈N be a sequence of random variables over R, and let T = inf{t | Xt < k′}.
Furthermore, suppose that

• X0 ≥ k′;

• there is a non-decreasing function h : [k′;∞)→ R+ such that for all t < T it holds
that Xt − E[Xt+1 | X0, . . . , Xt] ≥ h(Xt).

Then E[T | X0] ≤ k′−E[XT |X0]
h(k′)

+
∫ X0

k′
dz
h(z)

.

Proof. Let D = [k′;∞). We define the potential function g : D → R by setting

g(x) =

∫ x

k′

dz

h(max{z, k′})
.

For any two points x ≥ y, such that x, y ∈ D and x ≥ k′, the following holds:

g(x)− g(y) =

{∫ x
y

dz
h(z)
≥ x−y

h(x)
, y ≥ k′

k′−y
h(k′)

+
∫ x
k′

dz
h(z)
≥ k′−y

h(x)
+ x−k′

h(x)
= x−y

h(x)
, y ≤ k′.

As a result, the expected potential decrease is:

E[g(Xt)− g(Xt+1) | X0, . . . , Xt] ≥
E[Xt −Xt+1 | X0, . . . , Xt]

h(Xt)
≥ 1.
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We also note that g(x) is a linear function for x ∈ [0; k′], hence for any random variable
Z taking values from [0, k′] it holds that E[g(Z)] = g(E[Z]).

Now we apply Theorem 8 and prove this theorem:

E[T | g(X0)] ≤ g(X0)− E[g(XT ) | g(X0)]

= g(X0)− g(E[XT | X0])

= g(X0)− g(k′) + g(k′)− g(E[XT | X0])

=

∫ X0

k′

dz

h(z)
+
k′ − E[XT | X0]

h(k′)
,

where we use the fact that the random variable XT takes values from [0; k′] together with
the observation just above, and g is a bijection, so conditioning on g(X0) is equivalent to
conditioning on X0.

Corollary 1 (Overshoot-aware multiplicative drift, upper bounds). Let D ⊆ {0}∪R+ be
the set of possible values of the random process that is defined by the sequence of random
variables (Xt)t∈N. Let k ∈ D be the target value of the process, let T = inf{t | Xt ≤ k}
be the hitting time, and let k′ = inf{x | x ∈ D, x > k} be the lower bound on the values
from D that are larger than k. Suppose that

• X0 ≥ k′;

• there is some constant value δ > 0 such that, for all t < T , it holds that Xt−E[Xt+1 |
X0, . . . , Xt] ≥ δXt.

Then E[T | X0] ≤ 1
δ
·
(

1− E[XT |X0]
k′

+ ln X0

k′

)
.

Proof. Follows directly from Theorem 13 by choosing h(x) = δx.

Note that a proper estimation of the expected overshoot E[XT | X0] may in fact be
tricky, especially given that it is a conditional expectation. Contrary to Markovian pro-
cesses, where E[XT | X0] = E[XT | XT−1] and understanding XT−1 may be rather easy,
for more involved processes, such as optimization of multimodal functions or algorithms
with self-adjusting parameters, this value may depend on the whole sequence of values.

6.3 Applications

6.3.1 Minimum Spanning Trees

We begin with fixed-target bounds for minimum spanning trees solved by the (1 + 1) EA
and its variations. In the context of evolutionary computation, the function to optimize
can be defined in different ways. We follow [NW07] and use a function which consists
of two parts: the number of connected components with a large weight (to facilitate
connecting all the graph vertices), and the weight of the chosen edges. This function is to
be minimized. It is known [NW07, DJW12] that the (1 + 1) EA optimizes this function
in expected time O(m2(log nwmax)), where m is the number of edges, n is the number of
vertices, and wmax is the maximum edge weight.
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Theorem 14. Starting from a randomly initialized graph, the expected time for Algo-
rithm 1 with µ = λ = 1, whose mutation distribution M selects a single bit to flip with
probability q, to find a graph with at most k connected components is at most 1

q
(1+ln m−1

k
).

Proof. Consider the potential function g(x) = s− 1, where s is the number of connected
components in the subgraph which consists of the edges included in the genotype x. If
there are s such components, there are at least s−1 edges, which can be added to decrease
the number of components. To do that, it is enough to flip at least one bit corresponding
to these edges. To apply Theorem 10, we estimate the drift as E[g(Xt) − g(Xt+1) |
g(Xt) = c] ≥ cq.

The target of k connected components maps to the target potential of k−1 and hence
to the threshold value k. By applying Theorem 10 we get the desired bound.

Theorem 15. Starting from some spanning tree, the expected time for Algorithm 1 with
µ = λ = 1, whose mutation distribution M selects exactly two bits to flip with probability
q, to find spanning tree with the weight at most k larger than the minimum possible weight
is at most 1

q
(1 + ln (n−1)wmax

k+1
).

Proof. We again reuse the corresponding result from [DJW12]. The process is defined as
Xt = w(x)−wopt, and [DJW12] gives the drift bound of E[Xt −Xt+1 | Xt = x] ≥ Xt · q.
The application of Theorem 10 yields the desired upper bound on the fixed-target runtime,
as X0 ≤ (m− 1)wmax.

We give the two-bit probabilities for the common algorithms.

• RLS which flips pairs of bits (“2-opt mutation operator”): q = 2
m(m−1)

;

• (1 + 1) EA and (1 + 1) EA0→1: q = p2(1− p)m−2;

• (1 + 1) EA>0: q = p2(1−p)m−2

1−(1−p)m ;

• (1 + 1) EA0→2: q = p2(1− p)m−2 + (1− p)m 2
m(m−1)

;

• fast (1 + 1) EAβ: q = 2
m(m−1)

· (Cβ
n )−1 · 2−β ·Θ(1).

Note that RLS which flips pairs of bits is a rather a mind experiment than an algo-
rithm to use, however, one may use RLS that tosses a coin and flips either single bits or
pairs of bits, which just halves the probability above.

6.3.2 The (1 + 1) EA on OneMax, Lower Bounds

We prove the lower fixed-target bounds using variable drift.

Theorem 16 (The lower fixed-target bound on (1 + 1) EA with p = 1/n for OneMax).
The expected time to find an individual with fitness at least k, 2n/3 < k < n, when n is
large enough, is at least(

1−O
(
n log n

n3

))
en

(
2 ln

√
n
3

+ 2
√
n− k + 2

+ ln
n+ 16(n− k) + 32

√
n− k

n+ 16n
3

+ 32
√

n
3

)
.
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Proof. The basis of this proof is [DFW11, Theorem 5]. Our aim is to apply Theorem 12,
which allows jumps below the target. This allows us to use the original the potential
function Xt = n − f(x) and the existing bound on the expected drift [DFW11, Lemma
6]: E[Xt −Xt+1 | Xt = s] ≤ s

en
(1 + 16s

n
).

Following [DFW11], we bound the step size with c(x) = x −
√
x. We denote as a

bad step the event of increasing the fitness by more than
√
x. To condition on that,

we estimate the probability of making a bad step for 2 ≤ x ≤ n, which was shown
in [DFW11] to be O(n−3) for x ≥ 9. For a good fixed-target result, we need to cover the
rest. For 5 ≤ x ≤ 8, the probability of a bad step is at most

(
8
3

)
p3 = 56

n3 = O(n−3). For
2 ≤ x ≤ 4, a similar calculation yields the probability of O(n−2). Since the latter bound
corresponds to only Θ(1) fitness values, in which the algorithm spends at most O(n)
iterations in expectation, the union bound over all bad steps during en lnn iterations is
at most O((n log n)/n3). This is reflected by having the 1 − O((n log n)/n3) quotient in
the result.

We also reuse the function h(x) from [DFW11, Theorem 5], which is h(x) ≤ x+2
√
x

en
(1+

16+32
√
x

n
), and apply Theorem 12 to get

E[T | X0] ≥
∫ X0

k′

en

(x+ 2
√
x)(1 + 16+32

√
x

n
)
dx

≥ en ·

[
2 ln

(√
x+ 2

)
− ln (n+ 16x+ 32

√
x) +

8 arctan 4
√
x+4√
n−16√

n− 16

]X0

k′.

We simplify the expression above by dropping the addend containing the arctangent,
since it increases with x and its value is asymptotically smaller than other addends.
Finally we choose k′ = n − k and bound X0 from below by n/3. The latter choice is
due to Chernoff bounds, which show that the algorithm starts with an individual with
a Hamming distance to the optimum of at least n/3 with probability 1 − e−Ω(n), which
hides in the leading factor of 1−O((n log n)/n3).

Figure 2 illustrates that the bound proven in Theorem 16 is significantly better than
the one from [LS15] and captures the essense of the algorithm’s behaviour.

7 Summary of Difficulties of Fixed-Target Analysis

In this work, we have often seen that fixed-target analyses are not much more difficult
than classic runtime analyses. However, from the section dedicated to drift theorems
we also learned that, in order to obtain fixed-target results from existing optimization
time results, more powerful drift theorems sometimes require additional statements to
yield bounds that are good enough. More extreme examples are known, such as our
earlier attempt with the BinVal function in [VBB+19], for which a radically different
approach had to be developed. What is more, sometimes even the easy proofs employing
fitness levels required us to dig deeper into the original optimization time result and refer
not to the main theorem formulation, but to the details of its proof. Below we present
an attempt to classify the possible difficulties that may arise when one wants to prove
fixed-target results based on the existing results about optimization times.
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Figure 2: The runtime profile of the (1 + 1) EA on OneMax and the lower bounds, the
existing and the new ones. Plots in the left part of the figure show the general picture for
three problem sizes n ∈ {103, 104, 105}, whereas plots on the right zoom into the regions
close to the optimum. The plotted quantity is the expected number of fitness evaluations
required to reach the target fitness value against that (relative) fitness value. The runtime
profiles of the (1 + 1) EA were computed exactly using dynamic programming following
the ideas of [BD19]. For the lower bounds, the respective expressions were evaluated and
plotted, disregarding the (1 ± o(1)) factors. The notation in the legend is as follows:
“(1 + 1) EA rand” is the (1 + 1) EA starting at a randomly generated bit string, “Our
result” is the one proven in Theorem 16, and “Lower bound, LS” is the bound from [LS15,
Corollary 3].

(1) Intermediate results can directly be reused, but final theorems are not enough. Since
many of the existing papers aim at proving optimization times, they may not expose the
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intermediate results, which can be used in fixed-target proofs, as separate citable units,
such as theorems or lemmas. A simple example is the proof of Theorem 6, where we
could not even point to the equation we used due to it being unnumbered.

It may even happen that the proof nearly gives the fixed-target result, but it cannot
be derived from the theorem statement. The typical reason is that the result gets simpli-
fied in a way that does not change the optimization time much but affects the possible
fixed-target result. Our proof of Theorem 7 diverged from its source at the point of sim-
plification of one of the min{. . .} clauses: if we followed this simplification too, the final
result would be much less precise.

Presenting the results as a set of smaller lemmas and theorems may make it easier
to build fixed-target results (and further extensions) atop of them. We admit, however,
that it requires more work, and some proofs may be too difficult to split into multiple
lemmas, which would then have large and cumbersome statements.

(2) Results can be directly reused, but they are not applicable or sharp enough for the
full range of targets. For various reasons the existing optimization time results may be
quite sharp on their own, but appear to be too loose in fixed-target contexts. A good
example of such a situation is a bound which is sharp for hard regions of the search
space, but is loose for the remaining part. This is the case for all simple upper bounds
for OneMax, which assume that only one-bit flips are beneficial. A similar example for
lower bounds is [LS15, Corollary 3], which implicitly assumes that optimization in easy
parts is performed instantly. Such existing results need to be augmented by more work
that refines them in parts that are not too meaningful for finding optimization times, but
essential for good fixed-target results.

It follows that, surprisingly at first sight, more complicated proofs of optimization
times that yield sharper bounds should be easier to adapt to the fixed-target context
than easier proofs. We admit, however, that such proofs are harder to produce and
verify, and the main messages important for understanding optimization times may get
obscured.

(3) Some results can be directly reused, but additional statements need to be proven.
One of such cases observed in this paper are drift theorems, which can borrow all the
conditions from the existing optimization time results, but require to prove the bounds
on the overshoot term E[XT | X0] in order to yield the best possible precision. This is
not actually required at times, however, on some occasions not doing that results in a
ridiculously imprecise bound, such as an upper bound that does not take the target into
account.

This can be seen as a fair price to pay, since drift theorems are applicable for a wider
range of processes than fitness level theorems, and harder problems may demand more
complicated solutions. Based on some of our preliminary work, however, we conjecture
that if one has both upper and lower bounds that are based on drift theorems and are
good enough, the matching fixed-target results may be obtained with much less effort.

(4) Existing results require more work in order to be usable. In the most complicated
cases, the existing optimization time proofs may be too overfitted to the optimum being
the target. For instance, it may be the case that the distance between the optimum
and the target, which used to be zero, appears in so many locations of the proof, that
the whole proof needs to be significantly reworked and extended to produce the fixed-
target results. This is what seems be the case for linear functions: some of our work
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in [VBB+19] for BinVal, especially the failed attempts that were not included into that
paper, suggests that the principles of designing the potential function in [Wit13] shall be
significantly changed to work well in the fixed-target context.

While two latter points seem to be fundamental, two former appear to follow from the
current habits of performing and presenting the research, for which reason they may be
called the social ones: the use of best practices, possibly assisted by automated theorem
provers, has the potential of resolving a large fraction of these difficulties just as a side
effect.

8 Conclusion

In this first work focussed on fixed-target runtime analysis, most of our results indicate
that deriving fixed-target results for the whole set of reasonable targets is in several
cases not more complicated than just analyzing the classical optimization time (which
is the special case where the target is set to the fitness of an optimal solution). Since
fixed-target results are much more informative than the optimization time alone, in such
situations we can only advocate to conduct runtime analyses in the more general fixed-
target perspective. As discussed, this often does not need different proofs, all that is
required is to formulate the information present in the proof also in the result. That
said, there are also problems which require additional facts to be proven in order to
obtain sharp enough fixed-target results. Extending our current toolbox to analyze these
situations should be a fruitful direction for further research.

Together with a complementary fine-grained notion that appeared recently, optimiza-
tion times starting from a good solution [ABD20], which might also be called fixed-start
runtime analysis to unify terms, fixed-target runtime analysis can help to prove runtimes
for algorithms to cross fitness intervals. This has direct applications in designing and
understanding hyper-heuristics, as well as in parameter tuning and parameter control.
Since these research areas tend to require especially sharp bounds, it may be the case
that the difficulties in applying even the hardest tools that take care of fine effects, such
as target overshooting, may actually pay off well.
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