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Statement of Translational Relevance 

Previous studies of transcriptomic profile-based pancreatic adenocarcinoma (PAC) subtypes have 
focused on the qualitative classification. Using RNA micro-array technique, our team previously defined 
six quantitative tumor and stroma components and developed a qualitative subtyping schema with the 
help of these components. In this study, we demonstrated that the quantitative components are more 
robust than qualitative classifications from different transcriptomic profile techniques (RNA sequencing 
and RNA micro-array). Comparing with the qualitative subtypes, combining six quantitative components 
showed an advantage in the prognosis of disease-free survival (DFS) and overall survival (OS) in resected 
PAC. We created and validated a new DFS based multivariate Cox regression prognostic model, including 
six PAC transcriptomic component levels and pathological characteristics. We used a monocentric 
cohort for training of the model and validated the model by an independent multicentric cohort. The 
statistical significances were observed in both cohorts.  
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Abstract 

Purpose: 

Our team previously defined six quantitative transcriptomic components, and a classification in five 
subtypes by association of these components. In this study, we compared the robustness of quantitative 
components and qualitative classifications from different transcriptomic profiling techniques, 
investigated their clinical relevance and proposed a new prognostic model. 

Experimental Design:  

210 patients from a multicentric cohort and 149 patients from a monocentric cohort were included in 
this study. RNA microarray profiles were obtained from 165 patients of the multicentric cohort. RNA 
sequencing (RNA-seq) profiles were obtained from all the patients.  

Results: 

For the patients with both RNA micro-array and RNA-seq profiles, the concordance in subtype 
assignment was partial with an 82.4% coherence rate. The correlation between the two techniques 
projections of the six components ranged from 0.85 to 0.95, demonstrating an advantage of robustness. 
Based on the Akaike Information criterion, the RNA components showed more prognostic value in 
univariate or multivariate models than the subtypes. Using the monocentric cohort for training, we 
developed a multivariate Cox regression model using all six components and clinicopathological 
characteristics (node invasion and resection margins) on DFS. This prognostic model was highly 
associated with DFS (p<0.001). The evaluation of the model in the multicentric cohort showed significant 
association with DFS and OS (p<0.001). 

Conclusions: 

We described the advantage of the prognostic value and robustness of the whole-tumor transcriptomic 
components than subtypes. We created and validated a new DFS based multivariate Cox regression 
prognostic model, including six PAC transcriptomic component levels and pathological characteristics.   
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Introduction 

Pancreatic adenocarcinoma (PAC) accounts for 2.5% of all cancers and 4.5% of cancer mortality 
worldwide1, in 2018. At diagnosis, only 15-20% of patients may benefit from curative resection2. The 5-
year overall survival (OS) rate is only 9%, which is the lowest of all the cancers3.  

In the past decade, transcriptomic profiling was used to identify PAC subtypes. Using gene expression 
micro-array analysis, Collison et al.4  identified three subtypes: classical, quasi-mesenchymal (QM-PDA) 
and exocrine-like. Moffitt et al.5 stratified two tumor tissue subtypes (basal-like tumor and classical like 
tumor) and two stromal tissue subtypes (normal stromal and activated stromal) in 2015. Using formalin-
fixed paraffin embedded (FFPE) samples and transcriptomic profiles acquired using Affymetrix HG-U219 
micro-arrays, our team published a new classification system with more detailed differentiation of 
tumor microenvironment in 20186. We described the existence of two tumor-specific transcriptomic 
components (basal-like tumor component and classical tumor component) and identified four stromal-
specific transcriptomic components (activated stroma component, inactive structural stroma 
component, inflammatory stroma component, and immune stroma component). By association of the 
tumoral and stromal transcriptomic components, we proposed a classification in 5 subtypes (pure 
classical, immune classical, desmoplastic, stroma activated and pure basal-like) with significant 
prognostic values. We demonstrated that the exocrine-like phenotype resulted from normal exocrine 
pancreatic tissue contamination. Comparing with other studies7,8,9, the two tumor components, basal 
like or QM-PDA and the classical, were commonly identified in most classification systems10. The basal-
like subtype carried the worse prognosis compared with classical subtype (median OS 17-19.2 months vs 
19-43.1 months).10  

Recent work based on single-cell analyzes has suggested that most PAC tumors are composed of a 
mixture of subtypes11,12 , making discrete subtypes irrelevant resulting in disagreeing subtyping 
methods13. Given the complexity of PAC intra-tumor heterogeneity, the concept of a Molecular Gradient 
that grades tumors rather than assigning them to disjoint subtypes has been proposed as a clinically 
relevant alternative14. While the idea of scoring or estimating the proportion of each phenotype was 
proven to be effective for the epithelial compartment, it is unclear how the stromal component, which is 
a major constituent of PAC lesions and holds key clinical value5, should be integrated. 

In this study, we used an affordable RNA sequencing (RNA-seq) assay to investigate the clinical value of 
transcriptomic tumor and stroma components in resected PAC.  
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Patients and Methods 

Sample collection and clinicopathologic data 

We included two cohorts of patients in this study. The first cohort is a multicentric cohort (Cohort 
Multi). The first part of this cohort included 165 patients among the 309 patients who were included in 
our precedent study6. For these 165 patients, enough remaining RNA was available. The second part of 
this cohort included 45 patients who had curative intent resection for PAC and who received an 
adjuvant chemotherapy from May 2011 to May 2018 in the Pitié Salpêtrière Hospital (Paris, France). The 
Pitié Salpêtrière Hospital was one of the centers in the precedent study and these 45 patients were 
successive patients of the precedent study. The second cohort is a monocentric cohort (Cohort Mono). 
This cohort included 149 consecutive PAC patients who were operated in Beaujon Hospital (Paris, 
France) from April 1997 to April 2009. For these two cohorts, all types of pancreatic resections were 
eligible. Exclusion criteria were preoperative chemotherapy or radiotherapy, macroscopic incomplete 
resection (R2), ampulla of Vater adenocarcinoma, or pancreatic tumors other than adenocarcinoma. 
Patients who died of postoperative complications during the 30 days following the surgery were also 
excluded because they were not informative for translational study. 

This study was conducted in accordance with principles of the International Conference of 
Harmonization Good Clinical Practices and Declaration of Helsinki and was approved by an independent 
ethics committee (CPP Ile-de-France 2014/58NICB and 2014/59NICB). The tumor samples included in 
this study came from routine care, and no additional samples were taken in the context of this study. An 
information note was given to the patient to inform them of the use of their samples for future 
molecular analysis. Patients had the possibility to sign an opposition note to such analysis. All the 
included patients accepted to participate. The FFPE samples of the first part of the Cohort Multi and the 
Cohort Mono were extracted as we previously published (two cores with diameters of 1.5mm)6. For the 
Cohort Mono, specialist pancreatic pathologist (J.C) confirmed the presence of neoplastic cells, selected 
a representative FFPE tumor block after examination of H&E-stained slides and gave a visual estimation 
of tumor cellularity. Two cores with diameters of 1.5mm in the zone of tumor were extracted. For the 
second part of the Cohort Multi, the pathologist specialized in pancreatic disease (J.A) confirmed 
pathology diagnosis, selected representative cores (1 core diameter 1.5 mm for RNA extraction) after 
the examination of H&E-stained slide.  

The following data were collected in a prospective database: clinical and pathologic characteristics 
(gender, age, medical history, date of diagnosis, location of the primary tumor, primary tumor diameter, 
tumor differentiation grade, and TNM stage), follow-up data (date of primary resection, date and type of 
relapse, date of diagnosis of metastatic disease, date and type of chemotherapy regimen, date, and type 
of chemoradiotherapy, date of death or last follow-up). The TNM stage was redefined according to the 
AJCC 8th edition by the originally collected data.  

Among the 359 patients included, 86 did not receive an adjuvant chemotherapy, 207 received a 
gemcitabine-based adjuvant chemotherapy and 56 other chemotherapy regimens. Only 3 patients (<1%) 
received an adjuvant mFOLFIRINOX. 

RNA extraction and RNA-seq 
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In the first part of the Cohort Multi and the Cohort Mono, DNA/RNA was extracted as we previously 
published using the ALLPrep FFPE tissue kit (QiagenÒ, Venlo, The Netherlands)6. In the second part of the 
Cohort Multi, total RNA was extracted from FFPE samples using RNeasy FFPE kit (QiagenÒ, Germany). A 
total of 150 ng of RNA was used as the starting material for QuantSeq 3’ mRNA-Seq Library Prep Kit FWD 
(LexogenÒ, Austria), according to the manufacturer’s instructions. RNA-seq reads were mapped using 
STAR15 with the proposed ENCODE parameters on the human hg38 genomes and transcript annotation 
(Ensembl 75). Gene expression profiles were obtained using FeatureCount16. The counts per gene were 
normalized to CPM (counts per million). The CPM normalized data were then transformed with log2 
using an offset of 1.  

Determination of PAC whole-tumor RNA component levels and classification of subtypes previously 
published 

We previously described six RNA components by independent component analysis (ICA)17 based on 
Affymetrix result6,18. These components can quantitatively describe the composition of the tumor (basal-
like tumor component and classical tumor component) and stroma (activated stroma component, 
inactive structural stroma component, inflammatory stroma component, and immune stroma 
component) component levels. Using the reference of the six components, we projected the component 
levels of the present study. 

We also published6 the centroid of each of the 5 subtypes (pure classical, immune classical, 
desmoplastic, stroma activated and pure basal-like). This subtype classification was originally clustered 
by non-supervised clustering and nominated by their expression of six component levels. The centroid 
comprises the average subtype expression value of 404 selected genes. The selected gene expression 
profile of the present study was then correlated to each of the 5 centroids using Spearman rank 
correlation, as previously published; the subtype centroid with the highest correlation defines the 
predicted class of the test samples in the present study. 

The molecular characterization results in two types of sample phenotyping. Subtyping resulted in a 
stratification for which each patient is found to be a member of one of the 5 subtypes. On the other 
hand, the projection on the 6 components resulted, for each patient, in 6 scores measuring the relative 
level of each tumor and stromal phenotype encoded in the components. For representation purposes, 
the component projections were then scaled so that each component had a mean of 0 and standard 
deviation of 1. Ultimately, the classification into 5 subtypes results in one qualitative variable (with five 
modalities), while the component projections result in 6 quantitative variables (one for each 
component). 

Deriving a prognostic model and subtypes from RNA component 

A Cox proportional hazards regression model was trained on the disease-free survival (DFS) of the 
monocentric cohort using the 6 RNA components, resection margins (R) and N status. A conditional risk 
score was then obtained for any new patient using the trained coefficients on the patient’s RNA 
components value as well as R and N status. Prognostic groups were then defined by the patient’s 
predicted months of DFS. 

Statistical analysis 
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Means were compared with the independent-samples t test, respectively. Continuous distributions were 
compared to binary or categorical variables using WilCoxon’s signed ranks test or Kruskal-Wallis’ tests, 
respectively. Associations between categorical variables was done using c2 test or fisher’s exact test.  c2 
test was used to compare the variables in more than two groups and fisher’s exact test was used to 
compare the variables in two groups. Associations between two continuous variables, for instance ICA 
projections, were done using Spearman’s rank correlation. OS was defined as the date of surgery to 
death resulting from any cause. DFS for resected patients was calculated from the date of surgery until 
first recurrence or death (whatever the cause). Survival curves were estimated using the Kaplan–Meier 
technique and compared with the log-rank test. For each test, statistical significance was set at a 2-sided 
p-value of < 0.05. Univariate and multivariate Cox regression analysis and Kaplan-Meier curves were 
computed using the forest and survival package of the R statistical suite (R Core Development Team). 
The Cox regression model was used for analyzes and for estimating the hazard ratio with 95% 
confidence intervals (95% CI).  
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Results 

Patient Population 

A total of 359 resected patients were included for this study originating from one multicentric cohort 
(Cohort Multi n=210) and one monocentric cohort (Cohort Mono n=149). Clinicopathological 
characteristics of these two cohorts are summarized in Table 1. The patients in Cohort Mono were 
significantly slightly younger than patients in the Cohort Multi.  

Evaluation of PAC whole-tumor subtypes 

To evaluate the technical robustness of subtyping-defining RNA signatures, the samples from the first 
part of multicentric cohort were profiled using both a micro-array and RNA-seq FFPE-compatible 
approach. The concordance in subtype assignment was partial with an 82.4% coherence rate of all 
subtypes (Figure 1. A). The distribution of subtypes in each cohort was uniform in both cohorts (Figure 1. 
B). The prognostic value of whole-tumor subtypes was investigated and showed a significant association 
with DFS (Figure 1. C) and OS (Figure 1. D) in the pooled cohorts (n=359). For the DFS, pure basal-like 
subtype and the stroma activated subtype significantly showed the earliest relapse, with a median DFS 
of 10.23 months and 11.74 months, respectively. Desmoplastic subtype and pure classical subtype 
showed an equivalent outcome, with a median DFS of 17.18 months and 17.97 months, respectively. 
Immune classical showed the best outcome, with a median DFS of 36.10 months (Figure 1. C). Similar 
results were observed for OS (Figure 1. D).  

Evaluation of tumor and stroma RNA components 

Given the impaired technical robustness of subtypes and the recent results on tumor heterogeneity, we 
next thought to evaluate the use of components to quantify the two tumor phenotypes (basal-like and 
classical) and the four types of stroma (inactive structural stroma, activated stroma, inflammatory 
stroma, and immune stroma). The correlation between the micro-array and RNA-seq-based projections 
of the six components ranged from 0.85 to 0.95 (Figure 2. A-B), demonstrating a high robustness.  

Univariate Cox regression between DFS and RNA components (Figure 3. A) or subtypes (Figure 3. B) 
showed significant associations in both cases. Based on the Akaike Information criterion (AIC), the RNA 
components showed more prognostic value in univariate or multivariate models than the subtypes 
(Supplementary Figure. 1). 

Defining a novel prognostic model and subtypes based on RNA components 

Given the technical robustness and high prognostic value of the RNA components, we then trained in 
Cohort Mono a multivariate Cox regression model using all six RNA signatures and common 
clinicopathological characteristics (node invasion and resection margins) on DFS (Figure 3. C). This 
prognostic model was highly associated with DFS (p<0.001). To improve the interpretability and usability 
of the prognostic model, three prognostic groups were derived from the regression model’s prediction 
into groups of poor (less than 12 months predicted DFS), medium (between 12 and 36 months predicted 
DFS) and good prognosis (36 months or more of months predicted DFS) showing significant differences 
in DFS (Figure 3. D) and OS (Supplementary Figure 2. A). The evaluation of the model in the Cohort Multi 
showed significant association with DFS (Figure 3. E) and OS (Supplementary Figure 2. B). 
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No significant difference of the distribution of the prognostic groups in each cohort was observed 
(Supplementary Figure. 3). In all patients of two cohorts, we observed 262 patients with relapse in 5 
years and 59 patients without relapse in 5 years. The prognostic model was significantly associated with 
the 5-year DFS rate (Supplementary Figure 4. A). Including the impact of adjuvant therapy as a variable, 
the multivariate Cox regression analysis showed the prognosis value of the model is independent for 
DFS (Supplementary Figure 4. B) and OS (Supplementary Figure 4. C). 

Characterization of the proposed prognostic groups 

The three prognostic groups showed specific RNA and clinic-pathological patterns (Figure 4. A). In 
particular, the poor prognostic group is frequently associated with N2 lymph node stage (p=0.001) and 
R1 resection margins (p=0.034). The prognostic groups showed differential distribution in the five RNA 
subtypes (Figure 4. B). Pure basal-like subtype was significantly more observed in the groups with poorer 
prognostic (Good: 0.00%, Medium: 9.52% and Poor: 31.00%; p<0.001) while the desmoplastic (Good: 
42.97%, Medium: 26.98% and Poor: 13.00%; p<0.001) and immune classical (Good: 14.84%, Medium: 
9.52% and Poor: 2.00%; p=0.004) were more frequent in groups of improved prognostic. 

Specific enrichment in each RNA component further demonstrates the enrichment of each prognostic 
group in each RNA-defined tumor and stromal phenotypes (Figure 4. C-H). 

For the two RNA tumor components, basal-like tumor component level was significantly higher 
expressed in the poorer prognostic groups (p<0.001) (Figure 4. D). Conversely, classical tumor (Figure 4. 
C) as well as inactive structural stroma (Figure 4. F) and immune stroma (Figure 4. H) component levels 
were significantly higher in improved prognostic group. 
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Discussion 

In this study, we validated the existence of whole-tumor subtypes and components from an 
independent cohort (194 new patients) by RNA-seq data. The transcriptomic components and subtypes 
were originally developed on RNA micro-array data. We validated the prognostic values of the subtypes 
that we originally described. We also validated the prognostic value of the components. We compared 
the difference between the qualitative subtypes and the quantitative components (Figure. 5). 

Since the first publication of transcriptomic subtypes based on RNA micro-array data of PAC published 
by Collinsson et al. 4, several studies overlapped these findings by micro-array based data8,19. RNA-seq is 
a technology that came into practice recently after the publication of these papers. RNA-seq is superior 
to micro-array analysis, with advantages in a broader dynamic range and detecting low abundance 
transcripts10. Recently studies based on RNA-seq came into people’s sight9,12,13. To our knowledge, there 
is no study that had compared the results from RNA-seq and micro-array data for the classification and 
phenotyping of PAC. In the first cohort of this study, we compared the components values and subtypes 
classification from RNA-seq and RNA micro-array data (Figure. 5). A good concordance for both 
transcriptomic subtypes and components was confirmed. 

Compared with the confirmed prognostic value of the subtypes that we previously described, combining 
the components in multivariate Cox regression showed a better performance to predict DFS and OS for 
the patients who had PAC curative intent resection. The concordance for components was also better 
than that of subtypes. This result indicates that PACs may be better characterized by quantitative 
components than the simple subtypes classification, potentially because of technical bias of the profiling 
methods and/or the effect of sampling. We developed and validated a Cox regression model using the 
RNA component’s levels and common clinicopathological characteristics (node invasion and resection 
margins) in this article. This model could be prospectively evaluated in the future. 

Classical and basal-like tumor associated signatures were described in the most of previous studies10. 
The transcriptomic result of the COMPASS trial showed that the basal-like subtype is chemo-resistant 
and can be distinguished from classical PAC by GATA6 expression20. This result was confirmed by RNA in 
situ hybridization (ISH) by the same team21. However, considering the heterogeneity of the tumor, these 
two tumor components can be existing in the same patient. Preclinical models showed that these two 
components could be modulated by different therapies demonstrating the plasticity of PDAC cells that 
contributes to the heterogeneity of PDAC tumors and their intrinsic resistance to a broad spectrum of 
therapies22. In our study, the classical tumor component level was associated with better prognostic 
while the basal-like tumor component level was associated with poor prognostic. The clinical usage of 
the tumor component level in the prediction of adjuvant therapy should be evaluated in future studies. 

Stroma components are another important part of the PAC component, by shaping the intratumoral 
architecture of PAC and contributing to PAC heterogeneity23. To our knowledge, there is no consensus 
on the stroma signature compared with the tumor signature. Moffit R et al. 5 defined an activated 
stroma and a normal stroma. Neuzillet C et al.24 concluded four subtypes of PAC associated fibroblasts. 
Using the laser capture microdissected materials, D. Birnbaum et al.25 identified three subtypes of 
components. Like the tumor signatures, these signatures are classifications and are qualitative. In our 
study, we used four quantitative stroma components instead of the classification to describe the stroma 
more completely. The immune component level was independently associated with later relapse after 
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surgery. The prognostic value of the immune component was also observed in Mahajan U’s study by IHC 
result26. 

This study is a retrospective study, and only the patients who had initial curative surgery were included. 
Further prospective studies should include borderline resectable, locally advanced, and metastatic 
patients. 

Conclusion 

In conclusion, using RNA-seq results, we confirmed the prognostic value of 5 PAC whole-tumor 
classification subtypes we previously published based on Affymetrix results. We described that the 
prognostic value of the whole-tumor transcriptomic components had a better prognostic value than the 
subtypes. We created and validated a new DFS based multivariate Cox regression prognostic model, 
including six PAC transcriptomic component levels and pathological characteristics.  
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Table 1. Clinicopathological characteristics of patients and tumors. aMean [range], bNumbers of patients 
n (percent). 

 

  

  Cohort Multi 
N=210 

Cohort Mono 
N=149 

 
p value 

Age, in yearsa  64.2 (37.0-87.6) 
(sd.10.2) 

61.4 (34.1-79.2) 
(sd.9.4) 

 
0.009 

Genderb Female 
Male 

87 (41.4%) 
123 (58.6%) 

83 (55.7%) 
66 (44.3) 

 
1.000 

Largest tumor 
diameter(mm)a 

 30.0 [7.0-130.0] 
(sd.15.7) 

30.0 [10.0-150.0] 
(sd.16.5) 

 
0.625 

T stageb T1 
T2 
T3 
Unknown 

43 (20.5%) 
131 (62.4%) 
30 (14.3%) 
6 (2.9%) 

41 (27.5%) 
95 (63.8%) 
12 (8.1%) 
1 (0.7%) 

 
 
 
0.095 

N stageb N0 
N1 
N2 

56 (26.7%) 
91 (43.3%) 
63 (30.0%) 

36 (24.2%) 
62 (41.6%) 
51 (34.2%) 

 
 
0.682 

Gradeb G1 
G2 
G3 
Unknown 

80 (38.1%) 
85 (40.5%) 
39 (18.6%) 
6 (2.9%) 

76 (51.0%) 
47 (31.5%) 
22 (14.8%) 
4 (2.7%) 

 
 
 
0.050 

Resection 
Marginb 

R0 
R1 
Unknown 

160 (76.2%) 
45 (21.4%) 
5 (2.4%) 

113 (75.8%) 
36 (24.2%) 

 
 
0.719 

Adjuvant 
therapyb 

Yes 
No 
Unknown 

150 (71.4%) 
50 (23.8%) 
10 (4.8%) 

113 (75.8%) 
36 (24.2%) 

 
 
0.901 
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Figure Legends 

Figure 1. (A) Comparison of the PAC whole-tumor subtypes from Affymetrix and RNA-seq in the Cohort 
Multi first part (N=165). The number of patients showed in the bubble. The percentage below each label 
showed the subtype agreement rate of the current technique compared with another technique. (B) 
Numbers of PAC whole-tumor classification subtypes in each cohort (N=359). (C-D) Prognostic value of 
PAC whole-tumor classification subtypes in all patients. (N=359). (C) DFS. (D) OS. 

 

Figure 2. Correlation of six PAC transcriptomic component levels from Affymetrix and RNA-seq in the 
Cohort Multi first part (N=165). (A) Two tumor component levels. (B) Four stroma component levels.   

 

Figure 3. (A-B) Prognostic relevance of the component levels and subtypes on DFS (A) Prognostic value 
of six PAC transcriptomic component levels by univariate Cox regression in all patients (N=359). (B) 
Prognostic value of PAC whole-tumor subtypes by univariate Cox regression in all patients (N=359). (C) 
Prognostic values of the variables included in the training cohort by multivariate Cox regression (Cohort 
Mono N=149). (D-E) Disease-free survival curve of three prognostic groups in the training cohort (Cohort 
Mono N=149) and the validation cohort (Cohort Multi, N=205, 5 patients in the Cohort Multi without 
enough clinicopathological data were excluded). (D) Training cohort. (E) Validation cohort. 

 

Figure 4. (A) Heatmap of the variable values in the multivariate Cox regression model of all patients 
(N=354, 5 patients in the Cohort Multi without enough clinicopathological data were excluded). (B) 
Numbers of PAC whole-tumor classification subtypes in each prognostic group. (C-H) Comparison of six 
PAC transcriptomic component levels in each prognostic group of all patients. (C) Classical tumor 
component. (D) Basal-like tumor component. (E) Activated stroma component. (F) Inactive structural 
stroma component. (G). Inflammatory stroma component. (H) Immune stroma component. 

 

Figure 5. Graphical abstract. Comparison of RNA subtypes and components. The disease-free survival 
curve of 5 subtypes included all patients in both cohorts (N=359). The disease-free survival curve of the 
new clinical transcriptomic prognosis model included all patients in both cohorts, except 5 patients 
without enough clinicopathological data (N=354). 
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