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1 Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France??

arnaud.grivetsebert@gmail.com
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Abstract. While traditional social choice models assume that the set
of candidates is known and fixed in advance, recently several researchers
[15, 5, 2, 7, 18] have proposed to reject this hypothesis. In particular, the
unavailable candidate model of Lu and Boutilier [15] considers voting
situations in which some candidates may not be available and focuses on
minimising the number of binary disagreements between the voters and
the consensus ranking. In this paper, we extend this model and present
two new voting rules based on a finer notion of disagreement, called dis-
satisfaction. The dissatisfaction of a voter is defined as the disutility gap
between its preferred available candidate and the candidate elected by
the consensus ranking. In the first approach, called ex ante dissatisfac-
tion rule, the disutility is independent of the set of available candidates
whereas the second approach, called ex post dissatisfaction rule, assumes
that the disutility depends on which candidates are actually available.
We provide several results for the two rules. On the one hand, we show
that the ex ante rule actually coincides with standard positional scor-
ing rules; therefore, a consensus ranking can be computed in polynomial
time. On the other hand, we exhibit strong links between ex post rule and
Kemeny rule and we provide a polynomial-time approximation scheme
(PTAS) for the ex post problem.

Keywords: Computational Social Choice · Preference Aggregation · Unavail-
able Candidate Model · Polynomial-Time Approximation Scheme.

1 Introduction

Traditional social choice theory assumes that the set of candidates is well known
before voting takes place. This assumption is not always valid especially in com-
puter science applications (such as recommender systems, decision aid tools,
electronic commerce applications) but also in more traditional settings, such as
choosing a candidate for a job (a candidate may accept a different job after the
hiring committee made its decision). In recent years, several approaches have
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been proposed to address the problem of candidates’ unavailability, in particular
within computational social choice [6]. Among these approaches, strategic candi-
datures have been studied extensively [8, 9, 13]. Some works have dealt with the
problem of finding robust winners when considering the addition of new candi-
dates [7] or in a context where it is possible to “query” the availability of the
candidates [5]. Oren et al. [18] study how many candidates the voters have to
rank to ensure the true winner with high probability despite the unavailability
hypothesis. Top-k voting may also be a way to deal with unavailability in [17].

An approach of particular interest is the unavailable candidate model (UCM)
proposed by Lu and Boutilier [15]. It assumes that candidates may become un-
available after voters expressed their preferences; therefore there is a need to
make decisions in the face of uncertain candidate availability. The optimal rank-
ings are computed by minimisation of the expected number of disagreements
over all the possible subsets of available candidates. In [15], the probability dis-
tribution on these subsets is supposed to follow a Bernoulli law whereas several
other authors [12, 2, 11] used other distributions. Lu and Boutilier provide a clear
decision-theoretic justification for producing a ranking instead of a single win-
ner. Indeed, a ranking serves as a very compact decision policy: the winner is the
output ranking’s best candidate among the available ones. Yet, the binary dis-
agreement used in [15, 12, 2, 11] relies on strong hypotheses that can be discussed,
as acknowledged by the authors: a voter is satisfied only if its favourite available
candidate is elected (as in “plurality” rule) and fully unsatisfied otherwise.

We argue that the voter’s satisfaction should vary more smoothly and depend
on the rank it gives to the candidate declared as winner by the aggregation. In
this paper, we extend the UCM by assuming that positions are associated with
disutility values and compute dissatisfaction as the disutility gap between the
voter’s preferred available candidate and the candidate declared as winner. The
goal is then to produce a ranking that minimises the expected dissatisfaction
under the probability distribution on the subsets of candidates. We observe that
there are two opposed ways to measure the satisfaction of the voters, either by
considering the ranks of the candidates in the whole preference order of the voter
(ex ante approach), or the ranks of the candidates within the subset of available
candidates (ex post approach). Hence, we analyse our generalisation of the UCM
from these two perspectives; we also show connections to other voting schemes.

We introduce background and notations, and review the UCM in Section 2.
In Section 3, we present our framework and introduce the two different models,
ex ante and ex post dissatisfactions, that we thoroughly analyse in Sections 4
and 5 respectively. Finally we provide concluding remarks (Section 6).

2 Background

Throughout the paper, given a set E , P(E ) denotes the set of all the sub-
sets (powerset) of E and |E | denotes the cardinality of E . We define J1;mK :=
{1,. . . ,m}. We now present our basic assumptions (Section 2.1) and we sum-
marise the UCM (Section 2.2).
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2.1 Basic assumptions

We assume that there are m candidates and we call C the set of all the can-
didates. Given a non-empty subset of candidates S ⊆ C, we use RS to denote
the set of rankings (permutations) of the candidates of S. We use R without
subscript to mean RC , the set of full rankings involving all candidates in C.
A ranking can be represented explicitly by the tuple that lists the candidates
from the most to the least preferred; for instance, the tuple (b, c, a) denotes the
ranking that ranks b in first position, c in second position and a in last position.
Given a ranking r, ri denotes the candidate ranked in i-th position by r. For
example, if r = (b, c, a), r1 = b, r2 = c and r3 = a.

We suppose that, for every voter v, the preferences of v over the candidates
can be modelled by a ranking. We will then identify voters with their associated
rankings and all the definitions that apply to rankings implicitly apply to voters
and vice-versa. Given a ranking r ∈ R, the associated preference order is denoted
as >r (and derived orders ≥r, <r and ≤r have the obvious meanings). For
example, a and b being two candidates, a >r b means that a is better ranked
(has a lower rank) than b in r.

Given a ranking r ∈ R and a candidate a ∈ C, r(a) denotes the position
(rank) given to a by r. If S is a non-empty subset of C, the expression rS(a)
denotes the rank of a in the restriction of ranking r that considers only elements
of S. In other words, rS(a) = 1 + |{b ∈ S|b >r a}|. In particular, rC(a) = r(a).
Using these notations amounts to see r as the bijection that maps a candidate
a ∈ C to its rank r(a) ∈ J1;mK in the whole set of candidates 3 and to see rS
as the bijection that maps a candidate a ∈ S to its rank rS(a) ∈ J1; |S|K in the
subset S. Given a non-empty subset S of C and a ranking r ∈ R, topr(S) is the
candidate which is the most preferred by r among the candidates of S. In other
words, topr(S) = r−1S (1) if we identify rS with the bijection from S to J1; |S|K as
explained above. By convention, topr(∅) = a∅ where a∅ is a default alternative
when none of the candidates are available (for instance, postpone the election).
Another convention is that, if r is a ranking, r∅(a∅) = r(a∅) = 1 4.

Under the assumption of anonymity, we will consider voting situations [4]
that we here model as multisets of rankings (since the same ranking may occur
several times). Considering n ∈ N fixed throughout the paper, we use V to
denote the collection of the multisets of n rankings (representing voters).

Given a ranking r and i ∈ J1;mK, we introduce Si(r) = {a ∈ C|a ≤r ri} =
{rj |j ∈ Ji;mK}, the set of candidates that, in the ranking r, are in position i
or worse and Si(r) = P(Si(r)) the powerset of Si(r). In addition, Ti(r) =
{S ∪ {ri}|S ∈ Si(r)} = {S ∈ Si(r)|ri ∈ S} is the collection of all sets of
candidates that contain ri, and no candidate better than ri in the ranking r .
Note that Ti(r) is also equal to {S ⊆ C| topr(S) = ri} i.e. the collection of all
sets of candidates whose top-element according to r is ri.

3 With this point of view, the candidate in the i-th position can be seen as the preimage
of i by r, i.e. ri = r−1(i).

4 These conventions are aimed at simplifying the proofs and do not interfere with the
search of optimal rankings since a∅ is not in C.
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2.2 Unavailable Candidate Model

We consider a setting where the availability of the candidates is uncertain. We
assume a probability distribution P on P(C) that we will refer to as the un-
availability distribution (not necessarily known by the voters). For every S ⊆ C,
P (S) denotes the probability that the set of available candidates is exactly
S 5. We use PC to denote the set of probability distributions on P(C). Given
P ∈ PC and an application g defined on P(C), the expectation of g under P is

E
S∼P

[g(S)] :=
∑
S⊆C P (S)g(S).

Definition 1. P ∈ PC is pair-sensitive if ∀S ⊆ C, |S| = 2⇒ P (S) > 0.

Definition 2. P ∈ PC is said impartial if it satisfies ∀S ⊆ C,∀S′ ⊆ C, |S| =
|S′| ⇒ P (S) = P (S′). P̃C denotes the set of impartial probability distributions
of PC . We then define, for P ∈ P̃C , P̃ as follows: for k ∈ J1;mK, P̃ (k) is the
probability P (S) for any S ⊆ C of cardinality k 6. P is impartial means that P
treats all the candidates equally.

Lu and Boutilier [15] propose to evaluate a ranking with respect to the ex-
pected disagreement that measures, for each voter, the binary disagreement that
evaluates to one if the winner (the elected candidate) is not the same as the
voter’s preferred choice among the available choices and zero otherwise. Assum-
ing that the probability of a candidate to be unavailable is p ∈]0; 1[, the expected
number of disagreements between two rankings r and r′ is defined as

Dp(r, r
′) :=

∑
S⊆C

pm−|S|(1− p)|S|1[topr(S) 6= topr′(S)] (1)

Observation 1 Dp is a metric.

An optimal ranking is a ranking that minimises
∑
v∈V Dp(r, v). Note that Dp

implicitly assumes that the best decision would be to follow plurality when the
set of available candidates is revealed. Since a ranking has to be produced before
the set S is revealed, the optimal ranking is the one that best approximates
“plurality a posteriori”. Plurality is a rule that is not perceived satisfactory
from the point of view of social theory [14] because it only takes into account
the first candidate of the voter’s preference and thus loses a lot of information.
Precisely, a major advantage of plurality is its simplicity and the small quantity
of information needed and, thus, the cognitive load for the voters is reduced. This
is not the case in the UCM where the complete ranking of preferences is anyway
needed for each voter. Generalising scoring rules via ex post dissatisfaction and
not only plurality provides a richer model and does not require more information,
except the disutility functions which may be, in a lot of scenarios, the same for
all voters.
5 The atomic elements being the subsets of C, P should actually be defined on

P(P(C)) and the probability that the set of available candidates is equal to S
would be P ({S}). We nevertheless write P (S) for the sake of readability.

6 The notation P̃ (k) must not be confused with the probability that the set of available
candidates is of cardinality k, which is actually equal to P̃ (k)×

(
m
k

)
.
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3 Generalised unavailable candidate model

In this work we provide a generalisation of the UCM by evaluating a ranking with
respect to the expected dissatisfaction that it imposes on the voters. A ranking
defines a policy for making a choice under uncertain availability of candidates.
The final choice is the top ranked candidate among the available ones. The voters
suffer a degree of dissatisfaction that depends on the position of the final choice
in their own ranking. In order to introduce our model, as the first thing, we need
to define a function that maps rank positions to “disutility” values.

Definition 3. A disutility function (DF) ρ is an increasing mapping from J1;mK
to R. ρ may be represented as a sequence i.e. ρ = (ρ(i))i∈J1;mK. ρ(i) measures
how much a voter is unsatisfied by the item at the i-th position in its ranking.

The overall idea of our generalised model is the following. Given a ranking
r, when the set S of available candidates is observed, the candidate topr(S) is
declared the winner; in other words the winner is the highest ranked candidate
in S with respect to r. As far as the voter v is concerned, its most desired
candidate is topv(S). We allow the disutility functions to depend on the voter
and note ρv the disutility function associated to voter v. This implies that, in
the generalised UCM, considering a voter v is actually considering the ranking
of the preference of v and the DF ρv, the definition of V being consequently
adapted. Nevertheless, in the absence of ambiguity and to lighten the notations,
v may refer to either the voter or its preference order in the remainder of the
paper. ρv and the position in v of a candidate a determine the disutility that
voter v suffers from the election of a. The dissatisfaction, with respect to S, is
then the difference between the disutility of topr(S) and that of topv(S). Finally,
the total dissatisfaction is the sum of the dissatisfactions of all the voters in V .
When we produce a ranking, the set of available candidates is not known but we
know the distribution P . We thus aim at providing the ranking that minimises
the total dissatisfaction in expectation over P .

In the following we make this reasoning more concrete and discuss two differ-
ent methods to compute dissatisfaction that differ on whether full or restricted
rankings are considered.

3.1 Ex ante dissatisfaction

In this approach, the dissatisfaction is computed using the positions of the can-
didates in the whole set of candidates C. When a candidate a ∈ S is chosen as
winner, with S being the set of available candidates, voter v suffers disutility
ρv(v(a)), i.e. the disutility associated with the position of a in the full rank-
ing v, while its most preferred candidate in S would have given him disutility
ρv(v(topv(S))); this gives ρv(v(a)) − ρv(v(topv(S))) as value of dissatisfaction.
We then take the expectation of such a value under P , since the set S is not
known beforehand. Finally, we obtain ∆̂P (v, r), that we formally define now.
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Definition 4. Let P ∈ PC be a probability distribution, v be a voter (or rank-
ing), ρv be the DF associated to v, and r a ranking. We define

∆̂P (v, r) := E
S∼P

[ρv(v(topr(S)))− ρv(v(topv(S)))]

and, if V ∈ V , ∆̂P (V, r) :=
∑
v′∈V ∆̂P (v′, r).

Proposition 1. For any P ∈ PC , ∆̂P ≥ 0 and, for any voter v, ∆̂P (v, v) = 0 7.

We call ∆̂P the ex ante dissatisfaction measure associated to P and
ρv(v(topr(S)))− ρv(v(topv(S))) is the ex ante dissatisfaction induced by r ∈ R
in S ⊆ C to the voter v. The ex ante dissatisfaction induced by r in the empty
set to v is ρ(v(a∅)) − ρ(v(a∅)) = 0 so the empty set does not contribute to
the ex ante dissatisfaction measure. Note that the singletons do not contribute
either since they cannot generate dissatisfaction. We also call the application
∆̂P defined on V ×R, the ex ante dissatisfaction measure associated to P .

Definition 5. The optimal rankings for V ∈ V are defined as the elements of
arg min
r∈R

(∆̂P (V, r)). We also write this set R̂∗P (V ).

Example 1. Let m = 3, C = {a, b, c}. Let P ∈ PC be the uniform probability
distribution: for all S ⊆ C, P (S) = 1

8 . Let n = 11. Let V ∈ V be a set of 11 vot-
ers, 4 of them voting according to the ranking r′ = (a, b, c) and 7 of them voting
according to the ranking r′′ = (c, a, b). We assume that all voters have the same

DF ρ = (0, 1, 2). Note that, for every r ∈ R, ∆̂P (V, r) = E
S∼P

[4ρ(r′(topr(S))) +

7ρ(r′′(topr(S)))]−χ(V ) where χ(V ) := E
S∼P

[4ρ(r′(topr′(S)))+7ρ(r′′(topr′′(S)))]

does not depend on r. The following array displays, for all r ∈ R, from left
to right, the value of topr(S) for every non-empty and non-singleton S ⊆ C,∑
S⊆C ρ(r′(topr(S)),

∑
S⊆C ρ(r′′(topr(S)) and Σ = 4

∑
S⊆C ρ(r′(topr(S)) +

7
∑
S⊆C ρ(r′′(topr(S)) = 8[∆̂P (V, r) + χ(V )].

r
S

abc ab ac bc ρ(r′(topr(S)) ρ(r′′(topr(S)) Σ

(a, b, c) a a a b 0 + 0 + 0 + 1 1 + 1 + 1 + 2 39
(a, c, b) a a a c 0 + 0 + 0 + 2 1 + 1 + 1 + 0 29
(b, a, c) b b a b 1 + 1 + 0 + 1 2 + 2 + 1 + 2 61
(b, c, a) b b c b 1 + 1 + 2 + 1 2 + 2 + 0 + 2 62
(c, a, b) c a c c 2 + 0 + 2 + 2 0 + 1 + 0 + 0 31
(c, b, a) c b c c 2 + 1 + 2 + 2 0 + 2 + 0 + 0 42

We deduce that the only optimal ranking is (a, c, b).

3.2 Ex post dissatisfaction

In this model, we assume that the disutility felt by a voter when a candidate
is elected depends on its position within the set S of the actually available
candidates. More precisely, when a candidate a ∈ S is chosen as winner, voter

7 Referring to the definition of ∆̂P , one can note that the first argument of ∆̂P here
is voter v itself while the second argument is its preference order.
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v suffers disutility ρv(vS(a)), that is the disutility value associated to vS(a),
the position of a in the ranking obtained by restricting v to the set S. Voter v’s
most preferred candidate in S would have given him disutility ρv(vS(topv(S))) =
ρv(1), yielding dissatisfaction ρv(vS(a)) − ρv(1). The expectation of such value
under P gives ∆P (v, r), that we formally define now.

Definition 6. Let P ∈ PC , v be a voter (or ranking) with DF ρv and r be a
ranking.

∆P (v, r) := E
S∼P

[ρv(vS(topr(S)))− ρv(1)].

and, if V ∈ V , ∆P (V, r) :=
∑
v′∈V ∆P (v′, r).

Proposition 2. For any P ∈ PC , ∆P ≥ 0 and, for any voter v, ∆P (v, v) = 0.

We call ∆P the ex post dissatisfaction measure associated to P whether it is
defined on R2 or V ×R. For a voter v, a ranking r, S ⊆ C, ρv(vS(topr(S)))−ρv(1)
is the ex post dissatisfaction induced by r in S to v. The ex post dissatisfaction
induced by r in the empty set to v is ρv(v∅(a∅))− ρv(1) = ρv(1)− ρv(1) = 0 so
the empty set does not contribute to the ex post dissatisfaction measure. As in
the ex ante approach, the singletons do not contribute either.

Definition 7. The optimal rankings for V ∈ V are defined as the elements of
arg min
r∈R

(∆P (V, r)). We also write this set R∗P (V ).

Example 2. We will take the situation of Example 1 and study it with the ex
post approach. We keep the same notations as in Example 1. Let r ∈ R. Since
ρ(1) = 0, we directly have ∆P (V, r) = E

S∼P
[4ρ(r′S(topr(S)))] + 7ρ(r′′S(topr(S)))].

Let us summarise the computations in the following array, as in Example 1:

r
S

abc ab ac bc ρ(r′S(topr(S)) ρ(r′′S(topr(S)) Σ

(a, b, c) a a a b 0 + 0 + 0 + 0 1 + 0 + 1 + 1 21
(a, c, b) a a a c 0 + 0 + 0 + 1 1 + 0 + 1 + 0 18
(b, a, c) b b a b 1 + 1 + 0 + 0 2 + 1 + 1 + 1 43
(b, c, a) b b c b 1 + 1 + 1 + 0 2 + 1 + 0 + 1 40
(c, a, b) c a c c 2 + 0 + 1 + 1 0 + 0 + 0 + 0 16
(c, b, a) c b c c 2 + 1 + 1 + 1 0 + 1 + 0 + 0 27

Hence, the optimal ranking is (c, a, b). Note that this is a different ranking from
the optimal ranking obtained in the ex ante approach, namely (a, c, b).

The question whether the ex ante or the ex post approach is more relevant
is open. On the one hand, the ex ante model captures the idea that the “util-
ity” perceived by a voter when a candidate is elected should be independent of
whether another candidate is available or not. On the other hand, the ex post
approach is more relevant if we want to focus on the regret of the voters: if the
candidate a is elected, the more available candidates that voter v preferred to
a have been excluded, the more regret v will experiment. We also believe that
the ex post approach reduces the incentive of manipulating with regards to the
unavailability distribution. Indeed, a voter who knows the unavailability distri-
bution (but not the preferences of the other voters) may use this knowledge to
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manipulate the vote in both approaches. Nevertheless, in a situation where two
candidates are much more likely to be available than the others for instance
(case of a partial unavailability distribution), the benefit of manipulating must
be higher in the ex ante approach since ranking these two candidates at the
extreme positions (first and last) will increase the influence of the voter in the
result of the aggregation. Quantitative results confirming this intuition would
require further work. We will see in the following that both ex ante and ex post
models are interestingly linked to several well known voting rules. Note that
the ex post approach is also considered in [2, 11] and, in particular, by Lu and
Boutilier in [15] as the following proposition shows.

Proposition 3. Let p ∈]0; 1[. Dp is the ex post dissatisfaction measure ∆P

whose probability distribution is P : S ⊆ C 7→ pm−|S|(1 − p)|S| (a Bernoulli
distribution as defined in Section 5) and with the DF 1−1{1} = (0, 1, ..., 1) for
all voters. We call 1−1{1} the binary DF.

Note that Lumet et al. [16] also proposed a double ex ante/ex post approach
in a problem of fair allocation of indivisible goods with the assumption that
some goods may turn out to be in bad condition and thus unusable. Choosing
between their two approaches consists of choosing whether the aggregation over
the agents is performed before or after the expectation over the conditions of the
objects in the computation of what the authors call the collective utility. The
utility of an object in good condition is well defined and fixed. By contrast, in our
work in which the aggregator over the voters is simply the sum8 and commutes
with the expectation, the ex ante/ex post distinction is based on the definition
of the dissatisfaction and on the fact that the disutility can be computed either
before or after knowing the actual set of available candidates.

4 Ex ante dissatisfaction

4.1 Link with scoring rules

We now develop the theory of ranking with respect to ex ante dissatisfaction
measure and show the connection with positional scoring rules.

Definition 8. Let V ∈ V . We define sV : a ∈ C 7→
∑
v∈V ρv(v(a)).

Definition 9. Let V ∈ V . We define R↑(V ) the set of rankings where the candi-
dates are ranked in the increasing order of sV (there can be several such rankings
if some candidates have equal scores).

The following theorem characterises the ex ante dissatisfaction rule. It shows
that, regardless of the unavailability distribution P , an optimal ranking can
be found by sorting alternatives with respect to their score. Moreover, if P is

8 Studying other aggregators is a perspective that would allow us to give more focus
on fairness in the consensus production.
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pair-sensitive, the set of all optimal rankings is the exact output of the scoring
rule with scoring function −ρv for voter v. This result echoes the one from [20]
which characterises scoring rule via minimisation of the positional Spearman
semi-metric, with the restrictive assumption of strictly increasing scores.

Theorem 1 Let P ∈ PC and V ∈ V . Then, R↑(V ) ⊆ R̂∗P (V ).

If, besides, P is pair-sensitive, R↑(V ) = R̂∗P (V ).

Sketch of proof. We show that minimising ∆P (V, r) amounts to minimising
ψ(V, r) = E

S∼P
[sV (topr(S))] and that, for any S ⊆ C, sV (topr(S)) is minimal

if r ∈ R↑(V ). In the case where P is pair-sensitive, if r /∈ R↑(V ) we can find
i ∈ J1;m − 1K such that sV (ri) > sV (ri+1). Exchanging the positions of ri and
ri+1 in r strictly reduces the value of ψ(V, r) so r is not optimal. Note that, if
P is not pair-sensitive and P ({a, b}) = 0, in the case where r∗ ∈ R↑(V ) with
r∗m−1 = a and r∗m = b, then r deduced from r∗ by swapping a and b is also
optimal, but not in R↑(V ) if sV (a) < sV (b).

Corollary 1. An optimal ranking for V ∈ V in the ex ante dissatisfaction model
can be found in polynomial time in m and n.

Corollary 2. Let V ∈ V . Let P ∈ PC and P ′ ∈ PC be two pair-sensitive prob-
ability distributions. Then R̂∗P (V ) = R̂∗P ′(V ).

The previous corollary expresses that the set of optimal rankings for V does not
depend on the unavailability distribution as long as the latter is pair-sensitive.

Example 3. Let C = {a, b, c, d}. Let V be the multiset of three voters among
which one votes according to (d, b, a, c), one according to (d, a, b, c) and one
according to (b, c, a, d). We suppose that all voters have the DF ρ = (0, 1, 2, 3).
We have: sV (a) = 2+1+2 = 5, sV (b) = 1+2+0 = 3, sV (c) = 3+3+1 = 7, sV (d) =
0 + 0 + 3 = 3. The rankings that rank the candidates in the increasing order of
sV thus are (b, d, a, c) and (d, b, a, c). We deduce that these two rankings are the
optimal rankings for V whatever is the pair-sensitive unavailability distribution.

5 Ex post dissatisfaction

In this section, we study ex post dissatisfaction rule from an algorithmic point of
view and under natural assumptions on the unavailability distribution and the
DF. It is obvious that the ex post dissatisfaction is unchanged by a translation
on any of the voters’ DF. Hence, without loss of generality, we will consider in
the following that all the DF are null in 1 and therefore non-negative on J1;mK.

Remark 1. Let P ∈PC . If all the voters’ DF are null in 1 then, for all (V, r) ∈
V ×R, ∆P (V, r) =

∑
v∈V E

S∼P
ρv(vS(topr(S))) 9.

9 This remark motivates our choice of considering disutilities instead of utilities be-
cause, when ρv(1) = 0 for all v ∈ V , the ex post dissatisfaction measure can be seen
as a simple sum of expectations of ρv(vS(topr(S))).
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Definition 10. A DF ρ is discriminating at the top (DT) if ρ(1) < ρ(2).

Proposition 4. Let P ∈ PC pair-sensitive. Let v be a voter with DF ρv. We
have (∀r ∈ R,∆P (v, r) = 0⇐⇒ r = v) if, and only if, ρv is DT.

Conversely, let P ∈ PC not pair-sensitive. For any voter v, there exists a
ranking r 6= v such that ∆P (v, r) = 0 (ρv being either DT or not).

Observation 2 Multiplying all voters’ DF by α ∈ R∗+ does not change R∗P (V ).

Proof. Multiplying all the voters’ DF by the same α multiplies ∆P by α.

Definition 11. A DF ρ is overnormalised if it is DT, ρ(1) = 0 and ρ(2) ≥ 1.

Proposition 4 incentives us to study only DF that are DT. In this context,
Observation 2 shows that we can restrict our study to overnormalised DF without
loss of generality - it suffices to multiply all the DF by 1

min
v∈V

ρv(2)
.

As in the work of Lu and Boutilier [15], we introduce a specific kind of
probability distribution of PC . Assuming that the probability of a candidate to
be unavailable is independent of the presence of the other candidates and that
this probability is equal to p ∈]0; 1[ for all candidates, we get the probability
distribution S ⊆ C 7→ pm−|S|(1 − p)|S|. We call it the Bernoulli distribution of
parameter p. Note that a Bernoulli distribution is impartial and pair-sensitive.

5.1 Connections with Kendall’s tau metric

In the following, for any (r, r′) ∈ R2, κ(r, r′) :=
∑
i<j 1[ri <r′ rj ] is the Kendall’s

tau metric between r and r′ and, for any (V, r) ∈ V ×R, κ(V, r) :=
∑
v∈V κ(v, r).

Remark 2. Let us suppose that all voters have the DF ρ = (0, 1, ..., 1), i.e. the
binary DF. Let P be the impartial probability distribution of PC that is non-
null only on the pairs; in other words, for S ⊆ C, if |S| = 2, P (S) = 2

n(n−1) ,

otherwise P (S) = 0. For any (V, r) ∈ V × R, ∆P (V, r) = 2
n(n−1)κ(V, r). Hence,

∆P is the Kendall’s tau metric within a strictly positive factor.

A result of Baldiga and Green in [2] shows that the Kemeny rule and the ex
post dissatisfaction rule with binary DF for all voters and general impartial
unavailability distribution may produce different rankings and highlights in that
way the role of the unavailability distribution.

Definition 12. For (r, r′) ∈ R2, i ∈ J1;mK, we define xr,r′(i) := |{a ∈ C|a >r
r′i ∧a <r′ r′i}| = rSi(r′)(r

′
i)− 1 the number of candidates ranked after r′i in r′ but

before r′i in r.

We now recall a proposition established with other notations in the proof of
Theorem 11 of [15] that will be useful in the following.

Proposition 5. [15] Let (r, r′) ∈ R2. κ(r, r′)=
∑m
i=1 xr,r′(i)=

∑m−1
i=1 xr,r′(i).
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Definition 13. The Borda DF maps i∈J1;mK to i−1.

The Borda DF is overnormalised. The name Borda DF is justified by the
fact that, if all voters have the Borda DF and P ∈ PC is an arbitrary pair-
sensitive probability distribution, Theorem 1 shows that the ex ante dissatis-
faction rule based on the minimisation of ∆̂P is equivalent to the Borda rule.

Lemma 1. If ρ is a DF, P ∈ PC is a Bernoulli distribution of parameter p ∈
]0; 1[, (r, r′) ∈ R2 and i ∈ J1;mK,

∑
S∈Ti(r′)

P (S)ρ(rS(topr′(S))) =

xr,r′ (i)∑
j=0

ρ(j + 1)
(xr,r′(i)

j

)
(1− p)j+1pxr,r′ (i)+i−j−1.

The next proposition establishes the link with Kendall’s tau.

Proposition 6. Let p ∈]0; 1[ and P ∈ PC be the Bernoulli distribution of pa-
rameter p. Let r ∈ R and v be a voter with the Borda DF.

It holds: ∆P (v, r) = (1− p)2
∑m−1
i=1 xv,r(i)p

i−1.

Proposition 6 shows that the ex post dissatisfaction measure associated to
the Borda DF and a Bernoulli distribution can be seen as a weighted version of
the Kendall’s tau metric but in a different sense than in [19] or [10] since here
the weight associated to an inversion in the computation of ∆P (v, r) does not
depend on the ranks of both candidates but only on the rank of the candidate
ranked before in r and after in v.

5.2 Solving the ex post dissatisfaction problem

Complexity of the ex post dissatisfaction rule In the sequel, given q ∈
[1; +∞[, a DF ρ is said to be q-sub-geometrical if ρ is overnormalised and, for
any k ∈ J2;mK, ρ(k) ≤ qk−2ρ(2). Theorem 2 shows that optimising ex post
dissatisfaction measure is NP-hard.

Theorem 2 We suppose that all the voters have the same DF ρ and that ρ is
q-sub-geometrical, for a q ∈ [1; +∞[. Let ε ∈]0, 1

nm(m−1)+1 [. Let p ∈ [max((1 −

ε)
1

m−1 , q−(1+ε)
1

m−1

q−1 ); 1[ 10. Let P ∈ PC be the Bernoulli distribution of parameter

p, and V ∈ V . Any ranking in R∗P (V ) is also a Kemeny consensus.

Sketch of proof. Using the assumptions on p and ρ, we prove, for all (V, r) ∈
V × R: ρ(2)(1− p)2(1− ε)κ(V, r) ≤ ∆P (V, r) ≤ ρ(2)(1− p)2(1 + ε)κ(V, r). The
bounds on ε and these inequalities enable us to show a contradiction if we suppose
the existence of an optimal ranking which is not a Kemeny consensus.

10 ε > 0 so both (1− ε)
1

m−1 and q−(1+ε)
1

m−1

q−1
are strictly lower than 1.
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Corollary 3. For any number of candidates m ∈ N∗, we suppose that the vot-
ers’ DF are all qm-sub-geometrical, with qm ∈ [1; +∞[. For m ∈ N∗, we consider

εm ∈]0, 1
nm(m−1)+1 [, pm ∈ [max((1 − εm)

1
m−1 , qm−(1+εm)

1
m−1

qm−1 ); 1[, Pm ∈ PC the

Bernoulli distribution of parameter pm, and Vm a voting situation for m candi-
dates. The problem of size m of finding r∈R minimising ∆Pm(Vm, r) is NP-hard.

Proof. Since finding a Kemeny consensus is NP-hard [3], Theorem 2 gives us the
NP-hardness of the problem where all the voters have the same DF. Therefore,
the more general problem where DF depend on the voters is also NP-hard.

A polynomial-time approximation scheme We here exhibit an approxima-
tion algorithm for the ex post dissatisfaction rule and present some intermediary
results that allow us to prove this is a PTAS under natural assumptions. In this
subsection, P denotes the Bernoulli distribution of parameter p ∈]0; 1[. Firstly,
let us introduce some definitions necessary to the construction of the algorithm.

Definition 14. If there is no ambiguity on P and V , we define f : (S , a) ∈
P(P(C))×C 7→

∑
v∈V

∑
S∈S
a∈S

P (S)ρv(vS(a)). For a ∈ C, let f(a) := f(P(C), a).

Observation 3 Let V ∈V , r∈R. ∆P (V,r)=
∑m
i=1f(Si(r),ri).

Definition 15. For V ∈V , r∈R, k∈J1;mK, l∈Jk;mK, we denote ∆k,l
P (V, r) :=∑

v∈V
∑l
i=k

∑
S∈Ti(r)

P (S)ρv(vS(ri)) =
∑l
i=k f(Si(r), ri) the contribution to

∆P (V, r) of the subsets of C for which one of the candidates of {ri|i ∈ Jk; lK} is
winning according to r.

We now define our MyopicTop algorithm (Algorithm 1). It is conceptually
similar to the one of Lu and Boutilier but makes use of a new notion of dominance
(Corollary 4) which encapsulates the complexity of ex post dissatisfaction rule
and applies to any DF.

Example 4. Let C = {a, b, c, d, e}, p = 1
4 , K = 2, V constituted of three voters

(a, b, c, d, e), one voter (a, c, b, d, e) and one voter (c, a, d, e, b), all voters with
Borda DF. a is dominant in C. In C \ {a}, there is no dominant candidate and
the rankings of C \ {a} minimising ∆2,3

P (V, r) are the rankings starting with
(c, b). Then, MyopicTop algorithm outputs (a, c, b, d, e) or (a, c, b, e, d).

Lemma 2. Let V ∈ V and a ∈ C. If there exists an optimal ranking that ranks
a in first position, then, for every candidate b ∈ C, (1 + p)f(b) ≥ (1− p)f(a).

Corollary 4. Let V ∈ V be a voting situation and a ∈ C. If, for all b ∈ C \{a},
(1 + p)f(a) < (1− p)f(b), then, a is the first candidate of all optimal rankings.
In this case, we call a the dominant candidate.

Proposition 7. The MyopicTop algorithm runs in O(nmmax(3,K+2)).
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Algorithm 1: MyopicTop

Input: C, p, V , K
Output: r = (r1, ..., rm)
C′ ← C; i← 1;
while C′ 6= ∅ and C′ has a dominant candidate do

ri ← the dominant candidate in C′;
C′ ← C′ \ {ri};
i← i+ 1;

end

Determine (ri, ..., ri+K−1)∈CK such that, for any r′ ∈ RC\{r1,...,ri+K−1},

(r1, ..., ri+K−1, r
′
1, ..., r

′
m+1−i−K) ∈ arg min

r′′∈R
r′′j =rj ,j<i

∆i,i+K−1
P (V, r′′);

Arbitrarily order the remaining m+ 1− i−K candidates;

Sketch of proof. Lemma 1 shows that the while loop can be performed inO(nm3).
The second part of the algorithm needs to test only m!

(m−K)! = O(mK) rankings

since, once the i − 1 first candidates are fixed, ∆i,i+K−1
P (V, r) only depends on

the candidates between the ith and the i + K − 1th positions in r. Besides, we
can reuse Lemma 1 to show that ∆i,i+K−1

P is computed in O(nm2). Hence, the
second part is performed in O(nmK+2). The last part is done in O(m).

Lemma 3 allows us to apply Corollary 4 to subsets of C. We can then show
Theorem 3 which proves that MyopicTop algorithm is a PTAS for the ex post
dissatisfaction rule when the normalised DF are bounded 11. Note that here
parameter p is assumed to be fixed and independent on n and m. This differs
from the assumptions made to establish the NP-hardness result in Theorem 2.
The question whether the problem with p fixed is NP-hard or not remains open.

Lemma 3. Let V ∈ V , r∗ ∈ R∗P (V ) be an optimal ranking. For all k ∈ J1;mK,

(r∗k, ..., r
∗
m) ∈ arg min

r∈RSk(r∗)

(∑
v∈V

∑
S∈Sk(r

∗) P (S)[ρv(vS(topr(S)))]
)

i.e. (r∗k, ..., r
∗
m)

is an optimal ranking for the reduced set of candidates Sk(r∗) = {r∗k, .., r∗m}.

Theorem 3 We consider voting situations where voters’ DF are overnormalised
and bounded by a fixed M ∈ R∗+: for any voter v, for all i ∈ J1;mK, ρv(i) ≤ M .

Let ε > 0, K = dlog 1
p
( 2M
(1−p)3ε )e and V ∈ V . Let r∗ ∈ R∗P (V ) be an optimal

ranking and r be the ranking obtained via the MyopicTop algorithm with inputs

C, p, V , K. If ∆P (V, r∗) = 0 then ∆P (V, r) = 0. Otherwise, ∆P (V,r)
∆P (V,r∗) ≤ 1 + ε.

Sketch of proof. First of all, we show that, if the while loop runs until there
is no remaining candidates, then r = r∗. This happens, for instance, when
∆P (V, r∗) = 0 and then, in this case, we also have ∆P (V, r) = 0. If the while

11 It is unclear whether there exists a PTAS if the normalised DF are not bounded.
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loop ends before, at an index i− 1, where i ∈ J1;mK, r coincides with r∗ for the

first i − 1 candidates and ∆i,i+K−1
P (V, r) ≤ ∆i,i+K−1

P (V, r∗) by construction of

r. Besides, we show that ∆i+K,m
P (V, r) ≤ nMpi+K−1 and, the fact that r∗i is not

dominant in Si(r
∗) enables us to show that f(Si(r

∗), r∗i ) ≥ n
2 p

i−1(1 − p)3. Fi-

nally, by construction ofK, we get ∆P (V,r)
∆P (V,r∗) ≤ 1+

∆i+K,mP (V,r)

f(Si(r∗),r∗i )
≤ 1+ 2MpK

(1−p)3 ≤ 1+ε.

Note that, for the algorithm to be polynomial, the bound M must not depend
on the number m of candidates. The assumption whereby the DF are bounded
may seem restrictive but is actually quite reasonable if we suppose that a voter
cannot cognitively conceive an unbounded dissatisfaction. Indeed, one can natu-
rally consider that, after a fixed rank, all alternatives are equally disliked by the
voter, the disutility value M would then mean “I completely dislike this alter-
native”. DF can even be strictly increasing, but converging towards M . Hence,
this upperbound assumption models the increasing difficulty for the voters to
discriminate between alternatives as they go further in their preference rankings.

6 Conclusion

We provided an extension of the UCM accounting for rank-based dissatisfaction.
The voters’ preferences are aggregated in a ranking that minimise the overall
expected dissatisfaction and is used to select the winner once the available can-
didates are known. We considered two different settings, ex ante and ex post,
corresponding to different ways of defining dissatisfaction, provided a theoreti-
cal analysis of both cases, and gave algorithms for finding or approximating an
optimal ranking. This analysis showed that the assumption used to define dissat-
isfaction has a crucial impact on the complexity of the voting rule. Interestingly,
we showed that this two-sided model provides a unified representation for very
different voting rules, spanning from positional scoring rules to Kemeny rule.

Future works may include analysis of practical performance with simulations.
We now provide some theoretical directions of research. First of all, we are inter-
ested in studying other probability distributions (including non impartial ones)
than Bernoulli and thereby emphasising the fact that ex post model generalises
voting rules studied in [11, 2, 15]. Other aggregators than the sum could enable us
to include fairness considerations [16]. A quite different idea, inspired from [15],
would be to analyse the link between optimal rankings and optimal policies - i.e.
choice functions - in the ex post approach. We believe that there is a connection
between the comparison ex ante/ex post optimal rankings and the rationalis-
ability of optimal policies; this would echo Theorem 1 from [2] that links the
rationalisability of optimal policies to the influence of the unavailability distri-
bution. More quantitavely, we could study the role of the inconsistency (in the
sense of [1]) of the optimal policies. Comparing ex ante and ex post approaches
in terms of manipulation could also be fruitful as mentioned in Section 3.2. Fi-
nally, we are also interested in studying elicitation of preferences in a context of
uncertain availability.
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