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Abstract. Dating syntectonic sedimentary sequences is often
seen as the unique way to constrain the initiation, duration,
and rate of folding as well as the sequence of deformation
in the shallow crust. Beyond fold growth, however, deforma-
tion mesostructures accommodate the internal strain of pre-
folding strata before, during, and after strata tilting. Absolute
dating of syn-folding mesostructures may help constrain the
duration of fold growth in the absence of preserved growth
strata. Absolute dating of mesostructures related to early-
folding layer-parallel shortening and late fold tightening pro-
vides an access to the timing and duration of the entire fold-
ing event. We compile available ages from the literature and
provide new U–Pb ages of calcite cements from veins and
faults from four folds (Apennines, Pyrenees, Rocky Moun-
tains). Our results not only better constrain the timing of fold
growth but also reveal a contraction preceding and following
folding, the duration of which might be a function of the tec-
tonic style and regional sequence of deformation. This study
paves the way for a better appraisal of folding lifetime and
processes and stress evolution in folded domains.

1 Introduction

Quantifying the rates and duration of deformation processes
is key to understanding how the continental crust deforms.
Quite a lot is known about rates and duration of ductile de-
formation in the lower crust, for instance that shear zones can
be active for tens to hundreds of millions of years (Schneider
et al., 2013; Mottram et al., 2015). However, less is known
about the duration and rates of folding processes in the upper
crust. Short-term folding rates are usually captured by study-
ing deformed terraces and alluvial fan ridges associated with
active folds, and the dating of the inception and lifetime of
folds is based on the extrapolation of these short-term rates
back in time assuming a steady deformation rate.

The other classical means of constraining the age and rate
of upper-crustal folding consists of dating growth strata. In
orogenic forelands, contractional deformation causes fold-
ing of the pre-deformational sedimentary sequence, and
when sedimentation occurs continuously during deforma-
tion, growth strata are deposited synchronously with folding.
Growth strata often show a characteristic pattern, such as de-
creasing dips up-section toward the limbs of the fold, fan-like
geometry, and unconformities (Riba, 1976; Fig. 1). Several
factors control growth strata patterns, such as kink-band mi-
gration, fold uplift, limb rotation and lengthening rates, as
well as sedimentation and erosion rates (Suppe et al., 1992;
Storti and Poblet, 1997). Chronostratigraphic constraints are
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critical for defining the duration and rate of fold growth (But-
ler and Lickorish, 1997). Dating the base of the growth strata
defines the youngest initiation age for the fold, while post-
growth strata conceal the final geometry of the fold and mark
the end of folding (Fig. 1).

However, preserved growth strata are not ubiquitous/are
rare, and the folded multilayer typically includes only pre-
growth strata. Also, the fold growth may be highly dis-
continuous through time, deformation being episodic at all
timescales with tectonic uplift pulses of different duration
and intensity interrupted by periods of variable extent in
which no fold growth occurred (Masaferro et al., 2002; Carri-
gan et al., 2016; Anastasio et al., 2017). Where available, the
study of syntectonic unconformities (Barnes, 1996) or ter-
races (Mueller and Suppe, 1997) otherwise suggests that the
growth of some folds may be caused by earthquake-related
slip on active faults, which is by its nature discontinuous.
These studies emphasize the difficulty in extrapolating fold
growth rates back in time. The age of fold initiation obtained
by assuming steady shortening, deposition, and fold growth
rates is therefore at best strongly biased and at worst false, so
the duration of fold growth remains poorly constrained.

Folded sedimentary layers usually exhibit brittle
mesostructures such as faults, joints, veins, and stylo-
lites (e.g. Tavani et al., 2015, and references therein). These
mesostructures accommodate the internal strain of strata
during folding but also before strata started to be tilted and
after tilting, i.e. when shortening can no longer be accom-
modated by fold growth (Fig. 1). Several deformation stages
can typically be identified in folded pre-compressional
strata, starting with pre-shortening extension related to
foreland flexure and bulging, followed by layer-parallel
shortening (LPS, horizontal shortening of flat-lying strata)
(Amrouch et al., 2010a; Callot et al., 2010; Lacombe et
al., 2011; Tavani et al., 2006, 2008, 2011, 2012; Rocher
et al., 2000; Beaudoin et al., 2012, 2016; Branellec et al.,
2015). Continuing horizontal stress loading and shortening
usually leads to folding, associated with strata tilting and
curvature, which are accommodated by flexural slip in
the fold limbs and tangential longitudinal strain (outer-arc
extension and inner-arc compression) at the fold hinge. The
fold “locks” when limb rotation and/or kink-band migration
cannot accommodate shortening anymore. At that stage,
strata tilting is over but continuous horizontal shortening
leads to late-stage fold tightening (LSFT), accommodated
by late mesostructures developing irrespective of bedding
dip (Fig. 1) (Amrouch et al., 2010a; Tavani et al., 2015).

Despite recent efforts (Wang et al., 2016; Grobe et al.,
2019; Curzi et al., 2020; Cruset et al., 2020, 2021), the dat-
ing of the early-, syn-, and late-folding mesostructures has
received poor attention, although it is key to constraining not
only the absolute timing of folding in the absence of growth
strata but also the entire duration of the fold-related contrac-
tional stages and the associated stress evolution from build-
up to release. We explore hereinafter the possibility to de-

fine the age and duration of folding by investigating how and
for how long pre-folding strata have been accommodating
shortening from the onset to the end of the horizontal con-
traction from which the fold originated, an event we define
as the folding event (Fig. 1). This approach will help better
constrain the duration of fold growth, by directly dating the
syn-folding mesostructures but also by bracketing the tim-
ing of fold growth through the dating of the mesostructures
that immediately predate and postdate strata tilting. Doing
so will also enable us to capture the duration of the LPS
and LSFT. These two deformation stages have been over-
looked since they accommodate much less shortening than
folding itself. However, they correspond to key periods of
time for large-scale fluid flow and related ore deposition in
fold-and-thrust belts and sedimentary basins (e.g. Roure et
al., 2005; Evans and Fischer, 2012; Beaudoin et al., 2014).
For this purpose, we consider four natural folds for which we
either compile existing data or provide new estimates of the
age of LPS, fold growth, and LSFT. Three of our examples
are from fold-and-thrust belts (Apennines, Pyrenees) and one
from the Laramide basement-cored folding province (Rocky
Mountains). We show that mesostructures can be used to con-
strain the timing and duration of fold growth and/or of short-
ening preceding and following folding. Our results not only
provide new estimates of the duration of folding but also
establish that the overall duration of the folding event may
strongly vary as a function of the tectonic style of deforma-
tion. Beyond regional implications, this study paves the way
to a better mechanical appraisal of contractional deformation
and stress evolution in folded domains.

2 Methods for dating the folding event using
mesostructures

In this paper, we focus on easily recognizable mesostructures
that develop in the same contractional stage and under the
same regional trend of horizontal shortening as folding. We
report neither on microstructures such as calcite twins (Crad-
dock et al., 1993; Lacombe et al., 2007, 2009; Rocher et al.,
1996; Hnat et al., 2011; see review by Lacombe, 2010) nor on
rock physical properties such as anisotropy of magnetic sus-
ceptibility (e.g. Aubourg et al., 2010; Amrouch et al., 2010b;
Branellec et al., 2015; Weil and Yonkee, 2012). The main
reason is that although both of them have been shown to be
suitable recorders of the stress and strain history of folded
strata (Lacombe et al., 2012), their precise dating remains
out of reach to date.

In the four folds that we investigated, the sequence and
age of mesostructures were established by various dating ap-
proaches, the methodologies of which are briefly recalled be-
low (Fig. 2). Note that strata from which mesostructures were
dated are mainly pre-folding strata and that there have been
few (if any) attempts at directly dating mesostructures that
developed within growth strata. The reason is that the of-

Solid Earth, 12, 2145–2157, 2021 https://doi.org/10.5194/se-12-2145-2021



O. Lacombe et al.: Dating the folding event using mesostructures 2147

Figure 1. Concept of folding event and associated mesostructures and growth strata.

ten poorly indurated syn-folding formations are less prone
to fracturing and calcite cementation at the time of defor-
mation compared to pre-folding, well-indurated formations,
which is evidenced by the paucity of fracture studies in syn-
tectonic strata (e.g. Shackleton et al., 2011).

2.1 Sequence of mesostructures related to the fold
history

The characterization of the sequence of deformation was
based on field measurements of stylolites, faults, joints, and
veins and their grouping into sets according to their statis-
tical orientation, deformation mode, and relative chronol-
ogy established from abutting and crosscutting relationships
(Fig. 2a). Their timing with respect to fold growth (i.e. early-
, syn-, and late-folding mesostructures) was further estab-
lished by considering their current and unfolded attitude at
the fold hinge and limbs (e.g. Beaudoin et al., 2012, 2016;
Tavani et al., 2015) (Fig. 1).

Field observations (e.g. Bellahsen et al., 2006; Ahmadhadi
et al., 2008; Tavani et al., 2015) and numerical modelling
(Guiton et al., 2003; Sassi et al., 2012) have emphasized the
widespread reactivation during folding of joints and veins
formed during pre-folding stages. The role of reactivation
should not be, and has not been, overlooked in our study;
however, for the sake of reliable absolute dating we focused

on faults and veins the characteristics of which support that
they newly formed at each deformation stage and show nei-
ther textural nor petrographic evidence of multiple opening
or shearing events, be it at the mesoscale or at the microscale.

2.2 Dating veins and faults

Calcite-bearing veins and faults (Fig. 2a) can be dated by
combining the absolute precipitation temperature of the flu-
ids from which calcite cements formed as given by carbon-
ate clumped isotope 147 thermometry with the burial-time
history of strata (Fig. 2b and d). Provided that (1) cemen-
tation was nearly coeval with fracturing, (2) the geotherm
can be reliably estimated, and (3) stable isotope geochem-
istry points to fluid precipitation at thermal equilibrium with
the host rock, clumped isotope thermometry of cements com-
bined with strata burial history yields the absolute timing of
the successive vein sets and hence the timing of the related
deformation stages (Fig. 2d) (Labeur et al., 2021).

Calcite cements can also be directly dated by carbonate
geochronology (Fig. 2b). Laser-ablation–inductively-
coupled-plasma–mass-spectrometry (LA-ICP-MS) U–Pb
dating of calcite consistently reveals the age of brittle
deformation events (Roberts and Walker, 2016; Nuriel et al.,
2017; Hansman et al., 2018; Beaudoin et al., 2018; Roberts
et al., 2020) (Fig. 2b and d), provided that cementation was
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Figure 2. Principle of the dating of mesostructures related to the folding event. (a) Photograph of a bedding-parallel sedimentary stylolite
cut by a vertical vein related to layer-parallel shortening (LPS). (b) Principle of dating calcite veins using LA-ICP-MS, with laser ablation
spots and final Tera–Wasserburg diagram. (c) Principle of inversion of the roughness of sedimentary stylolites for stress. σv is the vertical
stress, α = ((1− 2ν) · (1+ ν)2)/(30π(1− ν)2), γ is the solid–fluid interfacial energy, ν is the Poisson ratio, E is the Young modulus, ρ is
the dry density, g is the gravitational field acceleration, and z is the depth. (d) Principle of the combination of U–Pb dating and absolute
147 thermometry of calcite cements (here for LPS-related veins) with maximum depth of burial-related dissolution inferred from roughness
inversion of sedimentary stylolites and burial-time evolution of strata to derive the timing of deformation stages during the folding event.

coeval with fracturing and that no later fluid infiltration
and/or calcite recrystallization occurred (Roberts et al.,
2021).

2.3 Combining sedimentary stylolite roughness
inversion for paleodepth and burial history to
constrain the onset of LPS

The onset of LPS corresponds to the time at which the
maximum principal stress σ1 switched from a vertical at-
titude related to compaction and/or to foreland flexural ex-
tension to a horizontal attitude in response to tectonic con-
traction (Beaudoin et al., 2020a). In order to constrain the
timing of this switch, our approach relies on the capability
of bedding-parallel, sedimentary stylolite (Fig. 2a) to fos-
silize the magnitude of the vertical stress σ1 at the time
at which dissolution stopped. Indeed, signal analysis (e.g.
wavelets) of the final roughness of a sedimentary stylolite
returns scale-dependent power laws, of which the transition
length (crossover length Lc) scales with the magnitude of the
vertical stress σv = σ1 (Schmittbuhl et al., 2004; Toussaint
et al., 2018) (Fig. 2c). By analysing a population of sedimen-
tary stylolites with this inversion technique, which has been

validated by numerous studies (Ebner et al., 2009; Rolland et
al., 2012, 2014; Bertotti et al., 2017; Beaudoin et al., 2016,
2019, 2020a, b), one can estimate the maximum burial depth
at which pressure solution was active, with 12 % uncertainty
(Rolland et al., 2014). Combining this depth with the burial-
time evolution of the strata as derived from well data and/or
exposed stratigraphic successions reveals the time at which
compaction-driven pressure solution was halted in the rock
because of the switch from a vertical to a horizontal σ1 and
thus the age of the onset of LPS (Fig. 2d). The validity of
such an approach has been established on the basis of the
comparison of the age of the onset of LPS determined this
way with the oldest U–Pb absolute age of LPS-related veins
(Beaudoin et al., 2020a).

3 Dating natural folding events

3.1 Cingoli and San Vicino Anticlines (Apennines)

The San Vicino and Cingoli anticlines belong to the Umbria–
Marche Apennine Ridge (UMAR, Fig. 3a). Apenninic defor-
mation occurred by the Tortonian in the west of UMAR to the
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Figure 3. San Vicino and Cingoli anticlines. (a) Location (AS: Adriatic Sea; TS: Tyrrhenian Sea). (b) Cross section (modified after Mazzoli
et al., 2002). (c) Orientation of the main sets of mesostructures (relative chronology, 1 to 3), reported in current or unfolded attitude on a
lower-hemisphere Schmidt stereonet, and associated paleostress evolution; ∗ denotes mesostructures dated using U–Pb. (d) Burial model of
Cingoli constructed considering thickness from stratigraphic and well data corrected for chemical and physical compaction (modified after
Labeur et al., 2021). The range of depths reconstructed from sedimentary stylolite roughness inversion (with uncertainty shaded in light grey)
is reported for each formation as grey levels. The results of clumped isotope analysis (i.e. temperatures of precipitation of vein cements at
thermal equilibrium with the host rock) are reported for LPS-related veins (blue) and syn-folding veins (red). The deduced timing of the
deformation stages is reported. (e) Age dating results for veins from the San Vicino anticline: Tera–Wasserburg concordia plots for carbonate
samples showing 238U/206Pb vs. 207Pb/206Pb for veins of sets I (LPS-related) and III (LSFT-related) (n – no. of spots). MSWD – mean
square of weighted deviates. (f) Timing and duration of deformation stages. Regional data are from Mazzoli et al. (2002) (flexure), Calamita
et al. (1994) (folding and thrusting), and Beaudoin et al. (2020b) (LSFT). Colour code for (c, f): dark blue – flexure-related extension; blue
– layer-parallel shortening (LPS); red – fold growth; green – late-stage fold tightening (LSFT); yellow – post-folding extension.

late Messinian–early Pliocene in the east, reaching the Adri-
atic domain in the late Pliocene–Pleistocene (Calamita et al.,
1994). UMAR has been undergoing post-orogenic extension
since ∼ 3 Ma, being younger eastward and marked by re-
cent or active normal faults cutting through the nappe stack
(Barchi, 2010). The San Vicino and the Cingoli anticlines in-
volve platform carbonates overlain by a hemipelagic succes-
sion detached above Triassic evaporites. The folds formed in
the late Messinian–early Pliocene (∼ 6–5 Ma) as indicated

by growth strata preserved in the nearby Aliforni syncline
(Fig. 3b), following a period of foreland flexure-related ex-
tension marked by pre-contractional normal faults associated
with turbidite deposition lasting until the early Messinian
(∼ 6.5 Ma) (Calamita et al., 1994; Mazzoli et al., 2002).

Field analysis in the Cingoli and San Vicino fault-bend an-
ticlines (Fig. 3b) has revealed three main sets of mesostruc-
tures (Beaudoin et al., 2020b; Labeur et al., 2021). Set I con-
sists of vertical veins perpendicular to both bedding and fold
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axis and striking NE–SW, associated with bed-perpendicular
tectonic stylolites with peaks trending NE–SW and plung-
ing parallel to bedding dip which, after unfolding, indicates
NE–SW-directed LPS. Set II veins are bed-perpendicular and
strike NW–SE, parallel to the fold axis; they abut or cut
across set I veins and formed in response to outer-arc ex-
tension at the fold hinge. Set III comprises NE–SW-striking
veins closely associated with tectonic stylolites with horizon-
tal peaks trending NE–SW – both veins and tectonic sty-
lolites being vertical regardless of the bedding dip – and
with conjugate vertical strike-slip faults which formed dur-
ing a post-tilting horizontal NE–SW contraction, i.e. LSFT
(Fig. 3c).

Labeur et al. (2021) focused on the Cingoli anticline to re-
construct the burial history of the early Cretaceous Maiolica
Fm and the Paleocene Scaglia Rossa Fm. The authors carried
out an extensive inversion of the roughness of sedimentary
stylolites from these formations to constrain the maximum
depth at which compaction-related dissolution was active.
The results are shown in Fig. 3d, together with the timing
of veins from sets I and II as deduced from147 thermometry
(Labeur et al., 2021) by considering a 23 ◦Ckm−1 geotherm
(Caricchi et al., 2015) and a 10 ◦C surface temperature. The
resulting timing for LPS, fold growth, and LSFT is shown in
Fig. 3f.

To extend the published dataset to the San Vicino An-
ticline, veins from sets I, II, and III were sampled in the
Maiolica Fm to perform U–Pb analyses for absolute dating.
Selected veins display antitaxial, elongated blocky, or blocky
textures (Bons et al., 2012) ensuring that the cements pre-
cipitated during, or soon after, vein opening. Cathodolumi-
nescence observations further support the homogeneity of
the cements (Fig. 4) as well as the absence of any vein re-
opening and calcite recrystallization or fluid infiltration that
might cause anomalous younger (reset) ages (Roberts et al.,
2021). U–Pb dating of calcite cements was conducted us-
ing LA-ICP-MS at the Institut des Sciences Analytiques et
de Physico-Chimie pour l’Environnement et les Matériaux
(IPREM) laboratory (Pau, France). Ages were determined
from the total-Pb/U–Th algorithm of Vermeesch (2020),
are quoted at 95 % confidence, and include the propagation
of systematic uncertainties. Sample information, a detailed
methodology, and results are provided in the Supplement.
Three veins from the San Vicino anticline yielded reliable
ages: 6.1± 2 Ma for the set I vein, 3.5± 1 Ma for the set II
vein, and 3.7±0.3 Ma for the set III vein (Fig. 3e). The large
uncertainties in the U–Pb age from the set II vein lead to
some overlap with the dates of set I and set III veins (Fig. 3f).
However, these veins have distinctive orientations, a consis-
tent relative chronology, and distinctive C and O stable iso-
topic signatures of their cements while being sampled in the
same parts of the fold (Beaudoin et al., 2020b). These ob-
servations support that these veins were not cemented by
the same fluid and hence were not cemented coevally. The
absolute vein ages, combined with existing time constraints

Figure 4. Two-dimensional scans of veins dated by LA-ICP-MS
U–Pb geochronology from the San Vicino anticline, with the lo-
cation of the ablation spots and diagenetic state observed under
cathodoluminescence microscopy. (a) Sample A16 (LPS-related
vein). (b) Sample A19 (syn-folding vein). (c) Sample A20 (LSFT-
related vein).

(Fig. 3f), indicate that LPS occurred from ∼ 6.5 to 5.5 Ma
for both anticlines, followed by fold growth between ∼ 5.5
and ∼ 3.5 Ma, with a seemingly slightly longer duration in
Cingoli than in San Vicino. LSFT started ∼ 5 Ma in the
Camerino syncline (Beaudoin et al., 2020b),∼ 4.5 Ma in San
Vicino, and ∼ 3 Ma in Cingoli and possibly lasted until the
onset of post-orogenic extension in eastern UMAR (∼ 2.5–
2 Ma, Fig. 3f). The entire folding event was thus very short,
having lasted 3–4 Myr considering both anticlines as a whole
(Fig. 3f).

3.2 Pico del Aguila Anticline (Pyrenees)

The Pico del Aguila is a N160◦ E-trending anticline in the
southern Pyrenees (Fig. 5a), markedly oblique to the south
Pyrenean thrust front. It formed in response to Pyrenean
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Figure 5. Pico del Aguila anticline. (a) Location (AB: Aquitaine Basin; JB: Jaca Basin; EB: Ebro Basin; PAZ: Pyrenean Axial Zone; P:
Paleozoic; M: Mesozoic; C: Cenozoic). (b) Cross sections (north: modified after Poblet et al., 1997; south: modified after Beaudoin et
al., 2015). (c) Orientation of the main sets of mesostructures (relative chronology, 1 to 5), reported in current or unfolded attitude on a
lower-hemisphere Schmidt stereonet (same key as Fig. 3), and associated structural and paleostress evolution. Block diagrams modified after
Beaudoin et al. (2015); ∗ denotes mesostructures dated using U–Pb. (d) Timing and duration of deformation stages. Colour code for (c, d):
blue – layer-parallel shortening (LPS); red – fold growth; green – late-stage fold tightening (LSFT); yellow – post-folding compression.

thrusting and detachment folding above Triassic evaporites
(Poblet and Hardy, 1995; Vidal Royo et al., 2009, Fig. 5b).
Growth strata (Fig. 5b) indicate that the fold developed by the
late Lutetian–Priabonian (∼ 42–35 Ma, Hogan and Burbank,
1996), before it was passively tilted and transported south-
ward over the Guarga basement thrust (Jolivet et al., 2007).

Beaudoin et al. (2015) investigated the fracturing his-
tory of the Pico del Aguila (Fig. 5c). Three sets of
bed-perpendicular joints/veins, oriented N080, N060, and
N045◦ E (from the oldest to the youngest as established
from abutting/cross-cutting relationships), were recognized.
These three sets formed in progressively younging strata in
response to a NE–SW-directed shortening while the area
was undergoing a vertical axis 30–40◦ clockwise rotation
(Fig. 5c). This rotation agrees with the Bartonian–Priabonian
clockwise rotation of 15–50◦ around a vertical axis identified
from paleomagnetism (Pueyo et al., 2002). The field study
also revealed bed-perpendicular joints oriented N160◦ E and
N–S-trending normal faults which formed during fold growth
in response to outer-arc extension at the fold hinge (Fig. 5c).
The end of the fold-related fracturing history (LSFT) is
marked by the formation of N–S-trending reverse faults and
by the transpressional reactivation of earlier ENE-striking

joints under an E–W compression resulting from the local ro-
tation of the regional NE–SW compression (Beaudoin et al.,
2015). Post-folding, E–W-trending reverse faults ultimately
developed under the same N–S compression as the Guarga
thrust (Fig. 5c).

U–Pb dating of calcite cements reveals that the veins re-
lated to the NE–SW-directed LPS formed as early as ∼
61±3 Myr ago, while late oblique-slip reverse faults (LSFT)
and post-folding E–W reverse faults were dated to 19± 5
and 18–14± 3 Ma, respectively (Hoareau et al., 2021). LPS,
folding, and LSFT therefore lasted ∼ 19 Myr (61–42 Ma), ∼
7 Myr (42–35 Ma), and ∼ 17 Myr (35–18 Ma), respectively
(Fig. 5d).

3.3 Sheep Mountain Anticline (Rocky Mountains)

The Sheep Mountain anticline is a thrust-related, basement-
cored NW–SE-striking fold that developed in the Bighorn
basin (Fig. 6a and b) during the late Cretaceous–Paleogene
Laramide contraction. Three main joint/vein sets were rec-
ognized there (Fig. 6c, Bellahsen et al., 2006; Amrouch
et al., 2010a; Barbier et al., 2012). Set I consists of bed-
perpendicular, WNW–ESE-oriented veins associated with
tectonic stylolites with ∼WNW–ESE horizontal peaks (after
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Figure 6. Sheep Mountain anticline. (a) Location (BHB: Bighorn basin; WRB: Wind River Basin; PRB: Powder River Basin; GGB: Greater
Green River Basin; DB: Denver Basin). (b) Cross section (modified after Amrouch et al., 2010); (c) Orientation of the main sets of veins
(relative chronology, 1 to 3), shown on a field photograph and on a block diagram of the final fold geometry, reported in unfolded attitude
on a lower-hemisphere Schmidt stereonet (same key as Fig. 3), and associated structural and paleostress evolution; ∗ denotes mesostructures
dated using U–Pb. (d) Timing and duration of the deformation stages. Colour code for (c, d): grey – pre-folding layer-parallel shortening
kinematically unrelated to folding; blue – layer-parallel shortening (LPS); red – fold growth; green – late-stage fold tightening (LSFT);
yellow – post-folding extension.

unfolding) (Amrouch et al., 2010a, 2011). This set formed
prior to folding under a horizontal σ1 trending WNW–ESE,
likely transmitted from the distant thin-skinned Sevier oro-
gen at the time the Bighorn basin was still part of the Se-
vier undeformed foreland. Set II comprises vertical, bed-
perpendicular joints/veins striking NE–SW, i.e. perpendicu-
lar to the fold axis. These veins are associated with tectonic
stylolites with horizontal peaks oriented NE–SW and wit-
ness a NE–SW-directed Laramide LPS (Varga, 1993; Am-
rouch et al., 2010a; Weil and Yonkee, 2012). The joints/veins
of set III are bed-perpendicular and abut or cut across the
veins of the former sets. They strike NW–SE, i.e. parallel to
the fold axis, and their distribution mainly at the hinge zone
of the fold supports their development in response to outer-
arc extension at the hinge of the growing anticline (Fig. 6c).
Widespread reverse and strike-slip faults also formed during
LPS and LSFT, while bedding-parallel slip surfaces devel-
oped during fold growth (Amrouch et al., 2010a).

Veins from sets I, II, and III were dated by means of U–
Pb (Beaudoin et al., 2018). Set I veins yielded ages between
81 and 72 Ma, supporting their pre-Laramide formation. The
Laramide LPS-related veins were dated to 72–50 Ma. The

age of set III veins constrains the timing of folding in the
absence of preserved growth strata to 50–35 Ma (Beaudoin
et al., 2018). Laramide LPS and fold growth therefore lasted
∼ 20–25 Myr and ∼ 15 Myr, respectively (Fig. 6d). The du-
ration of the LSFT is poorly constrained, being bracketed be-
tween 35 Ma and the onset of the Basin and Range extension
and Yellowstone hot-spot activity at ∼ 17 Ma (Camp et al.,
2015, Fig. 6d).

4 Discussion and conclusion

The absolute dating of mesostructures definitely confirms
the sequence of deformation usually deduced from orienta-
tion data and relative chronology with respect to bedding
attitude, which includes LPS, fold growth (e.g. strata tilt-
ing), and LSFT (Fig. 1). This sequence is valid for the four
folds studied, despite the San Vicino, Cingoli and Pico del
Aguila anticlines developed above a decollement in a fold-
and-thrust belt, while the Sheep Mountain anticline formed
as a basement-cored forced fold above a basement thrust. The
overall consistency between the ages of growth strata when
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Figure 7. Compared durations of the deformation stages of the folding event, fold style (i.e. final fold geometry) and sequence of regional
deformation for the four studied folds (circled numbers 1 to 6: order of structural development, i.e. sequence of folding/thrusting, with
corresponding ages in Ma (in parentheses)); red: from this study; black: from the literature (Beaudoin et al., 2018, for Wyoming, Jolivet et
al., 2007, for the Pyrenees, Calamita et al., 1994, and Curzi et al., 2020, for the Apennines). Colour code: blue – layer-parallel shortening
(LPS); red – fold growth; green – late-stage fold tightening (LSFT); yellow – post-folding extension/compression.

preserved, the time constraints derived from our multi-proxy
analysis coupling isotopic geochemistry of cements and sty-
lolite paleopiezometry, and the U–Pb ages on early-, syn-,
and late-folding mesostructures demonstrates the reliability
of our approach. Minor age overlaps are observed only when
the duration of each deformation stage was shorter than age
uncertainties, i.e. in the case of recent and rapid deforma-
tion (San Vicino and Cingoli, Fig. 3f). Note that age overlaps
could also relate to the fact that LPS and fold growth may
slightly overlap, as documented in the Sibillini thrust anti-
cline, i.e. the southern continuation of the San Vicino anti-
cline (Tavani et al., 2012).

In the four investigated anticlines, fold growth lasted be-
tween 1.5 and 15 Ma, in accordance with previous estimates
of fold growth duration elsewhere using either syntectonic
sedimentation (Holl and Anastasio, 1993; Anastasio et al.,
2017) or mechanical modelling (Yamato et al., 2011). More-
over, our study quantifies for the first time the duration of
the contraction before and after fold growth. The results un-
expectedly reveal that LPS and LSFT, which accommodate
lower amounts of shortening than fold growth but which are
associated with substantial – if not most of – small-scale rock
damage, may have lasted much longer than fold growth itself.
Such a trend could be key for the understanding of the his-
tory of foreland basins, including the mechanical evolution
of strata and past fluid flow dynamics (Roure et al., 2005;
Beaudoin et al., 2014).

Dating precisely the onset of LPS, whatever the technique
used (U–Pb geochronology or absolute thermometry of cal-
cite cements of mesostructures) is difficult because the en-
tire range of vein ages may not be captured with certainty
due to limited sampling. However, the onset of LPS can be
further constrained either by the sedimentary record of the

foreland flexure preceding contraction (San Vicino) or by the
estimate of the time at which compaction-related pressure so-
lution along sedimentary stylolites is halted in the rocks in
response to the switch of σ1 axis from vertical to horizon-
tal (Cingoli). The end of LSFT is also difficult to constrain
precisely, but an upper bound is given by the change from
fold-related shortening to a new regional state of stress. The
latter is illustrated by the onset of post-orogenic extension in
eastern UMAR (Fig. 3), by the late Pyrenean compression in
the Pico del Aguila area (Fig. 5), and by the Basin and Range
extension in the Laramide province (Fig. 6).

The four examples of folds also show that the overall du-
ration of the folding event is variable (Fig. 7). Fold growth
lasted longer in the case of forced folding above a high-angle
basement thrust (Sheep Mountain) compared to fault-bend
folding (San Vicino and Cingoli) along a flat-ramp decolle-
ment and detachment folding (Pico del Aguila) above a weak
detachment layer in the cover (Fig. 7). The rapid fold growth
and the relatively short LSFT in San Vicino and Cingoli are
in line with the high rates of contraction and migration of de-
formation in the Apennines (Calamita et al., 1994, Fig. 7).
In contrast, LSFT appears to last longer when folding is an-
chored to a high-angle basement thrust or when the fold is
located at the front of the orogenic wedge, i.e. when the
later propagation of deformation is limited or slow or when
it occurs in a complex sequence (Pico del Aguila and Sheep
Mountain, Fig. 7). The duration of LPS reflects to some de-
gree the duration of the stress/strain accumulation in rocks
required to generate folding, which can depend on the struc-
tural style (Beaudoin et al., 2020c). Our results support that a
longer LPS (and a higher level of differential stress as well)
is required to cause the inversion of a high-angle basement
normal fault and related forced folding of the undetached
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sedimentary cover (Sheep Mountain) than to initiate fold-
ing of the cover above a weak decollement (Pico del Aguila,
Cingoli and San Vicino, Fig. 7). The longer LPS at Pico
del Aguila with respect to San Vicino and Cingoli (Fig. 7)
likely reflects the longer accumulation of displacement re-
quired to initiate folding oblique to the regional compression
rather than perpendicular to it. It is worth noting that at first
glance the fracture pattern (e.g. Tavani et al., 2015) remains
basically similar whatever the overall duration of the folding
event and related deformation stages.

In summary, beyond regional implications, this study
demonstrates that pre-, syn-, and post-tilting mesostructures
that formed under the same contraction as folding can be suc-
cessfully dated. Our results bring for the first time absolute
time constraints on the age and duration of the entire fold-
ing event for several upper-crustal folds formed in different
contractional settings. In particular, we not only better con-
strain the age and duration of the fold growth stage but also
the onset and duration of the layer-parallel shortening stage
that predates folding and the duration and end of the late-
stage fold tightening. Because the duration of each deforma-
tion stage is found to depend on the structural style and/or
the regional sequence of deformation, our results emphasize
the need to more carefully consider the entire folding event
for a better appraisal of folding processes and stress/strain
evolution in orogenic forelands and for a more accurate pre-
diction of host rock damage and fluid migrations in naturally
fractured reservoirs within folded domains.
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