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We show that the quasiparticle kinetic theory for quantum and classical Calogero models re-
duces to the free-streaming Boltzmann equation. We reconcile this simple emergent behaviour with
the strongly interacting character of the model by developing a Bethe-Lax correspondence in the
classical case. This demonstrates explicitly that the freely propagating degrees of freedom are not
bare particles, but rather quasiparticles corresponding to eigenvectors of the Lax matrix. We apply
the resulting kinetic theory to classical Calogero particles in external trapping potentials and find
excellent agreement with numerical simulations in all cases, both for harmonic traps that preserve
integrability and exhibit perfect revivals, and for anharmonic traps that break microscopic integra-
bility. Our framework also yields a simple description of multi-soliton solutions in a harmonic trap,
with solitons corresponding to sharp peaks in the quasiparticle density. Extensions to quantum
systems of Calogero particles are discussed.

I. INTRODUCTION

The emergence of macroscopic fluid behaviour from the chaotic motion of microscopic particles is a truth universally
acknowledged, whose mathematical derivation nevertheless continues to present insurmountable difficulties. Aside
from certain tractable classical cases1 and a handful of quantum examples2, microscopic derivations of hydrodynamics
remain beyond reach at present. A significant conceptual advance in this area was the realization that large-scale
dynamics in a wide range of extended integrable systems3,4 could be reduced to a kinetic theory of solitons5–12. This
synthesis has created a powerful and increasingly rigorous13–16 tool for understanding the emergence of hydrodynamic
behaviour in realistic models from microscopic first principles, that moreover yields excellent agreement with state-
of-the-art experimental results17–19.

One experimentally important question that remains unclear, despite several recent related studies20–25, is the extent
to which a kinetic theory of solitons continues to provide an accurate description in the presence of integrability-
breaking trapping potentials. From this viewpoint, the family of Calogero-type models, which are integrable one-
dimensional systems that remain integrable in the presence of certain carefully chosen trapping potentials26, are
natural objects of study. Moreover, their (zero temperature) hydrodynamics has been explored in some depth27–30.

In this paper, we develop a quasiparticle kinetic theory for Calogero models. We first derive the kinetic theory of
the quantum Calogero model using established thermodynamic Bethe ansatz techniques3,4, showing that it reduces
to a free-streaming Boltzmann equation. We then obtain the kinetic theory of the classical Calogero model as a
semiclassical limit of the kinetic theory of the quantum model, following the analogous procedure for the Toda
lattice31–33 (see also Refs. [34–38]), which also turns out to be of non-interacting Boltzmann form. For the classical
Calogero model, we explain this simple behaviour using the Bethe-Lax correspondence proposed in previous work31.
This provides an independent check on the kinetic theory description and illustrates that the freely streaming degrees
of freedom are not bare particles, as one might expect from the absence of velocity dressing, but instead quasiparticles
that can be identified with eigenvectors of the Lax matrix.

We then study the validity of the quasiparticle kinetic theory, as augmented by a näıve Boltzmann force term, in
the presence of external trapping potentials. For the integrability-preserving case of a harmonic trapping potential
(also known as the Calogero-Moser model) we find that this kinetic theory captures the finite-temperature dynamics
to within numerical accuracy, including non-trivial features such as perfect revivals and soliton excitations30. For
integrability-breaking anharmonic potentials, we again find excellent agreement with numerics. This is attributed to
an unusual robustness of integrability of the Calogero dynamics to external trapping potentials. We close with some
remarks on the dynamics of trapped quantum Calogero particles.
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2

II. KINETIC THEORY

A. Quantum Calogero model

Consider the N -particle, quantum (rational) Calogero model, with Hamiltonian

H =
N∑

i=1

−1

2
∂2
i +

∑

i<j

g

(xi − xj)2
, (1)

where we set ℏ = m = 1 and g = α(α − 1) for some α > 0. This model is integrable, and its exact spectrum can be
obtained from Sutherland’s method of asymptotic Bethe ansatz39. The two-particle phase shift is given by

φ(k) = π(α− 1)sgn(k) , (2)

implying that the differential phase shift is

Kk,k′ =
1

2π
φ′(k − k′) = (α− 1)δ(k − k′) . (3)

For states in thermal equilibrium with chemical potential µ and inverse temperature β, it follows by thermodynamic
Bethe ansatz40 that quasiparticle energies satisfy the Yang-Yang equation

ϵk =
k2

2
− µ+

1

β

∫ ∞

−∞
dk′ Kk,k′ ln (1 + e−βϵk′ ) , (4)

while the total density of states satisfies

ρtk +

∫ ∞

−∞
dk′ Kk,k′θk′ρtk′ =

1

2π
, (5)

with Fermi factors given by θk = (1 + eβϵk)−1. For the phase shift Eq. (3), different values of pseudomomentum k
decouple. The Yang-Yang equation can thus be expressed as a transcendental equation for θk, that fixes the occupied
density of states ρk = ρtkθk:

θk
θk + (1− θk)α

=
1

1 + eβ(k2/2−µ)
, (6)

ρk =
1

2π

θk
1 + (α− 1)θk

. (7)

For α = 0, Eq. (7) recovers the occupation numbers for free bosons, while for α = 1, it yields the occupation numbers
for free fermions. For other values of α, these equations describe the thermodynamics of free anyons41.

To proceed from thermodynamic Bethe ansatz to the generalized hydrodynamics of the Calogero model, we require
an expression for the quasiparticle group velocity on a given equilibrium state3,4. (Note that for the Calogero model,
the kinetic theory description is expected to be equivalent to a generalized hydrodynamics consisting of countably
many hydrodynamic equations, with no subtleties arising due to vacuum modes42.) Recall that the derivatives of
energy and momentum for a quasiparticle excitation on a given equilibrium state with Fermi factors {θk}k∈R satisfy

ϵ′k +

∫ ∞

−∞
dk′ Kk,k′θk′ϵ′k′ = k ,

pdr
′
k +

∫ ∞

−∞
dk′ Kk,k′θk′pdr

′
k′ = 1 . (8)

For the differential phase shift Eq. (3), these reduce to

(1 + (α− 1)θk)ϵ
′
k = k , (9)

(1 + (α− 1)θk)p
dr′

k = 1 . (10)

It follows that the quasiparticle group velocity in a given equilibrium state simply equals the bare velocity:

vk = ϵ′k/p
dr′

k = k . (11)
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Thus the Bethe-Boltzmann equation for the Calogero model reduces to the free-streaming Boltzmann equation,

∂tρk + k∂xρk = 0 . (12)

Note that state independence of the group velocity Eq. (11) additionally implies that its fluctuations vanish on
equilibrium states, and hence that the Navier-Stokes correction to Eq. (12) vanishes43,44. This implies that the
Calogero model is non-interacting in the sense of Spohn45, despite its singular inter-particle interactions.

B. Classical Calogero model

We now derive the thermodynamic Bethe ansatz and kinetic theory for the classical Calogero model by passing to
the semiclassical limit, adapting the analogous derivation for the Toda lattice31–33. Our starting point is the quantum
Calogero model with Planck’s constant restored, namely

H =
N∑

i=1

−1

2
(ℏ∂i)2 +

∑

i<j

ℏ2α(α− 1)

(xi − xj)2
. (13)

The semiclassical limit is obtained by expressing the quantum TBA equations in terms of classical momentum p = ℏk,
before taking ℏ → 0 with ℓ = ℏα constant46. To obtain a finite free energy in this limit, we define classical energies
and chemical potentials

ϵclp = ϵp +
1

β
ln ℏ/ℓ, µcl = µ− 1

β
ln ℏ/ℓ . (14)

For non-zero ℏ, the Yang-Yang equation and dressing equations can be written exactly in terms of p, as31

ϵclp =
p2

2
− µcl +

1

βℏ

∫ ∞

−∞
dp′ Kp/ℏ,p′/ℏ ln (1 + ℏℓ−1e−βϵcl

p′ ) (15)

and

ϵcl
′
p +

∫ ∞

−∞
dp′ Kp/ℏ,p′/ℏ(θp′/ℏ)ϵcl′p′ = p , (16)

pdr
′
p +

∫ ∞

−∞
dp′Kp/ℏ,p′/ℏ(θp′/ℏ)pdr′p′ = 1 . (17)

The classical total density of states satisfies 2πℏρ̃tp = pdr
′
p. In the limit ℏ → 0, the phase shift is given by

Kcl
p,p′ = lim

ℏ→0
Kp/ℏ,p′/ℏ = lim

ℏ→0
ℏ(α− 1)δ(p− p′) = ℓδ(p− p′) , (18)

and the Yang-Yang equation becomes

ϵclp =
p2

2m
− µcl +

1

β
e−βϵclp . (19)

Note that this is independent of the interaction strength, ℓ. In fact, so are the dressing equations, and read

(1 + e−βϵclp )ϵcl
′
p = p , (20)

(1 + e−βϵclp )pdr
′
p = 1 . (21)

This reflects the fact that the leading asymptotic kinematics in the classical Calogero model47 is independent of ℓ.
However, the classical density of occupied states does depend on ℓ, and is given by

ρ̃p = lim
ℏ→0

ρ̃tpθp =
1

2π

1

1 + eβϵ
cl
p

1

ℓ
. (22)

Finally, we note that the classical dressing equations Eqs. (20) and (21) imply an effective velocity

vp = ϵcl
′
p/p

dr′
p = p (23)
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that is free-particle like. The resulting kinetic theory takes the form of a free-streaming Boltzmann equation,

∂tρ̃p + p∂xρ̃p = 0 , (24)

as in the quantum case.
In the presence of an external trapping potential, the näıve modification of Eq. (24) by a Boltzmann force term

reads

∂tρ̃p + p∂xρ̃p − V ′(x)∂pρ̃p = 0 . (25)

The regime of validity of this equation is not immediately clear, as the presence of an external trapping potential
is expected in general to break integrability and generate finite quasiparticle lifetimes, ultimately invalidating any
description based on a kinetic theory of quasiparticles. This crossover time-scale for the onset of chaos, which
depends on the initial condition, was previously obtained for the classical hard rod model with integrability broken
by a harmonic trap21.
However, Calogero-type models are unusual among integrable models because they remain integrable in the presence

of certain carefully chosen external trapping potentials. For the rational Calogero model considered here, the known
integrability-preserving potentials take the form48

V (x) = ax4 + bx3 + cx2 + d, a, b, c, d ∈ R . (26)

For this restricted class of potentials, the validity of Eq. (25) is more plausible. This result also suggests a qualitative
robustness of Calogero particles to integrability-breaking by generic smooth potentials V (x), since approximating
V (x) by the first four terms of a Taylor expansion about any given point x = x0 will always yield an integrable model.

III. BETHE-LAX CORRESPONDENCE

The classical Calogero model exhibits a Lax pair formalism48, just as for the classical Toda model49. In previous
work, it was noted that conserved quasiparticles in the Toda model could be understood as eigenvectors of the Lax
matrix31,37. In particular, it was found that the equation of state for quasiparticle currents31,36 could be interpreted
as a statement about thermal averages of eigenvectors of the Lax matrix. It is natural to conjecture that a similar
correspondence holds for the classical Calogero model. We shall show that this is indeed the case, and moreover, that
the Bethe-Lax correspondence explains why the current density of states takes the simple, non-interacting form

ρ̃Jp = pρ̃p . (27)

A. From matrix models to Lax pairs: a reminder

It will be useful to recall that the classical Calogero model can be obtained from the Hamiltonian reduction of a
Hermitian matrix model48, defined by the Lagrangian

L =
1

2
Tr(ṀṀ†)− TrV (M) , (28)

where M is an N ×N Hermitian matrix and V (M) is usually a polynomial function (the potential). The equations
of motion read

dM

dt
= Λ ,

dΛ

dt
= F (M) , (29)

where F (x) = −V ′(x) is the force.
The SU(N) symmetry of the action means that one should be able to describe the dynamics solely in terms of the

eigenvalues of M . To this end, let U denote the dynamical unitary transformation diagonalizing M :

M = U†XU ,X = diag(x1, . . . , xN ) . (30)

Then the motion of M has a “radial” and “angular” part

d

dt
M = U†

(
Ẋ + i[X,A]

)
U , iA := U̇U† . (31)
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5

where A is the Hermitian matrix generating the angular motion. Letting L denote the rotated version of Λ,

Λ = U†LU ,
d

dt
Λ = U†

(
L̇+ i[L,A]

)
U (32)

the equations of motion for M and Λ can be rewritten in terms of X and L as

Ẋ + i[X,A] = L , (33)

L̇+ i[L,A] = F (X) (34)

(note that we used UF (M)U† = F (X), which assumes that F (M) is analytic). To see how the Calogero model
emerges explicitly, we need to fix the “angular momentum” associated with the SU(N) symmetry. The conserved
current is

J = −i[M,Ṁ ] ⇒ J̇ = 0 . (35)

The Calogero model comes from choosing a traceless matrix with one-dimensional kernel for J :

J = ℓ(vv† − I) , v†v = N . (36)

Then, since

J = −i[M,Ṁ ] = U†[X, [X,A]]U , (37)

we have

[X, [X,A]] = UJU† = ℓ(uu† − I) , u := Uv . (38)

Now the LHS has zero diagonal elements, so |ui|2 = 1, and we can set ui = 1. Then the above equation implies
Aij = ℓx−2

ij for i ̸= j (xij := xi − xj). The diagonal elements are set by u†A = 0, so that we have

Aij = −δijℓ
∑

k ̸=i

x−2
ik + (1− δij)ℓx

−2
ij . (39)

It follows from (33) that

Lij = δij ẋi + (1− δij)iℓx
−1
ij . (40)

We have thus recovered the Lax pair for the classical Calogero model.

B. Statement of the correspondence

In the absence of an external potential, the force F (X) vanishes and the flow of the Lax matrix is isospectral, i.e.
its eigenvalues are conserved. The question then arises of how these conserved eigenvalues relate to the conserved
quasiparticle momenta in the classical Boltzmann description, Eq. (24). As in previous work on the Toda lattice31,
we argue that these quantities can be identified, and moreover that the eigenvectors of the Lax matrix are naturally
interpreted as quasiparticles, giving rise to a “Bethe-Lax correspondence” between the semiclassical Bethe ansatz and
the spectral data of the classical Lax matrix.

Concretely, note that if V (M) = 0 in Eq. (29), then Ṁ = Λ is conserved and by SU(N) symmetry can be chosen
to be diagonal:

Λ = diag(λ1, . . . , λN ) , Λ̇ = 0 . (41)

Since L and Λ are related by the similarity transformation Eq. (32), it follows that {λi}Ni=1 are the eigenvalues of L.
Also, since L = UΛU†, we can directly identify the columns of U with the eigenvectors of L, yielding the expressions

U =
∑

j

|λj⟩⟨j| , L|λj⟩ = λj |λj⟩ ,
d

dt
|λj⟩ = iA|λj⟩ , (42)

where the last identity follows from (31), as the “Schrödinger equation” corresponding to the unitary evolution U . It
is also useful to define the spectrum of X as X|xa⟩ = xa|xa⟩.
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We now claim that |λi⟩ corresponds to a quasiparticle with momentum λi, which is delocalized in space as the
“wavefunction” |λi⟩, i.e., has a distribution with weight |⟨xa|λi⟩|2 at xa. Equivalently, we identify the density ρp(x)
with the local density of states of L (which we shall call the empirical quasiparticle density) in the hydrodynamic
limit:

ρemp
p (x) −→ ρp(x) in the hydrodynamic limit, where (43)

ρemp
p (x) :=

N∑

a=1

N∑

j=1

|⟨xa|λj⟩|2δ(x− xa)δ(p− λj) . (44)

Eq. (43) is the main result of this paper: it relates a microscopic configuration of the Calogero model to a macroscopic
description in terms of the quasiparticle density. In what follows, we shall justify it with both analytical and numerical
arguments.

C. Relation to thermodynamic Bethe Ansatz

A first consequence of the Bethe-Lax correspondence (44) is that the density of states of the Lax matrix, averaged
over thermal configurations, is given by the solution of the classical Yang-Yang equation, see Eqs. (19) and (22):

ρ̃p = lim
N,L→∞,

N/L=const

1

L

N∑

j=1

δ(p− λj) . (45)

where the bars denote thermal averages and the particles are assumed to be confined to a large box of length L (this
is necessary to define a thermal state, since otherwise the particles are unbounded48).

Eq. (45) can be checked analytically at zero temperature, at which the particles are immobile (ẋa = 0) and form a
lattice, xa − xb = (a− b)/ρ, where ρ = N/L is the density. In the N → ∞ limit, the Lax matrix is a circulant matrix
and can be diagonalized by Bloch plane waves in the Brillouin zone [−πρ, πρ). As a result, we obtain a constant
density of states in the interval [−ℓρπ, ℓρπ], in agreement with the prediction of Eq. (22) (with β → ∞ and suitable
chemical potential).

At non-zero temperature, a proof of (45), as was achieved for the particle density of states for the Toda lattice by
analogy with Dumitriu-Edelman random matrix ensembles35, seems beyond reach at present. Nevertheless, we can
check this equation numerically by generating thermal states from classical Monte Carlo simulations and diagonalizing
the L matrix. We observe good agreement with numerics at various non-zero temperatures and densities. See Fig. 1
for detailed methods and a sample of results.

D. Boltzmann equation

A further important check of the Bethe-Lax correspondence is to show that the empirical quasiparticle density
ρemp
p (x) (44) satisfies the Boltzmann equation (25), subject to an appropriate approximation in the hydrodynamic

limit.
To this end, we rewrite the empirical quasiparticle density as

ρemp
p (x) = Tr [δ(p− L)δ(x−X)] , where δ(p− L) =

1

2πi

[
(p− iϵ− L)−1 − (p+ iϵ− L)−1

]
ϵ→0+

, (46)

and similarly for δ(x − X), by the Stieltjes inversion formula. Expanding the matrices inverses at complex infinity,
the above formula can be viewed as a resummation of the moments Tr[XnLm]. To calculate the time derivative, it is
simplest to work with unrotated operators Eq. (29) and rotate back after differentiation. This yields

∂tTr[(p− L)−1(x−X)−1] = Tr[(p− L)−1F (X)(p− L)−1(x−X)−1] + Tr[(p− L)−1(x−X)−1L(x−X)−1]

=Tr[(p− L)−2F (X)(x−X)−1] + Tr[(p− L)−1L(x−X)−2] +O([X,L])

=− ∂pTr[(p− L)−1F (X)(x−X)−1]− ∂xTr[(p− L)−1L(x−X)−1] +O([X,L]) (47)

In the second line, we invoked a semiclassical approximation consisting of ignoring the commutator [X,L] (and,
assuming F is analytical, [F (X), L]). We shall discuss the physical interpretation and validity of this step below.
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FIG. 1. Thermal quasiparticle density from the Lax matrix (markers) vs predictions from thermodynamic Bethe-Ansatz (TBA),
Eqs. (19) and (22). For the Lax matrix data, we confine N = 256 particles in a box of length L = N/ρ (ρ = 1 and 1/2)
and generate 104 thermal states of temperature 1/β = 1 and 10 using the standard Markov-chain Monte Carlo method. We
diagonalize the resulting Lax matrices and plot the averaged density of states (normalized so that

∫
dp ρp = ρ). To obtain the

TBA prediction, we solve the Yang-Yang equation numerically and adjust the chemical potential µcl to match ρ. We set ℓ = 1
for all comparisons.

Assuming its validity for now and substituting into Eq. (46), we have

∂tρ
emp
p (x) = −∂pTr[δ(p− L)F (X)δ(x−X)]− ∂xTr[δ(p− L)Lδ(x−X)] +O([X,L])

= −(p∂x + F (x)∂p)ρ
emp
p (x) +O([X,L]) . (48)

We thus conclude that the empirical density satisfies the Boltzmann equation with the näıve forcing term, assuming
the semiclassical approximation.

We now discuss the meaning of this approximation, and provide some arguments in its favour. First, we focus on
the case without a trap, F = 0 (the trapped case will be discussed in Section IV below). With no trap, we can show
that this approximation captures the exact time evolution of the first and second moments in position of the empirical
quasiparticle density. More concretely, the moments are defined as

⟨xn⟩p :=

∫
dxxnρemp

p (x) . (49)

If ρemp
p (x) satisfies the non-interacting Boltzmann equation, we would expect d

dt ⟨xn⟩p = pn
〈
xn−1

〉
p
. Starting from

the definition (44) and using the equations of motion Eqs. (33) and (34), it is not hard to check that this is indeed
the case for n ≤ 2:

d

dt
⟨xn⟩p = pn

〈
xn−1

〉
, n ≤ 2 , F = 0 . (50)

In particular, ∂t ⟨x⟩p = ρJp is the current density, so the above identity for n = 1 implies the current equation of

state (27) for homogeneous states. Usual arguments then imply that the forceless Boltzmann equation Eq. (24) is
satisfied if the empirical quasiparticle density varies slowly in space and time: the error term O([X,L]) corresponds to
subballistic corrections. To see this more explicitly, consider the n = 3 moment (similar arguments apply for n > 3,
though their complication increases with n):

∂t
〈
x3

〉
p
= 3pµ2 +D2 , (51)

D2 = Tr[δ(p− L)[X,L]X] (52)

= iℓ
N∑

j=1

δ(p− λj)⟨λj |u⟩⟨u|X|λj⟩ − iℓ ⟨x⟩p (53)
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where |u⟩ = (1, 1, . . . , 1)T . On the right hand side of (51), the ballistic term µn−1 = Tr[δ(p − L)Xn−1], while the
correction Dn involve (n − 2) powers of X. Now, in a system with N ≫ 1 particles at order 1 density, ∥X∥ ∼ N as
an operator; hence prima facie, Dn is of order 1/N compared to the ballistic term. There is however a caveat: the

vector |u⟩ has norm
√
N . Nevertheless, its overlap with quasiparticle wavefunctions |⟨u|λj⟩|2 is large (∼ N at most)

only if the wavefunction is delocalized; for localized wavefunctions, the overlap is 1/N smaller, of order unity. In the
latter case, the term involving |u⟩ is also subleading in the hydrodynamic limit.
Thus the semiclassical approximation relies on the localization of quasiparticle eigenstates. (This is after all ex-

pected, since by basic quantum mechanics [X,L] measures the position uncertainty of the quasiparticle eigenstates.)
Now, at nonzero temperature, the thermal ensemble of Lax matrices L closely resembles a power-law randommatrix en-
semble studied recently50, for which it is shown that most eigenstates are localized algebraically: |⟨xa|λj⟩|2 ∼ |xa−x|−γ

for γ ≈ 2, where x is the localization centre of the wavefunction. On the other hand, as T → 0, the randomness
disappears and the quasiparticles delocalize. We therefore expect the most stringent dynamical tests of the Bethe-Lax
correspondence to be quenches from zero/low temperature states, in presence of spatial inhomogeneity.

We now offer some more speculative remarks on the validity of the non-interacting Boltzmann description Eq. (48).
First, notice that the commutator correction to the n > 2 moment equations, as in Eq. (53), while subleading in
N also scales with the interaction strength ℓ. Thus at the level of hydrodynamics, the Calogero interaction strength
controls the strength of higher-order corrections to the non-interacting Boltzmann description. In the standard
Calogero model, the interaction strength ℓ is taken to be independent of N . However, Eq. (53) suggests a possibility
of accessing different dynamical scaling regimes by varying the scaling of ℓ with N .

We next note that although the empirical distribution function does not, in general, satisfy the non-interacting
Boltzmann equation exactly, there is another distribution function,

ρexp (x) =
N∑

j=1

δ(x− ⟨X⟩j)δ(p− λj) (54)

where ⟨X⟩j = ⟨λj |X|λj⟩, which does satisfy Eq. (24) exactly when F = 0, as a consequence of the microscopic
equations of motion Eqs. (33) and (34). On the other hand, Eq. (54) is somewhat unphysical, in the sense that it
is non-local in the bare particle coordinates xa. Nevertheless, a comparison with the empirical density of states Eq.
(43), together with the identity |⟨xa|λj⟩|2 = ∂⟨X⟩j/∂xa, suggests the identification

δ(x− ⟨X⟩j) ≈
N∑

a=1

∂⟨X⟩j
∂xa

δ(x− xa) . (55)

This conjectural formula relates the local density of a single quasiparticle to the local densities of all bare particles. Its
Jacobian form is reminiscent of the idea that quasiparticle dressing in integrable systems is equivalent to a nonlinear
coordinate transformation from free particles5,9,51–53. By the previous discussion, we expect that the error in Eq. (55)
is also controlled by the degree of quasiparticle localization, i.e. the magnitude of the commutator [X,L]. However,
since Eq. (54) does not generalize readily beyond harmonic trapping potentials (unlike the more approximate, but
more physical, empirical quasiparticle density), we shall not pursue its investigation further in this paper.

E. Two-reservoir initial condition

To conclude this section, we test the kinetic theory of ρemp
p (x) numerically in a standard “two-reservoir” setting.

For this purpose, we prepare two different equilibria confined to the boxes [−A, 0] and [0, B] respectively (usually the
reservoirs are considered semi-infinite; yet such a limit is hard to attain with the Calogero long-range interaction) .
At t = 0, the particles are released. We then measure the time evolution of particle and energy density under the
Calogero dynamics (with F = 0). We note that the long-range Calogero interaction means that an a priori definition
of the energy density is not obvious. We define it using the Bethe-Lax correspondence, as

ρE(x) =

∫
dp

1

2
p2ρemp

p (x) (56)

The numerical data are then compared with the non-interacting kinetic theory prediction

ρ(x, t) =

∫ (x+A)/t

x/t

dp ρL(p) +

∫ x/t

(x−B)/t

dp ρR(p) (57)
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FIG. 2. Time evolution of particle and energy density starting from a two-reservoir initial condition. Left reservoir: N = 256
particles confined to [−N, 0] at T = 1. Right reservoir: 256 particles confined to [0, 3N/2] at T = 2. The numerical data
(circles) is averaged over 400 thermal samples. The analytical prediction (solid curves) is obtained from the TBA equation and
the free Boltzmann equation, see Eq. (57). We set ℓ = 1 for all plots.

where ρL and ρR are the quasiparticle density of the reservoirs, obtained by TBA. An excellent agreement is found,
see Fig. 2. This is not trivial given that the temperatures of the reservoirs are low enough that the localization length
of the quasiparticle wavefunctions (at t = 0) is about half the box size. Even so, the semiclassical approximation
appears to be robust.

IV. TRAPPED DYNAMICS

We argued above that the quasiparticle density of the Calogero model, defined via the Bethe-Lax correspondence,
satisfies a non-interacting Boltzmann equation even in the presence of trapping potentials. In this section, we test
the non-interacting Boltzmann description against microscopic simulations of dynamics in harmonic and anharmonic
traps. We find excellent agreement in all cases, even for complicated nonlinear phenomena such as soliton dynamics
in the harmonically trapped Calogero-Moser model30.

A. Harmonic trap

As recalled in Section II B, the classical Calogero model remains integrable in the presence of a harmonic trapping
potential, V (x) = 1

2ω
2x2. In the matrix model formulation Eq. (29), the corresponding potential reads V (M) =

1
2ω

2M2. Thus F (M) = −ω2M and the variable

Q = ωM − iṀ , (58)

simply rotates:

Q̇ = iωQ ⇒ Q(t) = eiωtQ(0) . (59)

From periodicity of Q, it is immediate that the dynamics of the harmonically trapped Calogero model exhibits “perfect
revivals” at each trap period, T = 2π/ω.

Intriguingly, this property is shared by the näıve kinetic theory Eq. (25), which for a harmonic trap takes the form

∂tρ̃p + p∂xρ̃p − ωx∂pρ̃p = 0, (60)
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FIG. 3. Top panels: the empirical quasiparticle density in a harmonic trap with frequency ω′ = 1.5, evolving from an initial
condition consisting of a thermal cloud of 256 particles at temperature T = 1 and confined to a harmonic trap with frequency
ω = 1. The dashed curves show an ellipse that rotates with angular velocity ω′. The bottom panels compare the measured
particle density (circles, average of 200 thermal samples) to the näıve kinetic theory prediction (solid curves). We set ℓ = 1 for
all plots.

and has an exact solution by characteristics, with characteristic curves given by

d

dt
x = p,

d

dt
p = −ωx, (61)

corresponding to uniform rotation of the distribution function ρ with frequency ω on constant-energy ellipses, p2 +
ω2x2 = 2E.

The Bethe-Lax correspondence provides a direct relation between the Boltzmann equation Eq. (60) and the
microscopic motion. Indeed, it predicts that the empirical quasiparticle density ρemp rotates in the simple manner
described above. In Section IIID, we showed that ρemp satisfies Eq (60) under the semiclassical approximation but
only discussed its justification in the case F = 0. For a harmonic trap F = ωX, the situation is similar. The näıve
kinetic theory (60) again yields the exact time evolution of the lowest moments, but one must now consider moments
in both x and p. Indeed, defining

⟨xnpm⟩ :=
∫

dx dp xnpmρemp
p (x) = Tr[XnLm] , (62)

the equations of motion (33), (34) imply that

d

dt
⟨xnpm⟩ = n

〈
xn−1pm+1

〉
−mω

〈
xn+1pm−1

〉
, n ≤ 2,m ≤ 2 , (63)

which can also be derived by assuming ρemp
p (x) satisfies (60). For higher moments, the above equation still holds

modulo a correction which has a commutator [X,L] and n+m− 1 powers of X and L, which is one less compared to
the RHS of (63). The argument then proceeds as in the flat case, provided one observes that in presence of the trap,

both X and L have eigenvalues of order
√
N typically (recall that in contrast, L ∼ O(1) and X ∼ O(N) typically in

the flat case). Hence we expect finite-size effects to be more pronounced in the presence of a trapping potential.
We now test and illustrate the Bethe-Lax correspondence with two numerical examples. First, we consider a quench

in which a Calogero-Moser gas is prepared at low temperature T in a trap of frequency ω, and at t = 0, the trap
frequency is quenched to ω′ ̸= ω. We then compute the empirical quasiparticle density at different times (by solving
the dynamics using Eq. (59) and diagonalizing the Lax matrix). Plotting this in the (ω′x, p) phase space, we can
clearly see that the empirical quasiparticle density rotates simply as predicted by the näıve kinetic theory, see Fig. 3.
We also verify that this picture yields quantitatively correct predictions for the local particle density, despite the
pronounced finite-size effect (in particular near the edge of the distribution).

As a more spectacular example, we consider a two-soliton solution, revealed in Ref. [30]. The initial conditions for
the two soliton solution are chosen as follows. We choose two dual complex variables z1 and z2. The initial conditions
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FIG. 4. Left panels: Time evolution of the empirical quasiparticle density of a two-soliton solution (64), (65), with ℓ = 1,
ω = 1, z1 = −z2 = 0.251247i, N = 101. The dashed line rotates with angular velocity ω. The solitons appear as peaks in
the (x, p) plane, rotating with angular velocity ω. Right panel: the evolution of particle positions of the same solution, over a
period. Note that the trajectories do not cross each other; the solitons are a collective phenomenon involving all particles.

are chosen such that the following conditions are satisfied:

ωxj = ℓ
N∑

k=1(k ̸=j)

1

xj − xk
− ℓ

2

(
1

xj − z1
+

1

xj − z̄1
+

1

xj − z2
+

1

xj − z̄2

)
(64)

pj =
iℓ

2

(
1

xj − z1
− 1

xj − z̄1
+

1

xj − z2
− 1

xj − z̄2

)
(65)

For fixed z1 and z2, Eq. (64) and Eq. (65) are non-trivial to solve. However, one can employ a damping equation26,54

that leads to a potential minimization problem. Once we find the initial condition for the two-soliton case, the
subsequent evolution can be performed via the matrix formulation given in Eq. (59). We then numerically compute
the empirical quasiparticle density of the two-soliton solution and plot it in Fig. 4. Remarkably, the solitons manifest
themselves as sharp peaks on either side of the disk distribution (which corresponds to the zero-temperature state in
a harmonic trap). The peaks appear near the edge of the disk and rotate in phase space as if they were free particles
in the harmonic potential, never encountering one another.

B. Nonintegrable anharmonic traps

A distinctive feature of the conjectured Bethe-Lax correspondence is that it can be formulated for general anhar-
monic traps, even non-integrable ones: the empirical quasiparticle density, defined in Eq. (44), should satisfy the
non-interacting Boltzmann equation Eq. (25). By the arguments in Section IIID, this statement is true under the
“semiclassical approximation” in which commutators of the form O([X,L]) are neglected. However, the dynamics of
X and L depend on the shape of the potential under consideration, in such a way that it is difficult to formulate
general analytical arguments beyond the harmonic case.

We therefore proceed directly to a numerical test. To this end, we prepare a zero-T cloud in a harmonic potential
V (x) = 1

2x
2 and then quench to an anharmonic potential, V (x) = 2

√
1 + x2, that is not expected to preserve

integrability. We see that the non-interacting Boltzmann equation Eq. (25) successfully captures the relaxation
dynamics, which therefore consists solely of single-(quasi)particle dephasing on accessible time-scales.

The performance of the simple kinetic theory in an integrability-breaking trap is intriguing. On general grounds,
we expect the agreement to break down eventually as the dynamics becomes chaotic21. However, for the trapped
Calogero model we were unable to observe the onset of chaos on accessible time-scales. This is probably due to
the robustness of the Calogero model’s integrability to fourth-order trapping potentials (cf. the discussion around
Eq. (26)), which suggests a robustness to trapping potentials in general, compared to other integrable models. This
expectation is borne out by numerical simulations of Poincaré sections for the two-particle Calogero model in an
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FIG. 5. Left: non-interacting Boltzmann prediction for the particle density. Middle: comparison between hydrodynamic and
microscopic predictions for the mean squared width of the packet. Right: microscopic evolution. Model parameters are set to
N = 32, ℓ = 1.
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FIG. 6. Top panels: Orbits of the recurrence map in the Poincaré section defined by E = 10 and p1 = −p2, in a system
with two particles in an external potential V (x) =

√
x2 + 1 and interacting with potentials 1/(x1 − x2)

2 (Calogero, left) and

e−(x1−x2) (Toda, right). Different colors are assigned randomly to trajectories to distinguish them. Integrability of the Toda
interaction is broken by the trap: the black points represent a single chaotic trajectory that is ergodic in a large portion of
the phase space. Meanwhile, that of the Calogero interaction seems robust. Bottom panel: Growth of the separation ∥δx∥n =
|x1(n) − x′

1(n)| + |x2(n) − x′
2(n)| between a pair of nearby orbits (xi and x′

i, separated by an initial distance ∥δx∥0 = 10−8)
under either dynamics. In the Toda case, the orbits start from x1(0) + x2(0) = 0.1, x1(0)− x2(0) = −0.5 in the chaotic basin,
and exhibit exponential growth with a positive Lyapuov exponent. In the Calogero case, we found no such chaotic trajectory
after an exhaustive search. The illustrated orbit starts from x1(0) + x2(0) = 0.1, x1(0)− x2(0) = 3.

integrability-breaking trap compared to the two-particle Toda chain in such a trap, see Fig. 6. It is also consistent
with studies of the Toda chain in power-law pinning potentials55,56, which exhibit a crossover to normal diffusion at
large system sizes, at variance with our observations of purely ballistic evolution for the Calogero model.
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V. DISCUSSION

We have derived the kinetic theory of Calogero quasiparticles on a line, which reduces to the non-interacting Boltz-
mann equation. We showed that this simplification could be understood from an emergent quasiparticle description
in terms of eigenvectors of the Lax matrix. The resulting expression for the empirical single-particle distribution
function, Eq. (43), yields excellent agreement with the non-interacting Boltzmann equation on accessible time-scales,
even in the presence of integrability-breaking trapping potentials.

One point which merits further comment is the long-ranged character of interactions in the Calogero model. At
first sight, such long-ranged interactions render the conserved charges and currents of the Calogero model non-local45,
which calls into question the validity of a local, hydrodynamic description. At the same time, the Calogero model is
exactly solvable using the asymptotic Bethe ansatz57, suggesting that the scattering behaviour of its quasiparticles
is much the same as for short-range-interacting integrable models. Indeed, the validity of hydrodynamics for the
Calogero model is most easily justified in the quasiparticle language: according to the Bethe-Lax correspondence
presented above, dynamics in the Calogero model is captured by quasiparticles that are localized in space at non-
zero temperature, despite the long-ranged interactions between bare particles. In this sense, the quasiparticle kinetic
theory of the Calogero model is no different from that of a short-ranged integrable model.

We noted earlier that there is a mature theory of the zero-temperature (“superfluid”) hydrodynamics of quantum
and classical Calogero models based on collective field theory27–30. When subballistic derivative corrections to the
latter are neglected, it matches the zero-temperature limit of our results. We anticipate that a systematic treatment
of the commutator corrections to the free Boltzmann evolution in Eq. (48) (or perhaps a first-principles treatment
of Eq. (55)) would recover these subballistic derivative corrections at non-zero temperature. Another interesting
common feature between our analysis and the collective field theory of Calogero models is that the latter remains
integrable in arbitrary external trapping potentials58, just like the non-interacting Boltzmann equation Eq. (25).
Finally, a natural extension of our work would be to develop a kinetic theory for the broader family of compactified
Calogero-Sutherland models with trigonometric or hyperbolic interactions, which inherit the property of remaining
integrable in suitably chosen trapping potentials26. It seems plausible that a Bethe-Lax correspondence analogous to
Eqs. (44) and (45) holds for all of these models.

Our results demonstrate that the integrability-breaking effects of external trapping potentials, as arise in present-
day experiments on ultracold Bose gases17,19,59, can be rather subtle. For example, the absence of diffusion on the
Navier-Stokes scale for both the quantum and classical Calogero models seems to imply that the mechanism of diffu-
sive thermalization proposed recently for trapped integrable gases23,25 does not apply. A related question is whether
the trapped Calogero model exhibits a finite “time to chaos”, that was observed for systems of trapped classical hard
rods21 but appears to be numerically inaccessible for the Calogero model, even in traps that are expected to break
integrability. Both findings suggest that the tendency to chaos for trapped Calogero particles, quantum or classical,
is remarkably weak. Thus identifying the signatures of broken integrability in the Calogero model might pave the
way towards a deeper understanding of broken integrability in the quantum Newton’s cradle59.
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