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Abstract

Parallel implementations of Krylov subspace algorithms often help to accelerate the procedure to find the solution
of a linear system. However, from the other side, such parallelization coupled with asynchronous and out-of-order
execution often enlarge the non-associativity of floating-point operations. This results in non-reproducibility on the
same or different settings. This paper proposes a general framework for deriving reproducible and accurate variants of
a Krylov subspace algorithm. The proposed algorithmic strategies are reinforced by programmability suggestions to
assure deterministic and accurate executions. The framework is illustrated on the preconditioned BiCGStab method
for the solution of non-symmetric linear systems in parallel environments with message-passing. Finally, we verify
the two reproducible variants of PBiCGStab on a set matrices from the SuiteSparse Matrix Collection.

Keywords: Reproducibility, accuracy, floating-point expansion, long accumulator, fused multiply-add,
preconditioned BiCGStab, High-Performance Computing.

1. Introduction
Solving large and sparse linear systems of equations appears in many scientific applications spanning from circuit
and device simulation, quantum physics, large-scale eigenvalue computations, and up to all sorts of applications that
include the discretization of partial differential equations (PDEs) [1]. In this case, Krylov subspace methods fulfill the
roles of standard linear algebra solvers [2]. The Conjugate Gradient (CG) method can be considered as a pioneer of
such iterative solvers operating on symmetric and positive definite (SPD) systems. Other Krylov subspace methods
have been proposed to find the solution of more general classes of non-symmetric and indefinite linear systems. These
include the Generalized Minimal Residual method (GMRES) [3], the Bi-Conjugate Gradient (BiCG) method [4], the
Conjugate Gradient Squared (CGS) method [5], and the widely used BiCG stabilized (BiCGStab) method by H.A.
Van der Vosrt [6] as a smoother converging version of the above two. Preconditioning is usually incorporated in real
implementations of these methods in order to accelerate the convergence of the methods and improve their numerical
features.

One would expect that the results of the sequential and parallel implementations of BiCGStab to be identical, for
instance, in the number of iterations, the intermediate and final residuals, as well as the sought-after solution vector.
However, in practice, this is not often the case due to different reduction trees – the Message Passing Interface (MPI)
libraries [7] offer up to 14 different implementations for reduction –, data alignment, instructions used, etc. Each of
these factors impacts the order of floating-point operations, which are commutative but not associative, and, therefore,
violates reproducibility. We aim to ensure identical and accurate outputs of computations, including the residuals/
errors, as in our view this is a way to ensure robustness and correctness of iterative methods. The robustness and
correctness in this case have a threefold goal: reproducibility of the results with the accuracy guarantee as well as
sustainable (energy-efficient) algorithmic solutions.

In general, Krylov subspace algorithms are build from three components: sparse-matrix vector multiplication Ax
(SpMV), dot product between two vectors (x, y), and scaling a vector by a scalar with the following the addition of
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two vectors x := αx + y (axpy). If a block data distribution is used, only axpy is perfomed locally, while SpMV needs
to gather the full operand vector, e.g. via the MPI Allgatherv() collective, and dot product requires communication
and computation, e.g. via the MPI Allreduce() collective, among MPI processes.

In this paper, we aim to re-ensure reproducibility of Krylov subspace algorithms in parallel environments. Our
contributions are the following:

• we propose a general framework for deriving reproducible Krylov subspace algorithms. We follow the bottom-
up approach and ensure reproducibility of Krylov subspace algorithms via reproduciblity of their components,
including the global communication. We build our reproducible solutions on the ExBLAS [8] approach and its
lightweight version using floating-point expansions only.

• even when applying our reproducible solutions, we particularly stress the importance of arranging computations
carefully, e.g. avoid possibly replacements by compilers of a ∗ b + c in the favor of fused multiply-add (fma)
operation or postponing divisions in case of data initialization (i.e. divide before use). We refer to the 30-year-
old but still up-to-date guide “What every computer scientist should know about floating-point arithmetic” by
Goldberg [9].

• we verify the applicability of the proposed method on the preconditioned BiCGStab algorithm. We derive two
reproducible variants and test them on a set of SuiteSparse matrices.

This article is structured as follows. Section 2 reviews several aspects of computer arithmetic, in particular
floating-point expansion and long accumulator, as well as the ExBLAS approach for accurate and reproducible com-
putations. Section 3 proposes a general framework for constructing reproducible Krylov subspace methods. Section 4
introduces the preconditioned BiCGStab algorithms and describes in details its MPI implementation. We evaluate
the two reproducible implementations of PBiCGStab in Section 5. Finally, Section 6 reviews related work, while
Section 7 draws conclusions and outlines future directions.

2. Background
At first, we briefly introduce the floating-point arithmetic that consists in approximating real numbers by numbers that
have a finite, fixed-precision representation. These numbers are composed of a significand, an exponent, and a sign:
x = ± x0.x1 . . . xM−1︸          ︷︷          ︸

mantissa

×be, 0 ≤ xi ≤ b − 1, x0 , 0, where b is the basis (2 in our case), M is the precision, and e stands

for the exponent that is bounded (emin ≤ e ≤ emax).
The IEEE 754 standard [10], created in 1985 and then revised in 2008 and in 2019, has led to a considerable

enhancement in the reliability of numerical computations by rigorously specifying the properties of floating-point
arithmetic. This standard is now adopted by most processors, thus leading to a much better portability of numerical
applications. The standard specifies floating-point formats, which are often associated with precisions like binary16,
binary32, and binary64, see Table 1. Floating-point representation allows numbers to cover a wide dynamic range that
is defined as the absolute ratio between the number with the largest magnitude and the number with the smallest non-
zero magnitude in a set. For instance, binary64 (double-precision) can represent positive numbers from 4.9× 10−324

to 1.8 × 10308, so it covers a dynamic range of 3.7 × 10631.
Table 1: Parameters for three IEEE arithmetic precisions; quadruple (128 bits) is omitted.

Type Size Significand Exponent Rounding unit Range
half 16 bits 11 bits 5 bits u = 2−11 ≈ 4.88 × 10−4 ≈ 10±5

single 32 bits 24 bits 8 bits u = 2−24 ≈ 5.96 × 10−8 ≈ 10±38

double 64 bits 53 bits 11 bits u = 2−53 ≈ 1.11 × 10−16 ≈ 10±308

The IEEE 754 standard requires correctly rounded results for the basic arithmetic operations (+,−,×, /, √ , fma).
It means that the operations are performed as if the result was first computed with an infinite precision and then
rounded to the floating-point format. The correct rounding criterion guarantees a unique, well-defined answer, ensur-
ing bit-wise reproducibility for a single operation. Several rounding modes are provided. The standard also contains
the reproducibility clause that forwards the reproducibility issue to language standards. Emerging attention to repro-
ducibility strives to draw more careful attention to the problem by the computer arithmetic community. It has led to
the inclusion of error-free transformations (EFTs) for addition and multiplication – to return the exact outcome as the
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result and the error – to assure numerical reproducibility of floating-point operations, into the revised version of the
standard. These mechanisms, once implemented in hardware, will simplify our reproducible algorithms – like the
ones used in the ExBLAS [8], ReproBLAS [11], OzBLAS [12] libraries – and boost their performance.

There are two approaches that enable the addition of floating-point numbers without incurring round-off errors
or with reducing their impact. The main idea is to keep track of both the result and the errors during the course
of computations. The first approach uses EFT to compute both the result and the rounding error and stores them
in a floating-point expansion (FPE), which is an unevaluated sum of p floating-point numbers, whose components
are ordered in magnitude with minimal overlap to cover the whole range of exponents. Typically, FPE relies upon
the use of the traditional EFT for addition that is twosum [13] (Algorithm 1) and for multiplication that is twoprod
EFT [14] (Algorithm 2). The second approach projects the finite range of exponents of floating-point numbers into a
long vector so called a long (fixed-point) accumulator and stores every bit there. For instance, Kulisch [15] proposed
to use a 4288-bit long accumulator for the exact dot product of two vectors composed of binary64 numbers; such a
large long accumulator is designed to cover all the severe cases without overflows in its highest digit.

Algorithm 1: Error-free transformation for the
summation of two floating-point numbers.

Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twosum (a, b)

r := a + b
z := r − a
s := (a − (r − z)) + (b − z)

Algorithm 2: Error-free transformation for the
product of two floating-point numbers.

Input: a, b are two floating-point numbers.
Output: r, s are the result and the error, resp.
Function [r, s] = twoprod (a, b)

r := a ∗ b
s := f ma(a, b,−r)

2.1. ExBLAS – Exact BLAS
The ExBLAS project [16] is an attempt to derive fast, accurate, and reproducible BLAS library by constructing a
multi-level approach for these operations that are tailored for various modern architectures with their complex multi-
level memory structures. On one side, this approach is aimed to be fast to ensure similar performance compared to
the non-deterministic parallel versions. On the other side, the approach is aimed to preserve every bit of information
before the final rounding to the desired format to assure correct-rounding and, therefore, reproducibility. Hence,
ExBLAS combines together long accumulator and FPE into algorithmic solutions as well as efficiently tunes and
implements them on various architectures, including conventional CPUs, Nvidia and AMD GPUs, and Intel Xeon Phi
co-processors (for details we refer to [8]). Thus, ExBLAS assures reproducibility through assuring correct-rounding.

The corner stone of ExBLAS is the reproducible parallel reduction, which is at the core of many BLAS routines.
The ExBLAS parallel reduction relies upon FPEs with the twosum EFT [13] and long accumulators, so it is correctly
rounded and reproducible. In practice, the latter is invoked only once per overall summation that results in the little
overhead (less than 8 %) on accumulating large vectors. Our interest in this article is the dot product of two vectors,
which is another crucial fundamental BLAS operation. The exdot algorithm is based on the previous exsum algorithm
and the twoprod EFT [14] (see Algorithm 2): the algorithm accumulates the result and the error of twoprod to same
FPEs and then follows the exsum scheme. We derive its distributed version with two FPEs underneath (one for the
result and the other for the error) that are merged at the end of computations. These and the other routines – such
as matrix-vector product, triangular solve, and matrix-matrix multiplication – are distributed in the ExBLAS library
(https://github.com/riakymch/exblas).

3. General framework for deriving a reproducible Krylov subspace algorithm
The use of Krylov subspace methods to solve sparse linear systems (Ax = b) allows that the nonzero pattern of
the original matrix is never changed, such that memory requirement is maintained during all the execution. These
methods are always defined means of an iteration in which the matrix A is only involved in sparse matrix-vector
products, and some additional vector operations help to find the sought-after solution vector. For symmetric problems,
the corresponding methods (CG [2], MR [2] and its variants) only manages one Krylov subspace, but for the general
case one or two Krylov subspaces could be generated. In the first case (GMRES [3], QMR [17] and its variant), the
main problem is that the number of computations grows in each iteration, and therefore, the practical implementations
limits the number of iterations, incorporating a restarting technique to complete the solution of the linear system. For
the second case, the first defined methods (BiCG [4], QMR [17] and its variants) need to manage both A and AT ,
and therefore, the optimized implementations double the memory requirements. The alternative is the definition of
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Transpose-Free variants of the methods, such as BiCGStab [6] or TFQMR [18], in which the recurrences are changed
to avoid the use of AT .

Additionally, the use of preconditioning improves the convergence of the method. Basically, the problem is mod-
ified by a matrix M−1Ax = M−1b, such that the condition number of new matrix, M−1A, was better than the condition
number of A. There are many alternatives to compute matrix M. We consider to use the Jacobi preconditioning, which
is M = diag(A) ⇐⇒ a j j , 0, produces sufficient results despite being very simple to obtain and also to compute the
matrix inverse.

This section provides the outline of a general framework for deriving the reproducible version of any traditional
Krylov subspace method. The framework is based on two main concepts: 1) identifying the issues caused by paral-
lelization and, hence, the non-associativity of floating-point computations; 2) carefully mitigating these issues primar-
ily with the help of computer arithmetic techniques as well as programming guidelines. The framework was implicitly
used for the derivation of the reproducible variants of the Preconditioned Conjugate Gradient (PCG) method [19, 20].
3.1. Identifying sources of non-reproducibility
Our first step is to identify sources of non-associativy and, thus, non-reproducibility of the Krylov subspace methods
in parallel environments. We consider a general scheme for the Krylov subspace method presented in Figure 1.
This scheme outlines four common operations as well as message-passing communication patterns associated with
them: sparse matrix-vector product (SpMV) and Allgatherv for gathering the vector, dot product with the Allreduce
collective, scaling a vector with the following addition of two vectors (axpy), and the application of the preconditioner.
Hence, we investigate each of these four operations. We assume that we deal with the MPI implementation of the
solver where each process conducts computations on its own local slices of the matrix as well as the vectors.

while (τ > τmax)

Step Operation Kernel Communication
S1 : w := Ad SpMV Allgatherv
S2 : ρ := β/< d,w > dot product Allreduce

...
S3 : x := x + ρd axpy none

...
S4 : z := M−1r Apply preconditioner depends

...
S5 : τ := < r, r > dot product Allreduce

...
end while

Figure 1: Standard preconditioned Krylov subspace method with annotated
BLAS kernels and message-passing communication.

In general, associativity and reproducibility are not guaranteed when there is perturbation of data in parallel
execution. For instance, while invoking the MPI Allreduce() collective one cannot ensure the same result (its
execution path) as it depends on the data, the network topology, and the underlying algorithmic implementation.
Under these assumptions, axpy and SpMV are associativity-safe as they are performed locally on local slices of data.
The application of preconditioner can also be considered safe, e.g. the Jacobi preconditioner, until all operations are
reduction-free. Thus, the main issue of non-determinism emerges from dot products and, thus, parallel reductions
with MPI Allreduce() in steps S1 and S5 in Figure 1.
3.2. Re-assuring reproducibility: strategies and programmability effort
We construct our approach for reassuring reproducibility by primarily targetting dot products and parallel reductions.
Note that the non-deterministic implementation of the Krylov subspace method utilizes the dot routine from a BLAS
library like Intel MKL that follows by MPI Allreduce(). Thus, we propose to refine this procedure into four steps
as follows

• exploit the ExBLAS and its lighter FPE-based versions to build reproducible and correctly-rounded dot product

• extend the ExBLAS- and FPE-based dot products to distributed memory by emploting MPI Reduce(). This
collective acts on either long accumulators or FPEs. For the ExBLAS approach, since the long accumulator is
an array of long integers, we apply regular reduction. Note that we may need to carry an extra intermediate
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normalization after the reduction of 2K−1 long accumulators, where K = 64 − 52 = 12 is the number of carry-
safe bits per each digit of long accumulator. For the FPE approach, we define the MPI operation that is based
on the twosum EFT, see Algorithm 1;

• Rounding to double: for long accumulators, we use the ExBLAS-native Round() routine. To guarantee cor-
rectly rounded results of the FPE-based computations, we employ the NearSum algorithm from [21] for FPEs.

• Distribute the result of dot product to the other processes by MPI Bcast() as only master performs rounding.

Listings 1 and 2 provide pseudo codes for our implementation of the distributed dot product using the ExBLAS
and lightweight strategies, respectively.

Listing 1: Reproducible Allreduce with ExBLAS.
1 std::vector <int64_t > h_superacc(BIN_COUNT);
2 exblas ::exdot (..., &h_superacc [0]);
3 exblas :: Normalize (& h_superacc [0]);
4 MPI_Reduce (& h_superacc [0],..., BIN_COUNT ,

MPI_LONG , MPI_SUM);
5 if (myId == 0) {
6 beta = exblas ::Round (& h_superacc [0]);
7 }
8 MPI_Bcast (&beta , 1, MPI_DOUBLE , ...);

Listing 2: Reproducible Allreduce with FPEs only.
1 std::vector <double > fpe(N);
2 dot (..., &fpe [0]);
3 renormalize (&fpe [0]); // optional
4 MPI_Op Op; // user -defined reduction operation
5 MPI_Op_create (fpesum , 1, &Op);
6 MPI_Reduce (&fpe[0], ..., N, MPI_DOUBLE , Op);
7 if (myId == 0) {
8 beta = Round (&fpe [0]); // Add3
9 }

10 MPI_Bcast (&beta , 1, MPI_DOUBLE , ...);

It is evident that the results provided by ExBLAS dot are both correctly-rounded and reproducible. With the
lightweight dot, we aim also to be generic and, hence, we provide the implementation that relies on FPEs of size eight
with the early-exit technique. Additionally, we add a check for both FPE-based implementations for the case when
the condition number and/ or the dynamic range are too large and we cannot keep every bit of information. Then, the
warning is thrown, containing also a suggestion to switch to the ExBLAS-based implementation. But, note that these
lightweight implementations are designed for moderately conditioned problems or with moderate dynamic range in
order be accurate, reproducible, but also high performing since the ExBLAS version can be very resource demanding,
specially on the small core count. To sum up, if the information about the problem is know in advance, it is worth
pursuing the lightweight approach.

Regarding axpy(-type) and application of the preconditioner, we rely upon the sequential MKL implementation of
axpy and the usage of the Jacobi preconditioner. The later is rather simple and only involves element-wise multipli-
cation of two vectors.

Programmability effort: It is important to note that compiler optimization and especially the usage of the fused-
multiply-and-add (fma) instruction, which performs a+ = b ∗ c with single rounding at the end, may lead to some
non-determenistic results. For instance, in the distributed implementation of PBiCGStab, each MPI process computes
its dedicated part wk of the vector w by multiplying a block of rows Ak by the vector e. Since the computations are
carried locally and sequentially, they are deterministic and, thus, reproducible. However, some parts of the code like
a ∗ b + c ∗ d ∗ e and a+ = b ∗ c – present in the original implementation of PBiCGStab – may not always provide with
the same result [22]. This is due to the fact that for performance reasons, the C++ language standard allows compilers
to change the execution order of this type of operation. It even allows merging multiplications and summations with
fused multiply-add (fma) instructions. Hence, a compiler might translate a ∗ b + c ∗ d to two multiplications t1 = a ∗ x
and t2 = b ∗ y, and a subsequent summation y = t1 + t2; it might generate a single multiplication t = b ∗ y with a
subsequent fma y = fma(a, x, t), which gives a slightly different result; or it may even compute t = a ∗ x first and then
use the fma y = fma(b, y, t). Thus, we advise to instruct compilers to use fma explicitly via std::fma in C++ 11 (in
case the underlying architecture supports fma).

Another important observation is to carefully perform divisions and initialization of data. For instance, at the
initialization in the Krylov solver d = 1

√
N

(1, . . . , 1)T , N is the number of rows/ columns of A, and b = Ad; d is used

only once to initialize b. In this case, we suggest to compute b = Ad for d = (1, . . . , 1)T first and then scale b by 1
√

N
as we observed a slightly faster convergence (up to 7 %) for the Krylov solver.

4. BiCGStab
The classic Biconjugate Gradient Stabilized method (BiCGStab) [6] was proposed as a fast and smoothly converging
variant of the BiCG [4] and CGS [5] methods. We present here the preconditioned BiCGStab algorithm: its design
and implementation with Message Passing Interface (MPI).
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4.1. Preconditioned Biconjugate Gradient Stabilized Solver
We consider the linear system Ax = b, where the coefficient matrix A ∈ Rn×n is sparse with nz nonzero entries;
b ∈ Rn is the right-hand side vector; and x ∈ Rn is the sought-after solution vector. The algorithmic description
of the classical iterative PBiCGStab is presented in Figure 2. The loop body consists of two sparse matrix-vector
product (SpMV) (S1 and S7), six DOT products (S2, S4, S8, S11, and S14), six AXPY (-like) operations (S3, S5, S9,
S10, and S12), and two preconditioner applications (S6 and S13), and a few scalar operations [1]. For simplicity, in

Compute preconditioner for A→ M
Set starting guess x0

Initialize r0 := b − Ax0, p0 := r0, τ0, j := 0 (iteration count)

r0 := b − Ax0

τ0 :=‖ r0 ‖2
while (τ j > τmax)

Step Operation Kernel
S1 : v j := Ap j SpMV
S2 : α j := < r0, r j > / < r0, v j > dot product
S3 : s̃ j := r j − α jv j axpy-like
S4 : τ̃ j := ‖ s̃ j ‖2 dot product + sqrt
S5 : x j+1 := x j + α j p j axpy

if(τ̃ j < τ̃max)then break
S6 : s j := M−1 s̃ j Apply precond.
S7 : ṽ j := As j SpMV
S8 : ω j := < ṽ j, s j > / < ṽ j, ṽ j > Two dot products
S9 : x j+1 := x j + ω j s j axpy

S10 : r j+1 := s j − ω jṽ j axpy-like
S11 : β j := <r0 ,r j+1>

<r0 ,r j>
∗ α j

ω j dot product
S12 : p̃ j+1 := r j+1 + β j(p j − ω jv j) Two axpy-like
S13 : p j+1 := M−1 p̃ j+1 Apply precond.
S14 : τ j+1 := ‖ r j+1 ‖2 dot product + sqrt

j := j + 1
end while

Figure 2: Formulation of the PBiCGStab solver annotated with
computational kernels. The threshold τmax is an upper bound on
the relative residual for the computed approximation to the so-
lution. In the notation, < ·, · > computes the dot (inner) product
of its vector arguments.

Compute preconditioner for A→ M
Set starting guess x
Initialize z, d, β, τ, j := 0

r̂ := b − Ax, r := r̂ , σ :=< r, r > ,τ := sqrt(σ)
while (τ > τmax)

Step Operation Communicat.
σ′ := σ –

S1 :
S1.1 : p → e Allgatherv
S1.2 : v := Ae –

S2 : α := σ/< r̂, v > Allreduce
S3 : s̃ := r − αv –
S5 : x := x + αp –
S6 : s := M−1 s̃ –
S4 : τ := sqrt(< s, s >) Allreduce

if(τ̃ j < τ̃max)then break –
S7 :

S7.1 : s → e Allgatherv
S7.2 : ṽ := Ae –

S8 : ω := < ṽ, s > / < ṽ, ṽ > Allreduce(2)
S9 : x := x + ωs –
S10 : r := s − ωv –
S11 : σ := < r̂, r > Allreduce(2)
S14 : τ := sqrt(< r, r >)
S12 : p̃ := r + σ

σ′
∗ α

ω
(p − ωv) –

S13 : p := M−1 p̃ + z –
j := j + 1

end while
Figure 3: Message-passing formulation of the PBiCGStab
solver annotated with communication.

our implementation of the BiCGStab method, we integrate the Jacobi preconditioner [2], which is composed of the
elements in the diagonal of the matrix (M := D = diag(A)). In consequence, the application of the preconditioner is
conducted on a vector and requires an element-wise multiplication of two vectors.

4.2. Message-passing Parallel BiCGStab Implementation
In this subsection we perform a communication analysis of a message-passing implementation of the BiCGStab
solver. For clarity, hereafter we will drop the superindices that denote the iteration count in the variable names.
Thus, for example, x( j) becomes x, where the latter stands for the storage space employed to keep the sequence of
approximations x(0), x(1), x(2), . . . computed during the iterative process. We consider the following aspects in the
analysis:

• The parallel platform consists of K processes (or MPI ranks), denoted as P1, P2, . . . , PK .
• The coefficient matrix A is partitioned into K blocks of rows (A1, A2, . . ., Ak), where each process stores one

row-block with the k-th distribution block Ak ∈ Rpk×n is stored in Pk, and n =
∑K

k=1 pk.
• Vectors are partitioned and distributed in the same way as with the block-row distribution of A. For example,

the residual vector r is partitioned as r1, r2, . . ., rK and rk is stored in Pk.
• The scalars α, β, ω, σ, τ, τ̃ are replicated on all K processes.
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Taking into account these previous considerations, we analyze the different computational kernels (S1–S14) that
compose the loop body of a single PBiCGStab iteration in Figure 2.

Sparse matrix-vector product (S1, S7): This kernel needs as input operands: the coefficient matrix A, which is
distributed by blocks of rows, and the corresponding vector (p or s), which is partitioned and distributed using the
same partitioning as A. For simplicity, we just explain below how S1 is computed.

Prior to computing this kernel, we need to obtain a replicated copy of the distributed vector p in all processes,
denoted as p→ e; vector e is the only array that is replicated in all processes. We can recognize here a communication
stage, but, after that, each process can then compute its local piece of the output vector v concurrently: Pk : vk := Ak e.
This kernel thus requires assembling the distributed pieces of the vector p into a single vector e that is replicated in all
processes (in MPI, for example via an MPI Allgatherv()). The computation can then proceed in parallel, yielding
the vector result v in the expected distributed state with no further communication involved. At the end, each MPI
process owns the corresponding piece of the computed vector.
dot products (S2, S4, S8, S11, S14): The next kernel in the loop body is the dot product in the step S2 between

the distributed vectors r̂ and r. Here, each process can compute concurrently a partial result Pk : ρk :=< r̂k, rk >
and when all processes have finished this partial computation, these intermediate values have to be reduced into a
globally-replicated scalar α := σ/(ρ1 + ρ2 + · · ·+ ρK). We can apply the same idea to the dot products in the steps S4,
S8, S11 and S14, yielding a total of six process synchronizations (in MPI, via MPI Allreduce()) since α, β, ω, σ, τ, τ̃,
are globally-replicated.
axpy(-type) vector updates (S3, S5, S9, S10, S12): The next kernel is the axpy-like kernel in the step S3, which

involves the distributed vectors s̃, r, v and the globally-replicated scalar α. The operations in the steps S5, S9, S10
and S12 follow the same idea because all scalars are globally-replicated. In these types of kernels, all processes can
perform their local parts of the computation to obtain the result without any communication: Pk : s̃k := rk − α vk.

Application of the preconditioner (S6, S13): The kernel in the step S6 consists of applying the Jacobi precondi-
tioner M, scaling the vector s̃ by the diagonal of the matrix. Therefore, it can be executed in parallel by all processes
because each of them stores a different set of the diagonal elements (those related with the piece of the matrix that it
stores) and the corresponding set of the vector s̃ elements: Pk : sk := M−1

k s̃k. The same procedure can be applied on
the step S13 to scale the vector p̃, resulting in p.

We can easily reduce the number of synchronizations in the loop body of the PBiCGStab solver if we re-arrange
the operations so that the step S14 is pushed up next to the step S11. Thus, the simultaneous execution of these two
reductions, and also the two reductions in step S8, decrease the number of process synchronizations from six to four
per iteration. The reorganized algorithm and communications are summarized in Figure 3.

5. Experimental Results
In this section, we report a variety of numerical experiments to examine the convergence, accuracy, and reproducibility
of the original and two reproducible versions of PBiCGStab.

In our experiments, we employed IEEE754 double-precision arithmetic and conducted them on the SkyLake
partition at Fraunhofer with a dual Intel Xeon Gold 6132 CPU @2.6 GHz, 28 cores, and 192 GB of memory. Nodes
are connected with the 54 Gbit/s FDR Infiniband.

5.1. Evaluation on the SuiteSparse matrices
We carried out the tests on a wide range of different linear systems from the SuiteSparse matrix collection on a
single SkyLake node using 1, 2, 4, 8, 16, and 28 (full) cores. Table 2 lists a set of tested matrices with the their
condition numbers k(A), number of rows/ columns N, and number of nonzeros nnz. The right-hand side vector b in
the iterative solvers was always initialized to the product Ad, d = 1

√
N

(1, . . . , 1)T , where N is the number of rows/
columns of A. However, in both ExBLAS- and FPE-based versions, marked as ReproBiCGStab in the table, we
computed b = Ad, d = (1, . . . , 1)T and then scaled b by 1

√
N

. The (P)BiCGStab iterations were started with the initial

guess x0 = 0. The parameter that controls the convergence of the iterative process is ‖r j‖2/‖r0‖2 ≤ 10−6.
Table 2 also reports the number of required iterations to reach the stopping criterion as well the final true residual

for BiCGStab and ReproBiCGStab; the later marks both ExBLAS- and FPE-based variants as they report identical
results independently from the number of cores/ MPI processes used. For the original version, we display the number
of iterations on single and eight cores as they differ. Notably, the two reproducible variants show the tendency to
deliver better accuracy of the approximate result (the final true residual) as well as converge faster, for example for
fs 760 3, orsreg 1, and rdb3200l matrices.
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We select the fs 760 3 and rdb3200l matrices and illustrate their convergence history in Figure 4; the former
is computed without the preconditioner. This figure reveals that: for fs 760 3 (left plot) the methods convergence
smoothly at the initial iterations but then struggles to attain the last bits to satisfy the stopping criterion; for rdb3200l
(right plot) the situation is inverse with the long ‘warm up’ phase until the 500th iteration that follows with the steep
descend.

Matrix Prec k(A) N nnz ‖r0‖2 BiCGStab ReproBiCGStab
iter1 iter8 ‖b − Ax j‖2 iter ‖b − Ax j‖2

1138 bus Jac 8.6e + 06 1,138 4,064 3.50e + 06 5 5 1.72e − 04 5 1.72e − 04
add32 Jac 1.4e + 02 4,960 19,848 6.38e − 05 36 36 4.97e − 09 35 7.12e − 09
bcsstk14 Jac 1.3e + 10 1,806 63,454 3.17e + 18 8 8 1.11e + 03 8 1.11e + 03
bcsstk18 Jac 6.5e + 01 11,948 149,090 5.29e + 18 7 7 7.51e + 02 7 7.51e + 02
bcsstk26 Jac 1.7e + 08 1,922 30,336 3.80e + 19 11 11 5.62e + 03 11 5.62e + 03
bcsstm25 - 6.1e + 09 15,439 15,439 4.76e + 15 956 828 6.89e + 01 863 6.81e + 01
bfw782a Jac 1.7e + 03 782 7,514 1.09e − 01 267 - 1.26e − 07 179 1.70e − 07
cdde6 Jac 1.8e + 02 961 4,681 3.31e − 01 126 122 2.26e − 07 120 5.54e − 07
fs 760 3 - 1.0e + 20 760 5,816 2.71e + 14 741 790 1.49e + 01 724 1.53e + 01
jpwh 991 Jac 1.4e + 03 991 6,027 1.46e − 01 22 22 3.62e − 07 2 3.62e − 07
orsreg 1 Jac 6.7e + 03 2,205 14,133 2.34e + 01 225 228 4.18e − 06 210 4.68e − 06
pde2961 Jac 6.4e + 02 2,961 14,585 9.24e − 02 128 123 5.28e − 08 125 2.67e − 07
rdb3200l Jac 1.1e + 03 3,200 18,880 9.92e + 01 641 605 4.09e − 06 583 3.17e − 06
s3dkq4m2 Jac 1.9e + 11 90,449 4,427,725 3.70e + 05 23 23 7.26e − 05 23 7.27e − 05
saylr4 Jac 6.9e + 06 3,564 22,316 9.44e + 06 10 10 1.95e − 03 10 7.26e − 05

Table 2: Convergence of the BiCGStab and ReproBiCGStab on a set of the SuiteSparse matrices with various condition numbers
k(A), number of rows/ columns N, and number of nonzeros nnz. The initial guess is all-zero x0 = 0. The Jacobi preconditioner (Jac)
is applied where applicable. The number of iterations required to reach the tolerance of 10−6 on the scaled residual, i.e. ‖r j‖2/‖r0‖2,
is reported along with the corresponding true residual ‖b − Ax j‖2.
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Figure 4: Residual history for the fs 760 3 (left, without preconditioner) and rdb3200l (right) SuiteSparse matrices, see Table 2
for details. The lines represent the norms of recursive residuals ‖r j‖2 for BiCGStab on one and eight MPI processes, as well as
ReproBiCGStab that stands for both ExBLAS and FPE versions.

5.2. Performance
Figures 5 and 6 demonstrate the strong scalability results – when the problem is fixed but the number of allocated
resources varies – for the original and both ExBLAS- and FPE-based preconditioned BiCGStab variants on the
s3dkq4m2 and orsreg 1 matrices. The figures report average execution time for the entire loop of the solver among
up to five samples. We select the s3dkq4m2 matrix due to its large number of nonzero elements, i.e. enough work to
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show scalability. Note that MPI communication is performed within a node, most likely being exposed to intra-node
communication via shared memory. All three variants show good scalability results with 10.4x, 12.8x, and 13.3x
speed up on 16 MPI processes for the original, FPE, and ExBLAS variants, respectively. The reproducible variants
demonstrate higher speedup due to extra floating-point operations. The right plot shows the overhead of the ExBLAS
and FPE variants compared to the original variant is reduced to 2x and 2.4x, accordingly, on 28 MPI processes. The
scalability results on the orsreg 1 matrix and others from Table 2 show the similar pattern and overhead. However,
the smaller number of nonzeros leads to the worse scalability. For instance, for the orsreg 1 matrix the original and
ExBLAS/ FPE variants are only 4x and 8x, respectively, faster on 16 MPI processes.

Note that the average execution time per loop for all studied matrices is not sufficient for distributed memory com-
putations. This is due to the fact that the potential performance gain from extra nodes is demolished by communication
among these nodes.
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Figure 5: Strong scaling results of the original and reproducible PBiCGStab variants with the Jacobi preconditioner on one
SkyLake node for the s3dkq4m2 matrix, see Table 2 for details. All methods were set to converge to the tolerance 10−6.
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Figure 6: Strong scaling results of the original and reproducible PBiCGStab variants with the Jacobi preconditioner on one
SkyLake node for the orsreg 1 matrix, see Table 2 for details. All methods were set to converge to the tolerance 10−6.

5.3. Accuracy and Reproducibility
In addition, we derive a sequential version of the preconditioned BiCGStab as in Figure 2 that relies on the GNU
Multiple Precision Floating-Point Reliably (MPFR) library [23] – a C library for multiple (arbitrary) precision floating-
point computations on CPUs – as a highly accurate reference implementation. This implementation uses 2,048 bits of
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accuracy for computing dot product, 192 bits for internal element-wise product, and performs correct rounding of the
computed result to double precision.

Table 3 reports the intermediate and final (except from original that takes longer) scaled residual on each iteration
of the PBiCGStab solvers for the orsreg 1 matrix, as in Table 2, under the tolerance of 10−6 on eight MPI processes.
We also add the results of the original code on one core/ process to highlight the reproducibility issue. The results
are presented with all digits using hexadecimal representation. We report only few iterations, however the difference
is present on all iterations. The sequential MPFR version of PBiCGStab confirms the accuracy and reproducibility of
both the ExBLAS and FPE variants of BiCGStab by reporting identical number of iterations, intermediate residuals,
and both the final true and initial scaled residuals. However, the MPFR variant of PBiCGStab converges to the
approximate solution in 3.39e-01 seconds, while the ExBLAS and FPE variants take 3.95e-02 and 2.75e-02 seconds
(8.57x and 12.32x faster), accordingly, on eight MPI processes. The original code shows the discrepancy from few
digits on the initial iteration and up to the entire number as the count of required iterations differs from the reproducible
and MPFR variants.

Iteration Residual
MPFR Original 1 proc Original 8 procs Exblas & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2
1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0
... ... ... ... ...
99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13

100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13
... ... ... ... ...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20
209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20
210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

Table 3: Accuracy and reproducibility of the intermediate and final residual against MPFR for the orsreg 1 matrix, see Table 2.

6. Related Work
To enhance reproducibility, Intel proposed the “Conditional Numerical Reproducibility” (CNR) option in its Math
Kernel Library (MKL). Although CNR guarantees reproducibility, it does not ensure correct rounding, meaning the
accuracy is arguable. Additionally, the cost of obtaining reproducible results with CNR is high. For instance, for large
arrays the MKL’s summation with CNR was almost 2x slower than the regular MKL’s summation on the Mesu cluster
hosted at the Sorbonne University [8].

Demmel and Nguyen implemented a family of algorithms – that originate from the works by Rump, Ogita, and
Oishi [24, 21] – for reproducible summation in floating-point arithmetic [25, 11]. These algorithms always return
the same answer. They first compute an absolute bound of the sum and then round all numbers to a fraction of
this bound. In consequence, the addition of the rounded quantities is exact, however the computed sum using their
implementations with two or three bins is not correctly rounded. Their results yielded roughly 20 % overhead on 1024
processors (CPUs only) compared to the Intel MKL dasum(), but it shows 3.4 times slowdown on 32 processors (one
node). Ahrens, Nguyen, and Demmel extended their concept to few other reproducible BLAS routines, distributed
as the ReproBLAS library (http://bebop.cs.berkeley.edu/reproblas/), but only with parallel reproducible
reduction. Furthermore, the ReproBLAS effort was extended to reproducible tall-skinny QR [26].

The other approach to ensure reproducibility is called ExBLAS, which is initially proposed by Collange, Defour,
Graillat, and Iakymchuk in [8]. ExBLAS is based on combining long accumulators and floating-point expansions in
conjuction with error-free transformations. This approach is presented in Section 2.1. Collange et al. showed [8] that
their algorithms for reproducible and accurate summation have 8 % overhead on 512 cores (32 nodes) and less than
2 % overhead on 16 cores (one node). While ExSUM covers wide range of architectures as well as distributed-memory
clusters, the other routines primarily target GPUs. Exploiting the modular and hierarchical structure of linear algebra
algorithms, the ExBLAS approach was applied to construct reproducible LU factorizations with partial pivoting [27].

Mukunoki and Ogita presented their approach to implement reproducible BLAS, called OzBLAS [12], with tun-
able accuracy. This approach is different from both ReproBLAS and ExBLAS as it does not require to implement
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every BLAS routine from scratch but relies on high-performance (vendor) implementations. Hence, OzBLAS im-
plements the Ozaki scheme [28] that follows the fork-join approach: the matrix and vector are split (each element is
sliced) into sub-matrices and sub-vectors for secure products without overflows; then, the high-performance BLAS
is called on each of these splits; finally, the results are merged back using, for instance, the NearSum algorithm.
Currently, the OzBLAS library includes dot product, matrix-vector product (gemv), and matrix-matrix multiplication
(gemm). These algorithmic variants and their implementations on GPUs and CPUs (only dot) reassure reproducibility
of the BLAS kernels as well as make the accuracy tunable up-to correctly rounded results.

The proposed framework was implicitly used to derive the reproducible preconditioned Conjugate Gradient (PCG)
variants with the flat MPI [19] and hybrid MPI plus OpenMP tasks [20]. The reproducible PCG variants were pri-
marily verified on the 3D Poisson’s equation with 27 stencil points showing the good scalability and low performance
overhead (under 30 % for both the ExBLAS and leightweight variants) on up to 768 cores of the MareNostrum4
cluster.

7. Conclusions and Future Work
Parallel Krylov subspace algorithms may exhibit the lack of reproducibility when implemented in parallel environ-
ments as the results in Table 3 confirm. In this work we proposed a general framework for the re-construction of
reproducibility and re-assurance of accuracy in any Krylov subspace algorithm. Our framework is based on two
steps: analysis of the underflying algorithm for the non-associativity and, hence, non-reproducibility issues; address-
ing these issues via algorithmic solutions and programmability hints. The algorithmic solutions are build arround the
ExBLAS project, namely: ExBLAS that effectively combines long accumulator and FPEs as well as FPEs only for the
leightweight version. The later can cope with the problems for up to 1050 of their dynamic range. The programma-
bility effort was focused on: explicitly invoking fma instructions to avoid replacements by compilers as well as to
postpone divisions to the moment they are actually needed. As a test case, we used the preconditioned BiCGStab
algorithm and derived two reproducible algorithmic variants of it. Both reproducible variants deliver identical re-
sults of PBiCGStab, which are confirmed by the MPFR library, to ensure reproducibility in the number of iterations,
the intermediate and final residuals, as well as the sought-after solution vector. We verified our implementations
on a set of matrices from the SuiteSparse Matrix Collection: the results show 2.5x and 2x performance overhead
compared to the original version for the ExBLAS and lightweight variants, respectively. The code is available at
https://github.com/riakymch/ReproBiCGStab.

With this study we want to promote reproducibility by design through the proper choice of the underlying libraries
as well as the careful programmability effort. For instance, a brief guidance would be 1) for fundamental numerical
computations use reproducible underlying libraries such as ExBLAS, ReproBLAS, or OzBLAS [12]; 2) analyze the
algorithm and make it reproducible by eliminating any uncertainties that may violate associativity such as reductions
and use/ non-use of fmas and postponing divisions until actually needed.

Our future work aims to investigate a possibility of employing the reproducibility stategies as an alternative to the
residual replacement strategy in the pipelined Krylov subspace solvers such as pipelined preconditioned BiCGStab
(p-PBiCGStab) [29]. We believe that there is a potential of using higher precision provided by long accumulator and
FPEs in order to mitigate the different way rounding errors are propagate as well as to couple with the attainable
precision lose in p-PBiCGStab.
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