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Pierre Ellul1,2* , Michelle Rosenzwajg2,3, Hugo Peyre1,4, Gwladys Fourcade2, Encarnita Mariotti‑Ferrandiz2, 
Vincent Trebossen1, David Klatzmann2,3† and Richard Delorme1,5† 

Abstract 

Background: Immune system dysfunction has been proposed to play a critical role in the pathophysiology of autism 
spectrum disorders (ASD). Conflicting reports of lymphocyte subpopulation abnormalities have been described in 
numerous studies of patients with ASD. To better define lymphocytes abnormalities in ASD, we performed a meta‑
analysis of the lymphocyte profiles from subjects with ASD.

Methods: We used the PRISMA recommendations to query PubMed, Embase, PsychoINFO, BIOSIS, Science Direct, 
Cochrane CENTRAL, and Clinicaltrials.gov for terms related to clinical diagnosis of ASD and to lymphocytes’ popula‑
tions. We selected studies exploring lymphocyte subpopulations in children with ASD. The search protocol has been 
registered in the international Prospective Register of Systematic Reviews (CRD42019121473).

Results: We selected 13 studies gathering 388 ASD patients and 326 healthy controls. A significant decrease in the 
CD4+ lymphocyte was found in ASD patients compared to controls [− 1.51 (95% CI − 2.99; − 0.04) p = 0.04] (I2 = 96% 
[95% CI 94.6, 97.7], p < 0.01). No significant difference was found for the CD8+ T, B and natural killer lymphocytes. 
Considering the CD4+ subpopulation, there was a significant decrease in regulatory T lymphocytes (Tregs) in ASD 
patients (n = 114) compared to controls (n = 107) [− 3.09 (95% CI − 4.41; − 1.76) p = 0.0001]; (I2 = 90.9%, [95% CI 76.2, 
96.5], p < 0.0001) associated with an increase oin the Th17 lymphocytes (ASD; n = 147 controls; n = 128) [2.23 (95% CI 
0.79; 3.66) p = 0,002] (I2 = 95.1% [95% CI 90.4, 97.5], p < 0.0001).

Limitations: Several factors inducing heterogeneity should be considered. First, differences in the staining method 
may be responsible for a part in the heterogeneity of results. Second, ASD population is also by itself heterogeneous, 
underlying the need of studying sub‑groups that are more homogeneous.

Conclusion: Our meta‑analysis indicates defects in CD4+ lymphocytes, specifically decrease oin Tregs and increase 
in Th17 in ASD patients and supports the development of targeted immunotherapies in the field of ASD.
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Background
Autism spectrum disorders (ASD) define a heterogene-
ous group of neurodevelopmental disorders character-
ized by a deficit in social communication associated 
with restrictive, repetitive and stereotyped behaviors [1]. 
ASD affects about 1 in 54 people in the general popula-
tion with a burden of 58 Disability Adjusted Life Years 
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per 100,000 individuals [2]. The neurobiology of ASD 
remains largely unknown although many genetic associa-
tions, as well as complex gene-environment interactions 
have been reported [3, 4]. The immune system seems to 
play a crucial role in the etiology of ASD. Several stud-
ies linked ASD with personal/familial history of autoim-
mune disorders such as diabetes mellitus, celiac disease, 
autoimmune thyroiditis, rheumatoid arthritis, psoriasis, 
systemic lupus erythematosus [5, 6]. Post-mortem analy-
sis of brain tissues from individuals with ASD has shown 
two main disrupted biological pathways: a down-regula-
tion of the genes associated with synaptic functions and 
an up-regulation of immune-related genes such as the 
genes involved in the M2-microgial cell states, or in the 
interferon and cell signaling pathways [7, 8]. Alterations 
of the peripheral immune system have also been reported 
with quantitative and qualitative immune dysfunctions, 
specifically abnormal lymphocyte subpopulations [5].

B-, T- and NK-cells, are closely linked in a dynamic bal-
ance [9]. Any modification of one of these subpopulations 
affects the whole pattern of immune cells and therefore, 
affects the homeostasis of the human body [10]. Lympho-
cytes, well known for their roles against pathogens, have 
also several functions devoted to organ-specific homeo-
stasis [9]. For example, regulatory T cells (Tregs), a sub-
set of T lymphocytes, are involved in the maintenance of 
the immune system homeostasis [10], tissue regeneration 
[11] and in maternal and fetal cardiomyocyte prolifera-
tion during pregnancy [12]. The immune system has also 
a critical role in neurodevelopment and associated func-
tions [13]. For example, cytokines have a central physio-
logical role in brain development, cognitive functions and 
behavioral regulation such as interleukin-1 beta in syn-
apses formation and contextual learning, interleukin 4 in 
promoting neurogenesis and spatial learning or interleu-
kin 17a (IL-17a) for synaptic plasticity and the regulation 
of anxiety (for a complete review see [14, 15]). It should 
also be cited the fundamental role of the complement in 
synaptic pruning during normal brain development [16]. 
Thus, an immune system disruption may affect the struc-
tural micro-architecture of the brain and the underlined 
cognitive functions [17].

In ASD, several studies reported changes in periph-
eral blood lymphocyte subsets such as reduced total 
number of lymphocytes, impairment of the CD4/
CD8 T cell ratio, a defective activation of T cells, an 
increased number of the natural killer (NK) cells, an 
imbalance of the Th1/Th2 cytokines but also some 
aberrations in cytotoxicity related to NK cells (for 
review see [18]). Additional reports showed also the 
presence of autoantibodies directed toward central 
nervous system (CNS) proteins, suggesting a deregula-
tion of B lymphocytes [19]. In animal models of ASD, 

similar immune alterations were reported, showing an 
association between abnormal CNS development and 
ASD-like behaviors in pups [5]. For example, higher 
proportion of pro-inflammatory lymphocytes or altered 
NK cell activity induced abnormal cortical develop-
ment, stereotyped behaviors, and social communica-
tion deficit in mice [20].

Aims of the study
These preliminary findings support a striking link 
between ASD and immune dysfunctions. However, stud-
ies on lymphocyte subpopulation in ASD have reported 
conflicting results. We thus, conducted a systematic 
review and meta-analysis to identify specific abnormal 
lymphocyte imbalance in ASD.

Methods and materials
Search strategy
The protocol for the present systematic review/meta-
analysis was registered on the international Prospective 
Register of Systematic Reviews PROSPERO (protocol 
number: CRD42019121473). The systematic review and 
meta-analysis were conducted and reported follow-
ing the Preferred Reporting Items for Systematic review 
and Meta-Analysis (PRISMA) recommendations [21]. 
The following electronic databases were searched with 
no restriction in terms of language, type of document, 
or date: PubMed (MEDLINE), Embase, PsychoINFO, 
BIOSIS, Science Direct, and Cochrane CENTRAL. The 
following search terms/syntax were used for Pubmed: 
(autism[tiab] OR Asperger[tiab] OR autism spectrum 
disorder[tiab] OR pervasive developmental disorder[tiab] 
OR autistic[tiab] OR ASD[tiab] OR PDD[tiab]) AND 
(lymphocytes[tiab] OR CD3[tiab] OR T cells[tiab] OR 
Natural Killer[tiab] OR CD56 lymphocyte[tiab] OR 
CD4 lymphocyte[tiab] OR CD8 lymphocyte[tiab] OR 
B lymphocyte[tiab] or B cells[tiab] OR CD20[tiab] 
OR Regulatory T lymphocyte[tiab] OR Foxp3[tiab] 
OR Th1 lymphocyte[tiab] OR Th2 lymphocyte[tiab] 
OR T9 lymphocyte[tiab] OR Th17 lymphocyte[tiab] 
OR GATA 3[tiab] OR T-bet[tiab] OR RORgt[tiab] OR 
γδ  T  cells[tiab] OR unconventional T cells[tiab] OR 
MAIT[tiab]).

The search terms/syntax were adapted accordingly for 
the other databases. Reference lists of the retained arti-
cles and relevant review articles were hand-searched to 
retrieve any additional pertinent reports not detected via 
the electronic database search. Furthermore, we used the 
Clinicaltrials.gov website to identify any relevant studies 
not yet published as full text articles at the time of the 
search. The last search was completed on January 2021.
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Selection of the relevant articles
We only included in our systematic review case–con-
trol studies which included participants with a mean age 
under 18  years old with a diagnosis of Autism, Asper-
ger, pervasive developmental disorder (PDD) or ASD, 
in which the authors explored one or more lymphocyte 
subpopulations.

Selection of studies and data extraction
The eligibility process was conducted in two sepa-
rate stages: (1) two researchers (PE and HP) indepen-
dently screened all non-duplicated references initially 
retrieved as potentially pertinent and excluded those 
clearly not pertinent based on title or abstract. A final 
list was agreed with discrepancies resolved by consen-
sus between the two authors. When consensus was not 
reached, a third, senior researcher (RD) acted as arbitra-
tor; (2) the full-text version of the articles passing stage 1 
screening were downloaded and assessed for eligibility by 
the two researchers, independently. Discrepancies were 
resolved by consensus between the two researchers and, 
if needed, the third senior researcher acted as arbitrator. 
When required, corresponding authors were contacted 
to clarify study eligibility and gather unpublished data.

Statistical analyses
The difference between each study was first calculated as 
the lymphocyte value in the ASD group minus the lym-
phocyte value in the control group, divided by the pooled 
pre-test standard deviation with a bias adjustment [22]. 
The difference for each study was then combined using 
the inverse variance method. Given the inherent het-
erogeneity of studies, random-effects models were used. 
Heterogeneity was statistically assessed by estimating I2, 
τ2 and p-value of heterogeneity test. The statistic I2 was 
calculated to estimate between-study heterogeneity.  I2 
represents the percentage of variance due to between-
studies factors rather than sampling error [23]. τ2 statistic 
provides a measure of the variability of the effect estimate 
across studies in a random‐effects model [24]. Analyses 
were performed in R by use of the metabin command 
from the package meta.

Results
Characteristics of studies included in the meta‑analysis
Based on our selection criteria (Fig.  1 & Additional 
file  1: table  1), we included 13 studies gathering 388 
individuals with autism and 326 healthy controls [25–
37]. Seven studies analyzed the CD4+ T lymphocytes 
(LT4) (194 cases and 152 controls), four the CD8+ T 
lymphocytes (LT8) (124 cases and 83 controls), three 
the Tregs subpopulation (114 cases and 107 controls), 

seven the B lymphocytes (LB) (194 cases and 152 con-
trols), six the NK cells (176 cases and 138 controls) and 
four the Th17 T-cells (Th17) (147 cases and 128 con-
trols). No data were available for the others lympho-
cyte subpopulations including in our search strategy. 
Details of included studies can be found in Additional 
file  2: table  2, Additional file  3: table  3, Additional 
file 4: table 4, Additional file 5: table 5, Additional file 6: 
table 6, Additional file 7: table 7.

Results of the meta‑analysis
We first explored the association between the CD4+ T 
lymphocytes, CD8+ T lymphocytes, LB and NK 
cells with ASD (Fig.  2). We observed a significant 
decrease in the peripheral blood CD4+ T lympho-
cytes in ASD compared to healthy controls [− 1.51 
(95% CI − 2.99; − 0.04) p = 0.04] with a significant 
heterogeneity (I2 = 96% [95% CI 94.6, 97.7], p < 0.01). 
We observed no significant differences between ASD 
and controls for the peripheral blood CD8+ T lym-
phocytes, LB and NK cells [0.05 (95% CI − 0.36; 0.47) 
p = 0.8; − 0.50 (95% CI − 1.12; 0.11) p = 0.11; and 0.15 
(95% CI − 0.67; 0.97) p = 0.7, respectively].

Considering Tregs and Th17 subpopulations (Fig. 3), 
we observed a significant decrease in Tregs cells [− 3.09 
(95% CI − 4.41; − 1.76) p = 0.0001] in ASD peripheral 
blood cells compared to controls (I2 = 90.9%, [95% 
CI 76.2, 96.5], p < 0.0001). We also found a signifi-
cant increase oin the Th17 cells in ASD [2.23 (95% CI 
0.79; 3.66) p = 0.002] [I2 = 95.1% [95% CI 90.4, 97.5], 
p < 0.0001] compared to controls. Due to methodologi-
cal limits, we were unable to calculate the Treg/Th17 
ratio. Due to lack of data we were also unable to study 
the other lymphocyte subpopulations included in the 
search protocol.

329 studies iden�fied in 
Pubmed, EMBASE, PsychInfo, 

a�er discarding duplicates

13 studies included in final 
meta-analysis

23 studies iden�fied for full 
text review and double rated

for eligibility

326 studies excluded as not 
relevant a�er preliminary

review of �tle and abstract

10 studies excluded for the 
following reasons:

- S�mula�on of lymphocytes
- No control group
- Staining problem

7 studies on 
CD4+ T 

lymphocytes 

4 studies on 
CD8+ T 

lymphocytes 

7 studies on 
B 

lymphocytes 

6 studies 
on Natural 

Killers

3 studies on 
Regulatory T 
lymphocytes 

4 studies on 
Th17 

lymphocytes 

Fig. 1 Flowchart of studies included
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Discussion
Our meta-analysis pointed toward abnormalities of the 
number of peripheral CD4+ lymphocyte and especially 
Th17 and Tregs cells in patients with ASD.

Th17 are pro-inflammatory CD4+ T cells that are asso-
ciated with inflammatory immune response in infection 
or autoimmune disorders [46], but may also regulate 
brain architecture and behaviors [38]. Tregs are a sub-
set of CD4+ T cells critical for the maintenance of the 
immune system homeostasis and peripheral tolerance. 
Brain Tregs cells also play an important role in myelina-
tion through regeneration/protection mechanisms [13]. 
Thus, the biological properties of Th17 cells and Tregs in 
the brain might be related to the observed pathophysiol-
ogy of ASD.

The differentiation of naïve T cell precursors into 
Tregs or Th17 depends on the cytokine environment. 
Indeed, TGF-B and IL-2 induce Tregs whereas TGF-B 
and IL6, Th17 cells. Those cytokines act in part through 
the up-regulation (for Th17) or down-regulation (for 
Tregs) of the mammalian target of rapamycin (mTOR) 
complex [39, 40]. In neurons or Purkinje cell, mTOR 
complex has a major role in brain development and 
neuron homeostasis [41] and is severely affected in 
ASD related syndromes such as the tuberous sclerosis. 
In peripheral blood mononuclear cells, overexpres-
sion of the mTOR pathway in patients with ASD [42] 
has recently been associated with increased expres-
sion of the Th17 specific transcription factor (Rorγt) 
and reduced expression of the Treg transcription factor 

Fig. 2 Forest plots of the distinct lymphocyte subpopulations in autism spectrum disorders compared to controls. A T CD4+ lymphocytes; B T 
CD8+ lymphocytes; C B Lymphocytes; D natural killer cells

Fig. 3 Forest plots of the distinct lymphocyte subpopulations in autism spectrum disorders compared to controls. A Regulatory T lymphocytes; B 
Th17 Lymphocytes
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(Foxp3). Thus, the transcription factor anomalies found 
in ASD are also consistent with our results showing a 
decrease in Tregs and increase in Th17.

From a clinical point of view, our results are also rel-
evant for the co-morbidities observed in ASD. First, 
there is a significant increase in the prevalence of atopic 
diseases (including allergy and asthma) among patients 
with ASD [43]. If Th2 lymphocytes orchestrate immune 
responses in atopic diseases [44], Tregs is of major 
importance in maintaining tolerance to several antigens, 
thus playing a central role in allergy [45]. For exam-
ple, a relative or absolute defect in Tregs in airways bias 
immune response toward Th2 leading to allergic inflam-
matory diseases [46]. In line with these data, unstable 
Tregs phenotype has been found in asthmatic patients 
and is associated with a more severe disease. Collec-
tively, these data pointed to a central role of Tregs in 
atopic diseases [46]. Thus, we postulate that the decrease 
in Tregs observed in ASD patients could be, at least in 
part, responsible for this observed comorbidity. Secondly, 
individuals with ASD have long been associated with an 
increase in gastrointestinal symptoms (diarrhea/consti-
pation) and intestinal permeability, related to an altera-
tion in the microbiota composition [47]. Indeed, recent 
meta-analysis found low Bifidobacterium and higher 
proportion of Bacteroides, Parabacteroides, Clostridium 
phyla in ASD patients [48]. Microbiota composition is 
closely intricated with lymphocytes subtype development 
and function (especially Tregs and Th17). For example, 
while segmented filamentous bacteria promote the devel-
opment of Th17 cells, Bifidobaberitum induced Tregs 
[49]. Although no formal causal role can be established, 
we hypothesized that the decrease in Tregs and increase 
in Th17 found may be related to microbial dysbiosis.

Interestingly, a similar lymphocyte pattern has been 
found in several different mouse models of ASD, suggest-
ing that imbalance of Treg and Th17 lymphocytes may 
be an important common physiopathological pathway in 
autism (see Additional file 8: table 8). Unfortunately, due 
to the low number of studies and the various gating strat-
egies, we were unable to carry out analyses of these ani-
mal studies. Interestingly in a mouse model of ASD, IL-17 
injected directly in the brain transiently reversed the 
ASD-like symptomatology, suggesting a possible physi-
ological role of IL-17a lymphocytes in the CNS, later 
confirmed by a recent study [50]. These data may seem 
contradictory to our results but may also mean that the 
lymphocyte profile observed in the periphery is differ-
ent from that in the brain. As seen in MIA model, IL-17a 
secreted by mother during pregnancy induce ASD. Thus, 
another possible explanation is that IL-17a may have dif-
ferent effects on brain development depending on the 
timing of exposure. Our findings highlight the need for 

further research to better understand the intriguing role 
of Treg, Th17 and IL-17 in ASD.

Limitations
Our results should be taken in light of the strengths and 
limits of the study. Several factors inducing heteroge-
neity should be considered. The different lymphocytes 
populations are separated by flow cytometry and the 
staining strategy is not precisely the same in all the stud-
ies, indicated that we may not be looking exactly at the 
same cells. This difference in the staining method might 
be responsible for a part in the heterogeneity of results. 
It is also important to note that in the general popula-
tion, the frequency of the different subgroups within T 
cells can vary from a normal range of 22 to 93% of the 
total lymphocytes [51]. Despite this, we still have found 
differences and comparing such variable populations 
reinforces the power of our results [52, 53]. Lastly, ASD 
population is also by itself heterogeneous, underlying 
the need of studying sub-groups that are more homoge-
neous. Because we found significant differences despite 
factors inducing heterogeneity, our main results could be 
considered as robust and relevant. Results on lymphocyte 
subpopulation—Tregs, Th17—should also be taken with 
precaution. Indeed, because those populations are more 
precise, we used more stringent staining protocols. As a 
consequence, we limit the number of studies per analy-
sis, losing power but increasing sensibility. Because no 
study screened them, it is also important to note that 
several lymphocytes subpopulation (see research algo-
rithm) were not included in this meta-analysis and may 
have a role to play in the pathophysiology of ASD. Fur-
thermore, due to lack of data, we were not able to analyze 
data from other tissues than peripheral blood. Therefore, 
it is important to note that our work focuses on periph-
eral populations and does not prejudge immune changes 
within the CNS. For the strengths of our study, by using 
the criteria of the PRISMA statement, we performed a 
systematic search in several databases, without language 
restrictions, as well as in Clinicaltrials.gov. We have 
also contacted authors to gathered additional unpub-
lished data, limiting the publication bias. Thus, we have 
included an important number of studies, with more 
than 700 subjects.

Conclusion
More than immunological abnormalities in ASD, we 
claim for more homogeneous and precise immunologi-
cal studies in the field of psychiatry. In line with this 
idea, further large-scale studies on ASD patients should 
be done. Next, experimental animal studies should be 
performed to delineate the type of immune interven-
tion aimed in ASD. We can hope that these findings 
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will pave new avenues for therapeutic strategies involv-
ing the immune-modulation in ASD.
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