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Volume function and Mahler measure of exact
polynomials

Antonin Guilloux and Julien Marché

Abstract

We study a class of 2-variable polynomials called exact polynomials which contains
A-polynomials of knot complements. The Mahler measure of these polynomials can be
computed in terms of a volume function defined on the vanishing set of the polynomial.
We prove that the local extrema of the volume function are on the 2-dimensional torus
and give a closed formula for the Mahler measure in terms of these extremal values.
This formula shows that the Mahler measure of an irreducible and exact polynomial
divided by π is greater than the amplitude of the volume function. We also prove a
K-theoretical criterion for a polynomial to be a factor of an A-polynomial and give a
topological interpretation of its Mahler measure.

Introduction

A polynomial P ∈ C[X±1, Y ±1] vanishing on a curve C ⊂ (C∗)2 is said to be exact if there exists
a function V : C → R (called volume function) satisfying

dV = log |y|d arg x− log |x|d arg y.

In this article, we study the properties of volume functions V . For instance we show that the
volume function extends continuously to the smooth projective model Ĉ of C and study its local
extrema. Our main result concerning V , proved in Section 2 is that the extrema of a volume
function are only attained at so-called toric points:

Theorem. The local extrema of V are necessarily finite points of Ĉ projecting to pairs (x, y) ∈
(C∗)2 satisfying |x| = |y| = 1.

The proof is rather elementary and can be visualised with the help of two notions from real
algebraic geometry: the logarithmic Gauss map and amoebas.

Our motivation comes from topology: let M be a 3-manifold with toric boundary, we denote
by X(M) its character variety, that is the algebraic quotient Hom(π1(M), SL2(C))//SL2(C). The
character variety of the boundary X(∂M) is the quotient of (C∗)2 by the involution (x, y) ∼
(x−1, y−1) : we denote by π : (C∗)2 → X(∂M) the quotient map. The inclusion i : ∂M → M
induces a restriction map r : X(M) → X(∂M) by r([ρ]) = [ρ ◦ i∗]. It has the property that
π−1r(X(M)) is the vanishing set of some polynomial AM ∈ Z[X±1, Y ±1]. This polynomial -
called the A-polynomial of M - was introduced by [CCG+94] and is known to be exact.

Indeed, given a representation ρ : π1(M)→ SL2(C), V (r([ρ])) is the volume of the represen-
tation ρ, for which we refer to [Fra04]. Hence our first theorem partially recovers a recent result
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of Francaviglia and Savini [FS17]. They prove that the volume function V : X(M)→ R cannot
reach its maximum at ideal points. However our simpler proof works only under the assumption
that the restriction map r : X(M)→ X(∂M) is proper. This assumption holds for instance if M
does not contain any closed incompressible surface. These considerations were a starting point
for this work but we will not go further in this direction.

Instead, we investigate in Section 3 the computation of the Mahler measure of an exact
polynomial. Given a 2-variable Laurent polynomial P ∈ C[X±1, Y ±1], the problem of computing
explicitly its logarithmic Mahler measure

m(P ) = 1
(2π)2

∫ 2π

0

∫ 2π

0
log |P (eiθ, eiφ)|dθdφ.

looked intractable before the remarkable computation by Smyth of the Mahler measure of the
2-variable polynomial X + Y − 1 [Smy81]. Since then, many new examples have been found.
For instance, in the article [BRVD05] building on [BRV02, Boy02], the authors used K-theoretic
tools to exhibit a class of 2-variables polynomials with the property that their Mahler measure
multiplied by π is a rational linear combination of evaluations of the Bloch-Wigner dilogarithm
at algebraic arguments. They proceed to give a number theoretic interpretation of this sum
of dilogarithms. They give a lot of examples, among them all A-polynomials of 3-manifolds
M with toric boundary. Finally, they observed that the Mahler measure multiplied by π is
often – but not always – equal to the hyperbolic volume of M . Other techniques, which seem
unrelated to our work, allow the computation of the Mahler measure for non-exact polynomials,
e.g. [Lal03, BN17, Mai00]. We refer to the survey [BL13] for a description of these works.

Starting from the computation of the Mahler measure of an exact polynomial (borrowed from
[BRVD05]), it is known that the formula only involves the values of V at critical points which
sit inside the torus. What was not known is that the contribution of each critical point can be
computed directly. Here is a simple version with strong assumptions granting that only the local
extrema appear:

Theorem. Let P ∈ C[X±1, Y ±1] be an irreducible exact polynomial vanishing on C with volume
function V . Suppose that the curve C is transversal to the torus S1 × S1 in (C∗)2. Then up to
normalizing P conveniently one has

2πm(P ) =
∑
i

V (Mi)−
∑
j

V (mj)

where the Mi’s and the mj ’s are respectively the local maxima and minima of V .

These assumptions generally do not hold for A-polynomials, hence we provide a version
with weaker transversality assumptions (Theorem 3.5) and a general formula (Theorem 3.14).
This proves that the Mahler measure is greater than the amplitude of the volume function (see
Theorems 3.6 and 3.15):

Theorem. Let P be a (suitably normalized) irreducible exact polynomial and V be a volume
function. Then we have:

2πm(P ) > max V −minV.

This inequality is particularly nice in the context of hyperbolic manifolds as the maximum of
our volume function on X(M) is the hyperbolic volume of the 3-manifoldM denoted by vol(M).
When AM is irreducible over C, we get the inequality

πm(AM ) > vol(M).
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This sheds some light on the cases were equality were observed; manifolds with increasing com-
plexity satisfy a strict inequality and we will give an example of this phenomenon.

Although it is easy to understand which polynomials are exact in genus 0, the problem looks
intractable for higher genus cases. For example, the question found in the fourth final remark in
[BRVD05, Section 8] reads: no continuous family of exact polynomials exists. In Section 4, we
obtain for genus 1 polynomials the following finiteness result which we expect to be true without
assumptions on the genus.
Theorem. Up to monomial transformations, there is a finite number of exact polynomials P ∈
Q[X±1, Y ±1] of genus g 6 1 with Newton polygon of bounded area.

The last part of the article contains some K-theoretic arguments. We prove the following
theorem.
Theorem. Let P ∈ Q[X±1, Y ±1] be an irreducible polynomial. It satisfies the following condition

{X,Y } = 0 ∈ K2(KP )⊗Q where KP = Frac
(
Q[X±1, Y ±1]/P

)
if and only if P is a factor of the A-polynomial of some 3-manifold with boundary.

The K-theoretic condition above is the same as in [BRVD05]. The proof given in Subsection
5.1 borrows arguments from Ghys [Ghy]. Hence, at least theoretically, one can recognise which
polynomials are A-polynomials of 3-manifolds although the criterion is effective only for poly-
nomials defining a curve of genus 0. We then describe the computation of Mahler measures of a
few A-polynomials, recovering in part known results.

We end the section and the article by proving a formula which gives a topological interpreta-
tion of m(AM ) where AM is the A-polynomial of M . Consider a closed manifold M with a knot
K inside. Assuming that X(M) is a finite set as we expect for a “generic” 3-manifold, we define

m(M,K) =
∑

[ρ]∈X(M)
log ||ρ(K)||

where ||A|| is the spectral radius of A. If ρ is the hyperbolic representation, log ||ρ(K)|| is the
length of the geodesic represented by K. Hence m(M,K) is the sum of all “lengths” of K over
all possible (non necessarily geometric) representations. Our result is the following:
Theorem. Let M be a manifold with toric boundary satisfying the hypotheses of Proposition
5.5. We have

lim
p2+q2→∞

m(Mp/q,Kp/q) = m(AM )

where Mp/q denotes the Dehn filling of M with parameters p/q and Kp/q is the core of the
surgery.

Acknowledgements: We would like to thank N. Bergeron, G. Calsamiglia, G. Courtois, M.
Culler, B. Deroin, E. Falbel, E. Ghys, J. Josi for valuable discussions around this article. We also
thank the anonymous referee for the very careful reading.

1. Exact polynomials, volume function

Consider a Laurent polynomial P ∈ C[X±1, Y ±1] with two variables and let C be the set of its
complex smooth points, that is:

C = {(x, y) ∈ C∗, P (x, y) = 0, dP (x, y) 6= 0}
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Here and below, we denote by X,Y the formal variables and by x, y the corresponding coordinate
functions. Define the 1-form η on (C∗)2 by the formula

η = log |y|d arg(x)− log |x|d arg(y)

This form restricted to C is closed as one has dη = − Im
(
dx
x ∧

dy
y

)
. Note that, comparing with

[BRVD05], their η is minus ours. This different normalization is mainly due to simplifications of
notations.
Definition 1.1. We will say that P ∈ C[X±1, Y ±1] is exact if the form η restricted to C is exact.
Definition 1.2. A volume function associated to an exact polynomial P ∈ C[X±1, Y ±1] is any
function V : C → R satisfying dV = η|C .
Remark 1.3 Case of real polynomials. Suppose that P is real and irreducible over C. The
following argument shows that in this case there is a preferred choice for a volume function.

We define the complex conjugation on (C∗)2 by σ(x, y) = (x, y). As the coefficients of P are
real, this conjugation preserves the curve C and satisfies σ∗η = −η. Given a volume function
V0 : C → R such that dV0 = η|C , the function V = 1

2(V0 − V0 ◦ σ) is the unique volume function
that is odd with respect to conjugation: V ◦ σ = −V .
Example 1.4. We give some examples of exact polynomials:
(i) Any A-polynomial of a knot is exact. This can be proved by defining directly the volume

function which comes from volumes of representations of cusped 3-manifolds. There is an
alternative proof using K-theoretic tools. In any case, we refer to [CCG+94].

(ii) P (X,Y ) = X + Y − 1. The volume function (in the sense of the previous remark) is
V (x, y) = −D(x) where D is the Bloch-Wigner dilogarithm.

(iii) If φ5 is the fifth cyclotomic polynomial, P (X,Y ) = Y −φ5(X) is exact. The volume function
is V (x, y) = D(x)− 1

5D(x5).
(iv) P (X,Y ) = 1 +X + Y +XY +X2 + Y 2.
(v) P (X,Y ) = 1 + iX + iY +XY .
Example (2) and various others are treated in [BRVD05]. In fact, we will show later on (see
Section 5.1) that each of these polynomials is a factor of the A-polynomial of some 3-manifold;
which 3-manifold is unknown, apart from the last case (see [Dun99b] and Section 5.2).

Any volume function is clearly analytical on C and extends to the completion of C thanks
to the following proposition.
Proposition 1.5. Let P ∈ C[X±1, Y ±1] be an exact polynomial and V : C → R be a volume
function. Then V extends continuously to any projective model Ĉ of C.
Proof. Let z be a point of Ĉ \ C. There exists a local coordinate t around z such that x = tp

and y = tqF (t) where p and q are coprime integers and F is a convergent series with F (0) 6= 0.
We compute that in the coordinate t = ρeiθ one has:

η = p log |F (ρeiθ)|dθ − p log(ρ)d argF (ρeiθ)
By integrating this form over a circle of radius ρ and letting ρ go to 0, we find

∫
Cz
η =

2πp log |F (0)|. Hence the exactness of η implies log |F (0)| = 0. This proves that we can fac-
torise log(ρ) from the right hand side and conclude that η is integrable at 0, showing that its
integral, V , extends continuously at 0.
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The previous proposition also gives the condition for η to be exact in the neighbourhood of
an ideal point. This condition can be interpreted in terms of the tame symbol {x, y}z as already
fully explained in [RV99] and [BRVD05]. We recall these facts in the next two propositions for
the sake of completeness.

Recall first the notion of tame symbol: let f, g be two meromorphic functions on a Riemann
surface X and z be a point of X. Denoting by vz(f), vz(g) the valuation of f and g at z and by
evz the evaluation at z we set

{f, g}z = (−1)vz(f)vz(g)evz

(
fvz(g)

gvz(f)

)
∈ C∗.

Proposition 1.6. The form η is exact in a neighborhood of z ∈ Ĉ if and only if |{x, y}z| = 1.

Proof. We compute the tame symbol {x, y}z using Puiseux coordinates: this gives (−1)pqF (0)−p.
Hence, given a small circle Cz around z we get∫

Cz
η = 2πp log |F (0)| = −2π log |{x, y}z|.

The exactness of η around z is equivalent to the vanishing of its integral around z. The
previous equation proves it is equivalent to |{x, y}z| = 1.

We give a name to polynomials verifying the condition in the proposition:

Definition 1.7. A polynomial P ∈ C[X±1, Y ±1] is said to be tempered if |{x, y}z| = 1 for all
z ∈ Ĉ.

We see from Proposition 1.6 that an exact polynomial is tempered. Let us leverage the
proposition to describe better the set of tempered polynomials. Write P =

∑
(i,j)∈Z2 ci,jX

iY j and
let ∆ be the Newton polygon of P , that is the convex hull in R2 of the set of indices (i, j) ∈ Z2

such that ci,j 6= 0. The group SL2(Z) acts on (C∗)2 by the following monomial transformation:(
a b
c d

)
.(X,Y ) = (XaY b, XcY d).

This action preserves the form η. It follows that the induced action on polynomials preserves the
family of exact ones.

Given a polynomial P with polygon ∆, each side s of the Newton polygon can be identified
with the line j = 0 with a monomial transformation. Collecting the monomials appearing along
this line, we get a polynomial that we call the side polynomial Ps ∈ C[X±1].

Proposition 1.8. Let P ∈ C[X±1, Y ±1] be a polynomial with Newton polygon ∆. The following
assertions are equivalent.

(i) P is tempered.
(ii) For all sides s of ∆, the roots of the polynomial Ps have modulus 1.
(iii) The form η|C defines a cohomology class in H1(Ĉ,R).

Proof. The equivalence of (1) and (3) is clear from Proposition 1.6.
Write P =

∑
i,j∈Z cijX

iY j and let z be an ideal point of Ĉ. We consider a Newton-Puiseux
coordinate as before, that is x = tp, y = tqF (t). Then expanding P (tp, tqF (t)) into powers of t,
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we get a lower order term of the form∑
pi+qj=N

ci,jF (0)jtN + o(tN )

where the line pi + qj = N is a side of ∆. We get that F (0) is a zero of the side polynomial
Ps =

∑
pi+qj=N cijX

j . If P is tempered, then F (0) has modulus 1. Moreover, any root of any side
polynomial gives rise to at least one Newton-Puiseux expansion and hence to one ideal point.
This proves the equivalence of the first two items.

Remark 1.9 Case of real polynomials. Suppose that P is a real polynomial, tempered and
irreducible over C. As η satisfies σ∗η = −η, its cohomology class belongs to the space H1(Ĉ,R)−
of odd cohomology classes with respect to the involution σ∗, whose dimension is the genus of Ĉ.

2. Extrema of the volume function

Let P be an exact polynomial and C be the smooth part of the zero set of P in (C∗)2. We denote
by C the normalization of the zero set of P in (C∗)2. It is also the set of finite points of Ĉ, where
neither x nor y have a zero or a pole. For this whole section, we choose a volume function on C.

We are interested in this section in the extrema of a volume function V as it will turn out
in the next section that these extrema are the key input in a formula for the Mahler measure of
exact polynomials. We will first describe two geometric tools to understand the variations of the
volume, then go on with a study of critical points for the volume before describing the extrema.
At the end of this section, we are able to prove a first theorem on exact polynomials: they should
have a zero in the torus |x| = |y| = 1.

2.1 Amoeba and Gauss logarithmic map
Definition 2.1. The amoeba of C is the image of the map µ : C → R2 defined by µ(x, y) =
(log |x|, log |y|).

Definition 2.2. The logarithmic Gauss map is the map γ : C → P1(C) defined by γ(x, y) =
[x∂xP, y∂yP ].

Being algebraic, γ automatically extends to Ĉ as a holomorphic function: we will make this
extension explicit in Proposition 2.8. There is a relation between these two notions as shown in
the following proposition, taken from [Mik00].

Proposition 2.3. Let C ⊂ (C∗)2 be the smooth part of the curve defined by P ∈ C[X±1, Y ±1].
Then

{(x, y) ∈ C, dµ is not invertible } = γ−1(P1(R))

Proof. Let z = (x, y) be a point of C and consider the zero set of the function (u, v) 7→ P (xeu, yev)
for u and v small. It defines a smooth submanifold around 0 whose tangent space is given by
x∂xP (x, y)u + y∂yP (x, y)v = 0. In these coordinates, the derivative of µ is simply the map
(u, v) 7→ (Re(u),Re(v)). This map is non invertible if and only if there exists (u, v) ∈ R2 \{(0, 0)}
such that x∂xP (x, y)u+ y∂yP (x, y)v = 0. This is equivalent to γ(x, y) being in P1(R).

We can even specify where µ preserves orientation, recalling that C is naturally oriented,
being a complex curve. Here comes a convention:
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Definition 2.4. We will say that [z1, z2] ∈ P1(C) \ P1(R) lies in P1
+(C) if z1/z2 has positive

imaginary part and in P1
−(C) if z1/z2 has negative imaginary part. More invariantly, a non-

zero vector in C2 may be written w = u + iv for u, v ∈ R2. We will say that [w] ∈ P1
±(C) if

∓det(u, v) > 0.

Proposition 2.5 Sequel of Proposition 2.3. In the same settings, for any (x, y) ∈ C and ε ∈ {±1}
such that γ(x, y) ∈ P1

ε(C), the differential d(x,y)µ preserves the orientation if ε = 1 and reverses
it if ε = −1.

Proof. Take a non-zero solution (u, v) of the equation

x∂xP (x, y)u+ y∂yP (x, y)v = 0.

Then an oriented basis of TzC is given by (u, v), (iu, iv). The Jacobian of µ at z in this basis is
Re(v) Im(u)− Re(u) Im(v) = Im(uv). This number has the same sign as Im x∂xP

y∂yP
.

With these two concepts at hand, we proceed with the study of the critical points of the
volume.

2.2 Critical points of the volume function
We now look at the volume function V on C and spot its critical points.

Proposition 2.6. A point (x, y) ∈ C is a critical point of V if and only if the following equation
holds:

log |x|x∂xP (x, y) + log |y|y∂yP (x, y) = 0. (1)
In particular, (x, y) is critical if and only if either µ(x, y) = (0, 0) or γ(x, y) = [− log |y|, log |x|] ∈
P1(R).

Proof. We consider as before a point of the form (xeu, yev) belonging to C. Then at first order
we have ux∂xP (x, y) + vy∂yP (x, y) = 0 whereas η(x,y)(u, v) = − log |x| Im v + log |y| Im u. A real
basis of the tangent space in these coordinates is given by (−y∂yP, x∂xP ) and (−iy∂yP, ix∂xP ):
the linear form η(x,y) vanishes on these vectors if and only if equation (1) holds. The conclusion
follows.

One may connect Proposition 2.3 and Proposition 2.6 by noticing that critical points of V
are located inside the critical locus of µ, precisely on points where γ(x, y) = [− log |y|, log |x|]
except for those satisfying µ = 0.

In order to describe the behaviour of V at ideal points, we introduce a topological notion to
describe the volume function at ideal or ramification points:

Definition 2.7. We will say that a continuous real function f on a Riemann surface X has a
saddle of order k at x if there is a local coordinate z = ρeiθ centered at x and a continuous and
strictly increasing function h : R→ R such that h(0) = 0 and f(z) = f(x)+h(ρ) cos(kθ)+o(h(ρ)).
In particular x is not an extremum of f if k > 0.

Notice that if f is smooth and df(x) 6= 0, then f has a saddle of order 1 at x. If f has a Morse
critical point of index 1 at x, then it has a saddle of order 2. Also notice than one can replace
cos with sin in Definition 2.7.

The next proposition shows that the behaviour of V at an ideal point is quite simple.
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Proposition 2.8. Let z be a point of Ĉ \ C and denote by k the order of ramification of γ at
z. If γ is not constant around z, V has a saddle point of order k at z.

Proof. Up to exchanging x and y, we can choose Newton-Puiseux coordinates around z ∈ Ĉ \C
of the form x = tp, y = tqF (t) with p 6= 0 and |F (0)| = 1.

Differentiating the equality P (tp, tqF (t)) = 0 and writing γ = x∂xP
y∂yP

we get

− γ(t) = q

p
+ tF ′(t)
pF (t) . (2)

If γ is non-constant, nor is F and we may write F (t) = eiφ+aKtK+O(tK+1) with φ ∈ R, K > 0
and aK 6= 0. Comparing with equation (2), we find that K is equal to the ramification order of
γ denoted by k.

Plugging the formulas for x and y into the differential of V we get:

η = p log |F (t)|d arg(t)− p log |t|d argF (t).

Integrating along the ray [0, t], the form d arg t vanishes, giving:

V (t)− V (z) = −p
∫

[0,t]
log |t|d argF (t).

An integration by parts yields

V (t)− V (z) = −p log |t| argF (t) + p

∫
[0,t]

argF (t)d log |t|.

Writing F (t) = eiφ+aktk+O(tk+1), we get the following expression:

V (t) = V (z)− p log |t| Im(aktk) +O(tk)

This shows that V has a saddle of order k if one sets h(ρ) = − log |ρ|ρk.

Note in particular that V cannot have an extremum at an ideal point of Ĉ, unless it is
constant. Let us consider when this happens.

Corollary 2.9. If P is irreducible and V is constant on C, then P = XpY q − λ for some
coprime integers p, q and λ ∈ C.

Proof. Proposition 2.8 implies that γ is constant. From Equation (2), we get F ′(t) = 0 and C is
parametrised by x = tp, y = F0t

q, proving the claim. It is equivalent to say that C is a translation
of a sub-torus of (C∗)2 or that ∆(P ) has empty interior.

2.3 Extrema of the volume
We now leverage the study of critical points to see that the extrema of the volume only happen
above the torus |x| = |y| = 1 in C.

Proposition 2.10. Let z be a point of C mapping to (x0, y0). We denote by k the order of
ramification at z of the map (x, y) : C → (C∗)2. Denote by γ : C → P1(C) = C ∪ {∞} the
logarithmic Gauss map, identifying z with [z, 1] and suppose that γ(z) 6=∞. We denote by l the
order of ramification of γ at z.

(i) If log |x0|γ(z) + log |y0| 6= 0 then V has a saddle of order k at z.
(ii) If log |x0|γ(z) + log |y0| = 0 and µ(z) 6= 0 then V has a saddle of order k + l at z.
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(iii) If µ(z) = 0 and γ(z) /∈ R then V has a local maximum at z if Im γ(z) < 0 and a local
minimum if Im γ(z) > 0.

(iv) If µ(z) = 0 and γ(z) ∈ R then V does not have a local extremum at z.

Proof. Up to a monomial transformation, we can find a local coordinate around z such that
x = x0e

tk and y = y0e
tkF (t) where F (t) = F0 +Flt

l +O(tl+1). Again, differentiating the equation
P (x, y) = 0 gives

−γ(t) = F (t) + t

k
F ′(t) = F0 + Fl(1 + l/k)tl +O(tl+1).

Plugging the formulas of x and y in the derivative of V one gets:

V (t) = V (z) + Im(log |y0|tk − log |x0|tkF (t)) (3)

+
∫ t

0

(
Re(tkF (t))d Im tk − Re tkd Im(tkF (t))

)
. (4)

If log |y0| − log |x0|F0 6= 0 then V has a saddle of order k as before and the first item of the
proposition is proved.

Suppose from now that one has

log |x0|γ(z) + log |y0| = 0. (5)

If µ(z) 6= 0, we conclude from Equation (5) that log |x0| 6= 0 and that F0 is real. The first order
term in the line (3) becomes − Im(log |x0|Fltk+l) whereas a computation shows that the first
order term in the line (4) has the order of t2k+l. Hence in that case that V has a saddle of order
k + l.

Suppose now that log |x0| = log |y0| = 0. Then the first expression vanishes identically. If F0
is not real, the first order in the integral is equal to −1

2 |t|
2k ImF0. In that case, V has a maximum

if ImF0 > 0 and a minimum if ImF0 < 0.
Suppose now that F0 is real so that this term vanishes. Writing t = ρeiθ and Fl = rle

iφl , we
compute:

V (t)− V (z) = −ρ
2k+lrl

2k + l
(l cos(kθ) sin(φl + (k + l)θ) + k sin(φl + lθ))

= −ρ
2k+lrl

2k + l

(
l

2 sin(φl + (2k + l)θ) + ( l2 + k) sin(φl + lθ)
)

This expression cannot vanish and its integral over θ vanishes. This proves that V does not have
an extremum at z0.

The fourth case will be explored and described more precisely in Section 3.3.1.
There is a nice way to understand the properties of V by looking at the amoeba of C. One

can define gradient lines of V as integral lines of the distribution ?η where ? denotes the Hodge
star on C. A direct computation shows that

?η = log |y|d log |x| − log |x|d log |y| = µ∗(vdu− udv)

where u and v are the coordinates in the image of µ. This shows that gradient lines of V project
to half-lines in the amoeba of C. Moreover, flowing from the origin on the half-line, the volume
is increasing if Im γ > 0 or if µ preserves the orientation and is decreasing if Im γ < 0 or if µ
reverses the orientation.

9
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To prove this last assertion, it is sufficient up to monomial transformations to prove it for
the half line u = 0, v > 0. We may parametrise the gradient line by setting x(t) = eiα(t), y(t) =
et+iβ(t) so that we have V ′(t) = tα′(t). Differentiating the equation P (eiα(t), et+iβ(t)) = 0 we get
x∂xPiα

′ + y∂yP (1 + iβ′) = 0. Dividing by y∂yP and taking the real part gives the equation
α′ Im γ = 1. This implies that V ′(t) = t/ Im γ(t), proving the claim.

Here is the example of the polynomial P = X+Y −1. The volume function is V (x, y) = −D(x)
where D is the Bloch-Wigner Dilogarithm. Clearly, there are two points in µ−1(0, 0) which are
(eiπ/3, e−iπ/3) and its conjugate. They correspond to the extrema of the function D, that is the
maximal volume of a hyperbolic tetrahedron.

From Propositions 2.8 and 2.10, we see that the extrema of V can only occur in µ−1(0, 0).
They will play a crucial role, so we call them toric points, as they project to the torus |x| = |y| = 1:

Definition 2.11. A point z in C such that µ(z) = (0, 0) is called a toric point.

If the volume function V is non constant, it has extrema, hence C has toric points. This gives
us the following:

Theorem 2.12. Let P ∈ C[X±1, Y ±1] be an exact irreducible polynomial such that the corre-
sponding volume function is not constant. Then there exists (x, y) ∈ (C∗)2 such that |x| = |y| = 1
and P (x, y) = 0.

We will build upon this theorem in Section 4.

3. Mahler measure of exact polynomials

We describe in this section the Mahler measure of exact polynomials, in a spirit similar to
[BRVD05] but focusing on extrema and more broadly critical points of the volume function.

3.1 Mahler measure and the volume function
Following an idea used by several authors [Den97, RV99, BRVD05], the Mahler measure of a
polynomial is computed by integrating the form η on a collection of arcs inside Ĉ that we now
define. This formulation will give further information when η is exact.

Lemma 3.1. Let P ∈ C[X±1, Y ±1] be an exact irreducible polynomial whose Newton polygon
has non-empty interior. Let C be the normalisation of the zero set of P in (C∗)2 and consider
the natural coordinate map (x, y) : C → (C∗)2. Then, for all but a finite number of monomial
transformations applied to P , the subset

Γ = {z ∈ C, |x(z)| = 1, |y(z)| > 1}

is a finite collection of arcs such that the volume function V : Γ → R is monotonic on each
interval, increasing in the direction of increasing arg(x).

Proof. The proposition contains two parts: Γ is a union of arcs (without crossings) and V is
monotonic on each component. First, one may visualise Γ as the preimage of the half-line u =
0, v > 0 by the map µ. Applying a monomial transformation amounts in taking instead the
preimage of any rational half-line. As a consequence, only a finite number of these lines meet a
finite subset of R2\{(0, 0)}. We take as a finite set the image by µ of the union of the singularities
of C and the critical points of V .

10
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Notice that the set of critical points is finite. Indeed, we assumed that the Newton polygon has
non-empty interior, and from Corollary 2.9 and its proof, the volume function V is non-constant
on the connected surface C. Proposition 2.10 then shows that critical points are isolated.

Hence we suppose that the half-line u = 0, v > 0 avoids all singularities of C and critical
points of V except those with µ = 0.

For all z ∈ Γ with µ(z) 6= (0, 0), the map z 7→ x(z) is not ramified. Indeed, if it were so, then
we would have ∂yP (x, y) = 0 and γ(z) = ∞. As log |x| = 0, Proposition 2.6 implies that z is a
critical point of V , which we excluded. It follows that Γ is smooth at these points. Let us show
that V |Γ is not critical either. Indeed, on Γ we have |x| = 1, hence ln |x| = 0. That gives on Γ:
dV = η = log |y|d arg(x). Moreover on Γ, we have both log |y| 6= 0 and |x| = 1. So the form dV
does not vanish.

Let us compute the Mahler measure of P given by

m(P ) = 1
(2π)2

∫ 2π

0

∫ 2π

0
log |P (eiθ, eiφ)|dθdφ.

By Fubini theorem, setting Pθ(y) = P (eiθ, y) we get

m(P ) = 1
2π

∫ 2π

0
m(Pθ)dθ.

Here m(Pθ) is the one-dimensional Mahler measure which can be computed thanks to Jensen
formula:

m(Pθ) = log |a(θ)|+
∑
j

log+ |yj(θ)|.

In this formula we wrote Pθ(y) = a(θ)
∏
i(y − yj(θ)) and as usual log+ |y| = max(0, log |y|).

As the Mahler measure of P is obviously invariant by monomial transformations, we can
suppose that a(θ) = aeinθ for some n ∈ Z: this is equivalent to saying that the Newton polygon
∆ does not have a top horizontal slope. We also observe that the subset Γ of Lemma 3.1 is exactly
the set of pairs (eiθ, yj(θ)) where |yj(θ)| > 1. Denote by Γ the abstract completion of Γ : it is a
union of closed intervals. As Γ belongs to a compact subset of C, the inclusion Γ ⊂ C extends
to a map Γ→ C which is no longer injective. Nevertheless, we can suppose that the integration
goes along the completion Γ of Γ that we orient in the direction of increasing V . We find

m(P ) = log |a|+ 1
2π

∫
Γ
η = log |a|+ 1

2πV (∂Γ).

Notice that ∂Γ is included in the set of toric points.

Remark 3.2. As noted above, the Mahler measure may be computed by integration along the
preimage of any rational half-line. For instance, applying the monomial transformation (x, y) 7→
( 1
x ,

1
y ) and assuming we avoid the singularities, one may integrate along the preimage of R<0×{0},

i.e. the collection of arcs:
Γ<0 = {z ∈ C, |x(z)| = 1, |y(z)| < 1}

This will be useful later on (see the proof of Theorem 3.14).

Remark 3.3. We observe that given an exact polynomial P , all its coefficients in the corners
of the Newton polygon are equal in absolute value. This is simply because the slope polynomial
having roots of modulus one, their product also has modulus one. Hence, the extremal coefficients

11
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of these polynomial are equal in modulus. We will denote by c(P ) ∈ (0,+∞) the absolute value
of these corner coefficients and say that P is normalised if c(P ) = 1.

3.2 A formula for the Mahler measure – the generic case
In this section we give a first formula for the Mahler measure of an exact polynomial under
some hypotheses on the polynomial. Generically these hypotheses are fulfilled. Unfortunately, A-
polynomials of hyperbolic cusped manifolds do not satisfy it in general due to extra symmetries.
We will explain later on how to compute the Mahler measure in general. Recall from Definition
2.11 that a point z in C is a toric point if µ(z) = (0, 0).

Definition 3.4. We will say that an exact polynomial P ∈ C[X±1, Y ±1] is regular if for every
toric point z in C, we have γ(z) /∈ P1(R).

Hence any such toric point z is either a local maximum or minimum of the volume function V .
We will denote by ε(z) minus the sign of the imaginary part of γ(z) and by k(z) the ramification
at z of the map (x, y) : C → (C∗)2

The following theorem expresses the Mahler measure (up to a factor 2π) as a sum of values
of the volume function at toric points.

Theorem 3.5. Let P ∈ C[X±1, Y ±1] be irreducible, normalised, exact and regular. We have the
formula:

m(P ) = 1
2π

∑
z∈µ−1(0,0)

k(z)ε(z)V (z)

Proof. We analyse for each toric point z = (x0, y0) ∈ µ−1(0, 0) how many branches of Γ end at z.
Take logarithmic Newton-Puiseux coordinate: x = x0e

tk , y = y0e
tkF (t) with ImF (0) 6= 0: indeed

F (0) is the slope γ(z) (see the proof of Proposition 2.10).
The manifold Γ is defined by |x(t)| = 1 and |y(t)| > 1. In coordinates, it means:
– |x(t)| = 1 is equivalent to Re tk = 0. It gives Im tk = ±|tk|.
– |y(t)| > 1 is equivalent to Re(tkF (t)) > 0.

Using Re tk = 0, we get:

0 < Re tkF (t) = Re tkF (0) +O(tk+1) = − Im tk ImF (0) +O(ρk+1)
= − Im tk Im γ(z) +O(ρk+1).

So that we have the additional condition that Im tk has minus the sign of Im γ(z). In any case,
among the 2k half-lines defined by Re tk = 0, we select exactly k branches of Γ adjacent to z. By
item (3) of Proposition 2.10, if Im γ(z) > 0, V has a minimum and the branches of Γ start from
z, justifying ε(z) = −1. This explains the sign and ends the proof of the theorem.

We get a lower bound on the Mahler measure in the irreducible case.

Theorem 3.6. Let P ∈ C[X±1, Y ±1] be a regular exact normalised polynomial irreducible over
C. Then we have the inequality

2πm(P ) > max V −minV.

Proof. Let z1, . . . , zn be the local maxima of V ordered so that we have V (z1) 6 · · · 6 V (zn)
and denote by k1, . . . , kn the corresponding ramifications orders. We also denote by t1, . . . , tm
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and l1, . . . , lm the similar data corresponding to the local minima of V . Lemma 3.1 provides a
collection of arcs Γ as the completion of µ−1({0} × (0,+∞)) and the proof shows that we could
have taken instead of {0}×(0,+∞) any rational half-line except a finite number of them. Denote
by 0 < θ1 < · · · < θm < 2π the arguments of these forbidden half-lines. For any α/2π ∈ Q/Z
such that 2πα is distinct from these arguments, we denote by Γα the completion of preimage of
the half-line with argument 2πα. We always have

2πm(P ) = V (∂Γα) =
n∑
i=1

kiV (zi)−
m∑
i=1

liV (ti)

Set Iα = V (Γα) ⊂ [minV,max V ]. As V is increasing along the components of Γα we have
2πm(P ) > λ(Iα) where λ denotes the Lebesgue measure. Suppose by contradiction that we have
2πm(P ) < max V −minV . Observing that all local extrema of V belong to Iα, we see that Iα
has a "hole", meaning that there exists x ∈ (minV,max V ) such that x /∈ Iα.

Hence Γα splits into two parts, mapped by V to (minV, x) and (x,max V ) respectively. We
should have as many maxima as minima above x: formally this implies that

∑
i,V (zi)>x ki =∑

i,V (ti)>x li. Taking any other collection Γβ: the number
∑
i,V (ti)>x li also corresponds to the

number of increasing branches of Γβ starting from a point above x. As there are as many arriving
points above x, this implies that no other branch of Γβ can come from below x. We conclude
that ∀β /∈ {θ1, . . . , θm}, x /∈ Iβ.

As the extremal points of Iβ are one of the local extrema of V , there exists ε > 0 such that
(x − ε, x + ε) ∩ Iβ = ∅. However it is clear that

⋃
β∈2πQ/2πZ\{θ1,...,θm}

Γβ is dense in Ĉ hence we

conclude that
V (Ĉ) ∩ (x− ε, x+ ε) = ∅.

As P is irreducible, Ĉ is connected and this contradicts the continuity of V .

Remark that if we have the equality 2πm(P ) = max V − minV , this means that the map
V : Γα → [minV,max V ] does not have overlaps except at ∂Γ and is surjective. This is possible
only if ki = li = 1 for all i and V (t1) < V (z1) = V (t2) < · · ·V (zn−1) = V (tn) < V (zn).

3.3 A formula for the Mahler measure – the general case
We now extend our previous formula to the more complicated case of a general exact polynomial.
We shall define an index Ind(z) of a toric point z which will play the role of the numbers k(z)ε(z)
in the previous version. The general formula will involve values of the volume function at toric
points.

3.3.1 Maximally tangent curves Let z ∈ Ĉ be a toric point, that is such that µ(z) = (0, 0).
Let k be the ramification order at z of the map Ĉ → (C∗)2.

In the case Im(γ(z)) 6= 0, we call index of z the number k(z)ε(z) which appears in the formula
in the previous subsection. From now on, we suppose that γ(z) ∈ R \ {0}.

Let ξ be an element of P(TzĈ) - i.e. a real line in TzĈ. We define below its order of tangency
to the torus as the maximal order of tangency with the torus of a curve in Ĉ tangent to ξ. Recall
that the points in Ĉ which project to the torus are exactly those satisfying µ(z) = (0, 0).
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Definition 3.7. For ξ ∈ P(TzĈ), the order of ξ is the number ord(ξ) ∈ N ∪+∞ defined by:

ord(ξ) = sup
{
l ∈ N

∣∣∣∣∣∃α :]− ε, ε[→ Ĉ smooth curve satisfying
α0 = z, α′0 ∈ ξ \ {0} and µ(αs) = O(sl)

}
.

Moreover a smooth curve with maximal l above is said to be maximally tangent to the torus
in the direction ξ.

The following proposition shows that there is a relation between the ramification index k and
the various orders of tangency at z.

Proposition 3.8. Let z ∈ Ĉ satisfy µ(z) = (0, 0) and set k = k(z). For every direction ξ but
exactly k, we have ord(ξ) = k. For the k remaining directions ξ1, . . . , ξk, the order is > k + 1.

Proof. Take a local coordinate t such as (x = x0e
itk , y = y0e

itkF (t)). Consider a smooth curve
α : (−ε, ε) → Ĉ with α0 = z. In the coordinate t we have α0 = 0 and α′0 ∈ ξ \ {0}. Recall that
as γ(z) is real, we have F (0) ∈ R. Using αs = sα′0 +O(s2) yields:

µ(αs) = (ln |x(αs)|, ln |y(αs))|) = −sk(Im(α′0
k), F (0) Im(α′0

k)) +O(sk+1).

We see that µ(αs) = O(sk+1) iff Im(α′0
k) = 0, defining the k particular directions of α′0 ∈ ξ. In

the coordinate t, these directions are the k lines of angle θj with kθj ≡ 0[π].

3.3.2 Variation of the volume We show here that the variation of the volume on maximally
tangent curves in the directions ξj only depends on the direction. We shall use again a local
coordinate t such that (x = x0e

itk , y = y0e
itkF (t)), where F (t) =

∑
i>0

Fit
i. Fix the direction ξj ,

corresponding in this coordinate to the angle θj . Let αs be a tangent curve in the direction ξj ,
written in coordinates in the form:

αs = eiθjs(1 +
∑
i>1

ais
i).

Let us begin by a characterisation in the chosen coordinate of maximally tangent curves:

Lemma 3.9. The order of tangency of ξj is ord(ξj) = k + l where l is the first integer such that
Fle

ilθj is not real.
Moreover the curve αs = eiθjs(1+a1s+. . .) is maximally tangent to the torus iff the coefficients

a1, . . . , aord(ξj)−k are real.

Proof. Let l be the first integer such that Fle(k+l)iθj is not real. We have to prove that k + l is
the order of ξj .

First consider the curve αs = seiθj . Applying the map µ, we compute:

µ(αs) = −sk+l(0, Im(Fle(k+l)iθj )) + o(sk+l).

Hence ord(ξj) > k + l.
Second, consider a curve αs written as above αs = eiθjs(1+a1s+ . . .) whose order of tangency

to the torus is > k+ l. Let r be the smallest (if it exists) integer such that ar is non real. The first
non-vanishing term (if it exists) of ln |x(αs)| is −ksr+k Im(eikθjar)+. . .. Recalling that eikθj = ±1
and using the assumption on the order of tangency, we get r > l.

If we have r = l, we may compute the term of order k + l in µ(αs): it is equal to

sk+l(−k Im(eikθjar),− Im(keiθjarF0 + Fle
(l+k)iθj )).
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On the other hand, if we have r > l, this term equals sk+l(0,− Im(Fle(l+k)iθj )). In any case,
µ(αs) has order k + l. This proves the lemma.

In other terms, up to a real reparametrisation of the variable s, we may write any maximally
tangent curve in the direction ξj in the form: αs = seiθj (1 + als

l + . . .). Note that any curve
verifying |x| = 1 along the curve is maximally tangent: for a curve αs = eiθs(1 + a1s + . . .) to
verify |x(αs)| = 1, we must have θ = θj for some j and every coefficient am real, as shown by a
computation similar to the proof of Lemma 3.9.
Remark 3.10. From the above discussion, any arc δ in µ−1({0} × R) is maximally tangent to
the torus at any point of δ ∩ µ−1({(0, 0)}). Moreover, at such a point, µ−1({0} × R) contains k
maximally tangent curves, one for each direction described in Proposition 3.8.

As the definition of maximally tangent curves is invariant under monomial transformation,
we see that this is true for any µ−1(d) where d is a line of rational slope through 0 in R2.

The behaviour of the volume function along a maximally tangent curve α only depends on the
order ord(ξj) and the sign εj of Im(Fleilθj ) where ord(ξj) = k+ l, called the sign of the direction.
At this point, it seems to depend on the local coordinate chosen. However, the following lemma
shows that it does not:
Proposition 3.11. Let α be a maximal tangent curve in the direction ξj of order ord(ξj) and
sign εj . Then:
(i) if k + ord(ξj) = +∞, then s 7→ V (αs) is constant.
(ii) if k + ord(ξj) is even, and εj > 0, then s 7→ V (αs) has a strict local maximum at 0.
(iii) if k + ord(ξj) is even, and εj < 0, then s 7→ V (αs) has a strict local minimum at 0.
(iv) if k + ord(ξj) is odd, s 7→ V (αs) is strictly monotonous.
Proof. If ord(ξj) = +∞ then Lemma 3.9 implies that Fleilθj and al are real for all l ∈ N. This
implies that one can write t = eiθjf(s) and F (t) = g(s) where f and g are two real functions.
Hence x = x0e

itk and y = y0e
itkF (t) have modulus 1 for small s. Hence αs belong to the torus

µ = 0 and the volume is constant.
In the other case, set l = ord(ξj) − k and θ = θj . The statement does not depend on a

real reparametrisation of the variable s, so we assume that we can write in coordinate αs =
seiθ(1 + αls

l + . . .).
Using the formula for dV , this parametrisation and computations similar to those of the

previous lemma, we get that the first non vanishing term in d
dsV (αs) is of order 2k + l − 1.

Indeed, this first non vanishing term is obtained by looking at the terms of order k + l of ln |x|
and ln |y| and k−1 of d arg(x) and d arg(y). There may be some vanishing terms in the following
expressions but we may anyway write (recall that eikθ and F0 are real):
(i) ln |x| = sk+l(−k Im(eikθαl)) + . . .

(ii) d arg(x) = keikθsk−1ds+ . . .

(iii) ln |y| = sk+l(− Im(ei(k+l)θFl)− Im(F0ke
ikθαl)) + . . .

(iv) d arg(y) = keikθF0s
k−1ds+ . . .

We deduce:
d

ds
V (αs) = ln |y|d arg(x)− ln |x|d arg(y)

=k2s2k+l−1
(
− Im(Fleilθ)

)
+ . . .
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So the sign of this derivative is −ε times the sign of s2k+l−1. This proves the proposition.

In the cases (2), (3), (4), we call the direction ξj respectively maximizing, minimizing, or
monotonous. We are ready to define the index of the point z ∈ Ĉ, which extends the regular
case:

Definition 3.12. Let z be a point in Ĉ with µ(z) = (0, 0).
If γ(z) is not real, then let k be the ramification at z of z → (x, y) and ε be minus the sign

of Im(γ(z)). Then the index of z, denoted by Ind(z), is kε.
If γ(z) is real, the index of z, denoted by Ind(z), is the number of maximizing directions

minus the number of minimizing directions.

Remark 3.13. As discussed in the Remark 3.10, the index of a point z is invariant under
monomial transformations: such a transformation sends minimizing (resp. maximizing) curves
to minimizing (resp. maximizing) curves.

Note that only a finite number of points z ∈ µ−1(0, 0) have a non trivial index. In particular,
any non-singular point of a curve in the intersection of C and the torus has index 0: at such a
point, there is only 1 maximally tangent curve to the torus, which is included in the torus. Along
this curve, the volume is constant.

3.3.3 Mahler measure of exact polynomial, general case The index we defined above also
describes the contributions of points in the torus to the Mahler measure as shown by the following
theorem.

Theorem 3.14. Let P ∈ C[X±1, Y ±1] be an exact, irreducible and normalised polynomial. We
have the formula:

m(P ) = 1
2π

∑
z∈µ−1(0,0)

Ind(z)V (z)

Proof. We will use this time two different set of arcs: apply Lemma 3.1 so that both Γ>0 =
µ−1({0} × R>0) and Γ<0 = µ−1({0} × R<0) are a smooth collection of arcs with monotonic
volume on each component. Denote by Γ their union.

Up to applying yet another monomial transformation, we may assume that the slope γ is
never 0 for an isolated or singular point z in µ−1(0, 0). Let k be the ramification order at z of
z 7→ (x, y). If γ(z) is not real, then its contribution to the Mahler measure has already been
understood in the proof of Theorem 3.5: it is kεV (z) = Ind(z)V (z). The strategy for dealing
with the case of γ(z) real will recover this contribution.

So consider such an isolated or singular point z in µ−1(0, 0). Let Dreal(z) be the number
of directions included in the torus, Dmin(z) the number of minimizing directions, Dmax(z) the
number of maximizing directions, and Dmon(z) the number of monotonous directions. Note that
the sum of these four numbers is k and that if the slope γ(z) is not real, we have Dmin(z) = k
or Dmax(z) = k depending on the sign of its imaginary part.

Around the point z, the set Γ̄ is the union of k − Dreal curves which split into twice this
number of arcs. Indeed, the direction included in the torus are not seen by Γ. Recall that each
of these arcs are oriented so that the volume is increasing. Hence, for each minimizing direction,
there are 2 arcs in Γ leaving z. Likewise, for each maximizing direction there are 2 arcs incoming
and for each monotonous direction one arc is incoming and the other one leaving. We thus get
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2Dmax +Dmon incoming arcs and 2Dmin +Dmon. One may compute which arcs belong to Γ>0 or
to Γ<0, but the description becomes intricate and we do not need this additional information.

Indeed, both Γ>0 and Γ<0 may be used to compute the Mahler measure of P . So we can take
into account both computations:

2πm(P ) = 1
2
[
V (∂Γ>0) + V (∂Γ<0)

]
.

The contribution of the point z to the Mahler measure computed with Γ is V (z)
2 times the number

of incoming arcs minus the number of leaving arcs. From the previous discussion, it amounts to:
V (z)

2 ((2Dmax +Dmon)− (2Dmin +Dmon)) = (Dmax −Dmin)V (z)

= Ind(z)V (z).

Summing over all z, we get the formula of the theorem.

Arguing as in the regular case, we get:

Theorem 3.15. Let P ∈ C[X±1, Y ±1] be an exact polynomial irreducible over C and normalised.
Then we have the inequality

2πm(P ) > max V −minV.

4. Finding exact polynomials

In the last section we proved a closed formula for the Mahler measure of exact polynomials. We
now study more precisely the notion of exact polynomials, proving a finiteness result once the
sides of the Newton polygon is fixed.

Choose a polygon ∆ ∈ R2 with integral corners and coefficients ci,j ∈ C for (i, j) ∈ ∂∆ ∩ Z2

such that the side polynomials constructed from these coefficients have all their roots of modulus
1. Then any choice of coefficients c = (ci,j) for (i, j) ∈ Int ∆ ∩ Z2 gives rise to a tempered
polynomial Pc. The question we address in this section is: for which coefficients is Pc exact?

It is well-known that generically, the curve Ĉc associated to Pc is smooth and has genus
N = Card(Int ∆ ∩ Z2). Hence, the cohomology class of η|

Ĉc
belongs to the N -dimensional space

H1(Ĉc). Moreover, the period map being analytical, we expect that the N -th dimensional family
(Pc) is exact only for a finite number of c.

This is trivial for polygons which have no interior point. In this section, we prove it for
tempered families of elliptic curves, that is for polygons with one interior integral point.

Theorem 4.1. Let ∆ be a Newton polygon with (0, 0) as the unique integral interior point and
let (ci,j)(i,j)∈∂∆∩Z2 be a system of coefficients such that all side polynomials have roots which are
simple and of modulus 1. Then for all but a finite number of values of c ∈ C the polynomial

Pc =
∑

(i,j)∈∂∆∩Z2

ci,jX
iY j − c

is exact.

Proof. By Theorem 2.12, if Pc is exact, there exists x, y ∈ C with |x| = |y| = 1 and P (x, y) = 0.
As the coefficients ci,j are fixed, this implies that c lives in a compact set. Let c be a regular
value of the map P : (C∗)2 → C defined by P =

∑
(i,j)∈∂∆∩Z2 ci,jX

iY j and Cc be its level set
{(x, y) ∈ (C∗)2|P (x, y) = c}.
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Let [ηc] ∈ H1(Ĉc,R) be the cohomology class of the restriction of η to Ĉc. There is a neighbor-
hood U of c such that P corestricted to U is a trivial fibration. This allows us to define the period
map P : U → H1(Ĉc,R) defined by P(x) = [ηx] ∈ H1(Ĉx,R) ' H1(Ĉc,R). The polynomial Px
is exact iff P(x) = 0. Hence, if we show that the differential of the period map is invertible at c,
we will conclude that the set of values of c for which Pc is exact is discrete and hence conclude
the proof of the theorem.

We define ω = dx
x ∧

dy
y and XP the Hamiltonian vector field satisfying iXPω = dP . In

coordinates, XP = xy(∂yP∂x − ∂xP∂y). This vector field is tangent to Cc and does not vanish,
we denote by αP the holomorphic form satisfying αP (XP ) = 1. By Lemma 4.2 below, this form
is indeed holomorphic on the smooth projective model Ĉc which has genus 1 and hence does not
vanish. Hence the flow of XP gives the uniformization of Ĉc.

Consider a smooth family of cycles δt : S1 → Cc(t) where c(0) = c and c′(0) = λ. As
dη = − Imω we have by Stokes formula

∫
δ1
η −

∫
δ0
η = −

∫
S1×[0,1] Im(δ∗ω). Letting t go to 0 we

find that

P ′(c)(δ0) = d

dt

∣∣∣
t=0

∫
δt
η =

∫
δ0

Im(λiξω)

where ξ is a vector field defined on Cc such that dP (ξ) = 1.
Take as δ0 a periodic orbit of the flow of XP of period T . As periods form a lattice in C,

one can assume that λT is not real. We compute
∫
δ0
iξω =

∫
ω(ξ,XP )dt =

∫
dP (ξ)dt = T . This

proves that P ′(c) 6= 0 and hence the theorem.

Lemma 4.2. Let P ∈ C[X±1, Y ±1] be a polynomial with Newton polygon having one integral
interior point and whose side polynomials have only simple roots of modulus 1. Suppose that the
vanishing locus C of P on (C∗)2 is smooth and denote by Ĉ its projective model. Then the form
αP dual to the Hamiltonian vector field XP of P relative to the symplectic form ω = dx

x ∧
dy
y has

no pole nor zero on Ĉ.

Proof. As dP does not vanish on C, nor does the vector field XP . Hence, it is sufficient to show
that αP is holomorphic at each ideal point. Up to translations and monomial transformations,
one can suppose that the interior point is the origin and the side of ∆ we are looking at is
i = 1. Hence, we have Newton-Puiseux coordinates x = t−1, y = F (t) where

∑
i=1,j ci,jF (0)j = 0.

One can write αP = dx
xy∂yP

. As y∂yP = t−1∑
i=1,j ci,jjF (0)j + o(t) we get y∂yP ∼ βt−1 and

αP ∼ −dtβ−1 where β is non zero, being the derivative of a side polynomial at a simple zero.
This proves that αP is regular at the corresponding ideal point.

5. A-polynomials

We focus in this section on A-polynomials as a particular class of exact polynomials. We gather
different observations and examples. We first explain that there is an algebraic criterion for
being a A-polynomial which is effective in genus 0. Then, we come back to the examples given
in the first part, proving they are A-polynomials and computing their Mahler measure. We add
a few examples of A-polynomial of cusped hyperbolic 3-manifold to exhibit different possible
behaviours. We then move on to give an interpretation of the Mahler measure of some knot
exteriors M in terms of "lengths" of the filling geodesic in long Dehn surgeries of M .

From now on, P will be a polynomial over Q and often over Z.
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5.1 A K-theoretic criterion for being an A-polynomial
Recall the construction from the introduction: for a 3-manifoldM with toric boundary, we defined
a restriction map r : X(M)→ X(∂M) and a projection π : (C∗)2 → X(∂M). The A-polynomial
AM is the polynomial whose vanishing locus is π−1r(X(M)).

Definition 5.1. We say that an irreducible polynomial P ∈ Q[X±, Y ±] is an A-factor if there
exists a 3-manifold M with toric boundary such that P is a factor of AM .

In the sequel, we will write FP = FracQ[X±, Y ±]/(P ).

Proposition 5.2. The polynomial P ∈ Q[X±, Y ±] is an A-factor if and only if the Steinberg
symbol {X,Y } vanishes in K2(FP )⊗Q

Proof. Suppose that P is a factor of the A-polynomial of a manifold M . As the vanishing set of
P describes a component of π−1r(X(M)), there exists a curve C in the representation variety
Hom(π1(M), SL2(Q)) such that π−1r(C) is dense in the zero set of P . Consider E the function
field of C: it is a finite extension of FP and there is a tautological representation ρ : π1(M) →
SL2(E) (see Proposition 2.3 in [CCG+94]). Following the argument of [CCG+94], p.59 it follows
that 2{X,Y } = 0 in K2(E). As the map K2(FP )→ K2(E) is injective modulo torsion thanks to
the transfer map (Corollary 5.6.3 in [Wei13]), we conclude that {x, y} = 0 ∈ K2(FP )⊗Q.

Reciprocally, suppose that {X,Y } = 0 ∈ K2(FP )⊗Q. Then Matsumoto Theorem (Theorem
6.1 in [Wei13]) shows that K2(FP ) = lim

→
K2(E) where E ranges over the finite extensions of FP .

Due to Bass-Tate theorem (Theorem 6.4 in [Wei13]), this group is divisible, hence 2{X,Y } =
0 ∈ K2(FP ).

Let ρ : π1(S1 × S1) → SL2(FP ) be the representation that sends l to the diagonal matrix
with entries X,X−1 and m to the diagonal matrix with entries Y, Y −1. Then, ρ∗([S1 × S1]) ∈
H2(SL(FP )) is mapped to 2{X,Y } = 0 ∈ K2(FP ).

Let us next recall Suslin stability theorem as explained in [Hut16], Section 3. For an infinite
field F , there is a sequence of isomorphisms

H0(F ∗, H2(SL2(F ))) ' H2(SL3(F )) ' · · · ' H2(SL(F )) = K2(F )

In the first group, the action of λ ∈ F ∗ on SL2(F ) is by conjugation with the diagonal matrix
with entries (λ, 1). If F is algebraically closed, this action is by interior conjugation, hence trivial
on H2(SL2(F )) and the natural map H2(SL2(F ))→ K2(F ) is an isomorphism.

It follows that ρ∗([S1 × S1]) = 0 ∈ H2(SL2(FP )). Denote by Z the classifying space of the
(discrete) group SL2(FP ). There is a continuous map f : S1×S1 → Z inducing ρ on fundamental
groups: this map defines a class [S1 × S1, f ] in the bordism group Ω2(Z). This class vanishes
if and only if there exists a 3-manifold M with boundary S1 × S1 and a map F : M → Z
extending f . The map F induces on fundamental groups a representation ρ̃ : π1(M)→ SL2(FP )
extending ρ. As π1(M) is finitely generated, this representation actually takes values in SL2(E)
for some finite extension of FP . This field is the function field of a curve inside the representation
variety of M which restricts to the zero set of P . Hence we are done if we can prove that
[S1 × S1, f ] = 0 ∈ Ω2(Z).

At this point we only know that f∗[S1×S1] = 0 ∈ H2(Z). It is known however that there is a
spectral sequence (due to Atiyah and Hirzebruch) whose second page is Hp(Z,Ωq) converging to
Ωp+q(Z). As Ω0 = Z and Ωn = 0 for n = 1, 2, 3, it implies that the natural map Ω2(Z)→ H2(Z)
is an isomorphism, finally proving the claim. We refer to [LM19] for a more elementary and
explicit proof.
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Hence, it is easy to recognise A-factors of genus 0 because by the localization formula for K2
(see [Wei13], p.257), the criterion for being an A-factor reduces to the condition that all tame
symbols {X,Y }z are torsion. Thus we get the following corollary:

Corollary 5.3. An irreducible polynomial P ∈ Q[X±, Y ±] of genus 0 is an A-factor if and only
if the roots of its side polynomials are roots of unity.

It follows that the polynomials X + Y − 1, 1 + X + Y + XY + X2 + Y 2 are A-factors but
we don’t know to which 3-manifolds they correspond. Indeed, the simplest non-trivial genus 0
A-factor we know is 1+ iX+ iY +XY which corresponds to the suspension of a punctured torus

over the circle with monodromy
(
−1 −2
−2 −5

)
, see [Dun99b].

5.2 Examples
We review here some examples of exact polynomials given in the first section and prove that they
are indeed A-polynomials. We then proceed with the computations of their Mahler measure.

5.2.1 P1 = X+Y −1 This example is directly related to the original one of Smyth [Smy81].
On the curve defined by P1, we have {x, y} = {x, 1 − x} = 0 in K2(FP1) and the previous
proposition shows P1 is an A-factor.

It is easy to see that the volume function on the curve is given by −D(x). Indeed, we recognize
its differential in the following expression:

η(x, 1− x) = log |1− x|d arg(x)− log |x|d arg(1− x).

Moreover, the only two points of the curve on the torus are given by x = e±
iπ
3 . They are the

maximum and minimum points of the volume, with the value being plus or minus the volume
v3 of the regular ideal hyperbolic tetrahedron. This whole discussion is done in [BRVD05] and
builds upon a computation by Smyth [Smy81]. In these references, a further number theoretic
description of the Mahler measure is also given.

It is easy to see that the volume above the circle |x| = 1 has no critical points: the Mahler
measure is then computed using Section 3:

m(P1) = v3
π
.

5.2.2 P2(X,Y ) = Y −φ5(X) This is an instance of examples treated by Boyd and Rodriguez-
Villegas [BRV02]. On the curve C2 defined by P2, we have {x, y} = 1

5{x
5, 1−x5}−{x, 1−x} = 0

in K2(FP2) and the previous proposition shows P2 is a (factor of) a A-polynomial.
As before, we see that the function x→ V2(x) = D(x)− 1

5D(x5) is the volume function. We
plot this function above the circle |x| = 1 in Figure 1.

The intersection of C2 with the torus |x| = |y| = 1 consists of 7 points, corresponding to
x = −1,±i, ω = 1+i

√
3

2 , ω2, ω4, ω5. This points are easily spotted on the figure as they correspond
to critical points of the volume function. From the figure, it is quite clear that

2πm(P2) = V2(ω)− V2(i) + V2(ω2)− V2(ω4) + V2(−i)− V2(ω5).
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Figure 1. Volume function for P2(x, y) above the circle |x| = 1

x ω i ω2 −1
γ(x, φ5(x)) [−5

2 − 3i
√

3, 1] [−2 + 2i, 1] [−2− i
√

3, 1] [−2, 1]
sign P1

−(C) P1
+(C) P1

−(C) P1(R)

Table 1. Slope of points in the torus

Let us prove this from the Formula 3.14. The logarithmic Gauss map at these points may be
computed:

X∂XP2 = −(X + 2X2 + 3X3 + 4X4) and Y ∂Y P2 = Y = 1 +X +X2 +X3 +X4.

We then decide if the point is in P1
+(C), P1(R) or P1

−(C). Table 1 displays the computation of
this sign for ω, i, ω2, −1. The three remaining points ω4, −i, ω5 are the complex conjugates of
ω, i, ω2, so the table is easily filled.

The sign is in accordance with what is shown on the figure: at a point in P1
+(C), the volume

exhibits a local minimum. The point −1 of real slope is easily discarded in the formula: whatever
its index is, its volume vanishes, so it does not contribute to the Mahler measure. Its index is
indeed 0: at this point, there is only one maximally tangent curve, which is monotonous.

Using the explicit formula for V2, we get:

m(P2) = 2
5π
(
3D(ω) + 3D(ω2)− 2D(i)

)
5.2.3 P3(X,Y ) = 1 + X + Y + XY + X2 + Y 2 In this example, the curve C3 has no real

points. However we know that it must have points on the torus, as P3 is exact. Indeed we find 8
such points: (−1, i), (−1,−i), (i,−1), (−i,−1), (i,−i), (−i, i), (ω2, ω4), (ω4, ω2). All these points
have non real slope and no ramification hence we get using symmetries and denoting by V3 the
volume function – which is well-defined, see remark 1.3:

2πm(P3) = 4V3(−1,−i) + 2V3(i,−i) + 2V3(ω4, ω2).

This time, we do not provide an explicit computation using the Bloch-Wigner dilogarithm al-
though such an expression should exist.
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5.2.4 P4(X,Y ) = 1+iX+iY +XY This example is (almost) already computed in [BRVD05,
Example 9]. Here, using the same techniques as described above, we get that {x, y} = {−ix, 1 +
ix} − {ix, 1− ix} vanishes modulo torsion on the curve defined by P4. Moreover, it follows that
the volume function is D(ix)−D(−ix) for any point (x, y) in the curve.

The intersection between the torus and the curve has two points, corresponding to x = ±1.
It is quite straightforward that πm(P4) = 2D(i).

5.2.5 A-polynomial of m337 Using Culler’s PE [CD], based on SageMath [The17], SnapPy
[CDGW] and PHCPack [Ver99], one can compute the A-polynomial for the manifold m337
in Snappy. It factorizes in two (almost identical) factors, each of bidegree (20, 13). Note that
the curve C defined by this A-polynomial is invariant by change of sign of any variable, by
(x, y) → (1/x, 1/y) and (x, y) → (x̄, ȳ), so we prefer to work with the polynomial whose zero
set consists of the points (x2, y2), hereafter denoted by P . The multi-graph of the volume above
|x| = 1 (here x is the eigenvalue of the meridian for snappy) is given by PE and we display it in
Figure 2.

Figure 2. Volume function for the A-polynomial ofm337 above the circle |x| = 1. The horizontal
axis is arg(x).

As is quite clear from the figure, the Mahler measure of this polynomial is (up to a factor
π) of the form v1 + v2 + 2v3 where v1 and v2 are the two positive volume above x = 1 (i.e. the
intersection with the vertical axis in the picture) and v3 is the common value of the two local
maxima.

The local maximum v3 corresponds to an intersection between the curve P = 0 and the torus,
which does not lie above x = 1. One can plot this intersection: it has a 1-dimensional part and
a 0-dimensional part corresponding to the set of singular points of the algebraic curve that sit
inside the torus, see Figure 3.

We find then 2 singular points outside of the 1-dimensional part, of coordinates (x, y) where
x and y are both algebraic numbers of degree 12 in the same number field. They are not roots
of unity and the number field has 5 complex places. Note that the two values of x are the
points where the local maxima in Figure 2 are attained. These two singular points are complex
conjugate, so we may just study one of them. We can check, using for example SageMath, that
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Figure 3. Points on the torus (axis are the arguments of x and y). The singular points, repre-
sented by a small disc, are all intersection of 1-dimensional branches but two that are isolated.

two branches of C goes through these points: they correspond to two distinct points in Ĉ. One
then checks that the two slopes are not real and are complex conjugate: it explains the local
maximum and the local minimum for the volume above this value of x. The other singular points
inside the torus are easily seen not to contribute to the Mahler measure: at each of this point,
there are two maximally tangent directions which are clearly real.

It is possible to express v1, v2 and v3 as sums of dilogarithms of algebraic numbers, solving
the gluing equations for m337. We do not give explicit details here. An approximate value is:

πm(P ) = v1 + v2 + 2v3 = 8.1594511763± 10−10.

5.3 An interpretation of the Mahler measure of the A-polynomial
For A ∈ SL2(C) we denote by ||A|| its spectral radius, that is the maximal modulus of an
eigenvalue of A.

Definition 5.4. Let M be a closed oriented 3-manifold and K be a knot in M . Suppose that
the character variety X(M) is reduced of dimension 0. Then we set

m(M,K) =
∑

[ρ]∈X(M)
log ||ρ(K)||

Given an oriented manifold M with toric boundary S1 × S1, we denote by Mp/q the Dehn
surgery with slope p/q that is Mp/q = M ∪φ D2 × S1 where φ : ∂D2 × S1 → ∂M is given by
φ(z, 1) = (zp, zq). We denote by Kp/q the knot {0} × S1 viewed in Mp/q.

Proposition 5.5. Suppose that M is a manifold with ∂M = S1 × S1 and A-polynomial AM
satisfying the following hypotheses:

(i) The restriction map r : X(M)→ X(∂M) is birational on its image.
(ii) The singular points of X(M) do not restrict to torsion points in X(∂M) (that is images by

π of pairs of roots of unity).
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Then we have
lim

p2+q2→∞
m(Mp/q,Kp/q) = m(A)

A theorem of Dunfield states that the first assumption holds for any component of the char-
acter variety which contains a lift of a discrete and faithful representation (see [Dun99a]) (notice
that we assume implicitly that X(M) is irreducible and reduced). This can be weakened as in
[LZ17]. The roots of the Alexander polynomial of M correspond to singular points of X(M),
hence we assume that this polynomial does not vanish at roots of unity. These hypotheses are
already present in [MM14] where they serve similar purposes.

Proof. Let p and q be two relatively prime integers and let γp/q ⊂ ∂M be the curve parametrised
by γp/q(z) = (zp, zq). As π1(Mp/q) = π1(M)/〈γp,q〉, a representation ρ : π1(Mp/q) → SL2(C)
corresponds to a representation ρ : π1(M)→ SL2(C) such that ρ(γp/q) = 1. Denoting by l,m the
homotopy classes of S1 × {1} and {1} × S1 respectively, one can suppose that

ρ(l) =
(
x ∗
0 x−1

)
, ρ(m) =

(
y ∗
0 y−1

)
with A(x, y) = 0 and xpyq = 1. If x 6= ±1 or y 6= ±1, the pair (x−1, y−1) satisfies the same
equation and corresponds to the same representation up to conjugation. Hence we will sum
over all solutions of the system A(x, y) = 0, xpyq = 1 and divide by 2 afterwards. Reciprocally,
to a solution (x, y) of this system corresponds generically one representation by the birational
assumption. By the second assumption, points where there are more solutions map to non-torsion
points, and hence satisfy at most one equation of the form xpyq = 1. Hence, we can neglect them
in the limit. We will see that the case when x = ±1 and y = ±1 does not contribute to the result
hence we discard them also.

Now, the core of the torus D2×S1 is mapped through φ to a curve of the form K(t) = (tr, ts)
where ps − qr = 1. Parametrizing the solutions of xpyq = 1 by setting x = t−q, y = tp we find
that the eigenvalue of ρ(Kp,q) is t. Hence

m(Mp/q,Kp/q) = 1
2

∑
t6=0,A(t−q ,tp)=0

| log |t|| = m(A(t−q, tp))

where m denotes the usual Mahler measure. Notice that we packed t with t−1 and used the
formula 1

2 | log |t|| + 1
2 | log |t−1|| = log+ |t| + log+ |t−1|. As p2 + q2 goes to infinity, the integral

formula for the Mahler measure shows that this quantity converges to m(A) and the conclusion
follows.
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