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The complete solution to the mean-spherical approximation is given for an arbitrary mixture of ions in a dipolar solvent. The calculation is done for an overall neutral collection of charged hard spheres (the ions), and dipoles (the solvent) that bear a central point dipole. Previous solutions to this problem were not consistent because they did not include the solvent particles as a (neutral) solute in the mixture. The present solution accounts for this peculiar counterintuitive feature, fully and consistently. Complete expressions for the chemical potentials of the ions and of the solvent are provided for the first time. To illustrate, a binary 1-1 asymmetric electrolyte solution in a water-like dipolar solvent is considered, and some numerical results are examined. In particular, it is verified that a set of thermodynamic consistency relations are accurately fulfilled.

I. INTRODUCTION

The system comprised of ions and dipoles was first approached by L. Blum in 1978 [START_REF] Blum | Solution of the mean spherical approximation for hard ions and dipoles of arbitrary size[END_REF] within the mean spherical approximation (MSA). In this MSA model for ions and dipoles (hereafter denoted as MSA-ID), the ions are represented as charged hard spheres, and the dipoles, which may mimic water molecules, are hard spheres bearing a central point dipole.

This system is sketched in Figure 1.

Blum used an involved invariant expansion formalism 2 to account for angular correlations involving the dipoles. In subsequent work, the thermodynamic properties of the MSA-ID model were studied by Blum and Wei [START_REF] Blum | Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent[END_REF][START_REF] Wei | The mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent: Approximate solution, pair correlation functions, and thermodynamics[END_REF] .

It was found recently that the reported complicated equations contained some misprints, that were corrected in 2020 [START_REF] Simonin | On the solution of the mean-spherical approximation (MSA) for ions in a dipolar solvent in the general case[END_REF] . However, a further closer examination of the corrected formulas revealed lately that a thermodynamic consistency relation involving the pressure was not fulfilled. Moreover, as will be seen below, we recently found that some of the equations did not allow one to recover the (primitive) MSA equations obtained when the dipole moment of the solvent is set to zero.

It was finally realized that this observation imposed to not only consider a solvent particle as a hard dipole, but also to regard it as a solute (a "neutral" ion), on the same footing as the ions comprising the electrolyte. This dual character of the dipoles has been overlooked in previous treatments within the MSA. However, this new viewpoint implies the need for introducing new, somewhat counterintuitive or "unnatural", parameters for the solvent in the description.

The structure of this article is as follows. In the next section, some problems observed with the available equations for the MSA-ID model are listed. Then, a solution to these problems is proposed, and new equations for the MSA-ID model are presented. Modified relations for the thermodynamic quantities are deduced accordingly in the fourth section.

Particular attention is devoted to the derivation of the chemical potentials of the species.

A suitable method is developed for the calculation of the chemical potential of the solvent.

The validity of the solution is tested by examining the numerical accuracy of several thermodynamic consistency relations. These checks show that the present work provides the full solution to the MSA-ID problem. The fifth section is devoted to an illustration, in which a binary electrolyte of a 1-1 salt in a dipolar water-like solvent is considered. The set of 2 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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MSA equations is solved numerically to obtain the solution for a particular case, and the consistency of the equations is verified for this solution. The main features exhibited by the thermodynamic quantities are analyzed. Finally, the results are summarized and some prospects are presented in the conclusion section.

II. MSA-ID MODEL: PROBLEM TO BE SOLVED

In what follows, Ref. 

A. The model

We consider a mixture of hard spherical cations and anions, and hard spheres with a centrally embedded point dipole (the solvent), as a model of electrolyte solution. The purpose of the present study is the solution of the MSA for this type of system in which all species may have different sizes.

As in B0, BW1, BW2, and S0 the number of ions will be denoted by n-1, and the solvent by index n. The dipole moment of the solvent particles is d n . The valence and diameter of an ion i are Z i , and σ i , respectively. A priori, the diameters σ k (k = 1, . . . , n) are all different.

In B0, L. Blum presented for the first time an elaborate method to solve the MSA-ID model for the case of ions and solvent of arbitrary size, that involved the use of rotational invariants [START_REF] Blum | Invariant expansion III: The general solution of the mean spherical model for neutral spheres with electostatic interactions[END_REF][START_REF] Blum | Invariant expansion for two-body correlations: Thermodynamic functions, scattering, and the Ornstein-Zernike equation[END_REF][START_REF] Blum | Invariant expansion. II. The Ornstein-Zernike equation for nonspherical molecules and an extended solution to the mean spherical model[END_REF] . This tool allowed him to describe properly the orientation-dependent character of the ion-dipole and dipole-dipole interactions. The basic features of the framework employed by Blum were presented in S0. As in the latter, the notations of B0 are kept in the present work.

B. Observed issues in the available equations

Before giving the correct equations of the model, the reasons that suggested that the available solution to the MSA-ID was incomplete are now exposed.

After the publication of S0 in 2020, it was found that some thermodynamic consistency relations were not accurately fulfilled. For example, one of them was (other relations are 3 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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∂βP ∂β = - ∂E ∂V ( 1 
)
where P is the excess electrostatic pressure, β = 1/k B T (with k B the Boltzmann constant and T the temperature), E is the excess electrostatic internal energy, and V is the volume.

The fact that this relation was (slightly) unfulfilled showed that the pressure was (presumably slightly too) incorrect, because once the MSA parameters have been determined (see S0), then E should be known without ambiguity. It was therefore concluded that something was missing in the approach.

This conclusion was realized and by that reinforced when looking more closely at the case where the dipole moment on the solvent particles is set to zero (d n = 0). In that particular case, n becomes a neutral solute and the solution to the MSA for an asymmetric electrolyte in the primitive model 9,10 should be recovered. However, surprisingly enough, it was observed that this was not the case. This anomaly may be seen for instance in Eq. (15) of S0 in which a 1 n = 0 when d n = 0 (see its Eq. ( 20)) because in that case, all m i 's vanish (m i is a parameter for the ion-dipole interaction). Then, it is seen that a term involving a 0 n is missing in this fundamental equation. A similar anomaly was also noticed in Eq. ( 24 On the basis of these observations it was hypothesized that the solvent should also be regarded as a solute species in all equations, for the particular case d n = 0 to be taken into account properly in the model, and for the primitive MSA equations to be fully recovered.

However, this raised an unexpected problem because, by doing so, the dipolar particles acquired a dual status of being both a solvent and a solute particle. Technically, this implies that new MSA parameters should be introduced by which the n particles are also regarded as a solute. This new angle was somewhat disturbing because, in all former approaches, the system was, naturally enough, divided into two separate constituents, namely the solute species and the solvent. At the same time, the above considerations suggested a way for solving the problem. Indeed, it was observed in S0 that the apparently incomplete equations nonetheless 4 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. Therefore it was reasonably expected that considering also the solvent as a solute could yield a set of consistent equations if the modifications were done in a coherent way. Then, it was hypothesized that a natural solution could be to simply introduce the solvent n as an extra solute particle in all available equations, in particular in those where a sum over the solute species is performed. This is what is done in the next section, in which the modified equations are given.
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III. SOLUTION OF THE MSA-ID MODEL

The equations of the MSA-ID model were taken from S0 and corrected according to the indications of the preceding section.

Let us note for clarity that, hereafter, in any symbol of the form M 01 ij for example, i may represent an ion or a solvent particle because it is located below the superscript "0", and that j necessarily designates a solvent particle (j = n) because it is located below the superscript "1".

The first three fundamental equations (Eqs. (1.29), (1.30) and (1.32) of BW1) are,

n i=1 ρ i (a 0 i ) 2 + ρ n (a 1 n ) 2 = α 0 2 , (2) 
- n j=1 ρ j a 0 j K 10 nj + a 1 n (1 -ρ n K 11 nn ) = α 0 α 2 , (3) 
ρ n n j=1 ρ i (K 10 nj ) 2 + (1 -ρ n K 11 nn ) 2 = y 1 2 + ρ n α 2 2 , (4) 
In these relations, the new parameters a 0 n and K 10 nn are introduced for the first time. In previous treatments, a 0 i was a parameter for solute species exclusively. As mentioned at the beginning of this section, the superscript "0" in K [START_REF] Høye | Chemical potential of an ion in an asymmetric electrolyte within the mean spherical approximation (MSA)[END_REF] nn means that the second solvent particle n in the subscript is regarded as a solute. Conversely, the superscript "1" in K [START_REF] Høye | Chemical potential of an ion in an asymmetric electrolyte within the mean spherical approximation (MSA)[END_REF] nn indicates that the first solvent particle n in the subscript is regarded as a dipolar species. It may be mentioned that the introduction of these parameters and the extension of the summations to include i, j = n also follow from the graph analysis of the MSA problem performed in Sec. IV B 3 below.

5
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α 0 2 = βe 2 /ǫ 0 , α 2 2 = βd n 2 /(3ǫ 0 ), y 1 = β 6 /β 12 2 , (5) 
with β = 1/(k B T ) (with T the temperature and k B the Boltzmann constant), e is the charge of a proton, ε 0 is the permittivity of a vacuum, and

β 6 = 1 -b 2 /6, β 12 = 1 + b 2 /12.
with b 2 a dimensionless parameter characteristic of the dipole-dipole interaction [START_REF] Blum | On the mean spherical approximation for hard ions and dipoles[END_REF] .

Furthermore, a 0 i (for i = 1, . . . , n) and a 1 n (in which the superscript "1" indicates the dipolar character of n in this case) are given by,

a 0 i = β 6 σ i D a 1 2 Z i β 6 -D G i - L 2 σ i 2 S G , (6) 
with,

L = π ∆ , ∆ = 1 - π 6 n k=1 ρ k σ k 3 S G = n k=1 ρ k σ k D G k , (7) 
in which ∆ is the fraction of free space. Moreover,

a 1 n = β 6 2D a 1 2 σ n B + Ωβ 3 Dβ 6 2 , (8) 
with β 3 = 1 + b 2 /3, and,

B = n-1 k=1 ρ k Z k m k , D = 1 + ρ n σ n 2 4β 6 2 n k=1 ρ k (σ k m k ) 2 , (9) 
η i = 1 β 6 (m i + σ i S m ), S m = L 2 n k=1 ρ k σ k 2 m k , (10) 
D F k = 1 2 β 6 (N k σ k + Z k ) - 1 12 ρ n σ n 3 Bσ k m k , D G k = D F k - Ω 4Dβ 6 2 ρ n σ n 2 σ k m k , (11) 
Ω = n k=1 ρ k σ k m k D F k , (12) 
D a = β 6 2 4 n k=1 ρ k (N k σ k + Z k ) 2 + 1 4 ρ n σ n 2 1 9 (σ n B) 2 - ω 2 D (13) ω = 2 β 6 2 Ω + 1 3 σ n BD. ( 14 
)
6
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Consequently, n is again viewed as a solute particle in the parameters N n and m n .

It is also noted that Eq. ( 13) for D a differs from the one given in BW1, BW2, and S0, which involves an inconvenient summation. Eq. ( 13) was obtained from Eqs. ( 60) and (B35)

of B0, and it was verified that it is equivalent to the previous expression.

In Eqs. ( 2)-( 4), K mp ij is given by,

K mp ij ≡ σ ij λ ji Q mp ij (r) dr. ( 15 
)
in which

λ ji = (σ j -σ i )/2 (16) 
and Q mp ij is the Baxter factor correlation function,

Q mp ij (r) = 1 2 (r -σ ij )(r -λ ji ) α mp j + (r -σ ij ) β mp ij , (17) 
in which α mp j (≡ α mp ij ) does not depend on i (see BW1). By using Eqs. ( 34) and ( 43) of S0, it is found that the parameter α 00 j may be expressed as,

α 00 j = α 00,HS j + α 00,el j (18) 
where

α 00,HS j = L (2 + L ξ 2 σ j ), (19) 
is the hard sphere (HS) part of α 00 j , that is the value of this parameter when all charges on the ions are taken away, and Eq. ( 43) of S0 can be simplified to give,

α 00,el j = - 1 Dβ 6 ρ n σ n 2 S m η j + 2L β 6 S G a 0 j , (20) 
for the purely electrostatic part. For the ion-dipole interaction one gets,

α 01 n = -2 β 3 β 6 2 S m D + 2L β 6 S G a 1 n , α 10 j = b 2 β 6 σ n β 10 nj + 1 β 6 Ba 0 j , (21) 
in which α 01 n has been simplified, and j may designate an ion or the solvent. For the dipoledipole interaction one has,

α 11 n = 2 b 2 β 6 ρ n σ n 3 1 + 1 2 ρ n σ n 2 β 11 nn + 1 β 6 Ba 1 n , (22) 7 
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For the β's one has, as in S0,

β 00 ij = β 00,HS ij + β 00,el ij , (23) 
where,

β 00,HS ij = L σ j , β 00,el ij = - 1 2Dβ 6 ρ n σ n 2 m i η j + 1 σ i 2 β 6 D G i -Z i a 0 j . (24) 
and,

β 01 in = - β 3 β 6 2 m i D + 2 β 6 D G i -Z i 1 σ i a 1 n , β 10 nj = 1 D η j + 1 β 6 2 Ω a 0 j , (25) 
in which i and j may designate ions or a dipolar solvent particle, and,

1 + 1 2 ρ n σ n 2 β 11 nn = 1 D β 3 β 6 + 1 2β 6 2 ρ n σ n 2 Ω a 1 n , (26) 
We will need the quantity P mp ij (with m and p = 0 or 1), which is defined by (see S0),

P mp ij = σ i β mp ij + Z i a p j , (27) 
for any i, j = 1, . . . , n. The P 's satisfy the symmetry relations (see S0),

P mp ij = P pm ji . (28) 
This property will be used below to determine the numerical values of the MSA parameters of the model.

Moreover, it was found in this work that the P 's now should fulfill the following slightly modified 'sum rules' (see also Section IV D below),

D F j + 1 2 σ j n k=1 ρ k P 00 kj D F k = 1 2 Z j β 6 , (29) 
for j = 1, . . . , n, and,

n k=1 ρ k P 01 kn D F k = 1 2 σ n B. ( 30 
)
in which the summations are extended to include k = n.

A. Dimensionless energy parameters

As in S0, dimensionless parameters are introduced to replace the N i 's and the m i 's. For the ions, this may be done, for example as in S0, by setting,

N k = Z k σ k b (k) 0 , m k = 1 √ ηρ n σ n Z k σ k b (k) 1 , (31) 8 
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N n = 1 σ n b (n) 0 , m n = 1 √ ηρ n σ n 2 b (n) 1 , (32) 
Because particle n is regarded as an electrically neutral solute, and the parameters b for k = 1, . . . n, together with b 2 (which quantifies the solvent-solvent interactions), are the unknowns to determine in the first place when performing numerical evaluations for a particular system. The thermodynamic quantities are expressed in terms of these parameters.

In the general case, one has n(n -1)/2 equations for the symmetry of the P 00 ij 's with i and j in the range of 1 to n, (n -1) equations for the P 01 in , and the 3 fundamental equations (2)-( 4). This makes a total of n(n+ 1)/2 + 2 equations for (2n+ 1) parameters [b

(k) 0 , b (k)
1 , with k = 1, . . . , n, and b 2 ] to be determined. The difference between the two is n(n -3)/2 + 1 which is always positive because n ≥ 3. There are therefore more equations than unknowns.

It is expected that n(n -3)/2 + 1 relations may be derived from the (2n + 1) equations chosen to determine the parameter values.

IV. THERMODYNAMIC PROPERTIES A. Pressure and internal energy

The expression for the pressure that was given in S0 must be completed by introducing also the effect of the solvent being viewed as a neutral solute. One has [START_REF] Simonin | On the solution of the mean-spherical approximation (MSA) for ions in a dipolar solvent in the general case[END_REF] ,

βP el = J + J ′ , ( 33 
)
9
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J = 1 12π α 0 2 i ρ i Z i N i -4 α 0 α 2 ρ n B - 6 σ n 3 α 2 2 ρ n b 2 , (34) 
J ′ = J ′ ion-ion + 2J ′ ion-n + J ′ n-n , (35) 
where,

J ′ ion-ion = π 3 n {i,j}=1 ρ i ρ j (σ ij ) 3 (g 000 ij,c ) 2 -(g HS,000 ij,c
) 2 , (36)

J ′ ion-n = π 3 n i=1 ρ i ρ n (σ in ) 3 1 3 (h 011 in,c ) 2 , ( 37 
)
where the summations have been extended to i and j = n, and,

J ′ n-n = 1 12π (ρ n ) 2 σ n Q ′ 11 nn 2 + 2q ′ 2 . ( 38 
)
In these relations, g 000 ij,c is the component of the contact RDF (radial distribution function) along the rotational invariant, Φ 000 = 1. The expressions for the contact RDF's, g 000 ij,c , g HS ij,c , h 011 in,c , and for Q ′ 11 nn and q ′ , were given in S0, and they are still valid. The expression for the electrostatic contribution to the internal energy is unchanged,

βE V = 1 4π α 0 2 n-1 i=1 ρ i Z i N i -2α 0 α 2 ρ n B -2α 2 2 1 σ n 3 ρ n b 2 . ( 39 
)
with V the volume. This relation stems directly from the definition of the internal energy in terms of the RDF's (see BW1).

B. Determination of the chemical potentials

As emphasized in S0, the electrostatic contribution to the chemical potential of a species may be written as,

µ k = u k + δµ k , (40) 
where u k is the mean electrostatic interaction energy per particle k (= ion or solvent), given by,

βu i = Z i 1 4π α 0 2 N i -α 0 α 2 ρ n m i , (41) 
for the ions, and,

βu n = - 1 4π α 0 α 2 B + 2α 2 2 1 σ n 3 b 2 . ( 42 
)
10
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The contribution δµ k will now be determined in the next two sections, first for the ions and then for the solvent.

Calculation of δµ k for the ions

In the case of the ions, we employed a method similar to one of those proposed in the absence of dipoles [START_REF] Høye | Chemical potential of an ion in an asymmetric electrolyte within the mean spherical approximation (MSA)[END_REF] . This method is based on the work of Høye and Stell 12 which yields 10 ,

β δµ i = βu i - 1 2 c ii (0) -c HS ii (0) , (43) 
in which the brackets indicate an average over the orientations, and c ii (0) is the value of the i -i direct correlation function, c ii (r), at r = 0.

When i is an ion one has,

β δµ i = βu i - 1 2 c 000 ii (0) -c 000,HS ii (0) , (44) 
because only the c 000 ii (0) contribution along the rotational invariant Φ 000 = 1 remains for the ions. This quantity may be found from the following relation,

c 000 ii (0) = - 1 2π d 2 S 00 ii,0 (r) dr 2 r=0 ( 45 
)
which ensues from the definition of S 00 ij,0 given in Eq. ( 13) of B0 (employed with χ = l = 0 in the present case),

S 00 ij,0 (r) = 2π ∞ r t c 000 ij (t) dt (46) 
which may be obtained from a formula derived in B0. It may be written in a more simple form for j = i as 10 ,

S 00 ii,0 (r) = Q 00 ii (r) -A 00 ii - p=0,1 I ip (r) (47) 
with

I ip (r) = n k=1 ρ k σ ik -r λ ki Q 0p ik (r + t) Q 0p ik (t) dt -A 0p ik σ ik λ ki +r Q 0p ik (t) dt -A 0p ik σ ik λ ki Q 0p ik (t) dt (48) 
where

A 0p ik = Z i a p k ( 49 
)
11
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c 000 ii (0) = 1 2π -α 00 i + n k=1 ρ k K 00 ik α 00 k + A 00 ik dQ 00 ik (r) dr r=λ ki + ρ n K 01 in α 01 n + A 01 in dQ 01 in (r) dr r=λ ni (50) 
in which one has from Eqs. ( 16) and ( 17),

dQ 0p ik (r) dr r=λ ki = - 1 2 σ i α 0p k + β 0p ik . (51) 
In Eq. ( 50), all terms may be calculated from the definitions given in Section III. The calculation is rather straightforward but it turns out to be cumbersome, and the resulting expression is rather large. The algebraic computation system Maple was utilized to handle the calculation. The formula for δµ i is displayed in the supplementary material. Attempts to simplify it were unsuccessful.

Calculation of δµ n for the solvent

In the case of the solvent, the calculation of δµ n from Eq. ( 43) is much more delicate than in the case of the ions, because it would require the derivation of c nn (0), which seemed very difficult.

Indeed, it was realized that c nn (0) contains the terms c 110 nn (0) and c 112 nn (0). Upon orientation averaging, the c 112 nn (0) vanishes (the average of the Φ 112 rotational invariant is zero for all r), but the average of c 110 nn (0) does not. In the notation of Wertheim [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF] , the c 110 nn (0) term has the form:

c 110 nn (0) = c ∆ (0) s 1 • s 2
, where s i is a unit vector in the direction of the dipole moment of particle i [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF][START_REF] Høye | Generalized mean spherical approximations for polar and ionic fluids[END_REF] . The evaluation of c 110 nn at r = 0 means that positions 1 and 2 are the same. Thus, upon averaging over orientations one gets, c 110

nn (0) = c ∆ (0) s 1 •s 1 = c ∆ (0) s 2 i = c ∆ (0)
, and the latter is not easy to determine. Instead, to circumvent the latter difficulty, the following formula from the work of Høye and Stell 12 was considered,

β δµ j = - 1 2 n i=1 ρ j c000 ij (0) -c000,HS ij (0) ( 52 
)
12
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For the dipolar hard spheres problem it is known that the dipolar part of its MSA solution decouples from the reference system of hard spheres alone [START_REF] Wertheim | Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments[END_REF][START_REF] Høye | Generalized mean spherical approximations for polar and ionic fluids[END_REF] . Furthermore, one will find that dipole moments can be redistributed among the hard spheres with equal diameters while the solution remains the same [START_REF] Adelman | Exact solution of the mean spherical model for simple polar mixtures[END_REF] . Reasons for this property are that the dipole interaction averaged over orientations is zero and that the core condition upon the dipolar part of the correlation function remains zero inside hard cores. In view of this there is reason to expect that something similar is the situation for the MSA electrolyte. Also for the latter the average of the interactions over dipolar orientations is zero, also with ionic charges present.

Further the dipolar part of the correlation function must be zero inside hard cores.

In section IV B 3 below we analyze the OZ (Ornstein-Zernike) equation for the MSA problem of the ion-dipole mixture. By evaluations connected to a graph expansion of the solution, we find the decoupling of interest. Thus dipole moments can be redistributed among particles having the same hard core diameter while the MSA solution must remain the same (except for trivial adjustments). Then a fraction of these particles may be left with no dipole moments, i.e. they have become equivalent to ions, but with zero charge (in this case where the dipolar particles have no charge). This again implies that Eq. (50) for c 000 ii (0) is also valid for these new zero charge ions. Further, with unchanged MSA solution this equation is also valid for the particles left with the redistributed dipole moments. This follows from the analysis of the OZ equation and the results obtained as given by Eqs. (S33) and (74).

The reason is that with Eq. ( 52) and the same MSA solution, there can be no difference between particles with or without dipole moments after the redistribution. Altogether, also for the dipolar solvent, the correction δµ i follows from Eqs. (44) and (50). Thus the c 110 nn (0) contribution mentioned above must cancel against the corresponding dipolar internal energy contribution. This follows from the MSA internal energy that is a combination of Eqs. ( 44) and (52). By its extension to the dipolar part of the energy, Eq. ( 52) does not contribute 13 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.
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due to averaging over dipolar orientations.

Graph expansion of the MSA solution for the ion-dipole mixture

In this section we will show how the dipole moments of the solvent particles can be redistributed while the non-trivial part of the MSA solution remains the same. By redistribution, a part of the solvent particles may be left with no dipole moments. A consequence of this is that the correction δµ n to the chemical potential of the solvent can be identified with the one for ions. With zero net charge on the dipolar particles the δµ n will be the same as the one for ions with zero charge and same diameter.

For the dipolar solvent alone the possibility of redistribution of dipole moments was found already in Ref. 15. Since the dipolar part of this MSA problem separates from its hard sphere part alone, such redistribution may not be unexpected. However, for dipolar spheres in a mixture with charged particles this is far from obvious since charge-dipole interactions are involved. Thus we will show this in more detail by studying properties of the solution of the OZ equation for the ion-dipole mixture. 

Eq. ( 54) can be written in the notation of Eq. ( 53) when the quantities there are interpreted as matrices. It is convenient to include the "self-correlation" ρ i δ ij to get the quantity

Sij = ρ i δ ij + ρ i hij ρ j (55)
by which Eq. (54) becomes

Sij = ρ i δ ij + l Sil clj ρ j . ( 56 
)
To obtain full matrix notation we further introduce

Sij = ρ 1/2 i Ũij ρ 1/2 j and cij = ρ -1/2 i Ṽij ρ -1/2 j ( 57 
)
14
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or in matrix notation

Ũ = I + Ũ Ṽ ( 59 
)
where I is the unit matrix. Solved with respect to Ũ , this gives

Ũ = I I - Ṽ = I + Ṽ + Ṽ 2 + Ṽ 3 + • • • , or, Ũ = • + + + + . . . ( 60 
)
Here the graphs represent the solution in r space where convolutions with V = V (r) factors are performed.

For electrolytes the Ṽ may be split in two parts

Ṽ = Ṽ0 + Ṽ1 , Ṽ1 = ṼCD + ṼDD . (61) 
The V 0 is taken as a reference situation and contains the charge-charge interactions and influence from the hard core condition. The Ṽ1 contains the dependence on orientations from the dipole moments of the charge-dipole and dipole-dipole interactions, respectively.

With Ṽ0 alone the solution is

Ũ0 = I I -Ṽ0 . ( 62 
)
When inserting for Ṽ in Eq. ( 60) this gives

Ũ(I -Ṽ0 -Ṽ1 ) = Ũ (I -Ṽ1 Ũ0 ) Ũ-1 0 = I, ( 63 
) Ũ0 = Ũ (I -Ṽ1 Ũ0 ). ( 64 
)
The solution of this equation is like expression (60), and it can be expanded in terms of graphs

Ũ = Ũ0 I I -Ṽ1 Ũ0 , (65) 
or,

Ũ = • + + + + . . . ( 66 
)
15

In this diagrammatic expansion, the open or filled symbols represent the Ũ0 instead of just the I in Eq. ( 60). However, due to dipolar interactions, the situation is less straightforward in the sense that one has to integrate over orientations where dipole interactions are involved.

In the MSA the Ṽ1 can have the following simplified and compact form

Ṽ1 = s 1 b 2 + b 1 s 2 + cs 1 s 2 , ( 67 
)
where the precise vectorial form has been omitted. This simplifies the analysis without loss of generality as long as the average of the one-dimensional substitute s i for the dipole moment is zero. Use of the simplified form compared to use of Ṽ1 with charge-dipole and dipoledipole terms specified in detail, will not change the analysis. The first term in expression (67) represents the charge-dipole interaction between the dipole moment on particle 1 and the charge on particle 2. For the corresponding second term the charge of particle 1 and dipole moment of particle 2 are involved. Then the third term represents the dipole-dipole interaction between particles 1 and 2. Here the one-dimensional substitute s i replaces the dipole moment vector s i . The crucial point is that the average of s i like the average of s i over orientations is zero. [However, by looking more closely into this one finds that the dipole-dipole interaction splits into two terms that have factors with Fourier transforms

(k • s 1 )(k • s 2 ) and (k × s 1 )(k × s 2 ) = s 1 • s 2 -(k • s 1 )(k • s 2 )
. But the latter factor does not couple to the first one or the charge-dipole interaction (k • s 1 ) by integrations over s 1 ].

For the resulting correlation function one now can use the corresponding simplified expression

Ũ = A + s 1 B 2 + B 1 s 2 + Cs 1 s 2 . (68) 
Here we find it convenient to rename Ũ0 to be

Ũ0 = A 0 . (69) 
The coefficients B the general situation where any of the particle species may have both non-zero charge and dipole moment is not considered.] With dipolar interactions, integrations have to be performed along with matrix multiplications. One has

s i = s i ds i = 0 and s 2 i = s 2 i ds = 1 (70) 
where s 2 i = 1 is used for simplicity. Further, the form of Ũ, and thus that of A and A 0 , is crucial by these integrations. From Eq. (58) one can write

A = I + ∆A, A 0 = I + ∆A 0 , (71) 
and with dependence upon orientations this means

A = δ(12)I + ∆A, A 0 = δ(12)I + ∆A 0 . (72) 
The δ( 12) is a δ-function in orientations at the same position in r space. The second term is the regular pair correlation function that depends upon two different positions 1 and 2, but does not vary with the two orientations.

Thus, with ds 1 = 1 and s 1 δ( 12) ds 1 = s 2 one finds the relations

s 1 A ds 1 = s 1 A 0 ds 1 = s 2 I, and 
s 2 A ds 1 = As 2 , s 2 A 0 ds 1 = A 0 s 2 . (73) 
Here in the first integral only the δ(12) function parts of A and A 0 contribute. The ∆A and ∆A 0 parts do not contribute since they do not depend upon orientations and s i = 0. However, in the second integral, both the s 2 , ∆A, and ∆A 0 are merely constants of integration. Now, the technical details needed to solve the OZ equation for the matrix coefficients A, B 1 , B 2 , and C of the correlation function are given in the supplementary material. There, the solutions for these coefficients are analyzed and discussed in terms of graph expansions.

From these expansions one finds that the dipole moments can be redistributed among hard spheres with the same diameter while the same MSA solution can be used.

As a consequence of Eq. (S33) for k = 0, and by virtue of Eq. ( 52) employed for j = n and j = n 0 separately, one obtains the simple result,

δµ n = δµ n 0 . ( 74 
)
17
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(d n 0 = 0).
The result for δµ n is therefore given by Eq. (S1) for i = n 0 (see the supplementary material). For convenience, the neutral solute n 0 was taken at a trace level (vanishingly small concentration), in which case the concentration of n D was that of the solvent n. In this way, the species n 0 does not need be considered in the search for the solution of the MSA-ID equations (as done below in Sec. V for the determination of S b ).

C. Consequences of graph expansions: Generalization to more complex n is produced at each such vertex. With more polar components, contributions sum up, and this quantity is replaced by

H = ρ n d n 2 = j ρ j d D j 2 , (75) 
provided all components with non-zero dipole moments d D j have the same hard core diameter σ j = σ n . This is also the same as the result obtained by Adelman and Deutch for the pure 18
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Internal energies per particle

In view of the preceding section, the internal energies per particle, u i (the u n included), of the various types of species can be expressed in one common expression.

To do so the u i (including u n ) are separated into two parts

u i = u (I) i + u (D) i . (76) 
The contributions u The first one is simply

βu (I) i = Z i 4π α 2 0 N i -α 0 α 2 ρ n m i , (77) 
So, the energies of the ionic charges remain unchanged. For Z i = 0, one has u i = 0. When the dipole moments are distributed over several components in accordance with Eq. (75), the u

(D) i becomes βu (D) i = - d 2 D i 4πd 2 n α 0 α 2 B + 2α 2 2 1 σ 2 n b 2 . ( 78 
)
The resulting expressions for u i are valid when the dipole moments d D i are non-zero only when the corresponding hard core diameters are such that σ i = σ n . With Eqs. ( 76)-(78) the internal energy per unit volume E = i ρ i u i remains unchanged and is given by Eq. (39) when Eq. ( 75) is fulfilled.

D. Thermodynamic consistency checks

It was verified numerically within Maple, by using numbers with 50 digits, that the thermodynamic quantities fulfill some fundamental relations. This test was done in the case of a binary solution of a one molar 1-1 salt in a water-like solvent at 25 in which it is noted that lim C→0 µ i = lim C→0 u i . In the case of an ion, lim C→0 µ i is the electrostatic Gibbs solvation energy of the ion. The variation of the chemical potential of i w.r.t. infinite dilution, ∆µ i , also represents the electrostatic contribution to ln γ i (with γ i the activity coefficient of i).

Figure 4 shows that the ∆µ i for the smaller ion (the cation here) is more negative than that for the bigger ion (the anion). Moreover, the individual internal energies u i are good approximations for the chemical potentials of the ions. It is also observed thatβ∆µ n cannot be distinguished from β∆u n in the present case.

The relative magnitude of δµ i was examined by plotting the ratio,

R i = δµ i /∆µ i . ( 82 
)
as a function of the salt concentration C, where by virtue of Eqs. ( 40) and (81), one has

∆µ i = ∆u i + δµ i . (83) 
The variation of R i for the ions is shown in Figure 5, and that of R n in Figure 6. It is seen in Figure 5 that R i is negative for the smaller ion (the cation here, R 1 < 0) and it is positive for the bigger (the anion, R 2 > 0). Moreover, their magnitude is of a few percent for this strongly asymmetric electrolyte, and |R 1 | < R 2 . It is noticed that these two outcomes are quite similar to what is found in the absence of dipoles (primitive model, see S0 and Ref.

10).

It is striking to observe in Figure 6 that R n is indeed very small. This confirms that δµ n is much smaller than ∆u n in Eq. (83) as seen in Figure 4 (β∆µ n ≃ β∆u n ).

It was also found that the 'sum rules' given by Eqs. ( 29) and (30) were accurately fulfilled, with precisions better than 10 -48 .

VI. CONCLUSION

In this work, the MSA for the ion-dipole mixture has been fully solved.

The results in a particular case at ambient temperature suggest that the chemical potentials of the ions are well approximated by their individual internal energies.

The expressions derived in this study for the chemical potentials of the ions and the solvent will be employed for a calculation of the mean salt activity and osmotic coefficients 22 This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. in aqueous electrolyte solutions. They will have to be computed at constant pressure [START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF] in order to fulfill the Gibbs-Duhem relation. A contribution arising from volume exclusion will be added to the present electrostatic one for their evaluation. It will also be attempted to include induced polarization of the solvent in the description.
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In the field of chemical engineering applications, it will be possible to combine the present non-primitive unrestricted MSA-ID model with contributions that will account for effects such as ion-pairing, chemical association or hydrogen bonding, similarly to what has been done in the literature within the SAFT framework in conjunction with the non-primitive semi-restricted MSA-ID [START_REF] Liu | A new equation of state for real aqueous ionic fluids based on electrolyte perturbation theory, mean spherical approximation and statistical associating fluid theory[END_REF][START_REF] Herzog | Equation of state for aqueous electrolyte systems based 24 This is the author's peer reviewed[END_REF] .

SUPPLEMENTARY MATERIAL

See the supplementary material for the expression of δµ i for the ions, technical details needed to solve the OZ equation, dependency of observed accuracy vs. value of increment ε 
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 11212 General considerationsAn additional consequence of the graph expansions (S22)-(S30) is that the MSA solution with a dipolar solvent is valid and can be expanded to a more general situation as long as the dipolar particles all have the same hard core diameter. Thus the dipolar particles may be a mixture of particles that have different dipole moments, and they may also have different net charges. The reason is that vertices where the interaction bonds b 1 , b 2 , and c meet in the graphs for D and F in Eqs. (S24) and (S30) are just I. This means that interactions have to meet at the same point to give a contribution by integration over dipolar orientations. Thus only the unity matrix I of the vertex function A 0 = I + ∆A 0 contributes. With Eq. (57), one has: Ṽij = . For dipole-dipole interactions cij ∝ d Di d Dj while for the charge-dipole one cij ∝ d Dj , when particle j is the dipole. Thus when a pair of dipole moments d D j meet at a vertex, a factor or contribution ρ j d 2 D j is created. For the MSA solution of the electrolyte with one dipolar component d Dn = d n the factor H = ρ n d 2
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 2345 FIG. 1. Ion-dipole mixture. All species have different diameters.
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 6 FIG. 6. Variation of R n for the solvent as a function of the salt concentration, C.
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  must be underlined that Eqs. (9) and (13) now include the new parameters N n and m n , respectively. According to Eqs. (53) and (56) of B0, or to Eqs. (1.26) and (1.40) of BW1, N i

  • C, by taking the following values for the parameters for the ions and the solvent[START_REF] Simonin | On the "Born" term used in thermodynamic models for electrolytes[END_REF] : σ 1 = 2 Å for the cation, σ 2 = 4 Å for the anion, σ n ≃ 2.4805 Å, and d n ≃ 2.2203 D. The density of the solvent was taken constant, equal to that of pure water.The thermodynamic relations are summarized in Table I together with the accuracy to which they are satisfied for values of a parameter ε that represents the relative increment by which the variables are varied. For example, in Eq. (1), the derivative of βP w.r.t. β was obtained by computing βP for 2 values of β, β 1 = β 0 (1 -ε) and β 2 = β 0 (1 + ε). The derivative was then approximated by (β 2 P 2 -β 1 P 1 )/(β 2 -β 1 ), with P i the value of P for β i .In TableI, the Helmholtz energy A was computed from the general relation, A/V = k ρ k µ k -P . The accuracies reported in this Table are the absolute values of the relative differences between the two sides of the relations. Fulfilment of the Gibbs-Duhem relation was tested at constant temperature by checking the relation in the following form,

	∂P ∂ρ s	+ ρ s	∂µ s ∂ρ s	+ ρ n	∂µ n ∂ρ s	= 0	(79)
	in which subscript s designates the salt.					

TABLE I .

 I Accuracies observed in the thermodynamic consistency checks.It is observed in TableIthat the accuracies vary as ε 2 for a given relation. It is shown in the supplementary material that this is precisely the way they should vary when the relation is indeed valid analytically. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

	Relation	ε = 10 -2	ε = 10 -3	ε = 10 -4
	∂βP ∂β = -∂E ∂V µ s = ∂(A/V ) ∂ρs µ n = ∂(A/V ) ∂ρn E V = ∂(βA/V ) ∂β ∂(E/V ) ∂ρs = ∂(βµs) ∂β ∂(E/V ) ∂ρn = ∂(βµn) ∂β	6.10 × 10 -4 3.59 × 10 -8 3.59 × 10 -10 3.59 × 10 -12 6.10 × 10 -6 6.10 × 10 -8 3.72 × 10 -6 3.72 × 10 -8 3.72 × 10 -10 4.15 × 10 -6 4.15 × 10 -8 4.15 × 10 -10 1.28 × 10 -6 1.28 × 10 -8 1.28 × 10 -10 8.97 × 10 -7 8.97 × 10 -9 8.97 × 10 -11
	∂µs ∂ρn = ∂µn ∂ρs	3.13 × 10 -5	3.13 × 10 -7	3.13 × 10 -9
	Gibbs-Duhem [Eq. (79)] 7.79 × 10 -7	7.79 × 10 -9	7.79 × 10 -11

These numerical tests prove that the above equations for the thermodynamic quantities form a globally consistent set of relations, and that they provide the solution to the MSA-ID problem. 20

PLEASE CITE THIS ARTICLE AS DOI:10.1063/5.0064188

  

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.PLEASE CITE THIS ARTICLE ASDOI:10.1063/5.0064188

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

V. ILLUSTRATION IN THE CASE OF A BINARY 1-1 ELECTROLYTE

We now specialize to the case of a binary 1-1 electrolyte in a water-like solvent at 25 • C having the parameters employed in the preceding section: σ 1 = 2 Å (cation), σ 2 = 4 Å (anion), σ n ≃ 2.4805 Å, and d n ≃ 2.2203 D.

In this case, the unknowns are the set of parameters S b = {b

0 , b

1 , b

1 , b 2 }. The values of these 7 parameters were determined numerically by again employing Maple, with numbers being expressed with 50 significant figures.

One has the 3 fundamental equations, Eqs. ( 2)-( 4), and the five symmetry relations for P mp ij , Eq. ( 28),

P 00 12 = P 00 21 , P 00 1n = P 00 n1 , P 00 2n = P 00 n2 , P 01 1n = P 10 n1 , P 01 2n = P 10 n2 .

Overall, this makes 8 equations and 7 unknowns in this particular case. It is expected that one of the equations may be derived from the others. In this example, it was found that it was preferable to leave the equation for P 00 1n aside. The same method as in S0 was used to numerically solve the equations and determine S b . When the numerical solution for the set of parameters S b was obtained, it was verified that the equation for P 00 1n was indeed fulfilled. The values of b