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Abstract

Cremation is a complex mortuary practice, involving a number of activities of the living

towards the dead before, during, and after the destruction of the bodily soft tissues by fire.

The limiting information concerning these behavioral patterns obtained from the pyre

remains and/or cremation deposits prevents the reconstruction of the handling of the corpse

during the burning process. This pioneering study tries to determine the initial positioning of

the corpse in the pyre and assess whether the deceased was wearing closed leather shoes

during cremation through isotopic (δ13C, δ18O) and infrared (ATR-FTIR) analyses of experi-

mentally burnt pig remains, used as a proxy for humans. The results obtained show that

both the position of feet on or within the pyre and the presence of footwears may moder-

ately-to-highly influence the oxygen isotope ratios of bone apatite carbonates and the cyan-

amide content of calcined bone in certain situations. By forming a protective layer, shoes

appear to temporarily delay the burning of the underlying pig tissues and to increase the

heat-shielding effect of the soft tissues protecting the bone mineral fraction. In such case,

bioapatite bone carbonates exchange oxygen with a relatively more 18O-depleted atmo-

sphere (due to the influence of lignin-derived oxygen rather than cellulose-derived oxygen),
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resulting in more pronounced decrease in the δ18Ocarb values during burning of the shoed

feet vs. unshoed feet. The shift observed here was as high as 2.5‰. A concomitant isotopic

effect of the initial location of the feet in the pyres was also observed, resulting in a top-to-

bottom decrease difference in the δ18Ocarb values of shoed feet of about 1.4‰ between

each deposition level tested. Finally, the presence of cyanamide (CN/P� 0.02) seems to be

indicative of closed footwear since the latter creates favorable conditions for its incorpo-

ration into bone apatite.

Introduction

Cremation is a complex process that has been performed in a wide range of geographic and

cultural contexts from prehistory to present day [1–8], involving a chain of activities of the liv-

ing towards the dead before, during, and after cremation [9, 10]. The investigation of the post-

cremation history of burnt skeletal remains is particularly complicated due to their fragmen-

tary and often incomplete nature [11–14], but reconstructing the handling of the corpse dur-

ing the burning process probably constitutes an even more challenging venture. The

ephemerality of the moment, the taphonomic vulnerability of the pyre locations [15–17], the

choices made by the funerary ritual attendants, and the unpredictable contingencies inherent

to the burning process (e.g. pyre collapse) are all variables that make each cremation a unique

event [9, 18–20]. Yet, to better understand the cremation processes and, ultimately, the funer-

ary ritual determining how the body of the deceased was managed during burning is vital (see

[21] or [22] for archaeological examples; see [23] for ethnographical cases).

In open-air cremations, the manipulation of the corpse during the burning process is con-

ditioned, mainly but not only, by its initial positioning in the pyre, and by the presence of

clothing (shroud, garments, etc.), both of which can affect the efficiency of combustion in a

variety of ways. Although it is commonly suggested that the deceased is placed on top of the

pyre to be visible during the burning phase (e.g. [16]), other arrangements include placing the

corpse under or in the heart of the pyre structure [24–26]. The deceased may have been previ-

ously clothed, placed in a shroud or left naked [24, 27]. When exposed to fire, clothing–typi-

cally made of vegetal fabrics or animal leathers [25]–is swiftly consumed, making its presence

difficult to establish, unless metalwork, such as ornaments (e.g. belt buckles, brooches), rein-

forcements (e.g. hobnails, toe tips) or others accessories (e.g. pins, buttons) is recovered from

the pyre remains [25, 26]. The handling of the corpse, its positioning and dressing, may differ

from one individual and/or population to another depending on many factors, such as the bio-

logical and social status of the deceased [28–32], the religious beliefs and cultural practices of

the participants in the funerary event [24, 32–34], and/or the expertise of the cremation opera-

tors [35]. Identifying the positioning and dressing of the corpse improves understanding of

past societies that practiced cremation as a funeral ritual.

Recent work has highlighted the high potential of calcined skeletal remains to isotopically

investigate cremation practices (see [36] and references therein). While all organic matter has

been destroyed by the high temperatures reached during the burning process, the inorganic

fraction (often called bone apatite or bioapatite) still contains a certain amount of carbon and

oxygen under the form of carbonates. Lanting and colleagues [37, 38] showed that while it was

possible to obtain reliable radiocarbon (14C) ages from the carbonate fraction of calcined

bones in specific archaeological contexts, the stable carbon isotope compositions (δ13C) of

these bones had been significantly altered. It was proposed that three parallel mechanisms
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could explain these alterations. First, carbon exchanges occur between the bone apatite car-

bonates and the surrounding cremation atmosphere. Second, carbon from soft tissues and

bone collagen admixes to that of the bone apatite carbonates during heating. Third, most of

the structural bone apatite carbonates are lost during the combustion process, and this loss is

likely associated with time/temperature-dependent fractionation [39–50]. Experimental works

have shown that fuel carbon replaces up to 95% of the biogenic bioapatite carbon as a result of

these mechanisms [42, 47, 49].

Less consideration has been given to the stable oxygen isotope composition of calcined

bone apatite carbonates (δ18Ocarb). While a temperature-related change in the δ18Ocarb values of

calcined bones was consistently recognized, the explanatory model behind this shift remains

not yet fully understood [48, 50–53]. Indeed, in a cremation environment, many possible

sources of oxygen can ultimately influence the bone δ18Ocarb signals (e.g. O2, CO, CO2, H2O,

NOx from the ambient air, fuel or human/animal soft tissues and bone collagen). Oxygen iso-

tope exchanges between bone apatite carbonates and CO2 from the combustion atmosphere–

and particularly from fuel–could have led to the observed 18O depletion in calcined bones [50].

Temperature-induced isotopic fractionation associated with the loss of structural carbonates

during the combustion process may also be at the origin of the decrease in the δ18Ocarb values of

calcined bones [50, 53]. Even if the δ13Ccarb and δ18Ocarb proxies can no longer be used to infer

life traits (i.e. diet and mobility) of the deceased in cremation contexts, they can be used as

semi-independent lines of evidence to better characterize cremation conditions [50, 54, 55].

Fourier transform infrared (FTIR) indices offer the possibility to assess the extrinsic and/or

intrinsic factors at the origin of the cremation-induced transformations [52, 56–60]. During

cremation, bone is physically and chemically altered. These alterations occur in a generally

orderly manner. As the temperature rises, the thermal shielding effect of the organic matter

protecting the inorganic fraction diminishes and it is probably only after this loss that the car-

bonates are completely exposed to heat, and thus gradually lost [61–64]. The CO2 emitted dur-

ing the combustion of bone initially comes from the organic matter, and in a second stage

from structural carbonates, with a transition period between the two [65]. As a consequence of

heating, alterations in bone crystallinity occur, with larger crystals and higher degrees of crys-

tallinity, making burnt bone, and in particular calcined bone, more resistant to post-burial

alterations [57, 60]. Throughout its rearrangement, bone apatite can incorporate new chemical

species such as cyanamide. Cyanamide molecules (H2CN2) form in the presence of ammonia

and carbon, and CN2�

2
substitute for hydroxyl (OH−) groups or type A carbonates in the apa-

tite lattice [66–69]. The origin of ammonia is still uncertain; however, it could be a byproduct

of the combustion of organic matter (e.g. body tissues) or fuel (e.g. coal) [45, 47]. A greater

occurrence of cyanamide is expected to be found when combustion occurs under reducing

conditions (i.e. low oxygen availability) [43, 50, 57, 70]. Therefore, the cyanamide content con-

stitutes an useful indicator for identifying specific cremation settings.

This study aims to better understand past cremation practices and related funerary rituals

by identifying the initial positioning of the corpse deposited on/in a pyre and assess whether

the deceased was wearing closed leather shoes during cremation through isotopic (δ13Ccarb

and δ18Ocarb) and infrared (ATR-FTIR) analyses of experimentally burnt pig remains. Leather

footwear is postulated to be the most fire-resistant type of clothing and foot bones encased in a

closed type of leather shoe may experience heating conditions characteristic of confined-space

cremation (low availability of oxygen, poor ventilation, etc.), which could lead to distinct bone

apatite chemical and/or structural variations. The effects of the deposition levels of the feet (i.e.

bottom, middle, or top of pyre) are also investigated to establish whether their initial position

affects their chemical and structural characteristics due to different heating conditions.
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Materials and methods

Setting up and running of experimental cremations

The experimental cremations were conducted in Wallonia (Belgium) during two different ses-

sions (October 2018 and July 2019), the first in a clearing partially sheltered from the wind and

the second in a disused quarry more exposed to the wind. Four fires were conducted per

session.

European beech (Fagus sylvatica) wood was selected to build all eight experimental pyres

(see Section 1 in S1 Appendix for the description of the pyre architecture). The firewood was

cut from dried logs (n’ 12) originating from a small plot of land located in the French

Ardennes (Houdain Lez Bavay, France). Vegetable tanned cow and goat leathers were pur-

chased (Steffisburg, Switzerland) to make the experimental footwear. With a thickness of 3

mm and 1.5 mm respectively, these leathers were used to test the fire resistance of two different

types of shoes. Seven shoes were created using the cowhide and only one with the goatskin (see

Section 1 in S1 Appendix for details about the leather manufacturing process and the footwear

making). Domestic pigs (Sus scrofa domesticus) were used as human substitutes since carcasses

or body parts of such animals have long been involved in experimental cremations [71–74].

Feet of nine pigs raised in the same farm were bought from a local butcher (Anderlecht/Sint-

Lievens-Houtem, Belgium).

In each experimental outdoor cremation, one unshoed foot and one shoed foot from a sin-

gle animal were placed at the same level in the pyre structure and as far apart as possible from

each other (ca. 40 cm). For each experimental session, pig feet were placed on top (x 1), in the

middle (x 2) or at the bottom (x 1) of the pyres. Dry farmyard manure pellets (’ 5 kg) were

added to one of the pyres (pyre 8) to create an ammonia-rich combustion atmosphere. The

goatskin was used in only one case (pyre 3). Feet from the ninth pig were burned one by one

in a muffle furnace (Thermo Heraeus M110) at 900˚C for about 5h and allowed to cool down

overnight.

On average, the pyres were reduced to ashes after 1–1.5h. All the pyres reached a tempera-

ture of 900˚C and some went above 1000˚C for a short period of time (S2.1 Table in S2 Appen-

dix). There was no human intervention after the fire was lit (Fig 1) and no additional fuel was

loaded into the fires during the cremation process. All structures, apart from pyre 7, collapsed

on themselves, retaining the animal skeletal remains within. Pyre 7 toppled chaotically to the

side, causing the shoed foot to fall out of the pyre. In all cases, the burning process lasted long

enough to destroy the organic matter (leathers, pig soft tissues and bone collagen) and calcine

most of the recovered foot bones. In the first session, the pyre remains were rapidly cooled

down due to heavy rains during the night, while those burned in the second session were

allowed to cool down naturally overnight. Bones were recovered on the top and within the ash

piles on the day following the cremation experiments.

Pre-treatments and stable isotope analysis of materials used in the

experiments

The metacarpals/metatarsals from unburnt pig feet were isolated by dissection, and the perios-

teum was removed with a scalpel. Bones were cleaned using a tungsten carbide drill bit to

retain only the cortical part. Bones were then ground into powder using a countertop blender.

Particles ranging between 0.3 and 0.7 mm were collected for collagen extraction, and those less

than 0.3 mm were used for carbon and oxygen isotope analyses of bioapatite carbonates. Prior

to the purification procedures, bone powder samples were defatted according to the protocol

developed by Kates [75] and tested by Liden et al. [76], as presented in Salesse et al. [77]. Bone

PLOS ONE Inferring the position of the corpse and the presence of leather footwears during cremation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257199 October 13, 2021 4 / 22

https://doi.org/10.1371/journal.pone.0257199


collagen was extracted following the non-ultrafiltered procedure proposed by Brock et al. [78]

while unburnt bone carbonate samples were prepared following a revised version of the proto-

col of Balasse et al. [79]. With regards to the calcined material, the outer layers of the bone frag-

ments were scratched with a scalpel. The samples were prepared according to the procedure

described by Snoeck et al. [80]. Between 4 and 7 different (calcined) bones per foot were sam-

pled (amount: ca. 500 mg per sampled bone). Wood shavings, animal hide cuts and soft tissues

of the pig (skin, muscle, and tendon) were sampled using a scalpel. They received no further

treatment prior to isotopic analysis. All these pre-treatments were carried out at the AMGC

Research Unit of the Vrije Universiteit Brussel (VUB, Brussels, Belgium). More information

about the pre-treatments carried out is provided in Section 2 in S1 Appendix.

Carbon and nitrogen abundances and isotope compositions for organic samples (amount:

� 500 μg, in tin capsule) were measured in duplicate on different aliquots using a Eurovector

Elemental Analyzer (EA) coupled with a Nu Perspective Isotope Ratio Mass Spectrometer

(IRMS) at the AMGC Research Unit (S3.1, S3.2 and S4.1 Tables in S3 and S4 Appendices). The

δ13Corganic and δ15Norganic values are reported as per mil (‰) difference relative to VPDB and

AIR, respectively. Standards (IA-R041: δ13C = -23.3‰ and δ15N = -5.6‰; IAEA-C-6: δ13C =

-10.8‰; IAEA-CH-7: δ13C = -32.2‰; IAEA-N-1: δ15N = +0.4‰; IAEA-N-2: δ15N = +20.3‰)

were used for data correction. All samples and standards were analyzed randomly except

IA-R041 that was used for instrumental drift correction. Analytical errors were better

Fig 1. Active burning of experimentally constructed pyres. Credits: Ahmad Alsaadi.

https://doi.org/10.1371/journal.pone.0257199.g001
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than ± 0.2‰ (1SD) for both δ13C and δ15N. Quality criteria for bone collagen–extraction yields

(%Col), carbon and nitrogen contents (%C and %N), and atomic C:N ratios–are presented in

S4.1 Table in S4 Appendix.

Carbon and oxygen isotope compositions for unburnt and calcined bone samples (amount:

� 2 mg) were measured in duplicate on different aliquots via a NuCarb carbonate preparation

device interfaced with a Nu Perspective IRMS (first batch) or via the NuCarb/IRMS system

including a Nu GasPrep automatic gas sampler (second batch) at the AMGC Research Unit

(S4.1 and S4.2 Tables in S4 Appendix). The results are reported as per mil (‰) deviation from

VPDB reference standard scale. Two internal standards were used (ENF: δ13C = -9.8‰ and

δ18O = -5.4‰; CBA: δ13C = -14.8‰ and δ18O = -10.8‰ –see de Winter et al. 2016), as well as

Iso-Analytical IA-R022 (δ13C = -28.6‰ and δ18O = -22.7‰), and international standards

IAEA-603 (δ13C = 2.5‰ and δ18O = -2.3‰), and IAEA-CO-8 (δ13C = -5.8‰ and δ18O =

-22.7‰). Over the course of all analyses, the analytical precision was better than ± 0.25‰

(1SD) for both δ13Ccarb and δ18Ocarb based on repeated measurements of CBA (n = 26). Δ is

used to express isotopic differences between unshoed and shoed feet of the same pig (e.g.

Δ13Cshoed-unshoed or Δ18Oshoed-unshoed).

Preparation and ATR-FTIR analysis of burnt bones

Only the pig bones from the second burning experiments were studied using infrared analyses.

Sample preparation and infrared analysis of calcined bone were carried out according to Kon-

topoulos et al. [81] (see Section 2 in S1 Appendix for specifics). Bioapatite changes were

assessed through FTIR spectroscopy using attenuated total reflection (ATR). Between 5 and 7

different bones per foot were investigated. ATR-FTIR measurements on bone samples

(amount: 2 to 3 mg per sampled bone) were performed in triplicate under vacuum on different

aliquots using a Bruker Vertex 70v FTIR spectrometer (range: 4000–400 cm-1; No. of scans: 64;

resolution: 4 cm-1; mode: absorbance) at the AMGC Research Unit. A background measure-

ment was run before each sample analysis to remove the background signal. After each mea-

surement, the crystal plate and the anvil of the pressure applicator were cleaned using a dry

KimtechTM precision wipe. The Bruker OPUS software (v. 7.5) was used to determine the

infrared indices (see Section 2 in S1 Appendix for the list of measured indices). Differences in

infrared proxies between feet are expressed by using Δ (e.g. ΔCN/Pshoed-unshoed; see S5.2

Table in S5 Appendix).

The Bruker Vertex 70v is a high performance spectrometer equipped with an evacuable

optics bench, a RockSolidTM interferometer and DigiTectTM 24-bit ADC detectors. These fea-

tures ensure improved sensitivity and spectral resolution as well as lower electronic noise and

atmospheric interferences compared to conventional FTIR spectrometers. Because the detec-

tion threshold for cyanamide has been established on a conventional FTIR spectrometer oper-

ating at standard atmospheric pressure [57], an instrument intercomparison was performed

for testing comparability of the CN/P values between studies. Samples initially measured by

Snoeck et al. [57] using an Agilent Technologies Cary 640 (no vacuum) were rerun using the

Bruker Vertex 70v (under vacuum) from the AMGC Research Unit.

Results and discussion

δ13Ccarb signals: The fuel effect

The δ13Ccarb values of pig foot bones shift drastically during the cremation process. While the

unburnt bones have δ13Ccarb values ranging from -15.4 to -14.8‰ (S4.1 Table in S4 Appendix),

the calcined bones (from all burning experiments) have δ13Ccarb values ranging from -29.8‰

to -17.8‰ (S4.2 Table in S4 Appendix). On average, the δ13Ccarb values of the unburnt bones
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(mean = -15.1 ± 0.2‰, 1SD) differ by -10.2‰ from the burnt bones (mean = -25.3 ± 1.9‰,

1SD).

Heating experiments carried out in a fuel-free muffle furnace (pig 9) show that the δ13Ccarb

values of calcined bones (mean[unshoed] = -20.6 ± 0.5‰, 1SD; mean[shoed] = -24.6 ± 0.9‰, 1SD;

S4.2 Table in S4 Appendix) tend to decrease towards the δ13C values of the pig skin, muscle,

tendon and bone collagen (mean = -23.1 ± 0.8‰, 1SD; S4.1 Table in S4 Appendix) and/or the

leathers (mean = -27.9 ± 0.6‰, 1SD; Section 3 in S1 Appendix and S3.1 Table in S3 Appendix)

(Fig 2). This suggests that part of the carbon exchanges between bone apatite carbonates and

combustion gases–especially CO2 –occurred during the burning of organic matter, including

leathers. However, these bones exhibit less negative δ13Ccarb values than those cremated in out-

door experiments (pigs 1 to 8; mean = -25.4 ± 1.8‰, 1SD; S4.2 Table in S4 Appendix).

When cremated on pyres, the unshoed feet yield δ13Ccarb values ranging from -28.8 to

-22.5‰ (mean = -25.5 ± 1.5‰, 1SD) while the shoed feet have δ13Ccarb values ranging from

-29.8 to -17.8‰ (mean = -25.4 ± 2.1‰, 1SD) (Fig 2; Table 1 and S4.2 Table in S4 Appendix).

There is no significant difference in δ13Ccarb values between these two groups of feet (Mann-

Whitney (MW) test, p = 0.74; S6.2 Table in S6 Appendix). This absence of difference is also

observed within each pyre and between pyres (MW tests, p� 0.06; S6.3 Table in S6 Appendix)

(Fig 2). Still, the larger variability in δ13Ccarb values seen in shoed feet (± 2.1‰, 1SD) compared

to unshoed feet (± 1.5‰, 1SD) might be linked to the presence of more carbon sources and/or

more variable burning conditions for the shoed feet because of the presence of footwear. The

δ13Ccarb values of bones recovered above or below the ashes are similar (MW test, p = 0.81;

S6.4 Table in S6 Appendix) (Fig 2). Therefore, neither the presence of footwear nor the initial

position of the feet in the pyres nor the final location of the bones in the ashes seem to visibly

affect the δ13Ccarb values of calcined bones.

This is most likely because wood is present in much larger amounts and, when burned,

releases much larger quantities of CO2 compared to any other material cremated simulta-

neously. Wood-derived carbon thus not only participates predominantly in the various chemi-

cal exchanges that occur in the cremation environment, but also largely influences the isotopic

signature of the CO2 present in the cremation atmosphere. Still, in none of the experiments

carried out did the δ13Ccarb values of calcined bones perfectly match the δ13Corg values of the

pig soft tissues, the pig bone collagen, the leathers, or the firewood. This observation is consis-

tent with the results of previous work showing that most but not all the carbon in the carbon-

ate fraction of calcined bones is replaced by carbon from the fuel [42, 47, 49].

δ18Ocarb signals: The local heating conditions

During the burning process, the δ18Ocarb values of pig foot bones drop similarly to the δ13Ccarb

values (Fig 3). While the raw bones have δ18Ocarb values ranging from -10.8 to -10.2‰, (S4.1

Table in S4 Appendix), the calcined bones (from all burning experiments) have δ18Ocarb values

ranging from -19.6‰ to -12.1‰ (S4.2 Table in S4 Appendix). On average, the δ18Ocarb values

of the unburnt bones (mean = -10.4 ± 0.2‰, 1SD) differ by -5.6‰ from the burnt bones

(mean = -16 ± 1.6‰, 1SD).

The unshoed and shoed feet from the laboratory burning experiments have δ18Ocarb values

that differ by 1.3‰ on average. Such a pattern is also found in most of the outdoor burnings

(Tables 1 and S3.2 Table in S3 Appendix). When cremated on pyres, the unshoed and shoed

feet have δ18Ocarb values ranging from -18.6 to -12.1‰ (mean = -15.6 ± 1.3‰, 1SD) and from

-19.6 to -13‰ (mean = -16.6 ± 1.7‰, 1SD), respectively (Fig 3; Tables 1 and S3.2 Table in S3

Appendix). The difference in δ18Ocarb values between the two groups of feet is statistically sig-

nificant (MW test, p = 0.01; S6.5 Table in S6 Appendix) (Fig 3). If this difference is examined

PLOS ONE Inferring the position of the corpse and the presence of leather footwears during cremation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257199 October 13, 2021 7 / 22

https://doi.org/10.1371/journal.pone.0257199


per pyre, the outcome is less straightforward. There is no difference in δ18Ocarb values between

the feet placed on top or in the middle of the pyres (MW tests, p� 0.18; S6.6 Table in S6

Appendix) (Fig 3). In contrast, when deposited at the bottom of the structure, the δ18Ocarb val-

ues of the unshoed feet statistically significantly differ from the shoed feet by 2.5‰ (MW test,

p< 0.01; S6.6 Table in S6 Appendix) (Fig 3). Overall, the burnt shoed feet are more depleted

in 18O than the burnt unshoed feet, demonstrating a certain isotopic effect of wearing closed

leather footwear during cremation.

By forming a temporary protective layer around the foot, the shoe creates conditions that

prolong the pyrolysis of the underlying pig tissues, while delaying the ignition and subsequent

burning processes of the latter. Inside the shoe, pyrolysis-derived volatiles, gases and residues

Fig 2. Boxplots presenting the distribution of the δ13C values measured on the wood, leathers and pig tissues. p��

represents statistically significant differences (based on Mann-Whitney U tests).

https://doi.org/10.1371/journal.pone.0257199.g002
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Table 1. Mean δ13Ccarb and δ18Ocarb values and discrepancies between feet of experimentally cremated pigs.

Sample Position SHOED (‰ –VPDB) UNSHOED (‰ –VPDB) DIFFERENCES (‰ –VPDB)

n δ13Ccarb SD δ18Ocarb SD n δ13Ccarb SD δ18Ocarb SD Δ13Cshoed-unshoed SD Δ18Oshoed-unshoed SD

Pig 1 / Pyre 1 Top 4 -26.6 1.9 -14.8 1.5 5 -26.0 1.5 -15.2 1.8 -0.6 0.9 0.4 0.8

Pig 2/ Pyre 2 Middle 5 -26.3 3.3 -16.5 1.4 5 -26.6 0.8 -15.1 0.5 0.3 0.9 -1.4 0.6

Pig 3 / Pyre 3� Middle 4 -24.9 2.0 -15.3 0.6 5 -25.3 1.9 -14.3 1.4 0.4 0.9 -1.0 0.7

Pig 4 / Pyre 4 Bottom 5 -26.5 1.2 -18.3 1.7 4 -24.0 2.5 -15.9 1.7 -2.5 0.9 -2.4 0.7

Pig 5 / Pyre 5 Bottom 5 -25.5 0.9 -18.8 0.4 5 -24.8 1.1 -16.3 0.6 -0.7 0.6 -2.5 0.5

Pig 6 / Pyre 6 Middle 6 -24.7 1.1 -17.1 1.0 6 -25.8 0.7 -16.7 1.2 1.1 0.5 -0.4 0.6

Pig 7 / Pyre 7 Top 7 -24.7 3.3 -16.2 1.1 6 -25.9 0.8 -15.2 0.8 1.2 0.8 -1.0 0.5

Pig 8 / Pyre 8† Middle 6 -24.5 0.9 -15.4 1.0 5 -25.1 2.2 -15.8 1.2 0.6 0.8 0.4 0.6

Pig 9 / Furnace 900˚C / 5h 2 -24.6 0.9 -14.4 0.3 2 -20.6 0.5 -15.7 0.3 -4.0 0.8 1.3 0.5

Full data available in S4.2 Table in S4 Appendix.

�Pyre where the pig foot was placed in goatskin instead of cow leather.
†Dry farmyard manure pellets were added to this pyre.

https://doi.org/10.1371/journal.pone.0257199.t001

Fig 3. Boxplots presenting the distribution of the δ18O values measured on the wood, leathers and pig tissues. p��

represents statistically significant differences (based on Mann-Whitney U tests).

https://doi.org/10.1371/journal.pone.0257199.g003
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would accumulate, setting up a specific local atmosphere, with δ18O values distinct from those

on the outside. The organic δ18O values (hides/skins used for footwear) are expected to be

lower than mineral δ18O values. For pigs with similar δ18Ocarb values to those obtained in this

study (-10/-11‰), Tuross et al. [82] as well as Warinner and Tuross [83] found that bone colla-

gen (-23.9 ± 0.2‰), hair (-20.7 ± 0.9‰), blood (-18.5 ± 1.4‰), muscle (-17.7 ± 1‰) and fat

(-15.8 ± 0.5‰), were depleted in 18O compared to unburnt bone apatite (-10.9 ± 0.4‰) (Fig

4). Such differences between tissues are also recorded for other domesticated herbivores (e.g.

[84, 85]). Based on the environment in which the cattle and goats used for leather production

were reared, the hides/skins are expected to have δ18O values in the range of those of the pig

organic tissues.

However, oxygen exchanges between the inner shoe atmosphere and the bone apatite car-

bonates are thought to be minimal. If structural rearrangements or chemical changes in apatite

have been reported at low temperatures, this generally concerns synthetic carbonated hydroxy-

apatites (e.g. AB-CO3-Aps) or skeletal tissues containing a small quantity of organic matter

(e.g. tooth enamel) [86, 87]. In bones, soft tissues and collagen matrix shield the inorganic frac-

tion, delaying carbonates exposure to heat and consequently restricting the oxygen exchanges

with the surrounding atmosphere [61–64]. Meanwhile in the pyre, wood is consumed under

Fig 4. δ18O values of pig tissues from this study (square, triangle, diamond, star) compared to the dataset from Tuross et al. [82] and Warinner and

Tuross [83] (circle).

https://doi.org/10.1371/journal.pone.0257199.g004
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the action of fire which is conditioned by the thermal degradation properties of the wood com-

pounds: i.e. holocellulose and lignin. Holocellulose starts to burn first, followed by lignin. Ini-

tially largely influenced by holocellulose, the combustion-derived oxygen pool is then mainly

influenced by lignin as burning progresses [88]. These compounds contain both very distinct

oxygen isotopic compositions, with (holo-)cellulose being significantly enriched in 18O com-

pared to lignin (up to 11‰) [89–92]. The bones from the shoed foot are apparently exposed to

fire at a more advanced stage of burning and exchange oxygen with a relatively more 18O-

depleted atmosphere than bones from the unshoed foot; the leather shoe acting as an addi-

tional protective organic layer to the inorganic fraction of the bones.

Regardless of footwear, feet put on top or in the middle of the pyres present δ18Ocarb values

that statistically significantly differ from those of feet laid out at the bottom of the structure

(Δ18Otop/middle-bottom = 1,7‰; MW test, p< 0.01; S6.7 Table in S6 Appendix). Feet deposited at

the bottom of pyres exhibit the lowest mean Δ18Oshoed-unshoed values (below -2.4‰; pyres 4

and 5), while those placed on top present the highest mean Δ18Oshoed-unshoed value (+0.4‰;

pyre 1) (Fig 5; Table 1). The observed decrease in Δ18Oshoed-unshoed values from the top to the

bottom of the pyres suggests that local variations in heating conditions occur. The fires of

Fig 5. Δ18Oshoed-unshoed values (± 1SD) of the pigs burned in the experimental cremations. Squares refer to top-position pyres, circles for middle-position pyres, and

triangles for bottom-position pyres. The synthesis excludes pyre 7 and 8.

https://doi.org/10.1371/journal.pone.0257199.g005
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open-air cremations burn heterogeneously and samples are exposed to varying temperatures

and changing atmospheres [93]. Thermal variations could have been larger and exposure

times longer at the bottom than on top of the pyres, resulting in distinct exchanges and/or iso-

tope fractionations of oxygen. In addition, the oxygen availability probably changed drastically

within the wooden structures. The oxygen supply, the accumulation and removal of combus-

tion by-products, and the interaction with the various gases were probably different in the

heart or deep down in the pyres than closer to the surface. Moreover, the diffusion of oxygen

could have been more complex or slower inside the pyre than closer to the surface, resulting in

different isotopic fractionations and/or exchanges.

Furthermore, the shoes appear to have been subjected to different physical constraints

depending on their position in the pyres. The shoes within the pyres stayed closed longer,

probably because of the pressure from the firewood, while the shoe placed on top of pyre 1

opened quickly, exposing the foot to the same burning regime than the unshoed foot. This

would explain the small but positive difference observed between shoed and unshoed feet

recorded for pyre 1 (Δ18Oshoed-unshoed = +0.4‰). It can also be observed that the mean

Δ18Oshoed-unshoed values decrease by -1.4‰ in average between each position, from top to bot-

tom (Fig 5). This clearly evidences a concomitant influence of the initial position of the feet in

the pyres and the wearing of footwear. It also highlights that, regardless the type of leather

used, a comparable isotopic effect is noted for the shoed feet placed in the middle of the pyres.

Comparing the Δ18Oshoed-unshoed results obtained in each burning session, they are strik-

ingly similar, especially for the bones burned at the bottom of the pyre (pyres 4 and 5 –Fig 3;

Table 1) suggesting that, at the bottom of a pyre, conditions are quite similar regardless of the

location of the pyre within the landscape (enclosed area in session 1 vs open hill in session 2).

The bones burned in the middle position also show similar Δ18Oshoed-unshoed values but the

slight difference between pyre 2 (cow leather) and 3 (goat leather) could be explained by the

difference in thickness between the two leathers, the latter being thinner and thus burning

away faster. The difference between pyres 2 and 6, where pyre 6 has a slightly less negative

mean Δ18Oshoed-unshoed value (-1.4 ‰ and -0.4‰ respectively) could be the results of a differ-

ence in openness of the cremation area where an open area could create a more homogeneous

combustion atmosphere in the middle area of the pyre.

The results of pyres 7 and 8 further show the impact of fuel and position on the pyre on the

oxygen isotope results. While the unshoed foot from pyre 7 has an identical mean δ18Ocarb

value to that of pyre 1 (top), the shoed foot from pyre 7 presents a similar mean δ18Ocarb value

than those of the shoed feet from pyres 2, 3 and 6 (middle). This is most likely related to the

fact that pyre 7 toppled chaotically, subjecting the shoed foot to a different burning regime.

When the pyre collapsed, a few pieces of burning wood covered the shoed foot, recreating to

some extent an atmosphere comparable to that experienced by the feet placed in the middle of

the pyres.

With regards to pyre 8, it can be observed that the shoed foot has a slightly higher mean

δ18Ocarb value than the unshoed foot. Manure has a similar decomposition pattern to lignin

[94], and, in general, fertilizers appear to have relatively high δ18O values [95]. Assuming that

the 18O-enriched manure could mitigate the influence of the 18O-depleted lignin and create a

more homogenous combustion atmosphere throughout the cremation process in comparison

to the other pyres where cellulose is expected to burn away faster than lignin (i.e. creating a

change in combustion atmosphere through time), the shoed and unshoed feet from pyre 8

could have been burned in a more comparable atmosphere.

Whether they were initially encased in shoes or not, the δ18Ocarb values of bones (from all

pyres) recovered below the ashes differ from those of bones retrieved from above the ashes by

-0.9‰ (MW test, p = 0.01; S6.8 Table in S6 Appendix) (Fig 3). This indicates that the presence
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of an ash layer covering foot elements have likely restricted the oxygen exchanges between

bone apatite carbonates and the combustion atmosphere during and after the collapse of the

pyre, or conversely, that the absence of such a layer have likely promoted oxygen exchanges

between bone apatite carbonates and the atmospheric CO2 at the end of the cremation process.

Charcoal generally presents lower δ18O values than the wood from which it originates (e.g. by

about -9‰ for beech according to Schumacher et al. [94]). This suggests that below the ashes,

a severely 18O-depleted atmosphere prevails, and that carbon and oxygen exchanges can still

occur, which is not totally unsurprising as some of the ash layers were still hot (> 400˚C) the

next morning. The location below the ashes would therefore be a constraining condition that

may promote the influence of the char-derived oxygen to the δ18Ocarb signal. Interestingly, the

final position of bones in ashes in addition to the presence of shoes and the initial position of

the feet in the pyre seem to have a cumulative effect on the δ18Ocarb values, with the greater dif-

ference in δ18Ocarb values found between 1) the group of bones recovered above ashes but

deriving from unshoed feet placed on top of the pyres, and 2) the group of bones recovered

below ashes but deriving from shoed feet initially deposited at the bottom of the pyres (i.e.

3.7‰). Especially, this latter group contains the most negative δ18Ocarb values from the whole

dataset.

The cyanamide content: The initial position in the pyre and the presence of

footwear

The CN/P values derived from Agilent Technologies Cary 640 and Bruker Vertex 70v spec-

trometers are shown to be well correlated (y = 0.0944x – 0.0025; R2 = 0.88) (S7.1 Table in S7

Appendix). Due to its ability to work under vacuum, the Bruker Vertex 70v almost eliminates

atmospheric disturbances, resulting in a decrease of the signal-to-noise ratio and thus in the

measured cyanamide contents according to a ratio of about 13:1. A significance threshold of

0.02 for detecting the presence of cyanamide is proposed based on the instrument intercom-

parison carried out in this study and the work of Snoeck et al. [57].

The amount of cyanamide in calcined bone is relatively higher in shoed feet

(mean = 0.042 ± 0.024, 1SD) than in unshoed ones (mean = 0.010 ± 0.010, 1SD) at the bottom

of the pyre (pig 5) (MW test, p = 0.03; S6.9 Table in S6 Appendix), while a reverse pattern is

observed between the shoed (mean = 0.010 ± 0.007, 1SD) and unshoed feet (mean = 0.044 ±
0.032, 1SD) located on top (pig 7) (MW test, p = 0.02; S6.9 Table in S6 Appendix) (S5.1

Table in S5 Appendix and see the other FTIR results for these feet in Section 4 in S1 Appen-

dix). Overall, a slight top-to-bottom decrease in the mean ΔCN/Pshoed-unshoed values is

observed (S5.2 Table in S5 Appendix). A joint effect of the initial position of the feet in the

pyre and the presence of closed leather footwear seems to influence the CN/P values of the pig

feet.

It is possible that leather contains low to moderate ammonia concentrations. Indeed, in

leather processing, dehairing, deliming and/or softening are generally carried out with ammo-

nium salts or urine derivatives, generating large amounts of ammonia [95–97]. The more

reducing conditions surrounding the shoed feet, in conjunction with a higher presence of

ammonia released during the combustion of the shoe, have likely promoted the incorporation

of cyanamide into the apatite structure. Since the unshoed feet placed on the same deposition

levels do not have cyanamide or have relatively low levels of cyanamide, it can be hypothesized

that either the presence of ammonia in the combustion atmosphere was localized or reducing

conditions were not present around the unshoed feet; one not excluding the other.

The OH/P and CN/P values of pigs 5 to 8 display a weak inverse correlation (R2 = 0.23) (Fig

6; S5.1 Table in S5 Appendix). This is caused by the shoed foot located on top of pyre 7. It
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presents the lowest mean OH/P value of the corpus (0.21), which likely is related to the collapse

of pyre 7 and to the fall of the shoed foot out of the pyre. When this foot is excluded, the

inverse correlation improves (R2 = 0.74) (Fig 6). Such a strong relationship confirms that cyan-

amide substitutes for hydroxyl groups within the bone matrices [57, 66]. However, there is no

plausible explanation for the presence of cyanamide in the unshoed foot placed on top of pyre

7, although it is certainly related to the collapse of the structure and/or could be linked to the

other inconsistent infrared indices obtained for this foot (see Section 4 in S1 Appendix and

S5.1 Table in S5 Appendix). Furthermore, there is no statistically significant difference

between the CN/P values of the feet deposited in the middle of pyres 6 and 8, with or without

shoes (MW tests, p� 0.11; S6.10 Table in S6 Appendix). Therefore, either the manure used in

pyre 8 did not induce the expected ammonium-rich atmosphere or failed to produce cyana-

mide and its incorporation into the heated bones. Another explanation could be that the

potentially reductive conditions necessary for the incorporation of cyanamide were not met at

the time the manure was burned. Carrying out this experiment again but in bottom position

should refine this interpretation. Finally, the position of bones in ashes does not influence the

CN/P values (MW test, p = 0.99; S6.11 Table in S6 Appendix).

Implications for archaeological cremations and future research

This study is a step forward to a more thorough comprehension of the cremation practices and

rituals. The results obtained show that the initial positioning of feet on or within the pyre and

the wearing of closed leather footwears may moderately-to-highly influence the oxygen isotope

ratios of bone apatite carbonates and the cyanamide content of calcined bone. However, these

effects should not be viewed as definitive or strict offsets, but rather as relative trends or orders

of magnitude that can be expected when foot bones are cremated under similar conditions.

Because a multitude of cremation scenarios is technically possible, the number of parame-

ters–controlled or not–coming into play is almost infinite. This is what makes the study of cre-

mations challenging. However, previous work and ongoing research have shown that the

oxygen isotope ratios of apatite carbonates in bone and the cyanamide content of calcined

Fig 6. Biplot presenting the CN/P values against the OH/P values for pigs 5 to 8.

https://doi.org/10.1371/journal.pone.0257199.g006
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bone can vary locally (intra-site), regionally (inter-site), and chronologically (within and across

time periods) [50, 54, 98]. The present study demonstrates that the initial positioning of feet,

and thereby of the individual, as well as the wearing of closed leather shoes, and by extrapola-

tion of clothing items, are plausible parameters that can explain these geographical and chro-

nological variations. However, many other factors, that are not yet well circumscribed or

understood, may also affect the oxygen isotope ratios of bone apatite carbonates and the cyana-

mide content of calcined bone. Among the extrinsic factors are all the actions of the living

towards the body and the funeral pyre such as dressing and shoeing (with open or closed foot-

wear) the deceased, tending and stirring the fire, reloading the fire with wood, placing offer-

ings and grave goods. These extrinsic factors are influenced by practices and beliefs of the

living and but also by the skills and know-how of the cremation operators (e.g. [35, 99]).

Intrinsic factors include the type of materials used to build the pyre, the heating duration, the

way fire is quenched, the body size of the deceased, the pyre settings, etc. All these parameters

can theoretically lead to isotopic, structural and chemical changes similar to those observed.

However, we believe that by sufficiently refining the sampling strategy and selecting the most

relevant bones to answer specific archaeological questions, biomolecular archaeology can be of

great interest and help. An important aspect of this work is that a single isotopic or infrared

measurement per bone is likely to bias the interpretations that can be drawn from it. Although

time consuming, only repetitive measurements per bone and per anatomical region studied

can provide a reliable signal that can be exploited for archaeological purposes.

The replication of this study on forensic anthropological material is envisaged to defini-

tively corroborate the results obtained on modern animals. It is very likely that the two feet of

the same individual burned on an open-air pyre were treated in an identical manner, i.e. either

shoed or unshoed. It can be hypothesized that foot bones enclosed in a closed leather shoe will

have different isotopic and infrared values than leg bones from the same individual. Even if

clothed, the leg will certainly not be in a garment as fire resistant as the leather of a shoe. The

shield effect of any clothing relative to the leg will therefore be less than for a foot and this

should be reflected in the results obtained. In addition, complementary data from well-defined

archaeological contexts e.g. Pompeiian necropolises [20]) could help us better understand the

observed variations and their potential meanings. Overall, this work and its multi-proxy

approach / multi-sampling strategy represents a milestone with the potential to lead to a major

breakthrough in cremation archaeology, and more broadly in archaeological science.

Conclusion

This study demonstrates that from calcined foot bones it is possible to detect whether a

deceased was wearing closed leather shoes during cremation and to identify the initial posi-

tioning of the feet, and thereby of the individual, on/in a pyre. By forming an additional pro-

tective layer around the foot, the footwear appears to temporarily delay the burning of the

underlying pig tissues and, simultaneously, increase the heat-shielding effects of organic mat-

ter protecting the mineral fraction of bone. Bone apatite seems to be then exposed to fire at a

more advanced stage of combustion of the pyre, during which carbonates exchange oxygen

with a relatively more 18O-depleted atmosphere (due to the influence of lignin-derived oxy-

gen). This results in more pronounced–and negative–shifts in the δ18Ocarb values of shoed feet

than feet burned bare (up to 2.5‰). Such an isotopic pattern is not recognized when the feet

are placed on top of the pyre, probably due to the lack of physical constraint (pressure/weight

of the logs above) to maintain the shoes closed, although weaknesses in the shoe patterns can-

not be ruled out. Further research and experimental burnings need to be conducted to better

understand the processes that occur on top of the pyres.
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In addition, a concomitant isotopic effect of the initial location of the feet in the pyres is

observed, resulting in a decrease in the δ18Ocarb values of shoed feet by about 1.4‰ between

each deposition level from the top to the bottom of the pyre. Another isotopic effect of approx-

imately 0.9‰ is identified based on the relative position of the bones in relation to the ash

heaps at the end of cremation. Bones recovered within the piles of ashes display lower values of

δ18Ocarb than bones recovered above the pile, probably due either to a decrease in oxygen

intake into the bone apatite or to privileged oxygen exchanges with charcoal that are depleted

in 18O. Finally, the presence of cyanamide (CN/P� 0.02) is likely indicative of the wearing of

unventilated footwear since the latter creates favorable conditions for its incorporation into

the bones (reducing atmosphere and a greater amount of organic matter).

From an archaeological perspective, ritual sequences related to cremation practices are usu-

ally well identified, but generally poorly understood with regard to the organization of the

burning act. This study opens new avenues to obtain additional information about the treat-

ment of the deceased during cremation and the cremation operator’s range of skills. However,

it is only when confronted with archaeological sources and field data that this approach yields

its full potential. In the case of the presence of shoe nails in cremation-related deposits, it

becomes possible to discuss if closed shoes were worn by the deceased or only placed next to

the body on the pyre, which are different funerary gestures with possible different cultural or

ritual meanings. Based on a multi-sampling strategy of the skeleton, and considering anthro-

pological and anthracological data, it could be inferred if the pyre was left unattended during

cremation or managed by operators. These are just a few examples of the promising prospects

offered by isotopic and infrared evidence obtained from calcined bones.
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muséum (Flémalle, Belgium) for their warm welcome and technical support during the experi-

mental open-air cremations. We would also like to thank Ivan Jadin from the Royal Belgium

PLOS ONE Inferring the position of the corpse and the presence of leather footwears during cremation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257199 October 13, 2021 16 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257199.s007
https://doi.org/10.1371/journal.pone.0257199


Institute of Natural Sciences (Brussels, Belgium) for providing field materials. We would like

to express our gratitude to the freelance photographer Ahmad Alsaadi (Brussels, Belgium) for

capturing the outdoor activities. Lastly, we are grateful to David Verstraeten (AMGC Research

Unit, VUB) for his help with the stable isotope analysis. The academic editor and two anony-

mous reviewers are thanks for helping to make this article better.

Author Contributions

Conceptualization: Kevin Salesse, Christophe Snoeck.

Data curation: Kevin Salesse, Christophe Snoeck.

Formal analysis: Kevin Salesse, Elisavet Stamataki, Ioannis Kontopoulos, Christophe Snoeck.

Funding acquisition: Mathieu Boudin, Guy de Mulder, Martine Vercauteren, Christophe

Snoeck.

Investigation: Kevin Salesse, Christophe Snoeck.

Methodology: Kevin Salesse, Christophe Snoeck.

Project administration: Martine Vercauteren, Christophe Snoeck.

Resources: Kevin Salesse.

Supervision: Martine Vercauteren.

Validation: Kevin Salesse, Christophe Snoeck.

Visualization: Kevin Salesse.

Writing – original draft: Kevin Salesse, Christophe Snoeck.

Writing – review & editing: Kevin Salesse, Elisavet Stamataki, Ioannis Kontopoulos, Georges

Verly, Rica Annaert, Mathieu Boudin, Giacomo Capuzzo, Philippe Claeys, Sarah Dalle,

Marta Hlad, Guy de Mulder, Charlotte Sabaux, Amanda Sengeløv, Barbara Veselka, Eugène

Warmenbol, Martine Vercauteren, Christophe Snoeck.

References
1. Bowler JM, Jones R, Allen H, Thorne AG. Pleistocene human remains from Australia: A living site and

human cremation from Lake Mungo, western New South Wales. World Archaeology. 1970; 2(1):39–60.

https://doi.org/10.1080/00438243.1970.9979463 PMID: 16468208

2. Walthall JA. Mortuary Behavior and Early Holocene Land Use in the North American Midcontinent.

North American Archaeologist. 1999; 20(1):1–30. https://doi.org/10.2190/MDEP-VM2K-YB2Q-L1D0

3. Fengming L. Cremation process: China. In: Davies D, editor. Encyclopaedia of cremation. London:

Ashgate; 2005. p. 132–5.

4. Scott RM, Buckley HR, Spriggs M, Valentin F, Bedford S. Identification of the first reported Lapita cre-

mation in the Pacific Islands using archaeological, forensic and contemporary burning evidence. Journal

of Archaeological Science. 2010; 37(5):901–9. https://doi.org/10.1016/j.jas.2009.11.020.

5. Potter BA, Irish JD, Reuther JD, Gelvin-Reymiller C, Holliday VT. A Terminal Pleistocene Child Crema-

tion and Residential Structure from Eastern Beringia. Science. 2011; 331(6020):1058. https://doi.org/

10.1126/science.1201581 PMID: 21350175

6. Gil-Drozd A. The Origins of Cremation in Europe. Analecta Archaeologica Ressoviensia. 2011; 5:9–94.

7. Gray Jones A. Cremation and the Use of Fire in Mesolithic Mortuary Practices in North-West Europe.

In: Cerezo-Román J, Wessman A, Williams H, editors. Cremation and the Archaeology of Death.

Oxford: Oxford University Press; 2017. p. 27–51.

8. Capuzzo G, Snoeck C, Boudin M, Dalle S, Annaert R, Hlad M, et al. Cremation vs. inhumation: model-

ing cultural changes in funerary practices from the Mesolithic to the Middle Ages in Belgium using Ker-

nel Density Analysis on 14C data. Radiocarbon. 2020; 62(6):1809–32. https://doi.org/10.1017/RDC.

2020.88

PLOS ONE Inferring the position of the corpse and the presence of leather footwears during cremation

PLOS ONE | https://doi.org/10.1371/journal.pone.0257199 October 13, 2021 17 / 22

https://doi.org/10.1080/00438243.1970.9979463
http://www.ncbi.nlm.nih.gov/pubmed/16468208
https://doi.org/10.2190/MDEP-VM2K-YB2Q-L1D0
https://doi.org/10.1016/j.jas.2009.11.020
https://doi.org/10.1126/science.1201581
https://doi.org/10.1126/science.1201581
http://www.ncbi.nlm.nih.gov/pubmed/21350175
https://doi.org/10.1017/RDC.2020.88
https://doi.org/10.1017/RDC.2020.88
https://doi.org/10.1371/journal.pone.0257199


9. Williams H. Death Warmed up:The Agency of Bodies and Bones in Early Anglo-Saxon Cremation

Rites. Journal of Material Culture. 2004; 9(3):263–91. https://doi.org/10.1177/1359183504046894

10. Oestigaard T. Cremations in Culture and Cosmology In: Tarlow S, Nilsson Stutz L, editors. The Oxford

Handbook of the Archaeology of Death and Burial. Oxford: Oxford University Press; 2013. p. 497–510.
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