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Abstract       
 

The adverse effects of vasopressin (AVP) in diverse forms of chronic kidney disease 

have been well described. They depend on the antidiuretic action of AVP mediated by V2 

receptors (V2R). Treatment with tolvaptan, a selective V2R antagonist, is now largely used for 

the treatment of patients with ADPKD. Another way to reduce the adverse effects of AVP is to 

reduce endogenous AVP secretion by voluntary increase in fluid intake. These two approaches 

differ in several ways, including the level of thirst and AVP. With voluntary increased drinking 

plasma osmolality will decline and so will AVP secretion. Thus, not only will V2R-mediated 

effects be reduced, but also those mediated by V1a (V1aR) and V1b receptors. In contrast, 

selective V2R antagonism will induce a loss of fluid that will stimulate AVP secretion and thus, 

increase AVP's influence on V1a and V1b receptors. V1aR are expressed in the luminal side of 

the collecting duct and in inner medullary interstitial cells, and their activation induces the 

production of prostaglandins, mostly PGE2. Intrarenal PGE2 have been shown to reduce 

sodium and water reabsorption in the collecting duct and to increase blood flow in the 

renal medulla, both effects contributing to increase sodium and water excretion and 

reduce urine concentrating activity. Conversely, non-steroidal anti-inflammatory drugs have 

been shown to induce a significant water and sodium retention and potentiate the 

antidiuretic effects of AVP. Thus, during V2R antagonism, V1aR-mediated actions may be 

responsible for part of the diuresis observed with this drug. These V1aR-dependent effects do 

not take place with voluntary increase in fluid intake. In summary, while both strategies may 

have beneficial effects, the information reviewed here lead us to assume that the 

pharmacological V2R antagonism, with resulting stimulation of V1aR and increased PGE2 

production, may provide greater benefit than voluntary HWI. The influence of tolvaptan 

on PGE2 excretion rate and the possibility to use somewhat lower tolvaptan doses than 

presently prescribed remain to be evaluated. 

 

Keywords  

Thirst,        Prostaglandin,        Polycystic kidney disease,     Sodium excretion, 

Medullary insterstitial cells,      Chronic kidney disease       

 
  



NDT-01039-2021 Revised version. Bankir, Guerrot, and Bichet.     Hydration versus vaptans 
 

 3 

Bullet points 
 
What is already known about this subject 
 
--- Vasopressin, by activation of its V2 receptors, promotes kidney disease progression in a 

variety of nephropathies, beyond its direct involvement in autosomal dominant polycystic 
kidney disease.  

--- This influence on CKD in general is mediated, indirectly, by modifications of the 
composition of the tubular fluid at the macula densa and resulting changes in the tubulo-
glomerular feedback control of GFR.  

--- It is thus important to reduce V2 receptor-mediated actions in ADPKD, as well as in all 
forms of CKD; this can be achieved either by a treatment with a selective V2 receptor 
antagonist, or by a voluntary increase in fluid intake. 

 
 
What this study adds  
 
--- Although rarely discussed, V2 receptor blockade or voluntary increase in fluid intake 

differ in their consequences on endogenous vasopressin secretion: vaptans increase 
vasopressin secretion while high water intake reduces it.  

--- As a result, an increased stimulation of V1a receptors occurs with vaptans and is absent 
with voluntary increase in fluid intake. V1aR stimulation is known to increase PGE2 
production in the collecting duct and in insterstitial cells of the inner medulla.  

--- Because these actions reduce urine concentrating activity (by mechanisms that have been 
well described several decades ago), they probably contribute to amplify the aquaresis 
induced by V2 receptor antagonism.     

 
 
What impact this may have on practice or policy 
 
--- We suggest measurements of urinary PGE2 excretion in patients submitted to each of these 

two treatments.  
--- If indeed, this excretion is significantly greater with vaptans than with voluntary increase 

in water intake, it will support the hypothesis that vaptans could provide a greater benefit 
than voluntary increase in fluid intake by reducing V2 effects both directly and indirectly.  

--- Moreover, targeting a urine osmolality close to that of plasma, rather than significantly 
below it, which could improve tolerability without much disadvantage, deserves to be 
evaluated.  
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Abbreviations   
 
AVP Vasopressin or antidiuretic hormone 

dDAVP Desmopressin = 1-deamino 8D-arginine vasopressin  

V2R, V1aR, V1bR AVP V2, V1a, and V1b receptors, respectively  

CKD Chronic kidney disease 

ADPKD Autosomal dominant polycystic kidney disease 

HWI Voluntary increase in water intake 

CD Collecting duct 

CCD Cortical collecting duct 

IMCD Inner medullary collecting duct 

TAL Thick ascending limb  

RMIC Renal medullary interstitial cells 

PGE2 Prostaglandin E2 
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1. Introduction  
 

The adverse effects of vasopressin (AVP) and urine concentrating activity in 

chronic kidney disease (CKD) in general [1, 2], and more specifically in diabetic kidney 

disease [3] and autosomal dominant polycystic kidney disease (ADPKD) [4, 5] have been 

well described. Experimental studies in vivo and in vitro have provided some insight into 

the mechanisms of these adverse effects. They depend on the antidiuretic action of AVP, 

mediated by V2 receptors (V2R). The selective non-peptide orally active V2R antagonist 

tolvaptan is now largely used for the treatment of patients with rapidly progressing 

ADPKD [6] after it was proved to bring significant benefits in the Tempo 3:4 trial [7-10].   

 

Glomerular hyperfiltration is known to be associated with further kidney 

dysfunction, adverse cardiovascular events and/or death [11-17]. Experimental studies 

and clinical investigations have shown that the sustained action of the selective V2R 

agonist dDAVP induces a chronic hyperfiltration and a rise in urinary albumin excretion 

[18, 19] while the suppression of AVP secretion by a water load results in a decrease in 

GFR [18, 20, 21]. Vasopressin contributes to CKD progression and to diabetic 

nephropathy by V2R-depedent actions [22, 23]. In ADPKD, the adverse effects of AVP 

depend on two independent and additive mechanisms: 1. the well understood influence 

of AVP on cyst growth mediated by its second messenger, cAMP; and 2. the 

hyperfiltration imposed on the kidney, as described above for all forms of CKD [24]. 

 

Thus, in order to reduce AVP-dependent V2R-mediated adverse consequences in 

renal patients (with ADPKD and with CKD in general), a voluntary high water intake 

(HWI) has been proposed, instead of a pharmacologic approach [4, 25-30]. Both V2R 

antagonism or voluntary HWI increase urine volume and decrease urine osmolality. 

However, they are fundamentally different. Drinking more will reduce AVP secretion 

and thirst. In contrast, V2R antagonism will induce a water loss and thus, will increase 

AVP secretion and thirst.   
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The aim of this review is to comparatively describe the direct and indirect 

consequences of these two approaches and explain how their differences may affect the 

outcomes.  

 

 

2. AVP receptors 
 

The three AVP receptors, the V1a, V1b, V2 receptors (V1aR, V1bR, V2R) are 

strikingly similar in both size and amino acid sequence. The V1aR and V1bR  are 

selectively coupled to G-proteins of the Gq/11 family, leading to the breakdown of 

phosphoinositide lipids. The V2R preferentially activates the G-protein Gs, resulting in 

the activation of adenylyl cyclase.  

 

The AVP receptors are widely distributed in different tissues in the body, as listed 

in Table 1. V2R are expressed in the kidney, the vascular endothelium where they play 

a role in coagulation, pneumocytes, and the inner ear [31]. They are also expressed in 

mouse, rat and human cholangiocytes and in polycystic liver epithelium [32]. V1aR, 

besides their well-known expression in vascular smooth muscle, are expressed in the 

kidney, in the liver where they may influence glucoregulation [33-36] and other organs 

[37, 38]. V1bR are present in the anterior hypophysis, pancreatic islets, adrenal glands 

[37, 39]. With so many different target sites, it is obvious that all tissues cannot respond 

simultaneously and indistinctly to AVP. Differences in the level of AVP required to 

stimulate each of them, and possible associated permissive or antagonizing factors may 

allow organ-selective responses. However, the V2R-dependent antidiuretic response is 

by far the most sensitive of all. In healthy volunteers undergoing water diuresis, a very 

low rate of AVP infusion induced a significant reduction in diuresis with no influence on 

other target organs or even on other intrarenal target sites [40].  
 

Within the kidney (Table 2), V2Rs are located in the principal cells of the 

collecting duct (CD) and in the thick ascending limb (TAL). Less well-known, V1aRs are 

expressed in the luminal membrane of CD intercalated cells [41] and in interstitial cells 

of the inner medulla [42].  Binding studies with a V1aR antagonist and molecular studies  



NDT-01039-2021 Revised version. Bankir, Guerrot, and Bichet.     Hydration versus vaptans 
 

 7 

[43-45] suggest V1aR expression in thin descending limbs of short looped-nephrons, 

which also express the urea transporter UT-A2 (Figure 1).  

 

 

3. Major differences between voluntary increase in water 
intake or treatment with a V2R antagonist 
 

Table 3 shows the similarities and differences induced by either a voluntary HWI 

or a treatment with a V2R antagonist. The main differences reside in the level of thirst 

and AVP. With voluntary HWI, thirst is largely abolished, plasma osmolality declines, 

and so will AVP secretion. Thus, not only will V2R-mediated effects be reduced, but also 

those mediated by V1a and V1b receptors. In contrast, the V2R antagonism induces a 

loss of water that increases thirst, plasma osmolality and AVP secretion. Tolvaptan has 

been shown to increase plasma AVP and its surrogate marker copeptin, about 3 to 4-

fold,  [46-48]. Thus, effects mediated by V1aR and V1bR should be enhanced while V2R 

effects are, at least largely, abolished. 

 

During the development of V2R antagonists, a serious concern was the risk of 

hypertension due to V1aR-mediated vasoconstriction. The use of a mixed V1aR/V2R 

antagonist was proposed [49-51]. However, princeps and long-term follow-up studies 

with tolvaptan did not reveal any significant rise in blood pressure [7, 9]. Actually, two 

recent studies revealed that blood pressure declined slightly in ADPKD patients after 

several months or years of tolvaptan treatment, compared to placebo [52, 53]. This 

effect was assumed to result from the beneficial effect on disease progression and on a 

higher fractional excretion of sodium and urea.  

 

Another, more recent concern was a possible rise in glycemia via hepatic V1aR 

[33-35]. In epidemiologic studies, AVP is associated with obesity and metabolic 

syndrome [36, 54, 55]. However, princeps and long-term follow-up studies with 

tolvaptan disclosed no significant rise in glycemia. This confirms that the concentration 

of AVP required to induce a sustained vasoconstrictive or a metabolic response is 

significantly higher than that responsible for its antidiuretic action. Similarly, increased 

concentration of vasopressin in ADPKD patients at baseline and during tolvaptan 
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treatment did not result in activation of the hypothalamic-pituitary-adrenal axis. The 

impaired glucocorticoid production in these patients was found to be related to their 

degree of kidney function impairment [56]. 

 

In addition to the differences explained above, the two treatment approaches lead 

to quantitatively different urine volumes. Tolvaptan given for three weeks (90/30 mg in 

the last week) to 27 patients with ADPKD induced an average urine volume of 5,930 

mL/d , vs 2,584 mL/d at baseline. Twenty four hour osmolar excretion was strongly 

associated with 24-hour urine volume [57]. In contrast, in patients with voluntary HWI, 

much lesser water intake and urine volumes were observed. In ADPKD patients with 

voluntary HWI for one year, urine volume rose only from 2.048 ± 648 to 2691 ± 710 

mL/d [58].  In CKD patients  coached  for one year to increase their water intake by 1.0 

to 1.5 L/d above their usual consumption, urine volume went up from 1.9 to 2.5 L/d, a 

change distinctly lower than intended in the design of the study [28].  

 

The discussion about tolvaptan versus voluntary HWI is only valid for 

counteracting vasopressin's actions in kidney patients. The situation is different for 

patients with metabolic diseases (diabetes mellitus, metabolic syndrome) in which 

adverse V1aR- or V1bR-mediated effects are suspected [54, 55, 59]. In the absence of 

selective V1aR and V1bR antagonists, a voluntary increase in fluid intake is the only 

option.  

 

 

4. AVP and the renal handling of sodium : opposite roles of V2 
and V1a receptors. Role of V1a receptors in chronic kidney 
disease 

 

AVP or dDAVP (selective V2R agonist) increase permeability of the collecting duct 

to water via their influence on aquaporin 2 (AQP2). They also increase sodium 

reabsorption by activating ENaC. dDAVP or relatively low doses of AVP reduce sodium 

excretion in both rats [60] and humans [61, 62]. This effect is dependent on ENaC since 

it is abolished by prior administration of amiloride [63]. This sodium retention was not 

observed in patients with nephrogenic diabetes insipidus with loss-of-function of the 
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V2R, but was intact in patients with AQP2 mutations, thus showing that it is mediated by 

V2R [61].  

 

Paradoxically, many  studies reported a strong natriuretic action of AVP when 

infused in vivo in experimental animals or in humans (see review in [62]). How can these 

observations be reconciled with the sodium-retaining effect of AVP or dDAVP via ENaC? 

Perucca et al performed dose-response studies of AVP effect on sodium excretion in 

conscious rats [60]. With increasing doses, AVP turned from being antinatriuretic to 

being natriuretic. The natriuretic effect was prevented by a selective V1aR antagonist 

(Figure 2). This demonstrates that V1aR activation induces a natriuretic effect that, 

with increases in AVP secretion, overcomes the antinatriuretic V2R-dependent action 

[60].  

 

In rats with chronic kidney disease (CKD) induced by renal mass reduction, Perico 

et al  reported that treatment with the dual AVP V1aR and V2R antagonist RWJ-676070, 

combined with angiotensin II blockade, lowered blood pressure, proteinuria, and 

glomerulosclerosis only marginally over angiotensin II blockade alone [64]. 

Surprisingly, no increase the 24-h urine volume was observed [64]. The simultaneous 

blockade of V1aR and V2R thus prevented the aquaretic effect expected in response to 

V2R antagonism. This suggests that, in patients treated with tolvaptan, the stimulation 

of V1aRs by the elevated AVP might participate to the observed aquaretic effect.  

 

In patients with CKD, the fractional urinary excretion of AVP was shown to be the 

major determinant of the fractional excretion of sodium [65]. This strongly suggested a 

role for luminal AVP (thus most likely on V1aR) as an intrinsic diuretic/natriuretic 

factor [65], as confirmed by in vitro studies (see below). 

 

 
5. V1aR-dependent prostaglandin production and actions 

within the kidney  
 

 
5. 1. Evidence for vasopressin-prostaglandin interaction in the kidney 
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Prostaglandins are involved in the regulation of hormonal actions in various 

tissues. In the 1980s-2000s, many articles and reviews described the synthesis of 

prostaglandins by the kidney and their possible role in the regulation of kidney function 

[66-74]. But these mediators did not receive much attention in recent years.  

 

Cyclooxygenases 1 and 2 (COX-1 and COX-2), the rate-limiting enzymes for 

prostaglandin synthesis from arachidonic acid, are expressed in several structures 

within the kidney that are targets of AVP: COX-2 in the thick ascending limb (TAL) and 

medullary interstitial cells (RMIC), and COX-1 in the collecting duct (CD) [75, 76]. 

Prostaglandins interact with G protein-coupled receptors (EP1 to EP4) [77]. EP3 is 

expressed in TAL and the outer medullary CD, EP1 in the inner medullary CD, and EP4 in 

descending vasa recta [75], sites that also express AVP receptors or may influence the 

antidiuretic action of AVP. 

 

Urinary prostaglandin excretion is considered to reflect renal synthesis [78]. 

Inhibitors of prostaglandin synthesis have been used for elucidating their influence on 

kidney function. They include non-steroidal anti-inflammatory drugs (NSAID) 

indomethacin, meclofenamate, aspirin (acetyl salicylic acid), and more recently, 

selective inhibitors of either COX-1 or COX-2 [79] or selective  antagonists of the 

different receptors [80, 81]. 

 

The natriuretic effect of AVP has been shown to depend on a V1aR-mediated 

influence on prostaglandin production [82]. PGE2 exerts at least two main actions in the 

kidney. It reduces sodium reabsorption in the collecting duct and increases blood flow in 

the renal medulla [71, 72, 83], both effects contributing to increase sodium excretion 

and reduce urine concentrating activity. Conversely, NSAID induce a significant water 

and sodium retention, and potentiate the antidiuretic effects of AVP [70, 84-88]. In rats, 

PGE2 infusion depressed the cortico-medullary gradient of NaCl, whereas indomethacin 

lead to a rise in medullary NaCl concentration [89, 90] without any change in renal 

hemodynamics. Prostaglandin synthesis may thus regulate the cortico-medullary 

osmotic gradient and increase natriuresis. Therefore, PGE2 produced in response to 

V1aR stimulation may account for the natriuresis induced by AVP.   

 



NDT-01039-2021 Revised version. Bankir, Guerrot, and Bichet.     Hydration versus vaptans 
 

 11 

Prostaglandins have been shown to interfere with the antidiuretic and 

antinatriuretic actions of AVP [91, 92]. As shown in Figure 3, inhibition of prostaglandin 

synthesis in water diuretic dogs, by indomethacin or meclofenamate, markedly 

potentiated the antidiuretic response to a bolus of vasopressin, without any change in 

GFR and solute excretion [92]. Similar results were observed in humans [93, 94]. 

Intrarenal prostaglandins inhibit the AVP-dependent generation of cyclic AMP in vivo, as 

previously demonstrated in vitro [92], an effect mediated by EP3 receptors [95]. 

Altogether, these observations establish the important role of prostaglandins in 

modulating the action of AVP. 

 

The V1aR-dependent prostaglandin production in the kidney may explain the 

paradoxical observations reported in the following three studies. 1. In Brattleboro rats 

(lacking AVP) with 5/6th nephrectomy, AVP infusion (V2R + V1aR-mediated effects) 

induced much less severe signs of CKD progression than did dDAVP (V2R only). The 

deleterious effects of V2R activation were markedly blunted when associated with V1aR 

activation (Table 4) [96]. 2. In rats with hypertension induced by blockade of NO 

formation, AVP secretion is increased. Contrary to expectations, the selective V1aR 

antagonist worsened the rise in blood pressure and increased urinary albumin excretion 

[97] (Figure 4A).  3. The facilitated urea transporters UT-A2 and UT-A1 are expressed in 

the rat kidney. Infusion of dDAVP induced a marked increase in UT-A2 and UT-A1 

expression, whereas almost no change was observed with an infusion of AVP [98] 

(Figure 4B). This suggests that the presence of V1aR agonism with AVP attenuated the 

influence of V2R agonism induced by dDAVP. Retrospectively, the effects observed in 

these three studies may be attributed to an influence of prostaglandins produced under 

the stimulation of intrarenal V1aR, that was not considered by the authors at that time.  

 

 V1aR are expressed in the intercalated cells of the CD and interstitial cells of the 

inner medulla (RMIC) [42]. In these two cell types, AVP stimulates the synthesis of PGE2 

which is released locally. PGE2 then induces specific paracrine actions on CD principal 

cells (reduction of V2R-dependent osmotic water permeability and ENaC-mediated Na 

reabsorption), thick ascending limbs (inhibition of sodium reabsorption) and inner 

medullary vasculature (increase in medullary blood flow) [99]. These actions contribute 

to reduce the antidiuretic and antinatriuretic response mediated by V2R and to reduce 
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the urine concentrating ability. The simplified diagram of Figure 5 shows the different 

actions of AVP, via its V2R and V1aR. 

 

 

5. 2. Collecting duct 

  

PGE2 attenuates the AVP-dependent effects on the CD in animals and humans [92, 

93] and impairs AVP-dependent water transport in isolated perfused rabbit CCD [100] 

by inducing a faster degradation of cAMP. V1aRs are expressed in the lumen of the CD. 

Addition of AVP to the luminal perfusate of isolated perfused CDs inhibited the hydro-

osmotic effect of AVP [101], and induced a sustained decrease in Na and Cl net fluxes 

[102]. This inhibitory action was prevented by meclofenamate, thus showing the role of 

PGE2 biosynthesis. A downregulation of V2R in the CD, via a V1aR-dependent pathway, 

represents an  additional mechanism by which V1aR activation may reduce the 

antidiuretic action of AVP [103]. Taken together, the effects reported above explain how 

AVP, via its luminal V1aR in intercalated cells, significantly interferes with V2R-

mediated antidiuretic action in the CD.  

 

 How high may be the concentration of AVP in the CD luminal fluid? AVP is far 

more concentrated in urine than in plasma. The urine/plasma ratio of AVP 

concentrations was 42 in a study of healthy humans [104]. When the urine 

concentrating ability is reduced and the rate of tubular fluid flow rate in the CD lumen is 

increased (by V2R antagonism or other causes), AVP concentration in the CD lumen may 

still be significantly higher than in plasma. Thus, luminal AVP may still induce a 

significant influence on  V1aR in the CD. 

 

5.3. Thick ascending limb 

 
V1aR and V1aR-mediated actions of AVP have not been reported in the TAL. 

However, TAL transport proteins and/or transport functions are regulated by 

prostaglandins. A paracrine influence on the TAL by PGE2 released by medullary CDs in 

the inner stripe interstitium can be favored by the close proximity of these two 

structures. PGE2 reduces cell cAMP content [105] and ion transport in MTAL cells by 
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inhibiting AVP-dependent cAMP formation [106, 107]. In isolated perfused TALs, PGE2 

reduced chloride transport  [108] and transepithelial voltage [109], and increased HCO3-

reabsorption [110]. In vivo, endogenous PGE2 reduced fractional chloride reabsorption  

[111]. In mouse medullary TAL cells in culture. PGE2 inhibited the Na- and Cl-dependent, 

bumetanide-sensitive K influx, probably by downregulating the number of Na-K-2Cl 

cotransporters [112]. Conversely, cyclo-oxygenase inhibition increased the abundance 

of the Na-K-2Cl cotransporter. Thus, cyclooxygenase inhibitors enhance urinary 

concentrating ability in part by abolishing  the inhibitory effect of PGE2 on AVP-

dependent cAMP production [113]. Altogether, these studies suggest that PGE2 may act 

as a counter-regulatory factor to maintain a stable function in the MTAL during 

antidiuresis, when circulating AVP levels and medullary osmolality are elevated. 

 

5. 4. Inner medullary interstitial cells and medullary blood flow 

 

Renal medullary interstitial cells (RMICs) are very abundant in the inner medulla 

[114, 115]. These "lipid-laden" cells exhibit abundant lipid droplets of arachidonic acid, 

the precursor of prostanoids.  They express COX-1, COX-2 and PGE synthase [116] and 

produce PGE2 and PGF2 alpha [117-120]. These cells also express abundantly V1aR 

[42]. PGE2 production in RMIC is stimulated by AVP, an effect abolished by a selective 

antagonist of the V1aR [119, 120]. This AVP-stimulated PGE2 production thus results 

from V1aR activation. The stimulation of V1aRs in RMIC may be very significant  because 

AVP concentration is 20-30 times higher in medulla and papilla than in peripheral blood 

[121]. Urinary PGE2 excretion rate is considered to reflect largely the intrarenal PGE2 

production by RMICs [78]. PGE2 induce a significant vasodilation of the vasa recta by 

activation of EP2 and EP4 receptors, resulting in an increase in medullary blood [122-

124].  

 

An increased blood flow in the medullary vasa recta compromises the 

accumulation of solutes in the inner medulla and thus, decreases the intra-renal osmotic 

gradient, a crucial requirement for the urine concentrating mechanism. Urea is 

accumulated in the inner medulla by an AVP-dependent increase in urea permeability of 

the terminal inner medullary CD permitted by the activation of the facilitated urea 

transporter UT-A1 [125-127]. If urea accumulation in the medulla is compromised, 
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water reabsorption and thus urine concentration will be reduced.  An increased 

medullary blood flow will wash out the medullary urea in ascending venous vasa recta, 

and thus reduce inner medullary urea concentration [99]. Moreover, PGE2 may interfere 

with V2R-mediated influence on UT-A1 and thus, let more urea be excreted in the urine, 

thus reducing further its accumulation in the inner medulla and the urine concentrating 

capacity [128].  

 

Intriguingly PGE2 in the renal medulla exhibit a strong sex-related difference. 

PGE2 excretion is about twice higher in female than in male rats, and ovariectomy 

lowers this production to the level observed in males [129]. High PGE2 in females is 

responsible for a twofold higher medullary blood or plasma flow in female than in male 

rats[130, 131]. Indomethacin reduced these flows in females to values similar to those 

in control males [131]. 

 

Altogether, the facts described above provide evidence that AVP, through actions 

initiated by V1aRs, attenuates the antidiuretic and antinatriuretic effects mediated by 

peritubular V2Rs and that these counter-regulatory actions are mediated by PGE2 

(Figure 5). The rise in AVP secretion induced by V2R antagonism thereby participates 

in the "aquaretic" effect observed during V2R antagonism. These V1aR-mediated effects 

in the kidney probably represent a safeguard against an excessive urine concentration 

that would compromise the excretory function of the kidney. Actually,  a low urine flow 

rate markedly reduces the fractional excretion (FE) of urea  [132] as well as that of other 

solutes, although to a lesser extent [18, 62]. In healthy humans undergoing a clinical 

investigation with renal clearance measurements, the FE during high and low hydration 

conditions (in the same subjects) were respectively 64 and 46 % for urea, 2.14 and 1.42 

% for Na, and 19.3 and 15.7 % for K [21]. The FE of these solutes would most likely be 

even more significantly reduced without the counterbalancing influence of V1aR 

activation.  

 

 
6. Possible role of AVP, via V1aR, in the high PGE2 production 

and the high polyuria observed in monogenic tubulopathies  
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In several mendelian diseases involving transporters or regulatory proteins 

expressed in the TAL, like antenatal Bartter syndrome, an intense polyuria is 

accompanied by a marked increase in PGE2 urinary excretion. Inhibitors of 

prostaglandin synthesis significantly ameliorate the urine concentrating defect of these 

patients [133, 134].Thus, in addition to the loss of function mutations in the Na-K-2Cl 

cotransporter [135], PGE2 also contributes largely  to this excessive urinary dilution 

[133, 134, 136].  

  

The reason why prostaglandin synthesis is markedly increased in these diseases is 

not elucidated. AVP secretion is elevated in these patients, due to the loss of fluid 

induced by the high diuresis. Thus, the increased prostaglandin production may be 

explained by enhanced AVP-induced activation of renal V1aR  in RMIC. This situation is 

similar to that observed in response to treatment with tolvaptan. Thus, the urine 

concentrating defect in these tubulopathies is likely due to two cumulative factors: 1, the 

genetic defect that impairs urine concentrating ability; 2, the influence of increased 

V1aR-stimulated prostaglandin synthesis  that reduces the residual V2R-mediated 

antidiuretic action. In a mouse model of late-onset type I Bartter syndrome [137], 

urinary prostaglandin E2 is increased, as in the human disease, and the urine 

concentrating defect is largely attributed to a defect in urea concentration in the urine, 

likely attributable to a high medullary blood flow [137].  

 

An enhanced secretion of AVP and its resulting action on renal V1aR bring a novel 

pathophysiological explanation for the markedly elevated PGE2 excretion rate and high 

diuresis observed in these monogenic diseases. V1aR antagonism could possibly 

represent an alternative to NSAID for reducing the urinary concentrating defect.  

 
 
7. Complex effects of vasopressin on vascular smooth muscle 

cells and endothelial cells        
 

In arteries, V1aR are expressed on vascular smooth muscle cells [138-140] and 

V2R on endothelial cells [31, 141]. Ex vivo studies have shown that AVP can induce 

opposite vasomotor effects : vasoconstriction via V1aR [140 , 142], and vasodilation via 

V2R [141]. in vitro studies of human HUVEC endothelial cells with heterologous V2R 
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expression, showed that dDAVP activates the endothelial NO-synthase eNOS via cAMP 

[143]. This explains the endothelial NO-dependent vasodilatation elicited by high 

concentrations of AVP. 

 

Independent of its hemodynamic implications, desmopressin increases blood 

concentration of vWF, Factor VIII and plasminogen activator inhibitor-1 [144-146]. 

These effects are present in patients with bilateral nephrectomy, and abolished in 

patients with inactivating mutations of V2R (X-linked diabetes insipidus), which 

demonstrates the direct implication of extrarenal V2R [147].  

 

In spite of the effects reported above, it seems unlikely that the pharmacological 

inhibition of V2R could lead to a clinically significant disturbance of vascular physiology, 

because patients with X-linked diabetes insipidus do not present with hematological or 

vascular disorders. In addition, both randomized controlled trials and follow-up studies 

of tolvaptan in ADPKD did not report a significant increase in blood pressure or 

cardiovascular events (a small decline in blood pressure is even observed on the long 

term (see above). Nevertheless, detailed studies of the effects of vaptans on the 

cardiovascular system, and comparison with increased hydration are lacking and are 

currently insufficient to suggest prioritizing either attitude in this setting. In particular, 

whether vaptans may improve or aggravate endothelial function may be particularly 

relevant in ADPKD patients, in which endothelial dysfunction is present as a 

consequence of the disrupted polycystin complex in arteries [148]. 

 
 
8. Which strategy should be most effective for reducing V2R-

mediated adverse effects? 
 

In ADPKD, reducing vasopressin V2R-mediated effects is a major issue because of 

their direct influence on cyst growth induced by V2R-dependent formation of cAMP. 

More generally, in CKD, reducing V2R-mediated effects is also relevant because they 

participate in glomerular hyperfiltration and increased albuminuria [22, 24].  It is 

currently difficult to conclude which of the two strategies (selective V2R antagonist or 

recommendations to voluntarily increased water intake) would be more effective to 
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slow progression of all forms of CKD. Moreover, very few results are yet available from 

trials based on a voluntary HWI.   

 

A few recent trials showed the feasability of voluntary HWI. However, they 

concerned only small numbers of subjects and for short durations [26, 29, 30]. A one-

year trial in Canadian patients with CKD showed no benefit of HWI for kidney protection 

in spite of monthly coaching [28]. In this and several other HWI trials, fluid intake was 

lesser than prescribed [28, 149, 150]. This is also the case in patients with recurrent 

urolithiasis, in spite of their painful symptoms [151, 152]. There are wide inter-

individual differences in the tendency to concentrate urine and thus probably in usual 

beverage consumption among subjects [153]. Future "HWI" studies could select "low 

drinkers" with high baseline copeptin and Uosm [35]. 

 

V1aR-mediated actions of AVP were assumed for a long time to be potentially 

harmful, but no related adverse effects have been reported in the long-term follow-up 

studies of V2R antagonists. The rise in AVP secretion induced by tolvaptan is apparently 

not large enough to impact extra-renal tissues expressing V1aR. However, the influence 

of AVP on V1aR may be significant within the kidney because AVP gets concentrated in 

the luminal fluid of the CD by water reabsorption, and in the medullary vasa recta 

supplying the RMIC because of counter-current exchanges between descending and 

ascending vasa recta. 

 

A recent review described how tolvaptan treatment should be proposed in the 

category of patients who can best benefit of this treatement [154].  Compared to HWI, 

limitations of tolvaptan include the risks of some adverse effects (liver toxicity, fatigue, 

hyperuricemia) and cost. A modest hyperuricemia was reported in 14.8% of the patients 

in the Japanese branch of the TEMPO 3/4 trial  [155]. The intense polyuria and nocturia 

are responsible for some treatment discontinuation. As discussed recently, increasing 

the tolerability of this treatment is a major challenge [154]. Interestingly, the doses used 

up to now may possibly be reduced. Indeed, an important question that has rarely been 

addressed is how low should Uosm be reduced. In a small trial in ADPKD patients, 

tolvaptan given for three weeks (with 90/30 mg in the last week) reduced urine 

osmolality from 359 {IQ 289-425} mosm/kg H2O at baseline to 139 {IQ 126-173} 
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mosm/kg H2O on the third week  [57]. In the TEMPO 3/4 trial, the mean Uosm observed 

over the course of the study was 220-230 mosm/kg H2O  (figure 3A in [156]). Based on 

early dose-finding studies of tolvaptan, in which efficacy was defined as the capacity to 

achieve Uosm<300 mosm/kg H2O, Torres et al deduced  that further lowering of Uosm 

below 300 may provide no significant additional benefit, while decreasing quality of life 

[6]. It is important to note that, in this range of low Uosm, the difference in daily urine 

volumes between Uosm of 220 or 300 mosm/kg is very large. For a given osmolar load of 

900 mosm/d, it drops by more than 1 liter (from 4.1 to 3.0 L/d). Thus, treatments with 

lower doses than used in previous trials [7] could antagonize V2R-mediated actions 

while inducing less intense side effects (thirst, polyuria, nycturia [7]), allow better 

compliance (and could be less expensive). 

 

Another reason why a lower dose of tolvaptan might be appropriate is because the 

adverse influence of vasopressin on kidney function (including the induction of 

glomerular hyperfiltration) appears to be biphasic. It is restricted to situations in which 

urine is still concentrated above plasma osmolality. It is not observed when urine is 

hypo-osmotic [21, 22, 157, 158]. A recent study in 1265 CKD patients suggests that either 

low or high water intake may not be beneficial in CKD: the association between the rate of 

eGFR decline and water consumption was U-shaped [159]. These observations thus 

suggest that the dose of tolvaptan might be adjusted to target  an Uosm close to that of 

plasma, but not significantly below it. Given the benefits in terms of quality of life and 

adherence to the treatment, it might be worth testing in a clinical trial if a lower dose of 

tolvaptan would be as efficient as the doses prescribed presently. 

 

During V2R antagonism, we assume that a significant part of the aquaresis may 

result from V1aR-mediated effects and resulting PGE2 production. Unfortunately, 

urinary PGE2 excretion has never been evaluated in patients treated with tolvaptan. A 

new clinical trial could evaluate the differences in urinary PGE2 excretion rate in healthy 

subjects, and/or in kidney patients treated with either tolvaptan or a placebo, or in 

patients recommended to increase their water intake. If a significantly greater PGE2 

excretion rate is observed in the tolvaptan group, and the lowest excretion rate in the 

group with voluntary HWI, it will suggest that PGE2 do indeed participate in the 

aquaresis (as it does in monogenic diseases characterized by a high PGE2 production).  
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In summary, while both strategies may have beneficial effects, the information 

reviewed above lead us to assume that the pharmacological V2R antagonism, with 

resulting stimulation of V1aR and increased PGE2 production, may provide greater 

benefit than voluntary HWI. The influence of tolvaptan on PGE2 excretion rate and the 

possibility to use somewhat lower tolvaptan doses than presently prescribed remain to 

be evaluated.  
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Figure Legends   
 

Figure 1. A and B. Autoradiographies showing binding of a radio-iodinated selective 

V1aR antagonist in adult rat kidney. Reproduced from [43]. A. The four kidney zones 

are indicated: C, OS, IS, and IM = cortex, outer stripe and inner stripe of the outer 

medulla, and inner medulla, respectively. V1aR labeling is observed in the cortex, the 

lower half of the IS, and the IM. Calibration bar = 1 mm.  B. Higher magnification of a 

tangential section through the IS shows labeled thin descending limbs of short 

looped-nephrons (h) apposed at the periphery of unlabeled vascular bundles (vb). In 

the lower part of the figure, intense labeling is also observed in collecting ducts (cd) 

in the upper part of the IM. Calibration bar = 200 µm. C and D. Expression of the urea 

transporter UT-A2 in the inner stripe. C. Epon section of a mouse kidney through the 

deep IS, labeled for UT-A2. The thin descending limbs of short loops (S), lying around 

a vascular bundle, are labeled for UT-A2, whereas those of long loops (L), in the 

interbundle regions, are not. This study concludes that UT-A2 expression is restricted 

to the last 28% to 44% of the descending thin limbs of all short looped-nephrons. 

Magnification, x 80. Reproduced from [45]. D.  In situ hybridization of UT-A2 in a rat 

kidney. Transverse section through the deep IS showing UT-A2 positive short loops 

gathered around negative vascular bundles (courtesy of Matthias Hediger, Boston 

Mass, USA; 1997). Note the similar pattern of labeling of UT-A2 (in D) and of V1aR (in 

B) in tubules gathered around vascular bundles. This suggests a possible co-

localization of V1aR and UT-A2 in the thin descending limbs of short loops [43-45]. 

 

Figure 2. Effects of AVP (15mg/kg BW) on sodium excretion rate without or with the 

co-administration of the V1aR antagonist SR49059 (10 mg/kg BW). The effect of the 

antagonist alone and of dDAVP (selective V2 agonist) are also shown. Results of the 

experimental day are expressed as percentage of values observed during the previous 

basal day (with sham injections) in the same rats. Paired t test, experimental versus 

basal day : ** P < 0.01; *** P < 0.001. AVP injection at 15 mg/kg induced a significant 

rise in Na excretion, but injections at 1 or 5 mg/kg did not (not shown here). The 

V1aR antagonist induced a modest significant rise in urine osmolality (not shown 

here) and abolished the rise in sodium excretion rate due to AVP. dDAVP induced a 
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significant decline in sodium excretion, most likely due to increased ENaC-dependent 

Na reabsorption. Modified from [60]. 

 

Figure 3. Evidence for in vivo influence of prostaglandins on the antidiuretic response 

to vasopressin. Anesthetized, water diuretic dogs received a bolus of 100 mU 

vasopressin, twice at about a 120 min interval. The second bolus was given after the 

administration of 2 mg/kg indomethacin. Reproduced from [92]. 

 

Figure 4. A. Systolic blood pressure (SBP) in rats during an eight-week treatment with 

the NO synthase inhibitor NG-nitro-L-arginine (L-NNA), the selective V1aR antagonist 

SR 49059, or both in combination. Data are means ± SEM. L-NNA induced a significant 

progressive rise in SBP; 2-way ANOVA: *** P<0.001. The V1aR antagonist alone had 

no effect on SBP but, contrary to expectations, it significantly worsened the rise 

induced by L-NNA (red double arrows). This suggests that the normal activation of 

V1aRs is actually protective.  Significant interaction of L-NNA and SR 49059: # 

P<0.001. Adapted from [97].  B. Influence of a chronic infusion of AVP (acting on both 

V2Rs and V1aRs) or dDAVP (acting selectively on V2Rs) on mRNA expression of 

facilitated urea transporters in the four medullary zones of the Brattleboro rat kidney 

(superficial and deep inner stripe, and base and tip of inner medulla). Adapted from 

[98]. Exp = Experimental, after a 5 day infusion of AVP or dDAVP. * : p < 0.05 for 

dDAVP vs basal condition. dDAVP induced a marked increase in UT-A2 expression in 

the deep IS, and of UT-A1 in the upper IM, whereas almost no change was observed 

with an infusion of AVP. This suggests that the activation of the V1aRs (during AVP 

infusion) attenuated the influence due to activation of the V2Rs. 

 

Figure 5. Effects of AVP, via V1a and V2 receptors, on different cell types in the kidney 

and their consequences on the urine concentrating ability. Not shown are additional 

effects on the thick ascending limbs via V2Rs (direct) and V1aRs (indirect, mediated 

by paracrine effects of PGE2 issued from surrounding CCDs).  CCD and IMCD = 

cortical and inner medullary CDs, respectively. PG-R = PGE2 receptor. 
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Table 1. Target sites of circulating vasopressin in the body and the receptors involved   
  (target sites in the central nervous system are not considered here). 
     

 V2 
receptors 

V1a 
receptors 

V1b = V3 
receptors 

Vascular smooth muscle cells  Yes  
Endothelium Yes   
Platelets  Yes  
Heart   Yes 
Kidney Yes Yes  
Liver  Yes  
Adipocytes  Yes  
Spleen   Yes 
Lung (pneumocytes) Yes   
Inner ear Yes   
Pancreatic islets   Yes 
Adrenal gland  Yes Yes 
Anterior hypophysis   Yes 
Thymus   Yes 
Uterus   Yes 
Breast   Yes 

 
 
  



NDT-01039-2021- Revised version. Bankir et al. Increased hydration versus vaptans 

 2 

 Table 2. Main structures expressing V2 and V1a receptors in the kidney, and resulting main effects 
 
 

                 Structures Main effects 

V2 receptors  

 Thick ascending limb (basolat. mbne) Stimulation of Na-K-2Cl mediated transport 

 Connecting tubule (basolat. mbne) Insertion of AQP2 in the luminal membrane 

 CD principal cells (basolat. mbne) Insertion of AQP2 in the luminal membrane 
Stimulation of ENaC-mediated Na reabsorption 
Activation of UT-A1 in the terminal IMCD 
 

V1a receptors  

 Arterial vasa recta smooth muscle cells Vasocontriction (not significant in vivo for usual AVP 
concentrations) 
  

 CD intercalated cells (luminal membrane) Stimulation of prostaglandin production 

 Inner medullary interstitial cells Stimulation of prostaglandin production, leading to 
vasodilation of medullary vasculature 

 
basolat. mbne = basolateral membrane 
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 Table 3. Similarities and differences induced by voluntary increase in hydration or treatment with a vaptan 
 

   Voluntary Increase 
in Hydration 

Treatment with  
a Vaptan 

Water intake    Increased    Increased 

Urine volume    Increased    Increased 

Urine osmolality Decreased Decreased 

Plasma osmolality Decreased   Increased 

Thirst Decreased   Increased 

Vasopressin secretion Decreased   Increased 

V1aR- and V1bR-mediated effects Decreased   Increased 

Cause of higher water intake          Voluntary  Increased thirst 

Observance Difficult to drink in excess of thirst Easy to take a pill 

 
 V1aR and V1bR = vasopressin V1a and V1b receptors, respectively.  
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 Table 4. Influence of either AVP or dDAVP infusion on CKD progression in Brattleboro rats. Results observed during the third month 

after 5/6th nephrectomy and initiation of the AVP or dDAVP infusion. 
 

 Control (DI) AVP 
(V1a & V2 agonism)  dDAVP  

(V2 agonism) 
 

      

Body weight (g) 339 ± 7 364 ± 12  370 ± 18  

Food intake (g/d) 13.8 ± 0.5 13.8 ± 1.4  14.5 ± 1.8  

Urine flow rate (ml/d) 105 ± 8 20 ± 3 § 32 ± 6 § 

Urine osmolality (mosm/kg H2O) 199 ± 13 997 ± 141 § 694 ± 129 § 

Urinary protein excretion (mg/d) 23 ± 3 21 ± 4  49 ± 10 § # 

Systolic blood pressure (mm Hg) 194 ± 12 176 ± 15  204 ± 12  

Hematocrit (%) 43 ± 1 40 ± 2  36 ± 2 § 

Plasma sodium concentration (mmol/L) 154 ± 1 146 ± 3 § 148 ± 2 § 

Plasma potassium concentration (mmol/L) 3.36 ± 0.05 3.87 ± 0.17 § 3.95 ± 0.13 § 

Plasma urea concentration (mmol/L) 15.4 ± 1 15.6 ± 2.0  30.9 ± 7.3 § # 

Plasma creatinine concentration (µmol/L) 107 ± 3 100 ± 6  127 ± 11 § # 

Kidney weight (mg/100g BW) 331 ± 16 541 ± 72 § 671 ± 50 § 

      

 
Comparison of the three groups by a one-way ANOVA followed by Fisher post-hoc test.  
AVP or dDAVP versus control :  § = p < 0.05 or less;  dDAVP versus AVP : # = p < 0.05 or less 
Data from reference 24.  
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