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Supplementary Figures

Supplementary Figure 1 | Mixing layer model and population dynamics outputs. a Structure of the mixing
layer. x is the mixing ratio of hydrothermal fluid over ocean waters. ε is the thickness of the mixing layer (m).
Vertical arrows indicate the advection velocities of water masses, with scale indicated by the black horizontal
arrow. b Confronting the bio-ecological model to experimental data. Red: logistic growth curve using the
experimental population density at t = 0 as initial state n0 = 0.03, an optical density Kn = 0.55 as carrying
capacity and the growth rate predicted by the model using τ = 1.73 · 10−5 in experimental conditions (T =
353 K, [H2]0 = 1.5 mmol kg−1, [DIC]0 = 7.7 mmol kg−1 [CH4]0 = 10−10 mol kg−1). Red dotted lines are
logistic curves using growth rates obtained with ±1 temperature difference, corresponding to the temperature
range maintained during the experiment in Taubner et al., 2018 1. Blue: data from Taubner et al., 2018 1,
error bars are standard deviation of triplicates. c Numerical solving of model trajectory in 1 m3 of water for
population size (N, cells kg−1, black) and local reaction quotient (Q, red), and predicted steady-state (dashed
lines). Initial concentrations used in this example : [H2] = 22 mmol kg−1, [DIC] = 18 mmol kg−1, [CH4] =
0.03 µmol kg−1. Temperature is 329 K. These conditions correspond to the composition found 5 m from the
center of a hot spot generated with random parameters sampled in our prior distributions (described in Extended
Data Table 1) : [H2]o = 8.0×10−8 mol kg−1, [H2] f = 5.0× 10−6 mol kg−1, [CO2]o = 5.7× 10−7 mol kg−1,
[CO2] f = 6.6×10−8 mol kg−1, [CH4]o = 1.0×10−4 mol kg−1, [CH4] f = 1.1×10−5 mol kg−1 and Tf = 421.5 K.
See Methods for model equations. Model parameters used for this example are default values given in Extended
Data Table 2.
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Supplementary Figure 2 | Approximated Bayesian Computation - Random Forest (ABC-RF) classifier.
a Example of a decision tree in a decision forest fitted to pseudo-data generated by our model. At each node,
the left arrow is followed if the test of the node is true, the right arrow is followed if the test is false. Here,
the allowed maximum depth of the tree is 2, meaning that the tree has two levels of nodes, making it easy to
read. "Gini" stands for the Gini impurity, which was minimized to fit the tree to the data (Methods). "Samples"
is the proportion of samples filtered at each node in the training dataset and "value" contains the probability
associated with every class. In the tree, R1 = H2 : CH4. b Confusion matrix of the ABC-RF classifier for our
serpentinization-only dataset in which P(B|H) = 0.5. The confusion matrix evaluates the performance of the
classifier on a set of pseudo-data on which the random forest was not fitted. The values and colors in the squares
(darker means higher value) denote the proportion of simulations in the "True model" class that were classified
into "Predicted model". See Methods for model equations. Model parameters used are given in Extended Data
Tables. 2 and 3.
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Supplementary Figure 3 | Model outputs as a function of model parameters. a Outputs of the purely abiotic
model. Blue dots indicate ’uninhabitable’ simulations (H̄), orange dots indicate ’abiotic-habitable’ simulations
(Hab).b Outputs of the model including biological activity. Green dots indicate habitable simulations in which
biological methanogenesis occurs (B). F is the power dissipated by the hotspot (×10 GW), d is the baseline
death rate of the population (in d−1, log10 scale), ∆Gacat , ∆Heq and Teq are parameters governing the shape of
the catabolic rate as a function of temperature (in kJ, kJ and K respectively), τ is the active biomass scaling
factor, in ×10−5 molenzyme mol−1

Cx
(see Methods for further detail). Black dashed lines (vertical) indicate default

parameter values. Magenta dashed lines (horizontal) indicate Cassini observations2. Internal parameters (HF
and OW compositions, HF temperature) are sampled from log-uniform distributions in ranges given in Extended
Data Table. 1. See Methods for model equations. Parameters F , d, ∆Gacat , ∆Heq, Teq and τ vary as described in
Supplementary Methods.
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Supplementary Figure 4 | Change in local density of the prior probability of habitability as a function
of model parameters. F is the power dissipated by the hotspot (×10 GW), d is the baseline death rate of the
population (in d−1, log10 scale), ∆Gacat , ∆Heq and Teq are parameters governing the shape of the catabolic
rate as a function of temperature (in kJ, kJ and K respectively), τ is the active biomass scaling factor, in
×10−5 molenzyme mol−1

Cx
(see Methods for further detail). For each point, the x coordinate is the center of a range

of a model parameter’s value in which the proportion of habitable simulations is computed. The y coordinate is
the difference between the proportion of habitable simulations in the whole set and the local proportion. Black
dashed lines (vertical) indicate default parameter values. Internal parameters (HF and OW compositions, HF
temperature) are sampled from log-uniform distributions in ranges given in Extended Data Table 1. Parameters
F , d, ∆Gacat , ∆Heq, Teq and τ vary as described in Supplementary Methods.
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Supplementary Figure 5 | Cassini observations and distributions of model outputs over the space of
observables when model parameters vary. a, d, f Density distributions of pseudo-data generated by simulation
of observables in which model parameters are drawn at random. Blue indicates the subset of simulations in
which no biological methanogenesis is possible (’uninhabitable’, H̄). Orange indicates the subset of simulations
in which biological methanogenesis is possible but not taken into account (’abiotic-habitable’, H). Green
indicates the subset of habitable simulations in which biological methanogenesis is included to generate the
pseudo-data (’biotic’, B). Magenta dashed lines indicate Cassini observations2. Note the log10 scale on the
horizontal axis. b, c, e Joint distributions of observable pseudo-data generated by the model. Magenta stars
indicate Cassini observations. Note the log10 scale on both axes. See Fig. 2 for more details, Methods for model
equations and Extended Data Tables 1 and 2 for prior internal parameter ranges and model parameter values.
Parameters F , d, ∆Gacat , ∆Heq, Teq and τ vary as described in Supplementary Methods.
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Supplementary Figure 6 | Effect of lower ocean freezing temperature on a population of methanogens.
a Minimum doubling time as a function of ocean temperature. b Steady-state population size as a function
of temperature. All data points were obtained by numerically solving the differential equation system for the
concentrations and population size (equation (19) in Methods) localized 5 m from the center of a hydrothermal
vent with Tf = 334 K, [H2] f = 0.02 mol kg−1, [DIC] f = 0.02 mol kg−1, [CH4] f = 2.9 10−8 mol kg−1,
[H2]o = 3.35 10−8 mol kg−1, [DIC]o = 2.8 10−6 mol kg−1 and [CH4]o = 6.2 10−8 mol kg−1. We varied To from
230 to 273 K to explore the consequences of a lower freezing point of water in Enceladus’ ocean. Parameters for
the methanogenic physiology are the standard values in Extended Data Table 2.
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Supplementary Methods

Sensitivity analysis

We conducted a sensitivity analysis of our model by varying the parameters Teq, ∆Ga, ∆Heq, τ , d and

F (see Extended Data Table 2 for default values). We generated a set of 50,000 simulations using the

prior distributions of internal parameters and drawing model parameters at random in the following

distributions. Teq, ∆Ga and ∆Heq, the parameters governing the catabolic rate function, are drawn from

uniform laws over ranges given in Daniel et al. (2010)3:

Teq ∼ U(313,364) K

∆Ga ∼ U(50,75) kJ

∆Heq ∼ U(85,420) kJ

(1)

The power dissipated by the hotspot is taken in the range proposed in Choblet et al. (2017)4 :

F ∼ U(1,10) GW (2)

The active biomass scaling factor is taken in a range allowing it to vary of one order of magnitude:

τ ∼ U(0.1,10) ·10−5 molenzyme ·mol−1
Cx

(3)

It has been argued5 that the basal death rate d can be virtually 0, hence a range of very small values:

d ∼ loge U(10−8,10−1) d−1 (4)

Modeling the consequences of a lower freezing temperature of water

We address separately the possibility that ammonia in Enceladus’ ocean might lead to a lower freezing

point of water and thus a lower ocean temperature. We vary To linearly between 230 and 275 K and

model a hot-spot with otherwise fixed parameters Tf = 334 K, [H2] f = 0.02 mol kg−1, [DIC] f = 0.02 mol kg−1,

[CH4] f = 2.9 10−8 mol kg−1, [H2]o = 3.35 10−8 mol kg−1, [DIC]o = 2.8 10−6 mol kg−1 and

[CH4]o = 6.2 10−8 mol kg−1. We numerically solve the population dynamics in a localized place around

the hot-spot (5 m) and measure the minimum doubling time as

min(doubling time) =
N(argmax

{dN
dt

}
)

max
{dN

dt

} × loge 2 (5)

We identify the steady-state population size as the population at the end of the integration interval of 1

million days. Results are presented in Supplementary Fig. 6 and discussed in Supplementary Discussion

below.

8



Supplementary Results and Discussion

Sensitivity to model parameters

Perturbing the model by using randomly drawn parameter values (with distributions described in

Supplementary Section ) shows little influence of parameter values on simulated observables (Supplementary

Fig. 3). We find that parameters ∆Gacat (governing the shape of the catabolic rate as a function of temperature)

and τ (scaling cellular growth with enzyme function) significantly influence the distribution of observables

in simulations run with parameters that allow methanogens to exist (Supplementary Fig. 3).

Overall, variation in model parameters, and physiological parameters in particular, results in a higher

fraction of habitable simulated environments (P(H)= 0.91, instead of P(H)= 0.27 with default parameter

values). The ∆Gacat parameter is found to have great influence on P(H), and higher values for this

parameter, including the default value, lead to much lower P(H) than the average (Supplementary Fig.

4).

∆Gacat accounts for the activation energy of catabolic enzyme and, all else being equal, increasing

∆Gacat limits the catabolic rate (equation (15) in main text). As a consequence, lower values of ∆Gacat

allow methanogens to function in harsher environments due to increased qcat and unchanged qm (see

Methods in main text).

Although the perturbation of model parameters decreases the overall classification power, it does not

alter our inference qualitatively, that methanogenesis at Enceladus’ seafloor is plausible (Supplementary

Fig. 5g). Methanogenesis under varying parameters still explains well the observed high value of methane

flux, but the median value of biotic methane flux is shifted to lower values in comparison with pseudo-

data produced with fixed parameters. Altogether, the higher a priori probability of habitability and

the lower median biotic methane production might be explained by a lower value of ∆Gacat , allowing

harsher environments to be habitable, while colder environments, being poor in hydrothermal fluid, are

also poor in nutrients, thus limiting methane production. The ΦCH4 distribution might then be skewed

by pseudo-data points corresponding to low availability of H2, rendered inhabitable by the low value of

∆Gacat and thus producing less methane.

We stress that in order to incorporate varying parameters into the Bayesian inference, it is necessary

to constrain the distribution from which parameters are drawn, so that they bring relevant information

to the inference. Variation in biological parameters that measure cell ’traits’ may be driven by individual

plasticity or population adaptation. Our knowledge of the mechanistic relationships that may constrain

plastic or adaptive variation, such as physiological and genetic trade-offs between traits, is, however,
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limited. Therefore we chose to interpret parameter variation as random perturbations of the model,

rather than attempt at a process-based biological exploration of the parameter space.

Lower freezing temperature of water

If the freezing temperature point is lower, e.g due to high ammonia content in the ocean, the ocean

temperature might be lower than 275 K. In the preliminary analysis described in Supplementary Methods,

we find that lower ocean temperatures lead to potentially much higher doubling times in the modeled

population of methanogens (Supplementary Fig. 6a). When we generate the sets of simulations used

in our statistical approach, we only use the steady state of the population dynamics, regardless of the

time required to reach it (see Methods). Thus, our results are unaffected by the fact that populations of

methanogens might grow exceedingly slowly in an ocean colder that 275 K. In addition, our simulations

show that, in spite of extremely slow growth in a cold ocean, populations eventually reach a much larger

size at steady-state (Supplementary Fig. 6b). This may result from lower ocean temperatures increasing

the volume of interfaces between hydrothermal fluid and ocean water that are cooler than the upper

thermal limit of life, thus enhancing the growth of the whole population. This outcome (i.e. larger

steady-state population size in a colder ocean) highlights the fact that ecosystems that are predicted

viable at 275 K may not be imperiled by colder temperature. Furthermore, larger populations at steady

state might translate in a stronger environmental impact of biological methanogenesis, which might

even increase the likelihood of the observations under the inhabited model.

It is worth noting that the preliminary analysis presented here uses physiological parameters of a

hyperthermophilic methanogen (e.g. Teq = 90 ◦C). In contrast, psychrophilic methanogens may have

physiological adaptations that allow them to grow faster than the predicted growth of thermophilic

methanogens exposed to a cold environment. For all these reasons, we expect a lower freezing point

of ocean water to have limited effects on our results. This, however, warrants further investigation.

Sustainability of favorable conditions

Back-tracking rates of conversion of H2 and DIC to methane by the modeled methanogens yields

mean values of the order of 108 mol of H2 and DIC consumed per year by methanogens. Waite et al.

(2017)2 estimates that the stock of minerals in Enceladus’ core could support the observed outgassing

rate ≈ 109 mol yr−1 for billions of years. Estimation of DIC concentration in Glein et al. (2015)6

(10−3 to 10−1 mol kg−1) yields a total stock of DIC in Enceladus’ ocean (which mass is computed from

ocean dimensions in Choblet et al. (2017)4) of the order of 1018 mol, which amounts to 50 to 500 Myr

of modern outgassing rates and consumption by methanogens. Given that these estimates correspond to

the modern stock of DIC, stocks in the past were probably larger. A potential methanogenic biosphere

might therefore be limited in the future if no carbon recycling process is present.
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