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Abstract
Observations from NASA’s Cassini spacecraft established that Saturn’s moon Enceladus
has an internal liquid ocean. Analysis of a plume of ocean material ejected into space
suggests alkaline hydrothermal vents on Enceladus’ seafloor. On Earth, such deep-sea
vents harbor microbial ecosystems rich in methanogenic archaea. Here, we use a Bayesian
statistical approach to quantify the probability that methanogenesis (biotic methane
production) might explain the escape rates of molecular hydrogen and methane in Enceladus’
plume, as measured by Cassini instruments. We find that the observed escape rates (i)
cannot be explained solely by the abiotic alteration of the rocky core by serpentinization;
(ii) are compatible with the hypothesis of habitable conditions for methanogens; (iii)
score the highest likelihood under the hypothesis of methanogenesis, assumed the probability
of life emerging is high enough. If the probability of life emerging on Enceladus is low,
the Cassini measurements are consistent with habitable yet uninhabited hydrothermal
vents and point to unknown sources of methane (e.g., primordial methane) awaiting to be
discovered by future missions.
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Main Text
The NASA-led Cassini space mission has provided unprecedented insights into the Saturnian

system1. Observations from multiple fly-bys of the moon Enceladus confirmed the existence
of a global ocean2. Sampling of the south-pole plume and analysis by Cassini revealed the
presence of molecular hydrogen (H2), methane (CH4), and other gases. The detection of H2
by Cassini’s Ion and Neutral Mass Spectrometer (INMS) was confirmed and interpreted as a
signature of hydrothermal activity3. These discoveries pointed to ocean worlds like Enceladus,
but also Europa in the Jovian system and recently Ceres in the asteroid belt4,5, as possibly
harboring conditions that resemble Earth’s habitable hydrothermal vents6–8 (Fig. 1a). If Enceladus’
plume sampled by Cassini has its origin in a global ocean harboring hydrothermal vents9, the
composition of the plume provides information on the environment of the deep-sea vents.

Hydrothermal circulation on Enceladus may resemble Earth’s alkaline hydrothermal activity,
producing H2 and CH4, among other gases10,11. If H2 present in the hydrothermal fluid is
produced in Enceladus’ core3, serpentinization is a plausible source11, while other potential
sources are likely insufficient to explain the observed H2 flux3. Methane might originate from
the (abiotic) conversion of H2 and carbon dioxide (CO2) to CH4 in serpentinization waters
according to reaction (1) (written for one mol of the electron donor H2)12:

H2+
1
4
CO2−→

1
4
CH4+

1
2
H2O (1)

or from other abiotic sources such as a primordial stock of CH4
[ 13], or a stock of organic

molecules in the core being pyrolysed14.

Hydrothermal activity might also sustain a biological origin of methane3. In Earth deep-
sea hydrothermal vents, chemoautotrophic single-celled organisms harness thermodynamical
disequilibrium generated by chemical gradients as their energy source, rather than sunlight15.
Some hydrothermal vents are known to be habitats for abundant thermophilic and hyperthermophilic
methanogenic microorganisms that convert H2 and CO2 (or its dissolved forms, dissolved
inorganic carbon, or DIC) into methane16,17 according to (1) as the net reaction. On Enceladus,
hydrothermal vents shaped by internal heating might provide similar energy sources11,18.
Considering the habitability of Earth’s hydrothermal vents to methanogens and the putative
role of methanogenic metabolism in early Earth biosphere function and evolution19, Enceladus’
habitability by hydrogenotrophic methanogens has been discussed14,20,36. Theoretical work
evaluated the viability of methanogenesis based on observed thermodynamical disequilibrium3,
while the successful incubation of Earth methanogens in putative Enceladean environments
was achieved experimentally20.

Our goal is to take this approach a critical step further: to quantify the probability that biological
methanogenesis might explain the Cassini observations of the plume that were reported in
Waite et al. (2017)3. By integrating mathematical models of geophysical, geochemical and
biological processes within a Bayesian statistical framework, we aim at quantifying the plausibility
of alternate scenarios of habitability and biological activity, rather than assessing their mere
possibility, and evaluate in probabilistic terms how distinguishable they are from one another.

Results
The difficulty in estimating the plausibility of alternate scenarios of habitability and inhabitation
arises from dealing with information that is incomplete and comes from non-independent
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sources. A Bayesian framework is well suited for quantifying inference uncertainty21,22. In
general, the Bayesian approach aims at quantifying the probability that alternate hypotheses
be true given actual observations. By translating the different hypotheses into mathematical
models, simulations can be used to find the likelihoods of the data occurring under the alternate
scenarios. A priori (prior) knowledge of factors that influence the probability of each hypothesis
being true, including previous observations, is combined with the likelihoods to give the a
posteriori (posterior) probability of each hypothesis being true.

Here we apply this framework and contrast a model for a biotic scenario, denoted by B, in
which methanogenesis might occur at Enceladus’ hydrothermal vents, to a null abiotic model,
denoted by A, in which methane production is abiotic. Absence of methanogenesis may be
because the hydrothermal environments are not habitable for organisms with a methanogenic
metabolism, or because, even if they were, such metabolisms never evolved – due to life not
emerging on Enceladus in the first place, or the evolutionary steps to methanogenesis not
having taken place. The probability of the B model given our knowledge of the system follows
from Bayes’ theorem21 (Extended Data Fig. 1):

P(B|x0) =
P(x0|B)Pprior(B)

P(x0|A)Pprior(A)+P(x0|B)Pprior(B)
(2)

where x0 is the vector of observed values of "observables", carefully chosen quantities that
may include a biosignature; P(B|x0) is the a posteriori probability of scenario B given the
observations; Pprior(X) is the a priori probability of scenario X , where X = A or B; and P(x0|X)
is the likelihood of the data under scenario X . The observables that describe the composition
of the plume are the inferred H2 and CH4 escape rates (ΦH2 and ΦCH4 in mol yr−1) and the
ratio (H2 :CH4) [ 3]. These escape rates are derived from mass spectrometry abundances relative
to water and the estimated water ejection rate in the plume3. The escape rates are insightful
because they and the production rates are expected to be of the same order of magnitude3,23
(Methods).

To estimate each term in equation (2), we combine a process-based modeling approach with
a summary of current knowledge of possible conditions in Enceladus’ hydrothermal vents.
We begin with constructing a mechanistic model of relevant interior processes. Although
considerable uncertainty remains on Enceladus’ interior and history24, significant advances
have been made regarding the structure of its core and ocean circulation. Based on these results,
we build a 1D model of fluid and heat flow. Assuming a porous core with at least one heat
source (tidal friction or radiogenic heating)18,25,26, we carefully address the upward advection
of water from hydrothermal vents to the ice ceiling in oceanic plumes shaped by buoyancy and
Coriolis forces11,27,28. We then assemble a model of hydrothermal fluid (hereafter abbreviated
HF) and oceanic water mixing in a mixing layer (ML) that sets a gradient of conditions around
a hydrothermal vent.

Next we design an ecological model of methanogenesis constrained by our model of interior
processes. The ecological model describes the biomass dynamics of hydrogenotrophic methanogenic
metabolisms similar to thermophilic and hyperthermophilic archaea that have been found in
Earth’s hydrothermal vents29. We assume the putative ecosystem to be located at the core-
ocean interface, in the ML surrounding a hydrothermal vent and in which ocean water and
HF from the core are mixed (Methods). The biomass growth rate depends on the amount of
energy obtained from catabolism (equation (1)). The catabolic rate competes with the rate
at which energy is lost through processes of biological decay12. Chemical environmental
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conditions determine the Gibbs free energy obtained for each mol of electron donor; environmental
temperature influences both catabolic30 and maintenance31 energy rates, setting limits to
the viability of the ecosystem (Fig. 1b, c). The model thus yields a quantitative criterion for
habitability: a set of conditions on physical and chemical input parameters under which biomass
production by a hydrogenotrophic methanogenic metabolism can reach a stationary state and
persist (Fig. 1d). The biotic scenario corresponds to the case of a so-defined habitable environment
that is actually inhabited. The model can then predict the composition of the surrounding
water mass at biomass production steady-state.

Input parameters of the ecological model are the composition and temperature of the HF
and composition of the ocean in species of interest (H2, DIC, CH4), gathered from the literature
and forming our prior knowledge of the system (Extended Data Table 1). The distributions of
these parameters thus define the prior space, θ . A well-supported estimate for the temperature
of Enceladus’ ocean is 275 K, close to thermal equilibrium with ice3,9,10. The HF temperature
is estimated to be in the range of 300-620 K [ 11]. On Enceladus, the source of CO2 on a geological
timescale is unlikely to be magma outgassing, like it is on Earth. As a consequence, we assume
that the ocean is the reservoir of CO2, possibly as carbonates10. Using chemical data from the
Cassini mission, the ocean DIC concentration was estimated between 10−1 and 4 ·10−3 mol kg−1 [ 10].
The CH4 concentration in the HF is also a critical parameter of methanogenesis, because its
abundance may negatively influence the thermodynamical drive of reaction (1). We first consider
methane having its origin in serpentinization, for which an upper bound of CH4 concentration
in the HF can be estimated. There is much debate about the abiotic rate of reaction (1) in
serpentinization waters32 but recent experimental studies set a maximum concentration of
10−4 mol kg−1 at the hydrostatic pressure of shallow hydrothermal vents (≈ 10 MPa)33, close
to what is expected at Enceladus’ hydrothermal systems20. Next we extend our analysis by
raising the upper bound on the concentration of CH4 in the HF to 0.1 mol kg−1, to account for
other possible abiotic sources for which mechanistic modeling remains beyond reach.

From these estimates, we define the prior distributions, capturing the knowledge and uncertainties
of possible conditions in Enceladus’ interior. From the prior distributions, the model input
parameters are drawn to run 50,000 simulations, resulting in a distribution of so-called "pseudo-
data" in the space of observables (Fig. 2 and Extended Data Fig. 2). The pseudo-data distribution
can be split into the two classes: "habitable" (H), which correspond to the set of parameter
values for which there is at least one methanogenic metabolism that can function steadily in
the surroundings of the hydrothermal vent; and "uninhabitable" (H̄) otherwise. Measuring the
volume of the parameters space falling in the "habitable" class gives an a priori probability
that Enceladus be habitable, Pprior(H) ≈ 0.32. This value is obtained by integrating over the
whole prior distributions, including compositions in the putative environment of methanogenic
metabolisms that may be likely as well as unlikely. Thus, a rather large range of individually
credible values of interior parameters allow methanogenic metabolisms to persist, according to
our model.

Simulations accounting for methanogenesis in combination with serpentinization water
chemistry consistently explain the observed rates of CH4 and H2 emissions and the ratio (H2 : CH4)
(Fig. 2, green distributions). In contrast, simulations in which CH4 only originates from abiotic
reactions in serpentinization water, cannot explain all the observations (Fig. 2, blue and orange
distributions). Only the class of biotic models yields a non-zero likelihood for every observable
(Extended Data Fig. 3a), provided the a priori probability of life emergence, P(B|H), is large
enough (Extended Data Fig. 3c). In fact, the concentration of CH4 in the HF must be at least
approximately 10−3.5 mol kg−1 in order to explain the observed flux of ≈ 109 mol yr−1 (Extended
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Data Fig. 4a), whereas the maximum concentration of CH4 in the HF allowed by serpentinization
alone, 1 mmol kg−1 [ 33] (see Methods) translates into a maximal CH4 escape rate of ≈ 108 mol yr−1

(Extended Data Fig. 2a). The observed flux of CH4 thus lies far from what can be expected
from the abiotic conversion of H2 and CO2 through serpentinization; in contrast, it falls in the
range of expected values when there is biological methanogenesis (Fig. 2b, d, e). Conversely,
if the methane flux were re-measured at values ten-fold lower than Cassini’s, serpentinization
alone could explain the data, yet methanogenesis would still be possible (Extended Data Fig.
4b).

Besides serpentinization, CH4 in Enceladus’ plume might originate from other abiotic sources
such as primordial outgassing13 or organic pyrolysis14. These sources of CH4 in Enceladus’
ocean are too poorly constrained to be modeled mechanistically. Nevertheless, we can test
the robustness of our results by considering an alternative scenario in which the maximal
concentration of CH4 in the HF is set to an arbitrary higher value of 0.1 mol kg−1, possibly
due in part to pyrolysis3. The high methane concentration, abiotic scenario yields a set of
abiotic-habitable simulations that encompasses the empirical observations (Extended Data
Fig. 4 and 5), and a slightly lower a priori probability that Enceladus be habitable Pprior(H)≈ 0.27.
In this case, the observations may be explained either by the biotic or abiotic scenario. However,
the estimated likelihoods still indicate that the observations are more likely under the B scenario
(Extended Data Fig. 3b) provided that P(B|H) is large enough (Extended Data Fig. 3d). To
compute the posterior probabilities of the uninhabitable, abiotic-habitable, and biotic models,
across the whole range P(B|H) ∈ [0,1] (or conversely, Pprior(B) ∈ [0,0.27]), we use a random
forest classification algorithm (ABC-RF, see Methods)34. Results are shown in Fig. 3, except
for the probability of uninhabitability, which remains the lowest of all three models for all
values of P(B|H). With the a priori belief (in the Bayesian terminology) that all values of
P(B|H) between 0 and 1 are equally likely, the preferred scenario is, on average, B with probability
PP(B|H)∈[0,1](B|x0) = 0.59. If P(B|H) is less than 0.2, the preferred model predicts abiotic-
habitable conditions, yet P(B|x0) is still higher than the a priori probability Pprior(B). For
values of P(B|H) in the range 0.2− 0.4, the abiotic-habitable and biotic models are equally
probable (which is also reflected in the ABC-RF classifier score dipping), and higher values of
P(B|H) lead to select methanogenesis as the preferred model.

Our findings shed light on the significance of H2 and CH4 as biosignatures. It has been
argued that the detection of H2 might signal environments that are potentially habitable yet
uninhabited (inhabitation by hydrogenotrophs supposedly implying consumption and depletion
of H2). Assuming that the H2 plume ejection rate matches the production rate in the core3,
our model shows that levels of H2 outgassing in the plume do correlate with the energy source
available to putative hydrogenotrophs around hydrothermal vents (Extended Data Fig. 2a).
However, the escape rate of H2 appears to be poorly informative of whether or not hydrogenotrophic
metabolisms might actually be present (Fig. 2a). In fact, the observed escape rate of H2 is
compatible with active methanogenesis. This is because the change in H2 escape rate that
would be due to the activity of hydrogenotrophs is negligible in comparison with measurement
uncertainty combined with prior uncertainty on H2 molecular concentration in the HF. Thus,
the H2 escape rate may be a signature of habitability but it may not be used to infer inhabitation.

Another potential biosignature is the production of CH4
[ 35,36]. Because increasing the

CH4 concentration reduces the available energy that reaction (1) yields to the cell (Methods),
abiotic production may compete with biotic processes32. It appears that the abiotic conversion
of H2 and CO2 to CH4 in serpentinization waters is too weak to significantly affect habitability,
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as a higher concentration of CH4 in the hydrothermal fluid ([CH4] f ) does not correlate with a
significantly lower fraction of habitable simulations (Extended Data Fig. 2a). As a consequence,
the observation of CH4 in the plume is not informative on whether hydrothermal vents might
be habitable to methanogens. On the other hand, in line with general considerations of CH4 as
a biosignature35, quantifying CH4 escape in the plume is very informative about whether or
not models that include biological methanogenesis can explain the data (Extended Data Fig.
2b).

Discussion
In summary, models that combine abiotic processes involving production of H2 in Enceladus’
core and biological methanogenesis near hydrothermal vents can explain the Cassini data
(Fig. 2). Given the observations, the posterior probability of the biotic scenario is the highest
provided the prior probability of life emergence in habitable environments exceeds a threshold,
ca. 0.35. Below this threshold, the highest posterior probability is scored by the subset of
abiotic models that predict habitability (Fig. 3).

Considering the possibility that deep-sea vent conditions might be conducive to life emergence37,
better constraining the age and duration of such conditions of temperature and composition in
Enceladus should help define ranges of credible values for the probability of life emergence,
P(B|H) (Fig. 3). Alternate hypotheses have been proposed for the age and formation of Enceladus,
as well as for the evolution of its interior – ranging from a modern origin of the moon 500 Myr
ago without an ocean, to a primordial origin at 4,500 Myr with the existence of a modern
ocean24. Waite et al. (2017)3 estimate that the observed production of H2 may have been
sustained by serpentinization in Enceladus for several billion years. Such insights suggest that
habitable conditions on Enceladus may have existed around deep-sea vents long enough for
life to emerge and methanogenesis to evolve. In the alternate scenario where life origin would
require a surface environment with ultraviolet light and atmospheric sources of molecules to
feed the prebiotic chemistry38,the prior probability of life emergence in Enceladus’ ocean,
P(B|H), might be very small. In this case, methane levels inferred from Cassini’s observations
can be explained in a large fraction of models that predict abiotic habitability, with an abiotic
source of methane that remains to be identified.

We emphasize that methane in Enceladus’ plume might originate from abiotic sources not
included in our model. In our approach, we sampled interior parameters, including [CH4] f
in log-uniform, independent prior distributions. More accurate modeling of alternate abiotic
sources will require to reconsider the structure of these distributions, e.g. correlating [CH4] f
with the H2 concentration in the hydrothermal fluid ([H2] f ). Our framework has the capacity
to accommodate these changes and more generally to account for mechanisms of abiotic methane
production other than serpentinization chemistry (outgassing of primordial methane accumulated
in the core during formation or pyrolytic production3) when new insights into these processes
become available for Enceladus.

Isotopic measurements such as the 14N and 15N of NH3 as well as the 13C to 12C and deuterium-
to-hydrogen ratios of CH4 might shed new light on the nature of Enceladus’ core and the origin
(primordial or modern) of methane. There are challenges, however – instrumental (the Ion
and Neutral Mass Spectrometer (INMS) onboard Cassini had an insufficient mass resolution
to accurately measure these ratios13) and analytical (environmental conditions characteristic
of hydrothermal vents –pressure and temperature– may alter isotope fractionation of carbon
by methanogens, rendering the isotopic markers of life less clear39). Groundbreaking data
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might come from observations of the plumes of the Jovian icy moon Europa (James Webb
Space Telescope (JWST)40, Clipper41) and from proposed missions targeting Enceladus itself
(ELSAH42, ELF43 or E2T44). Such data are critically needed to identify abiotic sources of
methane that might explain Cassini’s observations without calling for methanogenesis. In
a broader perspective, our work demonstrates how the integration of interior and ecological
models can be achieved, so that a Bayesian inferential approach for the detection of habitability
and biosignatures can be implemented – an approach that holds much promise for ocean worlds
that future programs will discover and observe21,22.
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Figures

Figure 1 | General modeling framework. a Assumed interior structure of Enceladus. Yellow stars indicate
Tidal Dissipative Heating (TDH). Red arrows denote water circulation, in the core11 and in the ocean, where
ocean plumes are shaped by buoyancy and Coriolis forces11,28 (black spirals). The Cassini spacecraft is
represented (not to scale) in one of its fly-bys of Enceladus, during which it crossed the gas plume of oceanic
material escaping into space (dotted trajectory). b Catabolic (blue curve) and maintenance (red curve) energy of
the modeled hyperthermophilic hydrogenotrophic methanogen in standard chemical conditions (∆G = ∆G0) as a
function of temperature. Red dashed lines (vertical) delineate the temperature range over which the energy
produced by catabolism is greater than maintenance requirements, resulting in positive growth rate, hence a
positive division rate, r. c Division rate as a function of temperature. Red dashed lines (vertical) delineate the
range of temperature over which the cell division rate is positive. The gray dashed line (horizontal) corresponds
to a baseline death rate of 0.03 d−1, which sets a minimum division rate needed for net population growth. At the
black dot (300.7 K), the division rate and the death rate balance out. Between the lower thermal limit for r > 0
and the black dot, division occurs, but at a slower rate than death, thus leading the population to extinction. The
temperature at which the division rate is highest (355.3 K) is indicated. This temperature is called the optimal
temperature, Topt . d Thermo-chemical (local) conditions conducive to a non-zero population size at steady state
(orange). N∗ is the number of individuals at population steady-state. The green line is the chemical quotient (Q)
imposed by the population at steady-state, denoted by Q∗. The gray hatched region bounded by the gray dashed
curve indicates the set of conditions under which methanogenesis is thermodynamically favored, i.e. ∆Gcat < 0.
The black dashed line (vertical) indicates the freezing temperature of water. Parameters used in b-d are given in
Extended Data Table 2. See Methods for detail.
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Figure 2 | Cassini observations and distributions of model outputs over the space of observables : inferred
H2 and CH4 fluxes (ΦH2 and ΦCH4), and gas ratio H2 : CH4. a, d, f, Density distributions of observables
pseudo-data generated by model simulations. In blue, subset of simulations in which no population of
methanogens could grow (’uninhabitable’ scenario, H̄). In orange, subset of simulations in which a population of
methanogens is possible but their activity is not taken into account (’abiotic-habitable’ scenario, Hab). In green,
subset of simulations in which methanogens can grow, and their activity is taken into account to produce
pseudo-data (’biotic’ scenario, B). Magenta dashed lines (vertical) indicate the actual Cassini observations3.
Note the log10 scale on the horizontal axis. b, c, e, Joint distributions of observable pseudo-data generated by the
model. Magenta stars indicate the Cassini observations. Note the log10 scale on both axes. This figure was
generated from a set of 50,000 simulations using random values of internal parameters drawn from the
distributions described in Extended Data Table 1. In about 32% of these simulations, the drawn set of parameters
allowed the modeled population of methanogens to grow (’habitable’, H), the remaining 68% were found to
pertain to the ’uninhabitable’ scenario (H̄, blue). The ’habitable’ subset was evenly split at random into two
subsets of 8,008 simulations. In one subset, we did not simulate methanogenesis (’abiotic-habitable’ scenario,
Hab, orange), while we simulated methanogenesis coupled with the geochemical model in the second subset
(’biotic’ scenario, B, green). See Methods and Extended Data Tables 2 and 3 for model equations and parameter
values.
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Figure 3 | Posterior probabilities of abiotic-habitable and biotic models, and classifier score. P(B|H) is the
prior probability of life emergence in habitable environments. Here the model accounts for unknown abiotic
sources of methane in the hydrothermal fluid, by allowing for an a priori concentration higher than in the case of
serpentinization only. This scenario yields Pprior(H)≈ 0.27. For each P(B|H) value, the circles (green or orange)
indicate the posterior probability of the biotic scenario (B, green) and abiotic-habitable scenario (Hab, orange) for
the lower and upper bounds of the observation range; the intervals between circles are colored for legibility. The
green dashed line is Pprior(B) = Pprior(H)×P(B|H), the orange dashed line is
Pprior(Hab) = Pprior(H)× (1−P(B|H)). The black dotted line is the ABC-RF classifier score (see Methods). The
green triangle on the vertical axis shows the mean value of the posterior probability P(B|x0) across
P(B|H)∼U(0,1). Note that P(H̄|x0) (not shown) is very low, and always less than P(B|x0) or P(Hab|x0). See
Methods for model equations, Extended Data Table 1 for prior internal parameter ranges, and Extended Data
Tables 2, 3 for parameters values of model simulations and ABC-RF.
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Methods

Mixing of core-ocean interface waters and plume composition
A hydrothermal hot spot dissipates thermal energy with power F (W) by advection of hydrothermal
fluid (HF) at temperature Tf into seafloor oceanic waters (OW) at temperature To. We follow
McCollom, (1999)8 to model HF and OW mixing in a horizontally structured mixing layer
(ML). ML waters buoyantly rise according to their temperature and escape the ML to be replaced
by OW and HF. We first define the shape of J f (kg s−1 m−2), the mass flux density of HF into
the ML as a function of the distance, u (m), to the hot spot center:

J f (u) = Jmaxe−(
u
c)

2

(3)

where Jmax (kg s−1 m−2) and c (m) are derived by constraining the hot spot to dissipate power
F and by forcing the hot spot center (where J f = Jmax) to be entirely composed of HF:∫

S
J f dS =

∫
∞

0
2πrJ f (u)du =

F
Cp(Tf −To)

(4)

where S (m2) is the hot spot surface area, hence

c2 =
F

πJmaxCp(Tf −To)
(5)

where Cp is the specific heat capacity of water (4,200 J K−1 kg−1).

The mass flux density Jc (kg s−1 m−2) of buoyancy escape of ML waters is expressed as a
function of the temperature anomaly T ′ = T (r)−To following Goodman et al. (2004)27:

Jc =
1
us

ρo
√

2εgαT ′ (6)

where us = 1 m2 is a unitary surface (for readability, it is replaced with its value in following
equations), ρo (1,000 kg m−3) is seawater mass density, ε (1 m) is the ML thickness,
α (3×10−4 K−1) is the coefficient of thermal expansion of water and g (0.12 m s−2) is the
local gravitational acceleration (see values in Extended Data Table 2). Assuming a non-divergent
fluid, we can write a system of partial differential equations to express the dimensionless mixing
ratio x = m f

m f+mo
(subscript f denotes the HF and o denotes the OW) and temperature

T = To + x(Tf −To) as a function of time:

∂x
∂ t = 1

m(J f − xJc)

∂T
∂ t = ∂T

∂x
∂x
∂ t =

1
m

(
J f (Tf −To)− Jc(T −To)

) (7)

where m = m f +mo is the ML mass density, which is constant. The steady state can be solved
analytically. We can then derive the steady-state composition and temperature of the ML:

T ∗(u) =
[
J f (u)

(Tf−To)

ρo
√

g2εα

] 2
3
+To

Jc(T ∗(u)) =
(
2ρ2

o gεαJ f (u)(Tf −To)
) 1

3

x∗(u) =
[

J f (u)2

2ρ2
o gεα(Tf−To)

] 1
3

(8)

where the asterisk symbol superscript denotes the steady-state value.
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In the absence of chemical reactions taking place in the ML, we can write the concentration
C0

i of compound i (mol kg−1) in the steady-state ML as a function of the concentration of i in
the HF (C f

i ) and in the ocean (Co
i ):

C0
i (r) = x∗C f

i +(1− x∗)Co
i (9)

The derived set of concentrations then serves as the initial condition for our biological model.
An example of a hot spot compositional structure is shown in Supplementary Fig. 1a.

The scaling relationships derived in Goodman et al. (2004)27 and Goodman & Lenferink
(2012)28 for Europa were used in Choblet et al. (2017)11 to show that the Coriolis effect was
important for the most part of Enceladus’ oceanic plumes (OPs) ascension, thus suggesting
well-defined plumes that experience little dilution with oceanic waters. In Goodman et al.
(2004)27, an OP starts with warm water rising in a turbulent regime, forming a cone, until
the Coriolis effect becomes important and the water mass forms a cylinder. When the ocean
plume encounters the ice ceiling, it starts growing into a cone shape (Fig. 1a); a steady state
is reached when the cone radius equals the Rossby radius of deformation. At this point, the
plume begins to shed large eddies that travel horizontally. In our approach, we propose that the
composition of the OP is the total mix of all convecting water masses:

COP
i =

∫
JcCidS∫
JcdS

(10)

Internal cell dynamics model
Here, we describe how we model the dependence of metabolism on environmental conditions
through the thermodynamics of the catabolic reaction, upon which the bio-ecological model
is built as a simplified variant of Sauterey et al. (2020)45. Catabolism is the set of reactions
that a cell uses to harvest the energy needed for the synthesis of complex organic molecules to
repair cell components or to grow. Catabolism can be written for 1 mol of electron donor (eD)
as:

1eD+{YiRi}i6=eD −→ {YjPj} (11)
where {Ri} are the reactants, {Pj} the products and {Yi, j} their stoichiometry (counted negative
for reactants and positive for products). The Gibbs free energy of the catabolic reaction (J mol−1

eD )
is expressed as a function of temperature T (K) and reaction quotient Qcat (dimensionless):

∆Gcat = ∆G0,cat +RT loge(Qcat) (12)

where
Qcat = ∏

i
aYi

i ≈∏
i

CYi
i . (13)

Here ai is the activity of species i, approximated by its concentration Ci. ∆G0,cat is the Gibbs
free energy of the reaction when all activities are unity, expressed as a function of temperature
and standard values ∆G0,S and ∆H0,S found in chemistry tables:

∆G0,cat = ∆G0,S
T
TS

+∆H0,S
TS−T

TS
(14)

where TS = 298 K is the standard temperature. Even spontaneous reactions (∆G < 0) may
not occur, should their kinetics be infinitely slow; that is, when the activation energy needed
to start them is very high. A fundamental property of living organisms is that they synthesize
enzymes that significantly lower the activation energy of catabolic reactions so that they may
occur at higher rates, making the potential energy they hold available for maintenance and
anabolism (i.e. biomass production).
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Our biological model is designed to track both the catabolic reaction rate and the energy
that catabolism yields to the cell. The cell is able to run its catabolism at a certain specific
rate, qcat (moleD s−1 mol−1

Cx
), which depends on temperature. A general model of enzymatic

rate qe (moleD s−1 mol−1
enzyme) as a function of temperature was derived in Daniel et al. (2010)30

and validated experimentally. In their framework, the enzymatic rate is determined by the
abundance of activated enzymes Eact . Higher temperature accelerates the catalyzed reaction,
but also the conversion of activated enzymes to a deactivated state Einact . The overall net enzyme
catalysis rate qe is modeled using an Arrhenius law for the rate of catalysis of the reaction by
the activated enzyme (kcat , moleD s−1 mol−1

Eact
) and an equilibrium law for the ratio of inactivated

to activated enzyme Keq =
Einact
Eact

(dimensionless):

qe = kcat
1+Keq

kcat = kb
h Te−

∆Gacat
RT

Keq = e
∆Heq

R

(
1

Teq−
1
T

) (15)

where kb (1.38× 10−23 J K−1) is the Boltzmann constant, h (6.63× 10−34 J s) is the Planck
constant. The other kinetic parameters are enzyme-dependent. In our approach of modeling
a generic hyperthermophile, we use values given in Daniel et al. (2010)30 for an enzyme of
Thermus sp. RT41a, an organism growing best at around 75◦C, the highest growth temperature
in their dataset. These values are (Extended Data Table 2), ∆Gacat = 72,000 J mol−1 (activation
energy of the catabolic reaction), ∆Heq = 305,000 J mol−1 (equilibrium enthalpy of activated
to deactivated enzyme) and Teq = 363.15 K (equilibrium temperature of activated to deactivated
enzyme). In the Supplementary Results and Discussion, we explore the consequence of varying
the values of these parameters. We assume random variation, rather than variation driven by
evolutionary adaptation to temperature. Taking evolutionary adaptation into account might
result in a larger set of conditions interpreted as habitable and a higher productivity of the
modeled population. This might eventually cause significant differences in dihydrogen depletion
and methane production in the plume. The consequences of evolutionary adaptation will be
addressed in future work, using the approach pioneered in Sauterey et al. (2020)45.

The specific catabolic rate qcat (per mole of biomolecule carbon Cx, hence in unit moleD mol−1
Cx

s−1)
is obtained by scaling qe with the enzymatic fraction τ (dimensionless, or molenzyme mol−1

Cx
) of

biomass (that is, the number of catabolic enzymes per biomolecule in the cell) so that qcat =
τqe. The parameter value τ ≈ 1.73× 10−5 is estimated by fitting the model to data from
Taubner et al. (2018)20 as described later on.

Some of the energy provided by the catabolism goes to the maintenance of the cell and
represents a minimal energy for living processes (e.g. repairing denatured proteins and damaged
DNA). No growth occurs when only this amount of energy is available to the cell. An empirical
and general relationship between the cell maintenance energy rate (em, kJ d−1 mol−1

Cx
) and

temperature was established in Tijhuis et al. (1993)31:

em = 84 e
69,400

R ( 1
TS
− 1

T )

qm = − em
∆Gcat

(16)

where qm (d−1) is the rate at which the catabolism must run to meet the maintenance needs.
When qcat < qm, the cell decays and eventually dies (Fig. 1b). Otherwise, the remaining
catabolic energy then goes to fueling the anabolic reaction, which drives the synthesis of cell
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building blocks. The anabolic reaction is rarely spontaneous and often requires more energy
than catabolism alone may provide. In effect, the cell is able to store energy in the form of
ATP until enough is available for anabolism. The rate at which the anabolism runs is much
lower than the catabolic reaction rate (think of catabolism as a small gear wheeling the larger
gear of anabolism).

More recent observations (Lever et al., 2015 46 and references therein) point out that em as
modeled in Tijhuis et al. (1993)31 might be overestimated. Although a variety of underlying
processes to explain minimal energy requirements have been proposed46, a detailed mechanistic
model that could explain the available observations is still lacking. Given the persistent uncertainties
regarding the minimal energy requirements of cellular life, we chose the conservative approach
of using Tijhuis et al.’s model31 – i.e., the parametrization that disfavors habitability the most.

Kleerebezem & Van Loosdrecht (2010)12 use a generic chemical composition of biomass
that is useful to compute the Gibbs free energy required to synthesize a mol of biomass (∆Gana).
To this energy is added the cost of dissipation that occurs during metabolism. An empirical
relationship between characteristics of the metabolism and the amount of dissipated energy
(∆Gdiss) is12:

∆Gdiss = 200+18(6−NoC)1.8 + exp
[
((−0.2− γ)2.16)(3.6+0.4NoC)

]
(17)

where NoC is the carbon chain length in the carbon source and γ is the oxidation number of
carbon in the carbon source. In general ∆Gdiss >> ∆Gana. The energy cost of anabolism
∆Gdiss+∆Gana can therefore be approximated by ∆Gdiss. The anabolic rate per mol of biomolecule
is therefore given by

qana =−
∆Gcat

∆Gdiss
(qcat−qm) (18)

For a given metabolism, qana is strongly dependent on temperature through qcat and qm, and
also depends on the availability of substrates through ∆Gcat . The cell accumulates biomolecules
at the rate qana times the number of biomolecules in the cell. We do not represent the number
of biomolecules in each cell but rather the mean value for the population. The cells are then
set to undergo division at a rate, r, proportional to their internal biomolecule content.

Ecosystem dynamics and steady state
Using quasi-steady-state approximation on internal cell dynamics, the ecosystem dynamics are
driven by the dynamics of the cell population and the chemical environment (substrates and
products):

dN
dt = N(qana−d)

∂Ci
∂ t = 1

εusρo

(
J f (C

f
i −Co

i )+ Jc(Co
i −Ci)

)
+NB∗qcatY cat

i
(19)

where N is the surface density of the number of individuals in the population per kg of water
(thus in kg−1 m−2), d (s−1) is a baseline death rate accounting for density-independent mortality,
and B∗ (molCx) is the steady-state internal cell biomass, or quantity of biomolecules. To our
knowledge, there is no estimation of d for methanogens in their natural habitat; we therefore
chose to use the value estimated in Connolly & Coffin (1995)47 for marine plankton, and we
explore the consequence of varying its value in Supplementary Results and Discussion.
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Solving equation (19) for steady-state, and using equation (13) yields an expression for the
steady-state reaction quotient Q∗cat :

Q∗cat = exp
[
− 1

RT

(
∆G0 +(d + em

∆Gdiss
)∆Gdiss

qcat

)]
loge Q∗cat = loge K− 1

RT

(
d + em

∆Gdiss

)
∆Gdiss

qcat

(20)

where K (dimensionless) is the equilibrium constant of the reaction. Q∗cat denotes the steady-
state value of the reaction quotient, which is the value at which available energy in the cell’s
environment exactly compensates death (or removal from the environment) and maintenance,
and therefore sets a limit value on Qcat for growth, as detailed below.

We assume that if the initial conditions allow for a positive growth rate, the composition
will converge toward this non-equilibrium stationary state, as seen in numerical simulations
(Supplementary Fig. 1b, c). Initial conditions are favorable to microbial population persistence
if Q∗cat is larger than Qcat evaluated at the initial conditions, Q0

cat |T :

Q∗cat(T )> Q0
cat |T (21)

which provides a criterion for population viability. In the absence of any other factors, the
steady-state concentration of i, C∗i , is given by

C∗i =C0
i +Y cat

i (C0
eD
−C∗eD

). (22)

The electron donor concentration at steady state, e∗D, can be solved by using equation (20) and

Q∗cat =
1

C∗eD
∏

i 6=eD

(
C0

i +Y cat
i (C0

eD
−C∗eD

)
)Y cat

i (23)

In the case of Enceladus, we apply this bio-ecological model to a generic methanogenic
hyperthermophile, with enzyme kinetic properties described hitherto, in a horizontally structured
hydrothermal hot spot. The chemical reaction of hydrogenotrophic methanogenesis written
per mol of electron donor (H2) is given by equation (1) and has ∆G0,S = −32.6 kJ mol−1,
∆H0,S = −63.2 kJ mol−1 for reactants in gaseous state. To express ∆G0,cat in the aqueous
phase, ∆Gaq

0,cat , from ∆G0,cat in the gaseous phase, ∆Ggas
0,cat , we add a corrective term using

enthalpies of dissolution:

∆Gaq
0,cat = ∆Ggas

0,cat−RT ∑
i

Yi loge(Hi) (24)

where ∆Ggas
0,car is computed using equation (14), Hi =

Ci
Pi
(mol kg−1 Pa−1) are Henry’s law

coefficients, HH2 = 7.8 10−4 and HCH4 = 1.4 10−3, taken independent from temperature.
The solubility constant of CO2 is taken as a function of temperature fitted from outputs of the
Aspen plus software:

HCO2 = exp

[
9345.17

T
−167.8108+23.3585loge(T )+

(0.023517−2.3656 10−4T +4.7036 10−7T 2)35.0

] (25)

Regarding anabolism, we assume that the carbon source is also CO2, hence NoC = 1 and γ = 4
in equation (17) giving ∆Gdiss.
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Estimation of the catabolic enzyme-to-biomass scaling factor
Here, we estimate a credible value for the yet unconstrained enzyme-to-biomass ratio parameter.
This ratio is needed in order to derive a specific catabolic rate from enzyme-scale kinetic
modeling, as mentioned earlier. To do so, we fit our model to the results of growth experiments
in Taubner et al. (2018)20. In their study, Taubner et al. (2018)20 experimented on M. okinawensis,
M. marburgensis and M. villosus. We chose to use growth data of M. villosus, as M. villosus
has a higher growth temperature than the other two (ca. 80 ◦C versus ca. 65 ◦C), in accordance
with the kinetic parameter values we chose (see the Internal Cell Dynamics section above).
Because data in Taubner et al. (2018)20 measure cell density as optical density, we focus on
the initial growth rate, a parameter that appears in the Verhulst logistic model. Our model
being analog to a logistic model, we fit parameters n0, r and Kn (initial population density,
growth rate and carrying capacity respectively) of

n(t) =
Kn

1+(Kn
n0
−1)e−rt

(26)

to the experimental growth curve using least mean square method in the "curve fit" function in
the Scipy python package48. The estimated value of the growth rate, r, is then used to obtain τ

from
r ≈ qana = λ (τqe−qm) (27)

hence
τ ≈

r
λ
+qm

qe
(28)

where λ , qe and qm are obtained from the composition and temperature of the growth medium
in the experiment20. In Supplementary Fig. 1b we compare a logistic curve using a growth
rate generated by the model at experimental temperature (80± 1 ◦C) and chemical conditions
([H2] = 1.5 mmol kg−1, [CO2] = 7.7 mmol kg−1, and negligible [CH4] = 10−10 mol kg−1),
with the τ value inferred from the growth data of M. villosus in Taubner et al. (2018)20. We
find τ ≈ 1.73 · 10−5molenzyme mol−1

Cx
. We then compared this value to mass-specific resting

metabolic rates of unicellular organisms49. To do so, we determined the cell mass predicted
by our model using Kleerebezem & Van Loosdrecht (2010)12 which provides an empirical
relationship between cell volume Vc (µm3) and cell structural mass MCx = 18 ·10−15 ·V 0.94

c , in
molCx (this relationship was also used in Sauterey et al. (2020)45). By applying this relation to
a typical 1 µm radius cell, we obtain loge(B0) ≈ −6 (W g−3/4) for methanogens in our model
at the estimated optimal temperature of ≈ 82 ◦C in standard chemical conditions (see Fig. 1b).
This value falls at the lower end of the empirical range described in Gillooly et al. (2001)49.
While τ might be an important parameter in determining the temperature growth curve of an
organism, other kinetic parameters of catabolism and maintenance described earlier on also
contribute and are estimated separately. As a consequence, when using the value obtained
from M. villosus growth data, we do not aim at modeling this organism per se; rather, we
model a generic, hypothetical hyperthermophile with temperature apparent properties described
in Fig. 1b-d. We explore the consequences of changing the value of parameter τ , along with
others in Supplementary Methods, Results and Discussion, as well as in Supplementary Figs.
3-5.

Bayesian inference
Because the model is complex, the likelihood P(x0|X), X = A or B, cannot be analytically
expressed, a problem known as "intractable likelihood". Instead we use an Approximate Bayesian
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Computation (ABC) approach50. ABC relies on approximating the likelihood by simulating
outputs, called pseudo-data, from prior distributions of parameters. The likelihood can then be
computed from the distribution of simulation outputs. If θ denotes the parameter vector, x the
vector of a pseudo-data point, and x0 an observation ("true data"), then P(θ) is specified by the
prior distribution, and P(x0|θ) is approximated by sampling simulations of a model π linking
parameters to the observable, i.e. π(θ) = x. Then the probability of a parameter set θ̂ given
the observation x0 follows from Bayes theorem:

P(θ̂ |x0) =
P(x0|θ̂)P(θ̂)∫

θ
P(x0|θ)P(θ)dθ

. (29)

Equivalently, instead of parameters, the Bayesian approach can be used to infer so-called classes,
corresponding to subsets of the parameter space (Extended Data Fig. 1). See Sisson et al.
(2018)51 for a detailed guide to ABC methods and Csilléry et al. (2010)50 for examples of
applications.

The most basic form of ABC, called "K nearest neighbors" (KNN) ABC, aims at computing
the Euclidean distance in the data space to obtain a subset of pseudo-data resembling the observation
and the associated subset of the parameter space, so that a posterior distribution of parameters
(maximizing the multivariate likelihood of observation) is obtained. Because future characterisation
of the habitability or inhabitation of planetary bodies is expected to be a high-dimensional
problem, involving a greater number of observables, following Csilléry et al. (2010)50 we
argue that standard ABC, a method suffering the curse of dimensionality, may not be suited.
Instead we used a higher-order ABC method, Random Forest ABC (ABC-RF), based on a
machine learning method of classification34. RF-ABC handles high-dimensional problems
much more efficiently than KNN methods34,50.

A Random Forest is a population of decision trees, that is, oriented graphs (or "flowcharts")
in which each node corresponds to a test on a feature (an observable in our context) of the
pseudo-data (an example is given in Supplementary Fig. 2a). Depending on the truth value of
the test, the pseudo-data are then passed to a branch or another to the next test. For example, in
Supplementary Fig. (2a), the first test is R1 ≤ 2.72. If this test has a truth value of 1 (resp. 0),
the data is passed to the next test : ΦCH4≤ 285,179,380 mol yr−1 (resp. ΦH2≤ 78,416,564 mol yr−1)
and so on. The goal of the decision tree is to split the pseudo-data set in subsets ("leaves")
corresponding as faithfully as possible to the classes uninhabitable (H̄), abiotic-habitable
(Hab) and biotic (B).

The RF is a population of trees that categorizes data points into classes according to the
votes of the trees in the decision forest. The pseudo-data (or the training dataset) correspond
to a set of features associated with their class (together, they are the reference table) and are
used to fit the RF classifier. In other words, the algorithm consists in selecting the decision
forest that best classifies the pseudo-data in the training dataset. In order to obtain a population
of decision trees that splits the data set well, we evaluate the Gini Impurity, which measures
the probability to misclassify a point in a set or subset if classification is done at random. The
general expression of the Gini Impurity is:

G = ∑
i

p(i)(1− p(i)) (30)

where p(i) is the probability of attributing class i to a point when the class of the point is i.
The overall Gini Impurity of several subsets is the weighted sum of G in each subset.
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A measure of the efficiency of the method is the overall classification error rate (or prior
error rate), ζ : the fraction of pseudo-data points that the fitted classifier misclassifies. Conversely,
the score 1− ζ measures the success rate of the classifier. One can also measure this score
for a specific class and compute how wrong the classifier is when it misclassifies pseudo-data
points, for instance "with what class does the classifier confuses B the most?". The representation
of how the RF classifier confuses different classes is the confusion matrix, of which an example
is shown in Extended Data Fig. 2b.

We trained a decision forest on the pseudo-data set of 50,000 simulations generated from
the priors reported in Extended Data Table 1 using the RandomForestClassifier function
from the python package ScikitLearn52 with parameters reported in Extended Data Table 3. In
ABC-RF, the posterior probability is approximated by averaging the class probability of each
tree. The class probability of i in a tree is the fraction of class i in the leaf corresponding to the
prediction. A full description of ABC-RF is found in Pudlo et al. (2015)34.

Building the priors
Input parameters of the ecological model are the composition and temperature of the HF and
composition of the ocean in species of interest (H2, DIC, CH4), with their distribution defining
the prior space θ . In our approach, the temperature of Enceladus’ ocean is fixed and thus not
drawn from a prior distribution. A well-supported estimate for the temperature of Enceladus’
ocean is 275 K, close to thermal equilibrium with ice3,10. High ammonia concentrations could
lead to a lower freezing point of water, and thus a colder ocean, the consequences of which
are discussed in Supplementary Results and Discussion. In this section, we explain the ranges
chosen for the concentrations in HF and OW of H2, DIC and CH4, and for the temperature of
the HF. A summary is given by Extended Data Table 1.

Constraining H2 in the hydrothermal fluid and in the ocean. Following Waite et al. (2017)3,
we assume that the dihydrogen present in the hydrothermal fluid is produced in Enceladus’
core. Choblet et al. (2017)11 have argued that serpentinization was a plausible source of H2 in
Enceladus’ core, and considering other potential sources Waite et al. (2017)3 concluded that
they were likely insufficient to explain observed H2 flux. We therefore assume that serpentinization
is the primary source of dihydrogen. A maximum value for the H2 concentration in the hydrothermal
fluid is the concentration at saturation with the vapor phase produced during serpentinization32.
This value may be close to 10−1 mol kg−1 at pressures of the order of 10 MPa, the expected
hydrostatic pressure at Enceladus’ seafloor. We neglect the hydrogen saturation concentration
variation with temperature and thus make the assumption that the concentration of H2 in the
fluid is drawn independently from temperature, according to

[H2] f ∼ loge U(10−8,10−1) mol kg−1 (31)

where U denotes the uniform distribution. We note that, depending on the rock and water
composition, the maximum dissolved H2 may be lower than the equilibrium with hydrostatic
vapour phase32,53. As a consequence, we may be overestimating the production of H2 from
serpentinization.

We assume that the concentration of dihydrogen in the ocean is very low since it is produced
in the core, as suggested by Waite et al. (2017)3 :

[H2]o ∼ loge U(10−8,10−6) mol kg−1 (32)
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Note that assuming low levels of dihydrogen in oceanic waters is equivalent to assuming that
most of the dihydrogen escapes or is captured in clathrates instead of recirculating in the core.
Choblet et al. (2017)11 suggest that the whole ocean may be processed in the core at relatively
short timescales (25-250 Myr) and that the composition of the ocean may depend on ice melting
above hydrothermal hot spots and recrystallisation in other regions.

Constraining CH4. Methane concentration in the hydrothermal fluid is an important parameter
of methanogenesis, as an increased concentration reduces the thermodynamical favorability
of the reaction (1). In a first set of simulations, we limit the source of CH4 to serpentinization
chemistry, a source that was suggested in previous studies13. The rate of reaction (1) in serpentinization
waters is subject to debate but recent experimental work suggests that this reaction conducted
abiotically faces significant energy barriers and would be extremely slow across the temperature
range considered here33. The same study showed that in low-pressure (10 MPa) hydrothermal
systems where a H2 vapor phase can form, the reaction is significantly accelerated. Because
the hydrostatic pressure at the bottom of Enceladus ocean might be of that order20, we assume
that CH4 concentration in the hydrothermal fluid can be as high as reported by McCollom
(2016)33, i.e. 0.1 mmol kg−1, so that:

[CH4] f ∼ loge U(10−8,10−4) mol kg−1. (33)

Note that we neglect any conversion of H2 and CO2 in the mixing layer, where temperatures
are lower. In the alternate scenario, we do not limit [CH4] f to serpentinization chemistry, and
use an arbitrarily higher upper bound so that

[CH4]
′
f ∼ loge U(10−8,10−1) mol kg−1. (34)

In the ocean, and following what was done for H2, we take

[CH4]o ∼ loge U(10−8,10−6) mol kg−1. (35)

Constraining the dissolved inorganic carbon (DIC). On the geological timescale, Earth’s
oceans are recharged with CO2 through volcanic outgassing and carbonate dissolution. Glein
et al. (2015)10 suggest that dissolution of carbonates may be Enceladus’ main source of ocean
dissolved carbon dioxide, whereas magma outgassing seems unlikely given the small and
relatively cold core of Enceladus. Dissolved inorganic carbon is the total of dissociated forms
of CO2 in water (DIC = [CO2] + [HCO –

3 ] + [CO 2–
3 ]). DIC concentration in Enceladus’ ocean

was estimated using plumes chemical data from the Cassini mission10. The total dissolved
inorganic carbon was constrained between 0.1 and 0.004 mol kg−1 :

[DIC]o ∼ loge U(4 ·10−3,10−1) mol kg−1. (36)

Our first order model does not take into account the complex carbonate chemistry in the Enceladus
ocean that Glein & Waite (2020)54 investigate. Instead, we have identified the activity of
CO2aq with the total dissolved inorganic carbon. This is a first approximation which should
be refined in the future by coupling the current model with that of Glein & Waite (2020)54
For our analysis to be conservative, we assume the hydrothermal fluid to be DIC-poor and thus
use a much lower range

[DIC] f ∼ loge U(4 ·10−8,10−6) mol kg−1. (37)
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Constraining Tf . In Choblet et al. (2017)11, temperatures in the core were computed from a
range of plausible core porosity (Kp) constrained by the observation of nanometre-sized silica
particles and water boiling point (limit of their model). We assume that the water boiling point
is not exceeded and that the loge of porosity is a priori uniformly distributed between 10−14

and 10−12. Using the approximation T ∝ loge Kp, we conclude that the hydrothermal fluid
temperature is drawn from a uniform distribution :

Tf ∼ U(300,620) K (38)

For comparison, Earth’s hydrothermal systems have been observed venting fluids at 640 K [ 55].
The temperature of Enceladus ocean is set at a single value of To = 275 K, close to thermal
equilibrium with ice, in agreement with previous work3,10.

Selection of observables
Choosing reliable and informative observables is a crucial step of the inference framework.

Observables must be model outputs that are confidently measured. Because our model captures
only a subset of Enceladus geochemical processes that potentially influence the plume composition,
we must carefully evaluate whether the model outputs may faithfully translate into measurements
that are available from the Cassini mission.

The model takes the composition and temperature of the hydrothermal fluid, and the composition
of the ocean, as inputs. Then the model represents the mixing of hydrothermal fluid and ocean
water. In this mixing layer, biological methanogenesis might occur, or not. If it does, the local
composition of the mixing layer is altered according to the biological model. The mixing layer
waters are then mixed together to form an homogeneous oceanic plume water mass. At this
point, there is uncertainty in the amount of dilution of these waters with oceanic waters during
their ascent across the ocean. Our mixing model predicts an upward advection of 104 to 105 kg s−1

at the hot spot. Using scaling relationships for Europa27 that have been adapted for Enceladus11,
we find water transports at the top of the column that are three orders of magnitude higher
(≈ 108 kg s−1). This discrepancy between predictions from our mixing model and scaling
relations in Goodman et al. (2004)27 indicates that our approach might greatly underestimate
the dilution of ML waters during their ascension towards the ice ceiling, and a fortiori neglect
the dynamics of ascending waters. To circumvent the challenge of modelling the mixing of
the oceanic plume while it travels upward, we select observations that carry information on
seafloor processes, independently of dilution in the ascending plumes.

In Waite et al. (2017)3, the authors assume that the source of dihydrogen in Enceladus
compensates for the loss to space from the gas jets at the plume’s origin. Following the same
approach, we assume that the outward flux is equal to the flux of hydrogen into the ocean
(coming out of the mixing layer). Because H2 is assumed to be produced in the core, we integrate
the outward flux from the mixing layer at steady state

ΦH2 =
∫

S
Jc[H2] dS (mol yr−1) (39)

and thus define an observable that should be consistent with model outputs regardless of dilution
in the oceanic plume.
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Following Bouquet et al. (2015)23, we assume that a source of CH4 in the core compensates
clathrate dissociation so that the release rate in the ocean is approximately equal to the measured
ejection rate

ΦCH4 =
∫

S
Jc[CH4] dS (mol yr−1) (40)

We also use
R =

[H2]

[CH4]
(41)

as an observable. As the other two observables, R should also be independent of dilution.
Using R as an observable, however, requires to further assume that this ratio is conserved
when the ocean material travels through the ice. This assumption is discussed in Waite et al.
(2017)3, where it was used to estimate concentrations in H2, CO2 and CH4 in the ocean.

Other observables
Other observables have been considered but were not used in our inference framework.

First, the observed flux of CO2 in the plume, as well as the H2 :CO2 ratio might contain information
on whether hydrogenotrophs might be active or not. We did not use these measurements as
observables because the CO2 source is unknown; as we only assume that CO2 in the mixing
layer comes from the ocean, this makes the observed CO2 flux and H2 : CO2 ratio sensitive to
dilution of the oceanic plume which, as mentioned above, is a process that is poorly constrained
in our model. Furthermore, our knowledge of what might be the CO2 stock in Enceladus’
ocean comes from the Cassini measurements that we aim to use for inference. As a consequence,
the observation point would be as informative as the prior knowledge, and thus inference would
not be improved.

Second, considering the value in Enceladus’s ocean of the Gibbs free-energy associated
with reaction (1), Waite et al. (2017)3 inferred a negative value, and concluded that methanogenesis
was feasible in Enceladus ocean. The Gibbs free energy ∆G is computed from the reaction
quotient Q and temperature T (equation (12)). The reaction quotient in the oceanic plume
might be useful as an observable because its value in the ML is crucial to habitability (equation
(21)). In Waite et al. (2017)3, the concentrations of reactants used to compute Q are inferred
by obtaining CO2 concentration from carbonate equilibrium (using a pH value for Enceladus’
ocean of 9−11) and deriving other concentrations using the ratios CH4 : CO2 and H2 : CO2 in
the plume. The temperature they use is the putative temperature of Enceladus’ ocean (275 K).
Here, we did not use the reaction quotient as an observable because of the serious difficulty of
computing Q in the plume, and because of its sensitivity to the dilution of the oceanic plume,
which is poorly constrained in our model (see above).

Code availability The code of the model presented in the article are available at xxx.gitlab.com.

Data availability Simulated datasets from which the figures were generated are available at
xxx.gitlab.com.
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