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Main Text

The NASA-led Cassini space mission has provided unprecedented insights into the Saturnian system [START_REF] Spilker | Cassini-Huygens' exploration of the Saturn system: 13 years of discovery[END_REF] . Observations from multiple fly-bys of the moon Enceladus confirmed the existence of a global ocean [START_REF] Thomas | Enceladus's measured physical libration requires a global subsurface ocean[END_REF] . Sampling of the south-pole plume and analysis by Cassini revealed the presence of molecular hydrogen (H 2 ), methane (CH 4 ), and other gases. The detection of H 2 by Cassini's Ion and Neutral Mass Spectrometer (INMS) was confirmed and interpreted as a signature of hydrothermal activity [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . These discoveries pointed to ocean worlds like Enceladus, but also Europa in the Jovian system and recently Ceres in the asteroid belt [START_REF] Nathues | Recent cryovolcanic activity at Occator crater on Ceres[END_REF][START_REF] Schmidt | Post-impact cryo-hydrologic formation of small mounds and hills in Ceres's Occator crater[END_REF] , as possibly harboring conditions that resemble Earth's habitable hydrothermal vents [START_REF] Reynolds | On the habitability of Europa[END_REF][START_REF] Martin | Sea ice, extremophiles and life on extra-terrestrial ocean worlds[END_REF][START_REF] Mccollom | Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa[END_REF] (Fig. 1a). If Enceladus' plume sampled by Cassini has its origin in a global ocean harboring hydrothermal vents [START_REF] Hsu | Ongoing hydrothermal activities within Enceladus[END_REF] , the composition of the plume provides information on the environment of the deep-sea vents.

Hydrothermal circulation on Enceladus may resemble Earth's alkaline hydrothermal activity, producing H 2 and CH 4 , among other gases [START_REF] Glein | The pH of Enceladus' ocean[END_REF][START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] . If H 2 present in the hydrothermal fluid is produced in Enceladus' core [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , serpentinization is a plausible source [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] , while other potential sources are likely insufficient to explain the observed H 2 flux [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . Methane might originate from the (abiotic) conversion of H 2 and carbon dioxide (CO 2 ) to CH 4 in serpentinization waters according to reaction (1) (written for one mol of the electron donor H 2 ) [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] :

H 2 + 1 4 CO 2 -→ 1 4 CH 4 + 1 2 H 2 O (1) 
or from other abiotic sources such as a primordial stock of CH 4 [ 13] , or a stock of organic molecules in the core being pyrolysed [START_REF] Mckay | Possible sources for methane and C2-C5 organics in the plume of Enceladus[END_REF] .

Hydrothermal activity might also sustain a biological origin of methane [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . In Earth deepsea hydrothermal vents, chemoautotrophic single-celled organisms harness thermodynamical disequilibrium generated by chemical gradients as their energy source, rather than sunlight [START_REF] Jannasch | Geomicrobiology of deep-sea hydrothermal vents[END_REF] . Some hydrothermal vents are known to be habitats for abundant thermophilic and hyperthermophilic methanogenic microorganisms that convert H 2 and CO 2 (or its dissolved forms, dissolved inorganic carbon, or DIC) into methane [START_REF] Schrenk | Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge[END_REF][START_REF] Hedderich | Physiology and biochemistry of the methane-producing Archaea[END_REF] according to (1) as the net reaction. On Enceladus, hydrothermal vents shaped by internal heating might provide similar energy sources [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF][START_REF] Travis | Keeping Enceladus warm[END_REF] . Considering the habitability of Earth's hydrothermal vents to methanogens and the putative role of methanogenic metabolism in early Earth biosphere function and evolution [START_REF] Martin | Hydrothermal vents and the origin of life[END_REF] , Enceladus' habitability by hydrogenotrophic methanogens has been discussed [START_REF] Mckay | Possible sources for methane and C2-C5 organics in the plume of Enceladus[END_REF][START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF][START_REF] Mckay | The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume[END_REF] . Theoretical work evaluated the viability of methanogenesis based on observed thermodynamical disequilibrium [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , while the successful incubation of Earth methanogens in putative Enceladean environments was achieved experimentally [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] .

Our goal is to take this approach a critical step further: to quantify the probability that biological methanogenesis might explain the Cassini observations of the plume that were reported in Waite et al. (2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . By integrating mathematical models of geophysical, geochemical and biological processes within a Bayesian statistical framework, we aim at quantifying the plausibility of alternate scenarios of habitability and biological activity, rather than assessing their mere possibility, and evaluate in probabilistic terms how distinguishable they are from one another.

Results

The difficulty in estimating the plausibility of alternate scenarios of habitability and inhabitation arises from dealing with information that is incomplete and comes from non-independent sources. A Bayesian framework is well suited for quantifying inference uncertainty [START_REF] Catling | Exoplanet biosignatures: a framework for their assessment[END_REF][START_REF] Lorenz | A Bayesian approach to biosignature detection on ocean worlds[END_REF] . In general, the Bayesian approach aims at quantifying the probability that alternate hypotheses be true given actual observations. By translating the different hypotheses into mathematical models, simulations can be used to find the likelihoods of the data occurring under the alternate scenarios. A priori (prior) knowledge of factors that influence the probability of each hypothesis being true, including previous observations, is combined with the likelihoods to give the a posteriori (posterior) probability of each hypothesis being true.

Here we apply this framework and contrast a model for a biotic scenario, denoted by B, in which methanogenesis might occur at Enceladus' hydrothermal vents, to a null abiotic model, denoted by A, in which methane production is abiotic. Absence of methanogenesis may be because the hydrothermal environments are not habitable for organisms with a methanogenic metabolism, or because, even if they were, such metabolisms never evolved -due to life not emerging on Enceladus in the first place, or the evolutionary steps to methanogenesis not having taken place. The probability of the B model given our knowledge of the system follows from Bayes' theorem [START_REF] Catling | Exoplanet biosignatures: a framework for their assessment[END_REF] (Extended Data Fig. 1):

P(B|x 0 ) = P(x 0 |B)P prior (B) P(x 0 |A)P prior (A) + P(x 0 |B)P prior (B) (2) 
where x 0 is the vector of observed values of "observables", carefully chosen quantities that may include a biosignature; P(B|x 0 ) is the a posteriori probability of scenario B given the observations; P prior (X) is the a priori probability of scenario X, where X = A or B; and P(x 0 |X) is the likelihood of the data under scenario X. The observables that describe the composition of the plume are the inferred H 2 and CH 4 escape rates (Φ H 2 and Φ CH 4 in mol yr -1 ) and the ratio (H 2 : CH 4 ) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . These escape rates are derived from mass spectrometry abundances relative to water and the estimated water ejection rate in the plume [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . The escape rates are insightful because they and the production rates are expected to be of the same order of magnitude [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF][START_REF] Bouquet | Possible evidence for a methane source in Enceladus' ocean[END_REF] (Methods).

To estimate each term in equation ( 2), we combine a process-based modeling approach with a summary of current knowledge of possible conditions in Enceladus' hydrothermal vents. We begin with constructing a mechanistic model of relevant interior processes. Although considerable uncertainty remains on Enceladus' interior and history [START_REF] Neveu | Evolution of Saturn's mid-sized moons[END_REF] , significant advances have been made regarding the structure of its core and ocean circulation. Based on these results, we build a 1D model of fluid and heat flow. Assuming a porous core with at least one heat source (tidal friction or radiogenic heating) [START_REF] Travis | Keeping Enceladus warm[END_REF][START_REF] Prialnik | Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code: I. Application to Kuiper belt objects and Enceladus[END_REF][START_REF] Roberts | The fluffy core of Enceladus[END_REF] , we carefully address the upward advection of water from hydrothermal vents to the ice ceiling in oceanic plumes shaped by buoyancy and Coriolis forces [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF][START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF][START_REF] Goodman | Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds[END_REF] . We then assemble a model of hydrothermal fluid (hereafter abbreviated HF) and oceanic water mixing in a mixing layer (ML) that sets a gradient of conditions around a hydrothermal vent.

Next we design an ecological model of methanogenesis constrained by our model of interior processes. The ecological model describes the biomass dynamics of hydrogenotrophic methanogenic metabolisms similar to thermophilic and hyperthermophilic archaea that have been found in Earth's hydrothermal vents [START_REF] Topçuoğlu | Hydrogen limitation and syntrophic growth among natural assemblages of thermophilic methanogens at deep-sea hydrothermal vents[END_REF] . We assume the putative ecosystem to be located at the coreocean interface, in the ML surrounding a hydrothermal vent and in which ocean water and HF from the core are mixed (Methods). The biomass growth rate depends on the amount of energy obtained from catabolism (equation ( 1)). The catabolic rate competes with the rate at which energy is lost through processes of biological decay [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] . Chemical environmental conditions determine the Gibbs free energy obtained for each mol of electron donor; environmental temperature influences both catabolic [START_REF] Daniel | The molecular basis of the effect of temperature on enzyme activity[END_REF] and maintenance [START_REF] Tijhuis | A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[END_REF] energy rates, setting limits to the viability of the ecosystem (Fig. 1b,c). The model thus yields a quantitative criterion for habitability: a set of conditions on physical and chemical input parameters under which biomass production by a hydrogenotrophic methanogenic metabolism can reach a stationary state and persist (Fig. 1d). The biotic scenario corresponds to the case of a so-defined habitable environment that is actually inhabited. The model can then predict the composition of the surrounding water mass at biomass production steady-state.

Input parameters of the ecological model are the composition and temperature of the HF and composition of the ocean in species of interest (H 2 , DIC, CH 4 ), gathered from the literature and forming our prior knowledge of the system (Extended Data Table 1). The distributions of these parameters thus define the prior space, θ . A well-supported estimate for the temperature of Enceladus' ocean is 275 K, close to thermal equilibrium with ice [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF][START_REF] Hsu | Ongoing hydrothermal activities within Enceladus[END_REF][START_REF] Glein | The pH of Enceladus' ocean[END_REF] . The HF temperature is estimated to be in the range of 300-620 K [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] . On Enceladus, the source of CO 2 on a geological timescale is unlikely to be magma outgassing, like it is on Earth. As a consequence, we assume that the ocean is the reservoir of CO 2 , possibly as carbonates [START_REF] Glein | The pH of Enceladus' ocean[END_REF] . Using chemical data from the Cassini mission, the ocean DIC concentration was estimated between 10 -1 and 4•10 -3 mol kg -1 [START_REF] Glein | The pH of Enceladus' ocean[END_REF] . The CH 4 concentration in the HF is also a critical parameter of methanogenesis, because its abundance may negatively influence the thermodynamical drive of reaction (1). We first consider methane having its origin in serpentinization, for which an upper bound of CH 4 concentration in the HF can be estimated. There is much debate about the abiotic rate of reaction (1) in serpentinization waters [START_REF] Sleep | H2-rich fluids from serpentinization: geochemical and biotic implications[END_REF] but recent experimental studies set a maximum concentration of 10 -4 mol kg -1 at the hydrostatic pressure of shallow hydrothermal vents (≈ 10 MPa) [START_REF] Mccollom | Abiotic methane formation during experimental serpentinization of olivine[END_REF] , close to what is expected at Enceladus' hydrothermal systems [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] . Next we extend our analysis by raising the upper bound on the concentration of CH 4 in the HF to 0.1 mol kg -1 , to account for other possible abiotic sources for which mechanistic modeling remains beyond reach.

From these estimates, we define the prior distributions, capturing the knowledge and uncertainties of possible conditions in Enceladus' interior. From the prior distributions, the model input parameters are drawn to run 50,000 simulations, resulting in a distribution of so-called "pseudodata" in the space of observables (Fig. 2 and Extended Data Fig. 2). The pseudo-data distribution can be split into the two classes: "habitable" (H), which correspond to the set of parameter values for which there is at least one methanogenic metabolism that can function steadily in the surroundings of the hydrothermal vent; and "uninhabitable" ( H) otherwise. Measuring the volume of the parameters space falling in the "habitable" class gives an a priori probability that Enceladus be habitable, P prior (H) ≈ 0.32. This value is obtained by integrating over the whole prior distributions, including compositions in the putative environment of methanogenic metabolisms that may be likely as well as unlikely. Thus, a rather large range of individually credible values of interior parameters allow methanogenic metabolisms to persist, according to our model.

Simulations accounting for methanogenesis in combination with serpentinization water chemistry consistently explain the observed rates of CH 4 and H 2 emissions and the ratio (H 2 : CH 4 ) (Fig. 2, green distributions). In contrast, simulations in which CH 4 only originates from abiotic reactions in serpentinization water, cannot explain all the observations (Fig. 2, blue and orange distributions). Only the class of biotic models yields a non-zero likelihood for every observable (Extended Data Fig. 3a), provided the a priori probability of life emergence, P(B|H), is large enough (Extended Data Fig. 3c). In fact, the concentration of CH 4 in the HF must be at least approximately 10 -3.5 mol kg -1 in order to explain the observed flux of ≈ 10 9 mol yr -1 (Extended Data Fig. 4a), whereas the maximum concentration of CH 4 in the HF allowed by serpentinization alone, 1 mmol kg -1 [START_REF] Mccollom | Abiotic methane formation during experimental serpentinization of olivine[END_REF] (see Methods) translates into a maximal CH 4 escape rate of ≈ 10 8 mol yr -1 (Extended Data Fig. 2a). The observed flux of CH 4 thus lies far from what can be expected from the abiotic conversion of H 2 and CO 2 through serpentinization; in contrast, it falls in the range of expected values when there is biological methanogenesis (Fig. 2b,d,e). Conversely, if the methane flux were re-measured at values ten-fold lower than Cassini's, serpentinization alone could explain the data, yet methanogenesis would still be possible (Extended Data Fig. 4b).

Besides serpentinization, CH 4 in Enceladus' plume might originate from other abiotic sources such as primordial outgassing [START_REF] Mousis | Formation conditions of Enceladus and origin of its methane reservoir[END_REF] or organic pyrolysis [START_REF] Mckay | Possible sources for methane and C2-C5 organics in the plume of Enceladus[END_REF] . These sources of CH 4 in Enceladus' ocean are too poorly constrained to be modeled mechanistically. Nevertheless, we can test the robustness of our results by considering an alternative scenario in which the maximal concentration of CH 4 in the HF is set to an arbitrary higher value of 0.1 mol kg -1 , possibly due in part to pyrolysis [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . The high methane concentration, abiotic scenario yields a set of abiotic-habitable simulations that encompasses the empirical observations (Extended Data Fig. 4 and5), and a slightly lower a priori probability that Enceladus be habitable P prior (H) ≈ 0.27. In this case, the observations may be explained either by the biotic or abiotic scenario. However, the estimated likelihoods still indicate that the observations are more likely under the B scenario (Extended Data Fig. 3b) provided that P(B|H) is large enough (Extended Data Fig. 3d). To compute the posterior probabilities of the uninhabitable, abiotic-habitable, and biotic models, across the whole range P(B|H) ∈ [0, 1] (or conversely, P prior (B) ∈ [0, 0.27]), we use a random forest classification algorithm (ABC-RF, see Methods) [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] . Results are shown in Fig. 3, except for the probability of uninhabitability, which remains the lowest of all three models for all values of P(B|H). With the a priori belief (in the Bayesian terminology) that all values of P(B|H) between 0 and 1 are equally likely, the preferred scenario is, on average, B with probability P P(B|H)∈[0,1] (B|x 0 ) = 0.59. If P(B|H) is less than 0.2, the preferred model predicts abiotichabitable conditions, yet P(B|x 0 ) is still higher than the a priori probability P prior (B). For values of P(B|H) in the range 0.2 -0.4, the abiotic-habitable and biotic models are equally probable (which is also reflected in the ABC-RF classifier score dipping), and higher values of P(B|H) lead to select methanogenesis as the preferred model.

Our findings shed light on the significance of H 2 and CH 4 as biosignatures. It has been argued that the detection of H 2 might signal environments that are potentially habitable yet uninhabited (inhabitation by hydrogenotrophs supposedly implying consumption and depletion of H 2 ). Assuming that the H 2 plume ejection rate matches the production rate in the core [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , our model shows that levels of H 2 outgassing in the plume do correlate with the energy source available to putative hydrogenotrophs around hydrothermal vents (Extended Data Fig. 2a). However, the escape rate of H 2 appears to be poorly informative of whether or not hydrogenotrophic metabolisms might actually be present (Fig. 2a). In fact, the observed escape rate of H 2 is compatible with active methanogenesis. This is because the change in H 2 escape rate that would be due to the activity of hydrogenotrophs is negligible in comparison with measurement uncertainty combined with prior uncertainty on H 2 molecular concentration in the HF. Thus, the H 2 escape rate may be a signature of habitability but it may not be used to infer inhabitation.

Another potential biosignature is the production of CH 4 [ 35,36] . Because increasing the CH 4 concentration reduces the available energy that reaction (1) yields to the cell (Methods), abiotic production may compete with biotic processes [START_REF] Sleep | H2-rich fluids from serpentinization: geochemical and biotic implications[END_REF] . It appears that the abiotic conversion of H 2 and CO 2 to CH 4 in serpentinization waters is too weak to significantly affect habitability, as a higher concentration of CH 4 in the hydrothermal fluid ([CH 4 ] f ) does not correlate with a significantly lower fraction of habitable simulations (Extended Data Fig. 2a). As a consequence, the observation of CH 4 in the plume is not informative on whether hydrothermal vents might be habitable to methanogens. On the other hand, in line with general considerations of CH 4 as a biosignature [START_REF] Krissansen-Totton | Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life[END_REF] , quantifying CH 4 escape in the plume is very informative about whether or not models that include biological methanogenesis can explain the data (Extended Data Fig. 2b).

Discussion

In summary, models that combine abiotic processes involving production of H 2 in Enceladus' core and biological methanogenesis near hydrothermal vents can explain the Cassini data (Fig. 2). Given the observations, the posterior probability of the biotic scenario is the highest provided the prior probability of life emergence in habitable environments exceeds a threshold, ca. 0.35. Below this threshold, the highest posterior probability is scored by the subset of abiotic models that predict habitability (Fig. 3).

Considering the possibility that deep-sea vent conditions might be conducive to life emergence [START_REF] Russell | The drive to life on wet and icy worlds[END_REF] , better constraining the age and duration of such conditions of temperature and composition in Enceladus should help define ranges of credible values for the probability of life emergence, P(B|H) (Fig. 3). Alternate hypotheses have been proposed for the age and formation of Enceladus, as well as for the evolution of its interior -ranging from a modern origin of the moon 500 Myr ago without an ocean, to a primordial origin at 4,500 Myr with the existence of a modern ocean [START_REF] Neveu | Evolution of Saturn's mid-sized moons[END_REF] . Waite et al. (2017) 3 estimate that the observed production of H 2 may have been sustained by serpentinization in Enceladus for several billion years. Such insights suggest that habitable conditions on Enceladus may have existed around deep-sea vents long enough for life to emerge and methanogenesis to evolve. In the alternate scenario where life origin would require a surface environment with ultraviolet light and atmospheric sources of molecules to feed the prebiotic chemistry [START_REF] Sasselov | The origin of life as a planetary phenomenon[END_REF] ,the prior probability of life emergence in Enceladus' ocean, P(B|H), might be very small. In this case, methane levels inferred from Cassini's observations can be explained in a large fraction of models that predict abiotic habitability, with an abiotic source of methane that remains to be identified.

We emphasize that methane in Enceladus' plume might originate from abiotic sources not included in our model. In our approach, we sampled interior parameters, including [CH 4 ] f in log-uniform, independent prior distributions. More accurate modeling of alternate abiotic sources will require to reconsider the structure of these distributions, e.g. correlating [CH 4 ] f with the H 2 concentration in the hydrothermal fluid ([H 2 ] f ). Our framework has the capacity to accommodate these changes and more generally to account for mechanisms of abiotic methane production other than serpentinization chemistry (outgassing of primordial methane accumulated in the core during formation or pyrolytic production [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] ) when new insights into these processes become available for Enceladus.

Isotopic measurements such as the [START_REF] Mckay | Possible sources for methane and C2-C5 organics in the plume of Enceladus[END_REF] N and 15 N of NH 3 as well as the [START_REF] Mousis | Formation conditions of Enceladus and origin of its methane reservoir[END_REF] C to [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] C and deuteriumto-hydrogen ratios of CH 4 might shed new light on the nature of Enceladus' core and the origin (primordial or modern) of methane. There are challenges, however -instrumental (the Ion and Neutral Mass Spectrometer (INMS) onboard Cassini had an insufficient mass resolution to accurately measure these ratios [START_REF] Mousis | Formation conditions of Enceladus and origin of its methane reservoir[END_REF] ) and analytical (environmental conditions characteristic of hydrothermal vents -pressure and temperature-may alter isotope fractionation of carbon by methanogens, rendering the isotopic markers of life less clear [START_REF] Takai | Cell proliferation at 122 C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation[END_REF] ). Groundbreaking data might come from observations of the plumes of the Jovian icy moon Europa (James Webb Space Telescope (JWST) [START_REF] Kalirai | Scientific discovery with the James Webb Space Telescope[END_REF] , Clipper [START_REF] Phillips | Europa Clipper mission concept: Exploring Jupiter's ocean moon[END_REF] ) and from proposed missions targeting Enceladus itself (ELSAH [START_REF] Eigenbrode | Searching for Life in an Ocean World: The Enceladus Life Signatures and Habitability (ELSAH) mission concept[END_REF] , ELF [START_REF] Cable | Enceladus Life Finder: The search for life in a habitable moon[END_REF] or E2T [START_REF] Mitri | Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system[END_REF] ). Such data are critically needed to identify abiotic sources of methane that might explain Cassini's observations without calling for methanogenesis. In a broader perspective, our work demonstrates how the integration of interior and ecological models can be achieved, so that a Bayesian inferential approach for the detection of habitability and biosignatures can be implemented -an approach that holds much promise for ocean worlds that future programs will discover and observe [START_REF] Catling | Exoplanet biosignatures: a framework for their assessment[END_REF][START_REF] Lorenz | A Bayesian approach to biosignature detection on ocean worlds[END_REF] . [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] and in the ocean, where ocean plumes are shaped by buoyancy and Coriolis forces [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF][START_REF] Goodman | Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds[END_REF] (black spirals). The Cassini spacecraft is represented (not to scale) in one of its fly-bys of Enceladus, during which it crossed the gas plume of oceanic material escaping into space (dotted trajectory). b Catabolic (blue curve) and maintenance (red curve) energy of the modeled hyperthermophilic hydrogenotrophic methanogen in standard chemical conditions (∆G = ∆G 0 ) as a function of temperature. Red dashed lines (vertical) delineate the temperature range over which the energy produced by catabolism is greater than maintenance requirements, resulting in positive growth rate, hence a positive division rate, r. c Division rate as a function of temperature. Red dashed lines (vertical) delineate the range of temperature over which the cell division rate is positive. The gray dashed line (horizontal) corresponds to a baseline death rate of 0.03 d -1 , which sets a minimum division rate needed for net population growth. At the black dot (300.7 K), the division rate and the death rate balance out. Between the lower thermal limit for r > 0 and the black dot, division occurs, but at a slower rate than death, thus leading the population to extinction. The temperature at which the division rate is highest (355.3 K) is indicated. This temperature is called the optimal temperature, T opt . d Thermo-chemical (local) conditions conducive to a non-zero population size at steady state (orange). N * is the number of individuals at population steady-state. The green line is the chemical quotient (Q) imposed by the population at steady-state, denoted by Q * . The gray hatched region bounded by the gray dashed curve indicates the set of conditions under which methanogenesis is thermodynamically favored, i.e. ∆G cat < 0. In blue, subset of simulations in which no population of methanogens could grow ('uninhabitable' scenario, H). In orange, subset of simulations in which a population of methanogens is possible but their activity is not taken into account ('abiotic-habitable' scenario, H ab ). In green, subset of simulations in which methanogens can grow, and their activity is taken into account to produce pseudo-data ('biotic' scenario, B). Magenta dashed lines (vertical) indicate the actual Cassini observations [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . Note the log 10 scale on the horizontal axis. b, c, e, Joint distributions of observable pseudo-data generated by the model. Magenta stars indicate the Cassini observations. Note the log 10 scale on both axes. This figure was generated from a set of 50,000 simulations using random values of internal parameters drawn from the distributions described in Extended Data Table 1. In about 32% of these simulations, the drawn set of parameters allowed the modeled population of methanogens to grow ('habitable', H), the remaining 68% were found to pertain to the 'uninhabitable' scenario ( H, blue). The 'habitable' subset was evenly split at random into two subsets of 8, 008 simulations. In one subset, we did not simulate methanogenesis ('abiotic-habitable' scenario, H ab , orange), while we simulated methanogenesis coupled with the geochemical model in the second subset ('biotic' scenario, B, green). See Methods and Extended Data Tables 2 and3 for model equations and parameter values. Here the model accounts for unknown abiotic sources of methane in the hydrothermal fluid, by allowing for an a priori concentration higher than in the case of serpentinization only. This scenario yields P prior (H) ≈ 0.27. For each P(B|H) value, the circles (green or orange) indicate the posterior probability of the biotic scenario (B, green) and abiotic-habitable scenario (H ab , orange) for the lower and upper bounds of the observation range; the intervals between circles are colored for legibility. The green dashed line is P prior (B) = P prior (H) × P(B|H), the orange dashed line is P prior (H ab ) = P prior (H) × (1 -P(B|H)). The black dotted line is the ABC-RF classifier score (see Methods). The green triangle on the vertical axis shows the mean value of the posterior probability P(B|x 0 ) across P(B|H) ∼ U(0, 1). Note that P( H|x 0 ) (not shown) is very low, and always less than P(B|x 0 ) or P(H ab |x 0 ). See Methods for model equations, Extended Data Table 1 for prior internal parameter ranges, and Extended Data Tables 2,3 for parameters values of model simulations and ABC-RF.

Figures

Methods

Mixing of core-ocean interface waters and plume composition

A hydrothermal hot spot dissipates thermal energy with power F (W) by advection of hydrothermal fluid (HF) at temperature T f into seafloor oceanic waters (OW) at temperature T o . We follow McCollom, (1999) [START_REF] Mccollom | Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa[END_REF] to model HF and OW mixing in a horizontally structured mixing layer (ML). ML waters buoyantly rise according to their temperature and escape the ML to be replaced by OW and HF. We first define the shape of J f (kg s -1 m -2 ), the mass flux density of HF into the ML as a function of the distance, u (m), to the hot spot center:

J f (u) = J max e -( u c ) 2 (3) 
where J max (kg s -1 m -2 ) and c (m) are derived by constraining the hot spot to dissipate power F and by forcing the hot spot center (where J f = J max ) to be entirely composed of HF:

S J f dS = ∞ 0 2πrJ f (u)du = F C p (T f -T o ) (4) 
where S (m 2 ) is the hot spot surface area, hence

c 2 = F πJ max C p (T f -T o ) (5) 
where C p is the specific heat capacity of water (4, 200 J K -1 kg -1 ).

The mass flux density J c (kg s -1 m -2 ) of buoyancy escape of ML waters is expressed as a function of the temperature anomaly T = T (r) -T o following Goodman et al. ( 2004) [START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF] :

J c = 1 u s ρ o 2εgαT (6) 
where u s = 1 m 2 is a unitary surface (for readability, it is replaced with its value in following equations), ρ o (1, 000 kg m -3 ) is seawater mass density, ε (1 m) is the ML thickness, α (3 × 10 -4 K -1 ) is the coefficient of thermal expansion of water and g (0.12 m s -2 ) is the local gravitational acceleration (see values in Extended Data Table 2). Assuming a non-divergent fluid, we can write a system of partial differential equations to express the dimensionless mixing ratio x = m f m f +m o (subscript f denotes the HF and o denotes the OW) and temperature T = T o + x(T f -T o ) as a function of time:

∂ x ∂t = 1 m (J f -xJ c ) ∂ T ∂t = ∂ T ∂ x ∂ x ∂t = 1 m J f (T f -T o ) -J c (T -T o ) (7) 
where m = m f + m o is the ML mass density, which is constant. The steady state can be solved analytically. We can then derive the steady-state composition and temperature of the ML:

                 T * (u) = J f (u) (T f -T o ) ρ o √ g2εα 2 3 + T o J c (T * (u)) = 2ρ 2 o gεαJ f (u)(T f -T o ) 1 3 x * (u) = J f (u) 2 2ρ 2 o gεα(T f -T o ) 1 3 (8) 
where the asterisk symbol superscript denotes the steady-state value.

In the absence of chemical reactions taking place in the ML, we can write the concentration C 0 i of compound i (mol kg -1 ) in the steady-state ML as a function of the concentration of i in the HF (C f i ) and in the ocean (C o i ):

C 0 i (r) = x * C f i + (1 -x * )C o i (9)
The derived set of concentrations then serves as the initial condition for our biological model. An example of a hot spot compositional structure is shown in Supplementary Fig. 1a.

The scaling relationships derived in Goodman et al. ( 2004) [START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF] and Goodman & Lenferink (2012) [START_REF] Goodman | Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds[END_REF] for Europa were used in Choblet et al. (2017) [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] to show that the Coriolis effect was important for the most part of Enceladus' oceanic plumes (OPs) ascension, thus suggesting well-defined plumes that experience little dilution with oceanic waters. In Goodman et al. ( 2004) [START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF] , an OP starts with warm water rising in a turbulent regime, forming a cone, until the Coriolis effect becomes important and the water mass forms a cylinder. When the ocean plume encounters the ice ceiling, it starts growing into a cone shape (Fig. 1a); a steady state is reached when the cone radius equals the Rossby radius of deformation. At this point, the plume begins to shed large eddies that travel horizontally. In our approach, we propose that the composition of the OP is the total mix of all convecting water masses:

C OP i = J c C i dS J c dS (10) 

Internal cell dynamics model

Here, we describe how we model the dependence of metabolism on environmental conditions through the thermodynamics of the catabolic reaction, upon which the bio-ecological model is built as a simplified variant of Sauterey et al. (2020) [START_REF] Sauterey | Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate[END_REF] . Catabolism is the set of reactions that a cell uses to harvest the energy needed for the synthesis of complex organic molecules to repair cell components or to grow. Catabolism can be written for 1 mol of electron donor (eD) as:

1eD + {Y i R i } i =eD -→ {Y j P j } (11) 
where {R i } are the reactants, {P j } the products and {Y i, j } their stoichiometry (counted negative for reactants and positive for products). The Gibbs free energy of the catabolic reaction (J mol -1 eD ) is expressed as a function of temperature T (K) and reaction quotient Q cat (dimensionless):

∆G cat = ∆G 0,cat + RT log e (Q cat ) (12) 
where

Q cat = ∏ i a Y i i ≈ ∏ i C Y i i . ( 13 
)
Here a i is the activity of species i, approximated by its concentration C i . ∆G 0,cat is the Gibbs free energy of the reaction when all activities are unity, expressed as a function of temperature and standard values ∆G 0,S and ∆H 0,S found in chemistry tables:

∆G 0,cat = ∆G 0,S T T S + ∆H 0,S T S -T T S (14) 
where T S = 298 K is the standard temperature. Even spontaneous reactions (∆G < 0) may not occur, should their kinetics be infinitely slow; that is, when the activation energy needed to start them is very high. A fundamental property of living organisms is that they synthesize enzymes that significantly lower the activation energy of catabolic reactions so that they may occur at higher rates, making the potential energy they hold available for maintenance and anabolism (i.e. biomass production).

Our biological model is designed to track both the catabolic reaction rate and the energy that catabolism yields to the cell. The cell is able to run its catabolism at a certain specific rate, q cat (mol eD s -1 mol -1 C x ), which depends on temperature. A general model of enzymatic rate q e (mol eD s -1 mol -1 enzyme ) as a function of temperature was derived in Daniel et al. (2010) 30 and validated experimentally. In their framework, the enzymatic rate is determined by the abundance of activated enzymes E act . Higher temperature accelerates the catalyzed reaction, but also the conversion of activated enzymes to a deactivated state E inact . The overall net enzyme catalysis rate q e is modeled using an Arrhenius law for the rate of catalysis of the reaction by the activated enzyme (k cat , mol eD s -1 mol -1 E act ) and an equilibrium law for the ratio of inactivated to activated enzyme K eq = E inact E act (dimensionless):

q e = k cat 1+K eq k cat = k b h Te -∆G acat RT K eq = e ∆H eq R 1 T eq -1 T ( 15 
)
where k b (1.38 × 10 -23 J K -1 ) is the Boltzmann constant, h (6.63 × 10 -34 J s) is the Planck constant. The other kinetic parameters are enzyme-dependent. In our approach of modeling a generic hyperthermophile, we use values given in Daniel et al. (2010) [START_REF] Daniel | The molecular basis of the effect of temperature on enzyme activity[END_REF] for an enzyme of Thermus sp. RT41a, an organism growing best at around 75 • C, the highest growth temperature in their dataset. These values are (Extended Data Table 2), ∆G acat = 72, 000 J mol -1 (activation energy of the catabolic reaction), ∆H eq = 305, 000 J mol -1 (equilibrium enthalpy of activated to deactivated enzyme) and T eq = 363.15 K (equilibrium temperature of activated to deactivated enzyme). In the Supplementary Results and Discussion, we explore the consequence of varying the values of these parameters. We assume random variation, rather than variation driven by evolutionary adaptation to temperature. Taking evolutionary adaptation into account might result in a larger set of conditions interpreted as habitable and a higher productivity of the modeled population. This might eventually cause significant differences in dihydrogen depletion and methane production in the plume. The consequences of evolutionary adaptation will be addressed in future work, using the approach pioneered in Sauterey et al. (2020) [START_REF] Sauterey | Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate[END_REF] .

The specific catabolic rate q cat (per mole of biomolecule carbon C x , hence in unit mol eD mol -1 C x s -1 ) is obtained by scaling q e with the enzymatic fraction τ (dimensionless, or mol enzyme mol -1 C x ) of biomass (that is, the number of catabolic enzymes per biomolecule in the cell) so that q cat = τq e . The parameter value τ ≈ 1.73 × 10 -5 is estimated by fitting the model to data from Taubner et al. (2018) [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] as described later on. Some of the energy provided by the catabolism goes to the maintenance of the cell and represents a minimal energy for living processes (e.g. repairing denatured proteins and damaged DNA). No growth occurs when only this amount of energy is available to the cell. An empirical and general relationship between the cell maintenance energy rate (e m , kJ d -1 mol -1 C x ) and temperature was established in Tijhuis et al. (1993) [START_REF] Tijhuis | A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[END_REF] :

e m = 84 e 69,400 R ( 1 T S -1 T ) q m = -e m ∆G cat (16) 
where q m (d -1 ) is the rate at which the catabolism must run to meet the maintenance needs. When q cat < q m , the cell decays and eventually dies (Fig. 1b). Otherwise, the remaining catabolic energy then goes to fueling the anabolic reaction, which drives the synthesis of cell building blocks. The anabolic reaction is rarely spontaneous and often requires more energy than catabolism alone may provide. In effect, the cell is able to store energy in the form of ATP until enough is available for anabolism. The rate at which the anabolism runs is much lower than the catabolic reaction rate (think of catabolism as a small gear wheeling the larger gear of anabolism).

More recent observations (Lever et al., 2015 [START_REF] Lever | Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations[END_REF] and references therein) point out that e m as modeled in Tijhuis et al. (1993) [START_REF] Tijhuis | A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[END_REF] might be overestimated. Although a variety of underlying processes to explain minimal energy requirements have been proposed [START_REF] Lever | Life under extreme energy limitation: a synthesis of laboratory-and field-based investigations[END_REF] , a detailed mechanistic model that could explain the available observations is still lacking. Given the persistent uncertainties regarding the minimal energy requirements of cellular life, we chose the conservative approach of using Tijhuis et al.'s model [START_REF] Tijhuis | A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth[END_REF] i.e., the parametrization that disfavors habitability the most.

Kleerebezem & Van Loosdrecht (2010) [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] use a generic chemical composition of biomass that is useful to compute the Gibbs free energy required to synthesize a mol of biomass (∆G ana ). To this energy is added the cost of dissipation that occurs during metabolism. An empirical relationship between characteristics of the metabolism and the amount of dissipated energy (∆G diss ) is [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] :

∆G diss = 200 + 18(6 -NoC) 1.8 + exp ((-0.2 -γ) 2.16 )(3.6 + 0.4NoC) ( 17 
)
where NoC is the carbon chain length in the carbon source and γ is the oxidation number of carbon in the carbon source. In general ∆G diss >> ∆G ana . The energy cost of anabolism ∆G diss +∆G ana can therefore be approximated by ∆G diss . The anabolic rate per mol of biomolecule is therefore given by

q ana = - ∆G cat ∆G diss (q cat -q m ) (18) 
For a given metabolism, q ana is strongly dependent on temperature through q cat and q m , and also depends on the availability of substrates through ∆G cat . The cell accumulates biomolecules at the rate q ana times the number of biomolecules in the cell. We do not represent the number of biomolecules in each cell but rather the mean value for the population. The cells are then set to undergo division at a rate, r, proportional to their internal biomolecule content.

Ecosystem dynamics and steady state

Using quasi-steady-state approximation on internal cell dynamics, the ecosystem dynamics are driven by the dynamics of the cell population and the chemical environment (substrates and products):

dN dt = N(q ana -d) ∂C i ∂t = 1 εu s ρ o J f (C f i -C o i ) + J c (C o i -C i ) + NB * q cat Y cat i ( 19 
)
where N is the surface density of the number of individuals in the population per kg of water (thus in kg -1 m -2 ), d (s -1 ) is a baseline death rate accounting for density-independent mortality, and B * (mol C x ) is the steady-state internal cell biomass, or quantity of biomolecules. To our knowledge, there is no estimation of d for methanogens in their natural habitat; we therefore chose to use the value estimated in Connolly & Coffin (1995) [START_REF] Connolly | Model of carbon cycling in planktonic food webs[END_REF] for marine plankton, and we explore the consequence of varying its value in Supplementary Results and Discussion.

Solving equation (19) for steady-state, and using equation ( 13) yields an expression for the steady-state reaction quotient Q * cat :

Q * cat = exp -1 RT ∆G 0 + (d + e m ∆G diss ) ∆G diss q cat log e Q * cat = log e K -1 RT d + e m ∆G diss ∆G diss q cat (20) 
where K (dimensionless) is the equilibrium constant of the reaction. Q * cat denotes the steadystate value of the reaction quotient, which is the value at which available energy in the cell's environment exactly compensates death (or removal from the environment) and maintenance, and therefore sets a limit value on Q cat for growth, as detailed below.

We assume that if the initial conditions allow for a positive growth rate, the composition will converge toward this non-equilibrium stationary state, as seen in numerical simulations (Supplementary Fig. 1b,c). Initial conditions are favorable to microbial population persistence if

Q * cat is larger than Q cat evaluated at the initial conditions, Q 0 cat | T : Q * cat (T ) > Q 0 cat | T (21) 
which provides a criterion for population viability. In the absence of any other factors, the steady-state concentration of i, C * i , is given by

C * i = C 0 i +Y cat i (C 0 e D -C * e D ). (22) 
The electron donor concentration at steady state, e * D , can be solved by using equation (20) and

Q * cat = 1 C * e D ∏ i =e D C 0 i +Y cat i (C 0 e D -C * e D ) Y cat i (23) 
In the case of Enceladus, we apply this bio-ecological model to a generic methanogenic hyperthermophile, with enzyme kinetic properties described hitherto, in a horizontally structured hydrothermal hot spot. The chemical reaction of hydrogenotrophic methanogenesis written per mol of electron donor (H 2 ) is given by equation ( 1) and has ∆G 0,S = -32.6 kJ mol -1 , ∆H 0,S = -63.2 kJ mol -1 for reactants in gaseous state. To express ∆G 0,cat in the aqueous phase, ∆G aq 0,cat , from ∆G 0,cat in the gaseous phase, ∆G gas 0,cat , we add a corrective term using enthalpies of dissolution:

∆G aq 0,cat = ∆G gas 0,cat -RT ∑ i Y i log e (H i ) (24) 
where ∆G gas 0,car is computed using equation ( 14), H i = C i P i (mol kg -1 Pa -1 ) are Henry's law coefficients, H H 2 = 7.8 10 -4 and H CH 4 = 1.4 10 -3 , taken independent from temperature. The solubility constant of CO 2 is taken as a function of temperature fitted from outputs of the Aspen plus software: 

H CO 2 = exp 9345.17
Regarding anabolism, we assume that the carbon source is also CO 2 , hence NoC = 1 and γ = 4 in equation ( 17) giving ∆G diss .

Estimation of the catabolic enzyme-to-biomass scaling factor

Here, we estimate a credible value for the yet unconstrained enzyme-to-biomass ratio parameter. This ratio is needed in order to derive a specific catabolic rate from enzyme-scale kinetic modeling, as mentioned earlier. To do so, we fit our model to the results of growth experiments in Taubner et al. ( 2018) [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] . In their study, [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] measure cell density as optical density, we focus on the initial growth rate, a parameter that appears in the Verhulst logistic model. Our model being analog to a logistic model, we fit parameters n 0 , r and K n (initial population density, growth rate and carrying capacity respectively) of

n(t) = K n 1 + ( K n n 0 -1)e -rt (26) 
to the experimental growth curve using least mean square method in the "curve fit" function in the Scipy python package [START_REF] Virtanen | SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python[END_REF] . The estimated value of the growth rate, r, is then used to obtain τ from r ≈ q ana = λ (τq eq m ) (

≈ r λ + q m q e 27) hence τ 
where λ , q e and q m are obtained from the composition and temperature of the growth medium in the experiment [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] . In Supplementary Fig. 1b we compare a logistic curve using a growth rate generated by the model at experimental temperature (80 ± 1 • C) and chemical conditions ([H 2 ] = 1.5 mmol kg -1 , [CO 2 ] = 7.7 mmol kg -1 , and negligible [CH 4 ] = 10 -10 mol kg -1 ), with the τ value inferred from the growth data of M. villosus in Taubner et al. (2018) [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] . We find τ ≈ 1.73 • 10 -5 mol enzyme mol -1 C x . We then compared this value to mass-specific resting metabolic rates of unicellular organisms [START_REF] Gillooly | Effects of size and temperature on metabolic rate[END_REF] . To do so, we determined the cell mass predicted by our model using Kleerebezem & Van Loosdrecht (2010) [START_REF] Kleerebezem | A generalized method for thermodynamic state analysis of environmental systems[END_REF] which provides an empirical relationship between cell volume V c (µm 3 ) and cell structural mass M C x = 18 • 10 -15 •V 0.94 c , in mol C x (this relationship was also used in Sauterey et al. (2020) [START_REF] Sauterey | Co-evolution of primitive methane-cycling ecosystems and early Earth's atmosphere and climate[END_REF] ). By applying this relation to a typical 1 µm radius cell, we obtain log e (B 0 ) ≈ -6 (W g -3/4 ) for methanogens in our model at the estimated optimal temperature of ≈ 82 • C in standard chemical conditions (see Fig. 1b). This value falls at the lower end of the empirical range described in Gillooly et al. (2001) [START_REF] Gillooly | Effects of size and temperature on metabolic rate[END_REF] . While τ might be an important parameter in determining the temperature growth curve of an organism, other kinetic parameters of catabolism and maintenance described earlier on also contribute and are estimated separately. As a consequence, when using the value obtained from M. villosus growth data, we do not aim at modeling this organism per se; rather, we model a generic, hypothetical hyperthermophile with temperature apparent properties described in Fig. 1b-d. We explore the consequences of changing the value of parameter τ, along with others in Supplementary Methods, Results and Discussion, as well as in Supplementary Figs. 345.

Bayesian inference

Because the model is complex, the likelihood P(x 0 |X), X = A or B, cannot be analytically expressed, a problem known as "intractable likelihood". Instead we use an Approximate Bayesian A measure of the efficiency of the method is the overall classification error rate (or prior error rate), ζ : the fraction of pseudo-data points that the fitted classifier misclassifies. Conversely, the score 1ζ measures the success rate of the classifier. One can also measure this score for a specific class and compute how wrong the classifier is when it misclassifies pseudo-data points, for instance "with what class does the classifier confuses B the most?". The representation of how the RF classifier confuses different classes is the confusion matrix, of which an example is shown in Extended Data Fig. 2b.

We trained a decision forest on the pseudo-data set of 50, 000 simulations generated from the priors reported in Extended Data Table 1 using the RandomForestClassifier function from the python package ScikitLearn 52 with parameters reported in Extended Data Table 3. In ABC-RF, the posterior probability is approximated by averaging the class probability of each tree. The class probability of i in a tree is the fraction of class i in the leaf corresponding to the prediction. A full description of ABC-RF is found in Pudlo et al. (2015) [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] .

Building the priors

Input parameters of the ecological model are the composition and temperature of the HF and composition of the ocean in species of interest (H 2 , DIC, CH 4 ), with their distribution defining the prior space θ . In our approach, the temperature of Enceladus' ocean is fixed and thus not drawn from a prior distribution. A well-supported estimate for the temperature of Enceladus' ocean is 275 K, close to thermal equilibrium with ice [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF][START_REF] Glein | The pH of Enceladus' ocean[END_REF] . High ammonia concentrations could lead to a lower freezing point of water, and thus a colder ocean, the consequences of which are discussed in Supplementary Results and Discussion. In this section, we explain the ranges chosen for the concentrations in HF and OW of H 2 , DIC and CH 4 , and for the temperature of the HF. A summary is given by Extended Data Table 1.

Constraining H 2 in the hydrothermal fluid and in the ocean. Following Waite et al. (2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , we assume that the dihydrogen present in the hydrothermal fluid is produced in Enceladus' core. Choblet et al. (2017) [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] have argued that serpentinization was a plausible source of H 2 in Enceladus' core, and considering other potential sources Waite et al. (2017) 3 concluded that they were likely insufficient to explain observed H 2 flux. We therefore assume that serpentinization is the primary source of dihydrogen. A maximum value for the H 2 concentration in the hydrothermal fluid is the concentration at saturation with the vapor phase produced during serpentinization [START_REF] Sleep | H2-rich fluids from serpentinization: geochemical and biotic implications[END_REF] . This value may be close to 10 -1 mol kg -1 at pressures of the order of 10 MPa, the expected hydrostatic pressure at Enceladus' seafloor. We neglect the hydrogen saturation concentration variation with temperature and thus make the assumption that the concentration of H 2 in the fluid is drawn independently from temperature, according to

[H 2 ] f ∼ log e U(10 -8 , 10 -1 ) mol kg -1 (31) 
where U denotes the uniform distribution. We note that, depending on the rock and water composition, the maximum dissolved H 2 may be lower than the equilibrium with hydrostatic vapour phase [START_REF] Sleep | H2-rich fluids from serpentinization: geochemical and biotic implications[END_REF][START_REF] Tutolo | A seawater throttle on H2 production in Precambrian serpentinizing systems[END_REF] . As a consequence, we may be overestimating the production of H 2 from serpentinization.

We assume that the concentration of dihydrogen in the ocean is very low since it is produced in the core, as suggested by Waite et al. (2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] :

[H 2 ] o ∼ log e U(10 -8 , 10 -6 ) mol kg -1 (32) 
Note that assuming low levels of dihydrogen in oceanic waters is equivalent to assuming that most of the dihydrogen escapes or is captured in clathrates instead of recirculating in the core. Choblet et al. (2017) [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] suggest that the whole ocean may be processed in the core at relatively short timescales (25-250 Myr) and that the composition of the ocean may depend on ice melting above hydrothermal hot spots and recrystallisation in other regions.

Constraining CH 4 . Methane concentration in the hydrothermal fluid is an important parameter of methanogenesis, as an increased concentration reduces the thermodynamical favorability of the reaction (1). In a first set of simulations, we limit the source of CH 4 to serpentinization chemistry, a source that was suggested in previous studies [START_REF] Mousis | Formation conditions of Enceladus and origin of its methane reservoir[END_REF] . The rate of reaction (1) in serpentinization waters is subject to debate but recent experimental work suggests that this reaction conducted abiotically faces significant energy barriers and would be extremely slow across the temperature range considered here [START_REF] Mccollom | Abiotic methane formation during experimental serpentinization of olivine[END_REF] . The same study showed that in low-pressure (10 MPa) hydrothermal systems where a H 2 vapor phase can form, the reaction is significantly accelerated. Because the hydrostatic pressure at the bottom of Enceladus ocean might be of that order [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] , we assume that CH 4 concentration in the hydrothermal fluid can be as high as reported by McCollom (2016) [START_REF] Mccollom | Abiotic methane formation during experimental serpentinization of olivine[END_REF] , i.e. 0.1 mmol kg -1 , so that:

[CH 4 ] f ∼ log e U(10 -8 , 10 -4 ) mol kg -1 . (33) 
Note that we neglect any conversion of H 2 and CO 2 in the mixing layer, where temperatures are lower. In the alternate scenario, we do not limit [CH 4 ] f to serpentinization chemistry, and use an arbitrarily higher upper bound so that

[CH 4 ] f ∼ log e U(10 -8 , 10 -1 ) mol kg -1 . (34) 
In the ocean, and following what was done for H 2 , we take

[CH 4 ] o ∼ log e U(10 -8 , 10 -6 ) mol kg -1 . ( 35 
)
Constraining the dissolved inorganic carbon (DIC). On the geological timescale, Earth's oceans are recharged with CO 2 through volcanic outgassing and carbonate dissolution. Glein et al. (2015) [START_REF] Glein | The pH of Enceladus' ocean[END_REF] suggest that dissolution of carbonates may be Enceladus' main source of ocean dissolved carbon dioxide, whereas magma outgassing seems unlikely given the small and relatively cold core of Enceladus. Dissolved inorganic carbon is the total of dissociated forms of CO 2 in water (DIC

= [CO 2 ] + [HCO - 3 ] + [CO 2- 3 ]
). DIC concentration in Enceladus' ocean was estimated using plumes chemical data from the Cassini mission [START_REF] Glein | The pH of Enceladus' ocean[END_REF] . The total dissolved inorganic carbon was constrained between 0.1 and 0.004 mol kg -1 :

[DIC] o ∼ log e U(4 • 10 -3 , 10 -1 ) mol kg -1 . (36) 
Our first order model does not take into account the complex carbonate chemistry in the Enceladus ocean that Glein & Waite (2020) [START_REF] Glein | The carbonate geochemistry of Enceladus' ocean[END_REF] investigate. Instead, we have identified the activity of CO 2aq with the total dissolved inorganic carbon. This is a first approximation which should be refined in the future by coupling the current model with that of Glein & Waite (2020) [START_REF] Glein | The carbonate geochemistry of Enceladus' ocean[END_REF] For our analysis to be conservative, we assume the hydrothermal fluid to be DIC-poor and thus use a much lower range

[DIC] f ∼ log e U(4 • 10 -8 , 10 -6 ) mol kg -1 . (37) 
Constraining T f . In Choblet et al. (2017) [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] , temperatures in the core were computed from a range of plausible core porosity (K p ) constrained by the observation of nanometre-sized silica particles and water boiling point (limit of their model). We assume that the water boiling point is not exceeded and that the log e of porosity is a priori uniformly distributed between 10 -14 and 10 -12 . Using the approximation T ∝ log e K p , we conclude that the hydrothermal fluid temperature is drawn from a uniform distribution :

T f ∼ U(300, 620) K (38) 
For comparison, Earth's hydrothermal systems have been observed venting fluids at 640 K [START_REF] Charlou | Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 14' N, MAR)[END_REF] . The temperature of Enceladus ocean is set at a single value of T o = 275 K, close to thermal equilibrium with ice, in agreement with previous work [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF][START_REF] Glein | The pH of Enceladus' ocean[END_REF] .

Selection of observables

Choosing reliable and informative observables is a crucial step of the inference framework. Observables must be model outputs that are confidently measured. Because our model captures only a subset of Enceladus geochemical processes that potentially influence the plume composition, we must carefully evaluate whether the model outputs may faithfully translate into measurements that are available from the Cassini mission.

The model takes the composition and temperature of the hydrothermal fluid, and the composition of the ocean, as inputs. Then the model represents the mixing of hydrothermal fluid and ocean water. In this mixing layer, biological methanogenesis might occur, or not. If it does, the local composition of the mixing layer is altered according to the biological model. The mixing layer waters are then mixed together to form an homogeneous oceanic plume water mass. At this point, there is uncertainty in the amount of dilution of these waters with oceanic waters during their ascent across the ocean. Our mixing model predicts an upward advection of 10 4 to 10 5 kg s -1 at the hot spot. Using scaling relationships for Europa [START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF] that have been adapted for Enceladus [START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] , we find water transports at the top of the column that are three orders of magnitude higher (≈ 10 8 kg s -1 ). This discrepancy between predictions from our mixing model and scaling relations in Goodman et al. (2004) [START_REF] Goodman | Hydrothermal plume dynamics on Europa: Implications for chaos formation[END_REF] indicates that our approach might greatly underestimate the dilution of ML waters during their ascension towards the ice ceiling, and a fortiori neglect the dynamics of ascending waters. To circumvent the challenge of modelling the mixing of the oceanic plume while it travels upward, we select observations that carry information on seafloor processes, independently of dilution in the ascending plumes.

In Waite et al. (2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , the authors assume that the source of dihydrogen in Enceladus compensates for the loss to space from the gas jets at the plume's origin. Following the same approach, we assume that the outward flux is equal to the flux of hydrogen into the ocean (coming out of the mixing layer). Because H 2 is assumed to be produced in the core, we integrate the outward flux from the mixing layer at steady state

Φ H 2 = S J c [H 2 ] dS (mol yr -1 ) (39) 
and thus define an observable that should be consistent with model outputs regardless of dilution in the oceanic plume.

Following Bouquet et al. ( 2015) [START_REF] Bouquet | Possible evidence for a methane source in Enceladus' ocean[END_REF] , we assume that a source of CH 4 in the core compensates clathrate dissociation so that the release rate in the ocean is approximately equal to the measured ejection rate

Φ CH 4 = S J c [CH 4 ] dS (mol yr -1 ) (40) 
We also use

R = [H 2 ] [CH 4 ] (41) 
as an observable. As the other two observables, R should also be independent of dilution. Using R as an observable, however, requires to further assume that this ratio is conserved when the ocean material travels through the ice. This assumption is discussed in Waite et al.

(2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , where it was used to estimate concentrations in H 2 , CO 2 and CH 4 in the ocean.

Other observables

Other observables have been considered but were not used in our inference framework. First, the observed flux of CO 2 in the plume, as well as the H 2 : CO 2 ratio might contain information on whether hydrogenotrophs might be active or not. We did not use these measurements as observables because the CO 2 source is unknown; as we only assume that CO 2 in the mixing layer comes from the ocean, this makes the observed CO 2 flux and H 2 : CO 2 ratio sensitive to dilution of the oceanic plume which, as mentioned above, is a process that is poorly constrained in our model. Furthermore, our knowledge of what might be the CO 2 stock in Enceladus' ocean comes from the Cassini measurements that we aim to use for inference. As a consequence, the observation point would be as informative as the prior knowledge, and thus inference would not be improved.

Second, considering the value in Enceladus's ocean of the Gibbs free-energy associated with reaction (1), Waite et al. (2017) 3 inferred a negative value, and concluded that methanogenesis was feasible in Enceladus ocean. The Gibbs free energy ∆G is computed from the reaction quotient Q and temperature T (equation ( 12)). The reaction quotient in the oceanic plume might be useful as an observable because its value in the ML is crucial to habitability (equation ( 21)). In Waite et al. (2017) [START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] , the concentrations of reactants used to compute Q are inferred by obtaining CO 2 concentration from carbonate equilibrium (using a pH value for Enceladus' ocean of 9 -11) and deriving other concentrations using the ratios CH 4 : CO 2 and H 2 : CO 2 in the plume. The temperature they use is the putative temperature of Enceladus' ocean (275 K). Here, we did not use the reaction quotient as an observable because of the serious difficulty of computing Q in the plume, and because of its sensitivity to the dilution of the oceanic plume, which is poorly constrained in our model (see above).
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 1 Figure 1 | General modeling framework. a Assumed interior structure of Enceladus. Yellow stars indicate Tidal Dissipative Heating (TDH). Red arrows denote water circulation, in the core[START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF] and in the ocean, where ocean plumes are shaped by buoyancy and Coriolis forces[START_REF] Choblet | Powering prolonged hydrothermal activity inside Enceladus[END_REF][START_REF] Goodman | Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds[END_REF] (black spirals). The Cassini spacecraft is represented (not to scale) in one of its fly-bys of Enceladus, during which it crossed the gas plume of oceanic material escaping into space (dotted trajectory). b Catabolic (blue curve) and maintenance (red curve) energy of the modeled hyperthermophilic hydrogenotrophic methanogen in standard chemical conditions (∆G = ∆G 0 ) as a function of temperature. Red dashed lines (vertical) delineate the temperature range over which the energy produced by catabolism is greater than maintenance requirements, resulting in positive growth rate, hence a positive division rate, r. c Division rate as a function of temperature. Red dashed lines (vertical) delineate the range of temperature over which the cell division rate is positive. The gray dashed line (horizontal) corresponds to a baseline death rate of 0.03 d -1 , which sets a minimum division rate needed for net population growth. At the black dot (300.7 K), the division rate and the death rate balance out. Between the lower thermal limit for r > 0 and the black dot, division occurs, but at a slower rate than death, thus leading the population to extinction. The temperature at which the division rate is highest (355.3 K) is indicated. This temperature is called the optimal temperature, T opt . d Thermo-chemical (local) conditions conducive to a non-zero population size at steady state (orange). N * is the number of individuals at population steady-state. The green line is the chemical quotient (Q) imposed by the population at steady-state, denoted by Q * . The gray hatched region bounded by the gray dashed curve indicates the set of conditions under which methanogenesis is thermodynamically favored, i.e. ∆G cat < 0. The black dashed line (vertical) indicates the freezing temperature of water. Parameters used in b-d are given in Extended Data Table2. See Methods for detail.
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 2 Figure 2 | Cassini observations and distributions of model outputs over the space of observables : inferred H 2 and CH 4 fluxes (Φ H 2 and Φ CH 4 ), and gas ratio H 2 : CH 4 . a, d, f, Density distributions of observables pseudo-data generated by model simulations.In blue, subset of simulations in which no population of methanogens could grow ('uninhabitable' scenario, H). In orange, subset of simulations in which a population of methanogens is possible but their activity is not taken into account ('abiotic-habitable' scenario, H ab ). In green, subset of simulations in which methanogens can grow, and their activity is taken into account to produce pseudo-data ('biotic' scenario, B). Magenta dashed lines (vertical) indicate the actual Cassini observations[START_REF] Waite | Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes[END_REF] . Note the log 10 scale on the horizontal axis. b, c, e, Joint distributions of observable pseudo-data generated by the model. Magenta stars indicate the Cassini observations. Note the log 10 scale on both axes. This figure was generated from a set of 50,000 simulations using random values of internal parameters drawn from the distributions described in Extended Data Table1. In about 32% of these simulations, the drawn set of parameters allowed the modeled population of methanogens to grow ('habitable', H), the remaining 68% were found to pertain to the 'uninhabitable' scenario ( H, blue). The 'habitable' subset was evenly split at random into two subsets of 8, 008 simulations. In one subset, we did not simulate methanogenesis ('abiotic-habitable' scenario, H ab , orange), while we simulated methanogenesis coupled with the geochemical model in the second subset ('biotic' scenario, B, green). See Methods and Extended Data Tables2 and 3for model equations and parameter values.
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 3 Figure 3 | Posterior probabilities of abiotic-habitable and biotic models, and classifier score. P(B|H) is the prior probability of life emergence in habitable environments.Here the model accounts for unknown abiotic sources of methane in the hydrothermal fluid, by allowing for an a priori concentration higher than in the case of serpentinization only. This scenario yields P prior (H) ≈ 0.27. For each P(B|H) value, the circles (green or orange) indicate the posterior probability of the biotic scenario (B, green) and abiotic-habitable scenario (H ab , orange) for the lower and upper bounds of the observation range; the intervals between circles are colored for legibility. The green dashed line is P prior (B) = P prior (H) × P(B|H), the orange dashed line is P prior (H ab ) = P prior (H) × (1 -P(B|H)). The black dotted line is the ABC-RF classifier score (see Methods). The green triangle on the vertical axis shows the mean value of the posterior probability P(B|x 0 ) across P(B|H) ∼ U(0, 1). Note that P( H|x 0 ) (not shown) is very low, and always less than P(B|x 0 ) or P(H ab |x 0 ). See Methods for model equations, Extended Data Table1for prior internal parameter ranges, and Extended Data Tables2, 3for parameters values of model simulations and ABC-RF.

  T -167.8108 + 23.3585 log e (T )+ (0.023517 -2.3656 10 -4 T + 4.7036 10 -7 T 2 )35.0

  Taubner et al. (2018) [START_REF] Taubner | Biological methane production under putative Enceladus-like conditions[END_REF] experimented on M. okinawensis, M. marburgensis and M. villosus. We chose to use growth data of M. villosus, as M. villosus has a higher growth temperature than the other two (ca. 80 • C versus ca. 65 • C), in accordance with the kinetic parameter values we chose (see the Internal Cell Dynamics section above). Because data inTaubner et al. (2018) 
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Computation (ABC) approach [START_REF] Csilléry | Approximate Bayesian computation (ABC) in practice[END_REF] . ABC relies on approximating the likelihood by simulating outputs, called pseudo-data, from prior distributions of parameters. The likelihood can then be computed from the distribution of simulation outputs. If θ denotes the parameter vector, x the vector of a pseudo-data point, and x 0 an observation ("true data"), then P(θ ) is specified by the prior distribution, and P(x 0 |θ ) is approximated by sampling simulations of a model π linking parameters to the observable, i.e. π(θ ) = x. Then the probability of a parameter set θ given the observation x 0 follows from Bayes theorem:

Equivalently, instead of parameters, the Bayesian approach can be used to infer so-called classes, corresponding to subsets of the parameter space (Extended Data Fig. 1). See Sisson et al.

(2018) [START_REF] Sisson | Handbook of approximate Bayesian computation[END_REF] for a detailed guide to ABC methods and Csilléry et al. ( 2010) [START_REF] Csilléry | Approximate Bayesian computation (ABC) in practice[END_REF] for examples of applications.

The most basic form of ABC, called "K nearest neighbors" (KNN) ABC, aims at computing the Euclidean distance in the data space to obtain a subset of pseudo-data resembling the observation and the associated subset of the parameter space, so that a posterior distribution of parameters (maximizing the multivariate likelihood of observation) is obtained. Because future characterisation of the habitability or inhabitation of planetary bodies is expected to be a high-dimensional problem, involving a greater number of observables, following Csilléry et al. (2010) [START_REF] Csilléry | Approximate Bayesian computation (ABC) in practice[END_REF] we argue that standard ABC, a method suffering the curse of dimensionality, may not be suited. Instead we used a higher-order ABC method, Random Forest ABC (ABC-RF), based on a machine learning method of classification [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF] . RF-ABC handles high-dimensional problems much more efficiently than KNN methods [START_REF] Pudlo | Reliable ABC model choice via random forests[END_REF][START_REF] Csilléry | Approximate Bayesian computation (ABC) in practice[END_REF] .

A Random Forest is a population of decision trees, that is, oriented graphs (or "flowcharts") in which each node corresponds to a test on a feature (an observable in our context) of the pseudo-data (an example is given in Supplementary Fig. 2a). Depending on the truth value of the test, the pseudo-data are then passed to a branch or another to the next test. For example, in Supplementary Fig. (2a), the first test is R 1 ≤ 2.72. If this test has a truth value of 1 (resp. 0), the data is passed to the next test : Φ CH 4 ≤ 285, 179, 380 mol yr -1 (resp. Φ H 2 ≤ 78, 416, 564 mol yr -1 ) and so on. The goal of the decision tree is to split the pseudo-data set in subsets ("leaves") corresponding as faithfully as possible to the classes uninhabitable ( H), abiotic-habitable (H ab ) and biotic (B).

The RF is a population of trees that categorizes data points into classes according to the votes of the trees in the decision forest. The pseudo-data (or the training dataset) correspond to a set of features associated with their class (together, they are the reference table) and are used to fit the RF classifier. In other words, the algorithm consists in selecting the decision forest that best classifies the pseudo-data in the training dataset. In order to obtain a population of decision trees that splits the data set well, we evaluate the Gini Impurity, which measures the probability to misclassify a point in a set or subset if classification is done at random. The general expression of the Gini Impurity is:

where p(i) is the probability of attributing class i to a point when the class of the point is i.

The overall Gini Impurity of several subsets is the weighted sum of G in each subset.