
HAL Id: hal-03382119
https://hal.sorbonne-universite.fr/hal-03382119v2

Preprint submitted on 3 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General framework for deriving reproducible Krylov
subspace algorithms: A BiCGStab case study

Roman Iakymchuk, Stef Graillat, José I Aliaga

To cite this version:
Roman Iakymchuk, Stef Graillat, José I Aliaga. General framework for deriving reproducible Krylov
subspace algorithms: A BiCGStab case study. 2021. �hal-03382119v2�

https://hal.sorbonne-universite.fr/hal-03382119v2
https://hal.archives-ouvertes.fr

General framework for deriving reproducible
Krylov subspace algorithms: BiCGStab case

Roman Iakymchuk1,2[0000−0003−2414−700X], Stef Graillat2, José I. Aliaga3

1 Ume̊a University, Sweden riakymch@cs.umu.se
2 Sorbonne Université, CNRS, LIP6, Paris, France {firstname.lastname}@lip6.fr

3 Universitat Jaume I, Spain aliaga@uji.es

Abstract. Parallel implementations of Krylov subspace algorithms of-
ten help to accelerate the procedure to find the solution of a linear sys-
tem. However, from the other side, such parallelization coupled with
asynchronous and out-of-order execution often enlarge the non-associativity
of floating-point operations. This results in non-reproducibility on the
same or different settings. This paper proposes a general framework for
deriving reproducible and accurate variants of a Krylov subspace algo-
rithm. The proposed algorithmic strategies are reinforced by programma-
bility suggestions to assure deterministic and accurate executions. The
framework is illustrated on the preconditioned BiCGStab method for the
solution of non-symmetric linear systems with message-passing. Finally,
we verify the two reproducible variants of PBiCGStab on a set matrices
from the SuiteSparse Matrix Collection and a 3D Poisson’s equation.

Keywords: Reproducibility · accuracy · floating-point expansion · long
accumulator · fused multiply-add · preconditioned BiCGStab.

1 Introduction

Solving large and sparse linear systems of equations appears in many scien-
tific applications spanning from circuit and device simulation, quantum physics,
large-scale eigenvalue computations, and up to all sorts of applications that in-
clude the discretization of partial differential equations (PDEs) [3]. In this case,
Krylov subspace methods fulfill the roles of standard linear algebra solvers [15].
The Conjugate Gradient (CG) method can be considered as a pioneer of such
iterative solvers operating on symmetric and positive definite (SPD) systems.
Other Krylov subspace methods have been proposed to find the solution of more
general classes of non-symmetric and indefinite linear systems. These include the
Generalized Minimal Residual method (GMRES) [16], the Bi-Conjugate Gradi-
ent (BiCG) method [7], the Conjugate Gradient Squared (CGS) method [17],
and the widely used BiCG stabilized (BiCGStab) method by Van der Vorst [18]
as a smoother converging version of the above two. Preconditioning is usually
incorporated in real implementations of these methods in order to accelerate the
convergence of the methods and improve their numerical features.

One would expect that the results of the sequential and parallel implemen-
tations of Krylov subspace methods to be identical, for instance, in the number
of iterations, the intermediate and final residuals, as well as the sought-after
solution vector. However, in practice, this is not often the case due to different

2 Roman Iakymchuk, Stef Graillat, José I. Aliaga

reduction trees – the Message Passing Interface (MPI) libraries offer up to 14
different implementations for reduction –, data alignment, instructions used, etc.
Each of these factors impacts the order of floating-point operations, which are
commutative but not associative, and, therefore, violates reproducibility. We aim
to ensure identical and accurate outputs of computations, including the resid-
uals/ errors, as in our view this is a way to ensure robustness and correctness
of iterative methods. The robustness and correctness in this case have a three-
fold goal: reproducibility4 of the results with the accuracy guarantee as well as
sustainable (energy-efficient) algorithmic solutions.

In general, Krylov subspace algorithms are built from three components:
sparse-matrix vector multiplication Ax (SpMV), dot product between two vec-
tors (x, y), and scaling a vector by a scalar with the following addition of two
vectors x := αx + y (axpy). If a block data distribution is used, only axpy is
perfomed locally, while SpMV needs to gather the full operand vector, e.g. via
the MPI Allgatherv() collective, and dot product requires communication and
computation, e.g. via the MPI Allreduce() collective, among MPI processes.

In this paper, we aim to re-ensure reproducibility of Krylov subspace algo-
rithms in parallel environments. Our contributions are the following:

– we propose a general framework for deriving reproducible Krylov subspace
algorithms. We follow the bottom-up approach and ensure reproducibility of
Krylov subspace algorithms via reproduciblity of their components, includ-
ing the global communication. We build our reproducible solutions on the
ExBLAS [4] approach and its lighter version.

– even when applying our reproducible solutions, we particularly stress the
importance of arranging computations carefully, e.g. avoid possibly replace-
ments by compilers of a ∗ b + c in the favor of fused multiply-add (fma)
operation or postponing divisions in case of data initialization (i.e. divide
before use). We refer to the 30-year-old but still up-to-date guide “What
every computer scientist should know about floating-point arithmetic” by
Goldberg [9].

– we verify the applicability of the proposed method on the preconditioned
BiCGStab algorithm. We derive two reproducible variants and test them on
a set of SuiteSparse matrices and a 3D Poisson’s equation.

This article is structured as follows. Sect. 2 reviews several aspects of com-
puter arithmetic as well as the ExBLAS approach. Sect. 3 proposes a general
framework for constructing reproducible Krylov subspace methods. Sect. 4 in-
troduces the preconditioned BiCGStab algorithms and describes in details its
MPI implementation. We evaluate the two reproducible implementations of
PBiCGStab in Sect. 5. Finally, Sect. 6 draws conclusions.

2 Background

At first, we will use a floating-point arithmetic that consists in approximating
real numbers by numbers that have a finite, fixed-precision representation adher-
ing to the IEEE 754 standard. The IEEE 754 standard requires correctly rounded

4 Reproducibility is the ability to obtain a bit-wise identical and accurate result for
multiple executions on the same data in various parallel environments.

Title Suppressed Due to Excessive Length 3

results for the basic arithmetic operations (+,−,×, /,
√

, fma). It means that
they are performed as if the result was first computed with an infinite precision
and then rounded to the floating-point format. The correct rounding criterion
guarantees a unique, well-defined answer, ensuring bit-wise reproducibility for a
single operation; correct rounding alone is not necessary to achieve reproducibil-
ity. Emerging attention to reproducibility strives to draw more careful attention
to the problem by the computer arithmetic community. It has led to the inclusion
of error-free transformations (EFTs) for addition and multiplication – to return
the exact outcome as the result and the error – to assure numerical reproducibil-
ity of floating-point operations, into the revised version of the 754 standard in
2019. These mechanisms, once implemented in hardware, will simplify our re-
producible algorithms – like the ones used in the ExBLAS [4], ReproBLAS [6],
OzBLAS [12] libraries – and boost their performance.

There are two approaches that enable the addition of floating-point numbers
without incurring round-off errors or with reducing their impact. The main idea
is to keep track of both the result and the error during the course of computa-
tions. The first approach uses EFT to compute both the result and the rounding
error and stores them in a floating-point expansion (FPE), which is an uneval-
uated sum of p floating-point numbers, whose components are ordered in mag-
nitude with minimal overlap to cover the whole range of exponents. Typically,
FPE relies upon the use of the traditional EFT for addition that is twosum [10]
and for multiplication that is twoprod EFT [13]. The second approach projects
the finite range of exponents of floating-point numbers into a long vector so
called a long (fixed-point) accumulator and stores every bit there. For instance,
Kulisch [11] proposed to use a 4288-bit long accumulator for the exact dot prod-
uct of two vectors composed of binary64 numbers; such a large long accumulator
is designed to cover all the severe cases without overflows in its highest digit.

The ExBLAS project5 is an attempt to derive fast, accurate, and reproducible
BLAS library by constructing a multi-level approach for these operations that are
tailored for various modern architectures with their complex multi-level mem-
ory structures. On one side, this approach is aimed to be fast to ensure similar
performance compared to the non-deterministic parallel versions. On the other
side, the approach is aimed to preserve every bit of information before the final
rounding to the desired format to assure correct-rounding and, therefore, repro-
ducibility. Hence, ExBLAS combines together long accumulator and FPE into
algorithmic solutions as well as efficiently tunes and implements them on var-
ious architectures, including conventional CPUs, Nvidia and AMD GPUs, and
Intel Xeon Phi co-processors (for details we refer to [4]). Thus, ExBLAS assures
reproducibility through assuring correct-rounding.

Our interest in this article is the dot product of two vectors, which is a crucial
fundamental BLAS operation. The exdot algorithm is based on the reproducible
parallel reduction and the twoprod EFT: the algorithm accumulates the result
and the error of twoprod to same FPEs and then follows the reduction scheme.
We derive its distributed version with two FPEs underneath (one for the result
and the other for the error) that are merged at the end of computations.

5 ExBLAS repository: https://github.com/riakymch/exblas

https://github.com/riakymch/exblas

4 Roman Iakymchuk, Stef Graillat, José I. Aliaga

while (τ > τmax)

Step Operation Kernel Communication

S1 : d := Ap SpMV Allgatherv

S2 : ρ := β/< p, d > dot product Allreduce

S3 : r := r − ρd axpy –

S4 : y := M−1r Apply preconditioner depends

S5 : p := y + αp axpy(-type) –

S6 : τ :=
√
< r, r > dot product + sqrt Allreduce

end while

Fig. 1: Standard preconditioned Krylov subspace method with
annotated BLAS kernels and message-passing communication.

3 General framework for reproducible Krylov solvers

This section provides the outline of a general framework for deriving a repro-
ducible version of any traditional Krylov subspace method. The framework is
based on two main concepts: 1) identifying the issues caused by parallelization
and, hence, the non-associativity of floating-point computations; 2) carefully
mitigating these issues primarily with the help of computer arithmetic tech-
niques as well as programming guidelines. The framework was implicitly used
for the derivation of the reproducible variants of the Preconditioned Conjugate
Gradient (PCG) method [1,2].

The framework considers the parallel platform to consist of K processes (or
MPI ranks), denoted as P1, P2, . . . , PK . In this, the coefficient matrix A is
partitioned into K blocks of rows (A1, A2, . . ., Ak), where each Pk stores one

row-block with the k-th distribution block Ak ∈ Rpk×n, and n =
∑K

k=1 pk. Ad-
ditionally, vectors are partitioned and distributed in the same way as A. For
example, the residual vector r is partitioned as r1, r2, . . ., rK and rk is stored
in Pk. Besides, scalars are replicated on all K processes.

Identifying sources of non-reproducibility The first step is to identify
sources of non-associativy and, thus, non-reproducibility of the Krylov subspace
methods in parallel environments. As it can verify in Fig. 1, there are four com-
mon operations as well as message-passing communication patterns associated
with them: sparse matrix-vector product (SpMV) and Allgatherv for gathering
the vector6, dot product with the Allreduce collective, scaling a vector with
the following addition of two vectors (axpy(-type)), and the application of the
preconditioner. Hence, we investigate each of them.

In general, associativity and reproducibility are not guaranteed when there
is perturbation of floating-point operations in parallel execution. For instance,
while invoking the MPI Allreduce() collective operation cannot ensure the same
result (its execution path) as it depends on the data, the network topology, and
the underlying algorithmic implementation. Under these assumptions, axpy and
SpMV are associativity-safe as they are performed locally on local slices of data.
The application of preconditioner can also be considered safe, e.g. the Jacobi pre-
conditioner, until all operations are reduction-free; more complex preconditioners

6 Certainly, there are better alternatives for banded or similar sparse matrices, but
using MPI Allgatherv is the simplified solution for nonstructured sparse matrices

Title Suppressed Due to Excessive Length 5

will certain raise an issue. Thus, the main issue of non-determinism emerges from
parallel reductions (steps S3 and S6 in Fig. 1).

Re-assuring reproducibility We construct our approach for reassuring repro-
ducibility by primarily targeting dot products and parallel reductions. Note that
the non-deterministic implementation of the Krylov subspace method utilizes the
dot routine from a BLAS library like Intel MKL followed by MPI Allreduce().
Thus, we propose to refine this procedure into four steps:

– exploit the ExBLAS and its lighter FPE-based versions to build reproducible
and correctly-rounded dot product;

– extend the ExBLAS- and FPE-based dot products to distributed memory
by employing MPI Reduce(). This collective acts on either long accumulators
or FPEs. For the ExBLAS approach, since the long accumulator is an array
of long integers, we apply regular reduction. Note that we may need to
carry an extra intermediate normalization after the reduction of 2K−1 long
accumulators, where K = 64− 52 = 12 is the number of carry-safe bits per
each digit of long accumulator. For the FPE approach, we define the MPI
operation that is based on the twosum EFT;

– rounding to double: for long accumulators, we use the ExBLAS-native Round()
routine. To guarantee correctly rounded results of the FPE-based computa-
tions, we employ the NearSum algorithm from [14] for FPEs;

– distribute the result of dot product to the other processes by MPI Bcast()

as only master performs rounding.

It is evident that the results provided by ExBLAS dot are both correctly-
rounded and reproducible. With the lightweight dot, we aim also to be generic
and, hence, we provide the implementation that relies on FPEs of size eight
with the early-exit technique. Additionally, we add a check for both FPE-based
implementations for the case when the condition number and/ or the dynamic
range are too large and we cannot keep every bit of information. Then, the
warning is thrown, containing also a suggestion to switch to the ExBLAS-based
implementation. But, note that these lightweight implementations are designed
for moderately conditioned problems or with moderate dynamic range in order
be accurate, reproducible, but also high performing, since the ExBLAS version
can be very resource demanding, specially on the small core count. To sum up,
if the information about the problem is know in advance, it is worth pursuing
the lightweight approach.

Programmability effort It is important to note that compiler optimization
and especially the usage of the fused-multiply-and-add (fma) instruction, which
performs a ∗ b + c with single rounding at the end, may lead to some non-
deterministic results. For instance, in the SpMV computation, each MPI rank
computes its dedicated part dk of the vector d by multiplying a block of rows Ak

by the vector p. Since the computations are carried locally and sequentially, they
are deterministic and, thus, reproducible. However, some parts of the code like
a∗b+c∗d∗e and a+ = b∗c – present in the original implementation of PBiCGStab
– may not always provide with the same result [19]. This is due to the fact that for
performance reasons, the C++ language standard allows compilers to change the
execution order of this type of operation. It also allows merging multiplications

6 Roman Iakymchuk, Stef Graillat, José I. Aliaga

Compute preconditioner for A → M

Set starting guess x0

Initialize r0 := b−Ax0, p0 := r0, τ0 :=∥ r0 ∥2, j := 0 (iteration count)

while (τ j > τmax)

Step Operation Kernel Comm

S1 : s̃j := M−1pj Apply precond. –

S2 : sj := As̃j SpMV Allgatherv

S3 : αj := < r0, rj > / < r0, sj > dot product Allreduce

S4 : qj := rj − αjsj axpy-like –

S5 : ỹj := M−1qj Apply precond. –

S6 : yj := Aỹj SpMV Allgatherv

S7 : ωj := < qj , yj > / < yj , yj > Two dot products Allreduce

S8 : xj+1 := xj + αjpj + ωjqj Two axpy –

S9 : rj+1 := qj − ωjyj axpy-like –

S10 : βj := <r0,rj+1>
<r0,rj>

∗ αj

ωj dot product Allreduce

S11 : τ j+1 := ∥ rj+1 ∥2 dot product + sqrt Allreduce

S12 : pj+1 := rj+1 + βj(pj − ωjsj) Two axpy-like –

end while

Fig. 2: Formulation of the PBiCGStab solver annotated with computational ker-
nels and communication. The threshold τmax is an upper bound on the relative
residual for the computed approximation to the solution. In the notation, < ·, · >
computes the dot (inner) product of its vector arguments.

and summations with fused multiply-add (fma) instructions. Hence, a compiler
might translate a∗ b+ c∗d to two multiplications t1 = a∗ b and t2 = c∗d, and a
subsequent summation t1+ t2; it might generate a single multiplication t = c∗d
with a subsequent fma (fma(a, b, t)), which gives a slightly different result; or
it may even compute t = a ∗ b first and then use the fma (fma(c, d, t)). Thus,
we advise to instruct compilers to use fma explicitly via std::fma in C++ 11,
assuming the underlying architecture supports fma.

4 BiCGStab

The classic Biconjugate Gradient Stabilized method (BiCGStab) [18] was pro-
posed as a fast and smoothly converging variant of the BiCG [7] and CGS [17]
methods. We consider the linear system Ax = b, where the coefficient matrix
A ∈ Rn×n is sparse with nz nonzero entries; b ∈ Rn is the right-hand side vector;
and x ∈ Rn is the sought-after solution vector. The algorithmic description of
the classical iterative PBiCGStab is presented in Fig. 2. For simplicity, we inte-
grate the Jacobi preconditioner [15] in our implementation, which is composed
of the diagonal elements of the matrix (M = diag(A)), whereas its application is
conducted on a vector and requires an element-wise multiplication of two vectors.

As described in Sect. 3, the framework includes a reproducible implementa-
tion of the most common operations in a parallel implementation of a Krylov
subspace method. Therefore, we next perform a communication and computa-
tion analysis of a message-passing implementation of the BiCGStab solver. From
there, we derive the reproducible version by following the guide from Sect. 3.

Title Suppressed Due to Excessive Length 7

Message-passing Parallel BiCGStab Implementation For clarity, here-
after we will drop the superindices that denote the iteration count in the variable
names. Thus, for example, x(j) becomes x, where the latter stands for the storage
space employed to keep the sequence of approximations x(0), x(1), x(2), . . . com-
puted during the iterative process. Taking into account these previous consid-
erations, we analyze the different computational kernels (S1–S12) that compose
the loop body of a single PBiCGStab iteration in Fig. 2.

Sparse matrix-vector product (S2, S6): This kernel needs as input operands:
the coefficient matrix A, which is distributed by blocks of rows, and the corre-
sponding vector (s̃ or ỹ), which is partitioned and distributed using the same
partitioning as A. For simplicity, we just explain below how S2 is computed.

Prior to computing this kernel, we need to obtain a replicated copy of the
distributed vector s̃ in all processes, denoted as s̃ → e; vector e is the only
array that is replicated in all processes. We can recognize here a communication
stage, but, after that, each process can then compute its local piece of the output
vector v concurrently: Pk : sk = Ak e. This kernel thus requires assembling the
distributed pieces of the vector s̃ into a single vector e that is replicated in all
processes (in MPI, for example via MPI Allgatherv()). The computation can
then proceed in parallel, yielding the vector result s in the expected distributed
state with no further communication involved. At the end, each MPI process
owns the corresponding piece of the computed vector.

dot products (S3, S7, S10, S11): The next kernel in the loop body is the
dot product in the step S3 between the distributed vectors r0 and s. Here, each
process can compute concurrently a partial result Pk : ρk =< r0k, sk > and when
all processes have finished this partial computation, these intermediate values
have to be reduced into a globally-replicated scalar α := σ/(ρ1 + ρ2 + · · ·+ ρK).
We can apply the same idea to the dot products in the steps S7, S10 and S11,
yielding a total of five process synchronizations (in MPI, via MPI Allreduce())
since all scalars are globally-replicated, and communications in S10 and S11 can
be merged in a single MPI Allreduce().

axpy(-type) vector updates (S4, S8, S9, S12): The next kernel is the axpy-
like kernel in the step S4, which involves the distributed vectors q, r, s and the
globally-replicated scalar α. The operations in the steps S8, S9, and S12 follow
the same idea because all scalars are globally-replicated. In these types of kernels,
all processes can perform their local parts of the computation to obtain the result
without any communication: Pk : qk = rk − α sk.

Application of the preconditioner (S1, S5): The kernel in the step S1 consists
of applying the Jacobi preconditioner M , scaling the vector p by the diagonal
of the matrix. Therefore, it can be executed in parallel by all processes because
each of them stores a different set of the diagonal elements (those related with
the piece of the matrix that it stores) and the corresponding set of the vector
elements: Pk : s̃k = M−1

k pk. The same procedure can be applied on the step S5
to scale the vector q, resulting in ỹ.

5 Experimental Results

In this section, we report a variety of numerical experiments to examine the
convergence, scalability, accuracy, and reproducibility of the original and two

8 Roman Iakymchuk, Stef Graillat, José I. Aliaga

Matrix Prec N nnz ∥r0∥2 BiCGStab ReproBiCGStab

iter1 iter8 ∥b−Axj∥2 iter ∥b−Axj∥2
add32 Jac 4,960 19,848 6.38e− 05 36 36 4.97e− 09 35 7.12e− 09

bcsstk18 Jac 11,948 149,090 5.29e+ 18 7 7 7.51e+ 02 7 7.51e+ 02

bcsstk26 Jac 1,922 30,336 3.80e+ 19 11 11 5.62e+ 03 11 5.62e+ 03

orsreg 1 Jac 2,205 14,133 2.34e+ 01 225 228 4.18e− 06 210 4.68e− 06

pde2961 Jac 2,961 14,585 9.24e− 02 128 123 5.28e− 08 125 2.67e− 07

rdb3200l Jac 3,200 18,880 9.92e+ 01 641 605 4.09e− 06 583 3.17e− 06

saylr4 Jac 3,564 22,316 9.44e+ 06 10 10 1.95e− 03 10 7.26e− 05

s3dkq4m2 Jac 90,449 4,427,725 3.70e+ 05 23 23 7.26e− 05 23 7.27e− 05

af shell10 Jac 1,508,065 52,259,885 1.48e+ 05 12 12 3.44e− 04 12 3.44e− 04

atmosmodd Jac 1,270,432 8,814,880 3.75e+ 03 255 272 3.41e− 05 257 2.33e− 05

atmosmodm Jac 1,489,752 10,319,760 3.50e+ 05 117 110 3.47e− 03 109 2.73e− 03

cage15 Jac 5,154,859 99,199,551 1.00e+ 00 8 8 4.56e− 09 8 4.56e− 09

tmt unsym Jac 917,825 4,584,801 6.45e− 06 6957 7458 7.44e− 12 5969 1.02e− 11

Hardesty1 Jac 938,905 12,143,314 9.99e+ 00 24 24 8.45e− 08 25 8.61e− 08

ecology1 Jac 1,000,000 4,996,000 1.96e+ 01 11 12 1.30e− 07 12 9.08e− 08

ecology2 Jac 999,999 4,995,991 1.96e+ 01 14 13 1.79e− 08 13 5.39e− 08

CurlCurl 3 Jac 1,219,574 13,544,618 2.42e+ 10 24 24 2.00e+ 02 24 2.00e+ 02

Table 1: Convergence of the PBiCGStab and ReproPBiCGStab on a set of
the SuiteSparse matrices. The initial guess is x0 = 0. The number of iterations
required to reach the tolerance of 10−6 on the scaled residual, i.e. ∥rj∥2/∥r0∥2,
is reported along with the corresponding true residual ∥b−Axj∥2.

reproducible versions of PBiCGStab. In our experiments, we employed IEEE754
double-precision arithmetic and conducted them on the SkyLake partition at
Fraunhofer with a dual Intel Xeon Gold 6132 CPU @2.6GHz, 28 cores, and
192GB of memory. Nodes are connected with the 54Gbit/s FDR Infiniband.

Evaluation on the SuiteSparse matrices We carried out tests on a range
of different linear systems from the SuiteSparse matrix collection on a single
SkyLake node using 1, 2, 4, 8, 16, and 28 (full) cores. Tab. 1 lists a set of tested
matrices with the number of rows/ columns N and the number of nonzeros
nnz. The right-hand side vector b in the iterative solvers was always initial-
ized to the product Ad, d = 1√

N
(1, . . . , 1)T , where N is the number of rows/

columns of A. However, in both ExBLAS- and FPE-based versions, marked as
ReproPBiCGStab in the table, we computed b = Ad, d = (1, . . . , 1)T and then
scaled b by 1√

N
. The PBiCGStab iterations were started with the initial guess

x0 = 0. The parameter that controls the convergence of the iterative process is
∥rj∥2/∥r0∥2 ≤ 10−6.

Tab. 1 also reports the number of required iterations to reach the stopping
criterion as well the final true residual for PBiCGStab and ReproPBiCGStab;
the latter marks both ExBLAS- and FPE-based variants as they report identical
results independently from the number of cores/ MPI processes used. For the
original version, we display the number of iterations on single and eight cores as
they differ. Notably, the two reproducible variants show the tendency to deliver
better accuracy of the approximate result (the final true residual) or converge
faster, for example for orsreg 1, rdb3200l, and tmt unsym matrices.

Fig. 3 demonstrates the strong scalability results – when the problem is
fixed but the number of allocated resources varies – for the original and both
ExBLAS- and FPE-based preconditioned BiCGStab variants on the s3dkq4m2
and af shell10 matrices. The figure reports the mean execution time for the

Title Suppressed Due to Excessive Length 9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

n
o
rm

al
iz

ed
 t

im
e

w
.r

.t
 o

ri
g
in

al

MPI processes

ExBLAS
FPE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30

n
o
rm

al
iz

ed
 t

im
e

w
.r

.t
 o

ri
g
in

al

MPI processes

ExBLAS
FPE

Fig. 3: Strong scaling results of the original and reproducible PBiCGStab vari-
ants with the Jacobi preconditioner on one SkyLake node for the s3dkq4m2 (left)
and af shell10 (right) matrices, see Tab. 1 for details.

entire loop of the solver among five samples. We select these matrices due to
their large number of nonzero elements, i.e. enough work to show scalability.
Note that MPI communication is performed within a node, most likely being
exposed to intra-node communication via shared memory. All three variants
show good scalability results for s3dkq4m2 with 10.4x, 12.8x, and 13.3x speed
up on 16 MPI processes for the original, FPE, and ExBLAS variants, respec-
tively; the corresponding speed up of 8.8x, 12.2x, and 12.8x for af shell10. The
reproducible variants demonstrate higher speedup due to extra floating-point
operations. The overhead of the ExBLAS and FPE variants compared to the
original variant is reduced to 2.4x and 2x for s3dkq4m2 as well as to 1.9x and
2.2x for af shell10, accordingly, on 28 MPI processes. The scalability on the
other matrices from Tab. 1 shows the similar pattern and overhead. However,
the smaller number of nonzeros leads to the worse scalability. For instance, for
the orsreg 1 matrix, the original and ExBLAS/ FPE variants are only 4x and
8x, respectively, faster on 16 MPI processes.

Note that the average execution time per loop for many matrices is not
sufficient for distributed memory computations. This is due to the fact that the
potential performance gain from extra nodes is demolished by communication.

Scalability We leverage a sparse s.p.d. coefficient matrix arising from the finite-
difference method of a 3D Poisson’s equation with 27 stencil points. We perturb
the matrix with the values 1.0 − 0.0001 below the central point to create the
unsymmetric 27-point stencil aka the e-type model [5]. The fact that the vector
involved in the SpMV kernel has to be replicated in all MPI ranks constrains
the size of the largest problem that can be solved. Given that the theoretical cost
of PBiCGStab is tc ≈ 4nnz + 26n floating-point arithmetic operations, where
nnz denotes the number of nonzeros of the original matrix and its size n, the
execution time of the method is usually dominated by that of the SpMV kernel.
Therefore, in order to analyze the weak scalability of the method, we maintain
the number of non-zero entries per node. For this purpose, we modified the
original matrix, transforming it into a band matrix, where the lower and upper
bandwidths (bandL and bandU, respectively) depend on the number of nodes

10 Roman Iakymchuk, Stef Graillat, José I. Aliaga

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900

n
o
rm

al
iz

ed
 t

im
e

w
.r

.t
 o

ri
g
in

al

MPI processes

ExBLAS
FPE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 100 200 300 400 500 600 700 800 900

n
o
rm

al
iz

ed
 t

im
e

w
.r

.t
 o

ri
g
in

al

MPI processes

ExBLAS
FPE

Fig. 4: Strong (left) and weak (right) scalability of the reproducible PBiCGStab
variants with the normalized time against the non-deterministic MPI variant.

employed in the experiment as follows:

bandL = bandU = 100×#nodes → nnz = (bandL+ bandU + 1)× n.

With 32 nodes, the bandwidth ranges between 100 and 3200. With this approach
we can then maintain the number of rows/ columns of the matrix equal to n=4M
(4,019,679), while increasing its bandwidth and, therefore, the computational
workload proportionally to the hardware resources, as required in a weak scaling
experiment.

The right-hand side vector b in the iterative solvers was always initialized
to the product of A with a vector containing ones only; and the PBiCGStab
iteration was started with the initial guess x0 = 0. The parameter that controls
the convergence of the iterative process was set to 10−8.

Fig. 4 reports the results of both strong and weak scaling for the reproducible
variants against the original version. For the strong scaling, we fix the problem
to 16M non-zeros and varied the number of nodes/ cores used, while for the weak
scaling the work load per node was fixed to 4M non-zeros and the bandwidth
was increased with respect to the number of nodes involved. For both scalability
cases, the initial overhead is the same, namely 67% for the version with ExBLAS
and 38-40% for FPE. With the strong scaling, the overhead reduces to 8.2% for
ExBLAS and 3.0% for FPE as the communication starts to take over and the
overhead between the two versions narrows. For the weak scaling, the matrix
size is kept constant per node so that there is enough load to hide the impact of
communication.

Accuracy and Reproducibility In addition, we derive a sequential version
of the preconditioned BiCGStab as in Fig. 2 that relies on the GNU Multiple
Precision Floating-Point Reliably (MPFR) library [8] – a C library for multiple
(arbitrary) precision floating-point computations on CPUs – as a highly accurate
reference implementation. This implementation uses 2,048 bits of accuracy for
computing dot product, 192 bits for internal element-wise product, and performs
correct rounding of the computed result to double precision.

Tab. 2 reports the intermediate and final (except from original that takes
longer) scaled residual on each iteration of the PBiCGStab solvers for the orsreg 1
matrix, as in Tab. 1, under the tolerance of 10−6 on eight MPI processes. We
also add the results of the original code on one core/ process to highlight the

Title Suppressed Due to Excessive Length 11

Iteration Residual

MPFR Original 1 proc Original 8 procs Exblas & FPE

0 0x1.3566ea57eaf3fp+2 0x1.3566ea57eab49p+2 0x1.3566ea57eab49p+2 0x1.3566ea57eaf3fp+2

1 0x1.146d37f18fbd9p+0 0x1.146d37f18faafp+0 0x1.146d37f18fabp+0 0x1.146d37f18fbd9p+0

...

99 0x1.cedf0ff322158p-13 0x1.88008701ba87p-12 0x1.04e23203fa6fcp-12 0x1.cedf0ff322158p-13

100 0x1.be3698f1968cdp-13 0x1.55418acf1af27p-12 0x1.fbf5d3a5d1e49p-13 0x1.be3698f1968cdp-13

...

208 0x1.355b0f18f5ac1p-20 0x1.19edf2c932ab8p-18 0x1.b051edae310c7p-20 0x1.355b0f18f5ac1p-20

209 0x1.114dc7c9b6d38p-20 0x1.19b74e383f74ep-18 0x1.a18fc929018d4p-20 0x1.114dc7c9b6d38p-20

210 0x1.03b1920a49a7ap-20 0x1.19c846848f361p-18 0x1.c7eb5bbc198b1p-20 0x1.03b1920a49a7ap-20

Table 2: Accuracy and reproducibility of the intermediate and final residual
against MPFR for the orsreg 1 matrix, see Tab. 1.

reproducibility issue. The results are presented with all digits using hexadecimal
representation. We report only few iterations, however the difference is present
on all iterations. The sequential MPFR version confirms the accuracy and repro-
ducibility of parallel ExBLAS and FPE variants by reporting identical number of
iterations, intermediate residuals, and both the final true and initial scaled resid-
uals. However, the MPFR variant of PBiCGStab converges to the approximate
solution in 3.39e-01 seconds, while the ExBLAS and FPE variants take 3.95e-02
and 2.75e-02 seconds (8.57x and 12.32x faster), accordingly, on eight MPI pro-
cesses. The original code shows the discrepancy from few digits on the initial
iteration and up to almost the entire number on the final iterations; the count
of required iterations also differs from the reproducible and MPFR variants.

6 Conclusions

Parallel Krylov subspace algorithms may exhibit the lack of reproducibility when
implemented in parallel environments as the results in Tab. 2 confirm. Such
numerical reliability is needed for debugging and validation & verification. In
this work, we proposed a general framework for re-constructing reproducibil-
ity and re-assuring accuracy in any Krylov subspace algorithm. Our framework
is based on two steps: analysis of the underlying algorithm for the arithmetic
abnormalities; addressing them via algorithmic solutions and programmability
hints. The algorithmic solutions are build around the ExBLAS project, namely:
ExBLAS that effectively combines long accumulator and FPEs; FPEs only for
the leightweight version. The programmability effort was focused on: explicitly
invoking fma instructions to avoid replacements by compilers as well as to post-
pone the division to the moment where it is required. As a test case, we used the
preconditioned BiCGStab algorithm and derived two reproducible algorithmic
variants of it. Both reproducible variants deliver identical results of PBiCGStab,
which are confirmed by its MPFR version, to ensure reproducibility in the num-
ber of iterations, the intermediate and final residuals, as well as the sought-after
solution vector. We verified our implementations on the SuiteSparse matrices,
showing the performance overhead of 2.5x and 2x for the ExBLAS and FPE-
based versions, accordingly; tests with the 27-point stencil on 32 nodes show
almost negligible overhead of 8% and 3%, respectively.

AcknowledgmentThis research was partially supported by the EU H2020
MSCA-IF Robust project (No. 842528); the French ANR InterFLOP project
(No. ANR-20-CE46-0009). The research from Universitat Jaume I was funded
by the project PID2020-113656RB-C21 via MCIN/AEI/10.13039/501100011033.

12 Roman Iakymchuk, Stef Graillat, José I. Aliaga

References
1. Iakymchuk, R., et al.: Reproducibility of Parallel Preconditioned Conjugate Gra-

dient in Hybrid Programming Environments. IJHPCA 34(5), 502–518 (2020).
https://doi.org/10.1177/1094342020932650

2. Iakymchuk, R., et al.: Reproducibility Strategies for Parallel Preconditioned Con-
jugate Gradient. JCAM 371, 112697 (2020). https://doi.org/10.1016/j.cam.
2019.112697

3. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM (1994)

4. Collange, S., et al.: Numerical reproducibility for the parallel reduction on multi-
and many-core architectures. ParCo 49, 83–97 (2015). https://doi.org/10.1016/
j.parco.2015.09.001

5. Cools, S., Vanroose, W.: The communication-hiding pipelined BiCGstab method
for the parallel solution of large unsymmetric linear systems. ParCo 65, 1–20
(2017). https://doi.org/10.1016/j.parco.2017.04.005

6. Demmel, J., Nguyen, H.D.: Parallel Reproducible Summation. IEEE Transac-
tions on Computers 64(7), 2060–2070 (2015). https://doi.org/10.1109/TC.

2014.2345391
7. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson, G.A.

(ed.) Numerical Analysis. pp. 73–89. Springer Berlin Heidelberg (1976)
8. Fousse, L., et al.: MPFR: A Multiple-precision Binary Floating-point Library with

Correct Rounding. ACM TOMS 33(2), 13 (2007). https://doi.org/10.1145/
1236463.1236468

9. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (Mar 1991). https://doi.org/10.
1145/103162.103163

10. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms,
vol. 2. Addison-Wesley (1969)

11. Kulisch, U., Snyder, V.: The Exact Dot Product As Basic Tool for Long Interval
Arithmetic. Computing 91(3), 307–313 (2011)

12. Mukunoki, D., Ogita, T., Ozaki, K.: Accurate and reproducible blas routines with
ozaki scheme for many-core architectures. In: Proc. of PPAM 2019. Springer LNCS.
vol. 12043, pp. 516–527. https://doi.org/10.1007/978-3-030-43229-4_44

13. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci.
Comput 26, 1955–1988 (2005). https://doi.org/10.1137/030601818

14. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part II: Sign,
K-fold faithful and rounding to nearest. SIAM J. Sci. Comput. 31(2), 1269–1302
(2008). https://doi.org/10.1137/07068816X

15. Saad, Y.: Iterative methods for sparse linear systems. SIAM, Philadelphia, PA,
USA, 2nd edn. (2003). https://doi.org/10.1137/1.9780898718003

16. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical
Computing 7, 856–869 (1986). https://doi.org/10.1137/0907058

17. Sonneveld, P.: CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear sys-
tems. SIAM J. Sci. Stat. Comp. 10(1), 36–52 (1989). https://doi.org/10.1137/
0910004

18. van der Vorst, H.A.: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-
CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comp.
13(2), 631–644 (1992). https://doi.org/10.1137/0913035

19. Wiesenberger, M., et al.: Reproducibility, accuracy and performance of the Feltor
code and library on parallel computer architectures. CPC 238, 145–156 (2019).
https://doi.org/10.1016/j.cpc.2018.12.006

https://doi.org/10.1177/1094342020932650
https://doi.org/10.1177/1094342020932650
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.cam.2019.112697
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1016/j.parco.2017.04.005
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1007/978-3-030-43229-4_44
https://doi.org/10.1137/030601818
https://doi.org/10.1137/030601818
https://doi.org/10.1137/07068816X
https://doi.org/10.1137/07068816X
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0910004
https://doi.org/10.1137/0910004
https://doi.org/10.1137/0910004
https://doi.org/10.1137/0910004
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1016/j.cpc.2018.12.006
https://doi.org/10.1016/j.cpc.2018.12.006

