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a b s t r a c t 

Motor neuron diseases encompass a divergent group of conditions with considerable differences in clin- 

ical manifestations, survival, and genetic vulnerability. One of the key aspects of clinical heterogeneity 

is the preferential involvement of upper (UMN) and lower motor neurons (LMN). While longitudinal 

imaging patters are relatively well characterized in ALS, progressive cortical changes in UMN,- and LMN- 

predominant conditions are seldom evaluated. Accordingly, the objective of this study is the juxtaposi- 

tion of longitudinal trajectories in 3 motor neuron phenotypes; a UMN-predominant syndrome (PLS), a 

mixed UMN-LMN condition (ALS), and a lower motor neuron condition (poliomyelitis survivors). A stan- 

dardized imaging protocol was implemented in a prospective, multi-timepoint longitudinal study with a 

uniform follow-up interval of 4 months. Forty-five poliomyelitis survivors, 61 patients with amyotrophic 

lateral sclerosis (ALS), and 23 patients with primary lateral sclerosis (PLS) were included. Cortical thick- 

ness alterations were evaluated in a dual analysis pipeline, using standard cortical thickness analyses, 

and a z-score-based individualized approach. Our results indicate that PLS patients exhibit rapidly pro- 

gressive cortical thinning primarily in motor regions; ALS patients show cortical atrophy in both motor 

and extra-motor regions, while poliomyelitis survivors exhibit cortical thickness gains in a number of 

cerebral regions. Our findings suggest that dynamic cortical changes in motor neuron diseases may de- 

pend on relative UMN and/or LMN involvement, and increased cortical thickness in LMN-predominant 

conditions may represent compensatory, adaptive processes. 
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1. Introduction 

Motor neuron disease (MND) is an umbrella term for a wide

spectrum of clinically dissimilar conditions. While similarities exist

in disability profiles, progression rates and the overall prognosis

is markedly different in various MNDs. Compared to ALS, other

MNDs are strikingly understudied with respect to their phenotype-

specific neuroimaging signatures. PLS and ALS groups are some-

times contrasted to each other to highlight disease-specific traits,

( Pioro, et al., 2020 ) but lower motor neuron predominant MNDs,

such as X-linked spinal, and bulbar atrophy (SBMA), poliomyelitis

or spinal muscular atrophy (SMA) are typically only studied in

contrast to healthy controls. ( Li Hi Shing, et al., 2019 , Querin, et al.,

2018a ) The imaging literature of MNDs is disproportionately domi-

nated by cross-sectional studies which often include mixed cohorts

in various stages in their individual disease course. Longitudinal

studies of MND invariably suffer from considerable attrition rates

and an inclusion bias to patients with limited disability and

slower progression rates. ( Chipika, et al., 2019 ) The meaningful

interpretation of longitudinal imaging data requires careful ad-

justments for physiological aging, sexual-dimorphism, and ideally,

the inclusion of disease-controls. ( Schuster, et al., 2015 ) From a

clinical perspective, there is a pressing and unmet need to monitor

individual patients in a transparent and observer-independent

fashion. ( Tahedl, et al., 2021 , Verstraete, et al., 2015 ) From a

monitoring standpoint, a stereotyped question asked by patients

and their caregivers is whether their condition have progressed

since their previous clinic visit, irrespective of other patients, other

phenotypes, or age-matched healthy populations. From a clinical

trial perspective, the objective tracking of individual patients is a

key requirement, preferably with the use of quantitative outcome

measures. ( Chipika, et al., 2019 ) Accordingly, the development

of methods to track pathology in vivo, at an individual-patient

level, is a hugely relevant quest. The characterisation of individual

disease trajectories is also important academically. There are a

number of emerging concepts in MND research, which are merely

derived from post mortem findings, inferred from clinical observa-

tions or based on animal models, and have not been reassuringly

validated by in vivo human data. These theories include cognitive

reserve, motor reserve, stage-wise propagation, compensatory pro-

cesses, prion-like propagation, and selective network vulnerability.

( Costello, et al., 2021 , Dukic, et al., 2019 , Meier, et al., 2020 ) There

is also a notion that compensatory processes may occur in MNDs

to adapt for relentless neurodegeneration. ( Querin, et al., 2019b )

Activation studies in ALS suggest that the pre-, supplementary-

and ipsilateral motor cortex, the cerebellum, and subcortical gray

matter structures increasingly contribute to the execution of mo-

tor tasks with the gradual degeneration of primary motor areas.

( Abidi, et al., 2020a , Bede, et al., 2021 , Nasseroleslami, et al., 2019 ,

Proudfoot, et al., 2018 ) Irrespective of the MND phenotype studied,

the overwhelming majority of published papers only comment

on patterns of atrophy, cortical thinning, or density reductions.

( Bede and Hardiman, 2018 ) Lack of atrophy or ‘resilient’ regions

are sometimes specifically evaluated, but increased cortical thick-

ness is either not explored in statistical models, not reported,

or not discussed. This seems like a missed opportunity as cor-

tical reorganization may reveal biologically important processes.

( Hardiman, et al., 2016 ) Based on these considerations, we have

embarked on a comparative neuroimaging project to contrast the

longitudinal course of three MNDs; a lower-motor predominant

condition (poliomyelitis survivors), a mixed UMN-LMN syndrome

(ALS), and a UMN-predominant condition (PLS). Our main objec-

tives were (1) the characterization of phenotype-specific propaga-

tion patterns (2) the juxtaposition of the rate of decline in LMN,
 

UMN and mixed MNDs and (3) the targeted evaluation of increased

thickness. 

2. Methods 

2.1. Participants 

Forty-five poliomyelitis survivors (PMS), 23 patients with PLS

and 61 patients with ALS were included in a prospective neu-

roimaging study. Twenty-seven ALS patients had 2, 34 had 3

follow-up scans; 14 PMS had 1, 6 had 2 follow-up scans; 7 PLS

patients had 2, 16 had 3 follow-up scans. A uniform inter-scan

interval of 4 months was implemented. All participants pro-

vided informed consent in accordance with the ethics approval

of the study by the Medical Research Committee of Beaumont

Hospital, Dublin, Ireland. ALS patients had ‘probable’ or ‘definite’

ALS according to the El Escorial criteria ( Brooks, et al., 20 0 0 )

and PLS patients were diagnosed based on the Gordon criteria.

( Gordon, et al., 2006 ) Reference data from 776 healthy control sub-

jects were included (383 males) in our analyses (125 from Dublin,

651 from the Cam-CAN database, ( Shafto, et al., 2014 ) with a mean

age of 55.08 years and a standard deviation (SD) of 17.63 years. 

2.2. Neuroimaging 

T1-weighted (T1w) MRI data from all patients and controls

was acquired on a 3 Tesla Philips Achieva scanner with an 8-

channel receiver head coil, using a 3D Inversion Recovery Prepared

Spoiled Gradient Recalled Echo (IR-SPGR) pulse sequence with

following imaging parameters; repetition time (TR) / echo time

(TE) = 8.5/3.9 ms, inversion time (TI) = 1060 ms, field-of-view

(FOV): 256 × 256 × 160 mm, spatial resolution: 1 mm 

3 . A total

of 651 external reference T1-weighted MPRAGE images were also

used in this study from the Cambridge Centre for Ageing and

Neuroscience (Cam-CAN) repository. ( Shafto, et al., 2014 ) 

2.3. Standard cortical thickness analysis 

T1w datasets were segmented and the surface reconstructed

with FreeSurfer’s recon-all tool. ( Fischl, 2012 ) Data were then

converted to the Connecitivty Informatics Technology Initiative

(CIFTI) file format ( Van Essen, et al., 2013 ) using the CIFTIFY

toolbox ( Dickie, et al., 2019 ) at a resolution of 32,0 0 0 vertices

per hemisphere. As part of ‘standard’ cortical thickness analyses,

3 group comparisons were performed (PMS vs. HC, ALS vs. HC,

PLS vs. HC) using vertexwise, non–parametric permutation testing

using FSLs randomize tool with 50 0 0 iterations, controlling for age,

and gender. ( Winkler, et al., 2014 ) To correct for alpha-level in-

flation, we considered threshold-free cluster enhancement (TFCE)

corrected p-maps only. ( Salimi-Khorshidi, et al., 2011 ) Since we

investigated 2 contrasts for each comparison (patients > controls,

patients < controls), the alpha threshold was set to 0.05/2 = 0.025.

2.4. Normalized, ‘mosaic-based’ interpretation 

‘Standard’ cortical thickness (CT) analyses were complemented

by a z-score-based approach ( Tahedl, 2020 , Tahedl, et al., 2021 )

where regional cortical thickness in single patients is interpreted

with respect to demographically matched controls, categorizing

each cortical region (‘mosaic’) into ‘thin,’ ‘thick’ or ‘comparable.’

( Fig. 2 for examples) Following pre-processing, CT maps were

parcellated into 10 0 0 equally sized ‘mosaics’ using an existing

parcellation scheme ( Schaefer, et al., 2018 ) and implementing a

7-network approach. ( Yeo, et al., 2011 ) A subject-specific reference

group was generated for each patient based on age ( + /– 2 years)
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Fig. 1. Cortical thickness patterns based on vertexlwise permutation testing and 

corrections for age and gender in poliomyelitis survivors (left column), ALS (mid- 

dle column) and PLS patients (right column). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and gender matching. To account for the effects of physiological

ageing a ‘sliding-window’ reference matching was implemented.

For example, for a 56-year-old male patient, his control group

comprised male controls aged between 54, and 58 years. At 1-year

follow-up, his reference group shifted to male controls between

55, and 59 years. Regional cortical thickness in single patients

was interpreted based on the CT distribution of demographically

matched controls. Individual patient’s regional thickness was first

z-scored by subtracting the control’s mean and dividing by the

control’s standard deviation. Subsequently, z-values are converted

to p -values by exhaustive permutation testing to obtain FWER cor-

rected p -values. A threshold of p ≤ 0.05 was used to define ‘thick’

or ‘thin.’ The main output variables from the ‘mosaic approach’ are

the number of significantly thin and thick patches across the entire

cortex and in the motor, cortex defined by the pre- and paracentral

labels of the Desikan-Killiany atlas. ( Desikan, et al., 2006 ) To infer

which patches were significantly thin or thick in the groups at

baseline, Monte-Carlo permutation testing was used to correct for

family-wise error rates (FWER), separately for the 3 study groups

as well as for thin, and thick patches. The alpha-threshold was

set to 0.025 to account for 2-sided testing. The analyses were

conducted in MATLAB 2019b (The Mathworks, Natrick, MA, USA). 

2.5. Cross-sectional group comparisons 

As demographic matching is inherent in the ‘mosaic’ method,

1-way, 3-level, between-subjects analyses of variance (ANOVAs)

was utilized to investigate group differences (PMS, ALS, and PLS)

of the means of the following 4 dependent variables (DVs): (1)

number of whole-brain thin patches, (2) number of motor-cortex

thin patches, (3) number of whole-brain thick patches, (4) number

of motor-cortex thick patches. For (5) whole-brain cortical thick-

ness (CT) in millimeters and (6) motor-cortex CT in millimeters,

analyses of covariance (ANCOVA) were utilized to correct for age,

and gender. As the ANOVAs and ANCOVAs reached significance

for 6 DVs, post-hoc pairwise comparisons were conducted using

Tukey’s honestly significant difference (HSD) testing. Statistical

analyses were carried out with RStudio version 1.3.1093 (R Core

Team, R Foundation for Statistical Computing, Vienna, Austria). 

2.6. Longitudinal analyses using linear mixed effects models 

To evaluate progressive cortical thickness alterations with

the ‘mosaic’ approach, linear mixed effects (LME) models were

implemented using Rs nmle package ( Pinheiro et al., 2020 ): 

(1) mod < - lme(DV ∼ Time ∗Diagnosis, random = ∼ Time | ID,

data = X , method = ’ML’) 

DV denotes the dependent variable, which is modelled as

dependent upon the factor ‘Time’ and the categorical variable

‘Diagnosis’ (PMS / ALS / PLS). ID indicates the timepoint, which

serves as a nested variable, since in longitudinal analyses data is

per definition nested by individuals. Finally, X is the data con-

taining information on all the specified variables. The method we

used for estimating the model was maximum likelihood, ‘ML’. 

Given that in the standard approach (cortical thickness in

millimeters), age and gender are not inherently corrected for, we

set up these models as follows: 

(2) mod2 < - lme(DV ∼ Time ∗Diagnosis + age + gender, random

= ∼ Time | ID, data = X , method = ’ML’) 

Although the LMEs captured no significant ‘Time x Diagnosis’

interaction, visual representation of the data ( Fig. 5 A and B) sug-

gested that PLS patients accumulated thin patches more rapidly

than the other patient groups. Since the data suggested this effect
may be driven by the 1-year follow-up of the PLS patients, a sup-

plementary ‘Time x Diagnosis’ LME analysis was added, restricted

only to the baseline, and 1-year follow-up data. 

3. Results 

A total of 776 healthy control subjects (383 males) were in-

cluded in our analyses (125 from Dublin, 651 from the Cam-CAN

database, with a mean age of 55.08 years (SD: 17.63y). The mean

age of the 45 PMS patients (20 males) at baseline was 66.07 years

( + /–6.52), the mean interval between their acute poliomyelitis

infection in infancy, and their initial brain scan was 62.75 years.

The mean age of the 61 ALS patients (43 males) was 60.20 ( + /–

9.62 years), and their mean symptom duration was 43 months.

The age profile of the 23 PLS patients (12 males) was 58.52 years

( + /– 9.79 years) and mean symptom duration 52 months. In accor-

dance with the demographic matching procedure, ( Tahedl, et al.,

2021 ) 82 individualized reference groups were generated. The

cross-sectional comparisons of CT maps between PMS patients and

HCs ( Fig. 1 ) revealed significant cortical thinning of the bilateral

superior temporal gyri, the bilateral medial posterior cingulate

cortices (PCC), the right anterior cingulate cortex (ACC), and parts

of the left frontal cortex. Intriguingly, we observed increased

thickness in the bilateral sensorimotor cortices, as well as parts of

the bilateral medial visual cortices and the right frontal cortex. In

ALS patients, cortical thinning was most evident in the bilateral

motor cortices, left frontal and bilateral temporal cortices, as well

as bilateral PCC and right ACC. Small regions of thicker cortex were

also observed in the right pre- and frontal cortices. In PLS, cortical

thinning was most evident in the bilateral motor cortices as well

as widespread frontotemporal regions. Small regions of thicker

cortex were observed in the right rostral middle frontal and the

right medial orbitofrontal cortex. The mosaic-based CT analysis re-

sulted in individual subject brain maps, indicating regional cortical

changes with respect to subject-matched controls. Representative

patient maps are shown in Fig. 2 to illustrate individual cortical

patterns across the timepoints. 

3.1. Inferential statistics of the mosaic brain maps 

Permutation testing was used to infer which cortical regions

were significantly ‘thin’ or ‘thick’ in each phenotype. As illustrated

in Fig. 3 , PMS patients exhibit ‘thick’ patches (red-yellow) around
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Fig. 2. The ‘mosaic-based’ approach permits the evaluation of individual patient 

scans with respect to age-and gender matched controls. ‘Thin’ regions are color- 

coded in blue and ‘thick’ regions in red. Representative examples of individual pa- 

tients are shown at baseline and follow-ups in (A) a poliomyelitis survivor (B) ALS 

patient and (C) a PLS patient (Color version of the figure is available online.) 

Fig. 3. Baseline cortical characteristics in poliomyelitis survivors (left column), ALS 

(middle column) and PLS using the ‘mosaic approach.’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the bilateral sensorimotor cortices. A cluster of atrophic patches

(blue-light blue) was observed in the right temporal cortex, in

addition to thin patches scattered across the cortex. In ALS and

PLS, atrophic patches dominate the entire cortical surface, with

only occasional ‘thick’ patches observed in middle frontal, and

inferior precentral areas in PLS. 

3.2. Cross-sectional group comparisons 

Significant cross-sectional differences were noted in all 6

dependent variables ( Fig. 4 A–F ): (1) whole-brain thin patches

(F[2] = 24.51, p = 1.02e-09), (2) motor-cortex thin patches

(F[2] = 38.16, p = 1.1e-13), (3) whole-brain thick patches

(F[2] = 6.468, p = 0.0021), (4) motor-cortex thick patches

(F[2] = 7.717, p = 6.9e-04), (5) whole-brain thickness (F[2] = 20.20,

p corr = 2.55e-08), and (6) motor-cortex thickness (F[2] = 32.50,

p corr = 4.482e-12). Post-hoc Tukey’s HSD confirmed differences in

the following pairwise comparisons at p < 0.05: (1) whole-brain

thin patches: PMS (mean 56.07, SD 46.92) < ALS (98.90 + /– 87.64)

( p = 0.02061), PMS < PLS (200 + /– 107.77) ( p = 0.0000), and

AL S < PL S ( p = 3.0e-06); (2) motor-cortex thin patches: PMS

(5.62 + /– 4.69) < ALS (14.43 + /– 14.74) ( p = 0.0022), PMS < PLS

(34.65 + /– 18.12) ( p = 0.0 0 0 0) and ALS < PLS ( p = 0.0 0 0 0); (3)

whole-brain thick patches: PMS (31.53 + /– 33.97) > PLS (9.7 + /–

9.09) ( p = 0.0016); (4) motor-cortex thick patches: PMS (7.27 + /–

6.81) > ALS (4.51 + /– 4.76) ( p = 0.0261), PMS > PLS (2.09 + /–

3.03) ( p = 0.0 0 07); (5) whole-brain thickness: PMS (2.34 mm + /–

0.09 mm) > PLS (2.2 mm + /– 0.11 mm) (p corr = 1.8e-06), ALS

(2.31 mm + /– 0.11mm) > PLS (p corr = 0.0 0 01); (6) motor-cortex

thickness: PMS (2.31 mm + /– 0.11mm) > ALS (2.25 mm + /–

0.13 mm) (p corr = 0.0293), PMS > PLS (2.09 mm + /– 0.11 mm)

(p corr = 0.0 0 0 0), AL S > PL S (p corr = 5.0e-07). 

3.3. Longitudinal analysis using linear mixed effects models 

Longitudinal progression of the 6 DVs was evaluated using

linear mixed effect models ( Fig. 5 A–F ). We found that for thin

patches and raw cortical thickness – but not for thick patches –

the main effect “Time” was significant, showing an increase of

the thin-patch count and a decrease of CT over time across the

diagnoses groups [whole-brain thin patches: t(235) = 2.2956, p =
0.0226; motor-cortex thin patches: t(235) = 2.4767, p = 0.0140;

whole-brain CT: t(234) = -4.1241, p corr = 0.0 0 0 0; motor-cortex

CT: t(234) = -5.1505, p corr = 0.0 0 0 0). Additionally, we found a

main effect “Diagnosis” for the thin-patch count ( Fig. 5 A and B),

separating both PMS and PLS from ALS, both for the whole-brain

as well as the restricted motor-cortex count (whole-brain PLS:

t(126) = 4.1607, p = 0.0 0 01; whole-brain PMS: t(126) = -2.5651,

p = 0.0115; motor-cortex PMS: t(126) = -3.1327, p = 0.0022;

motor-cortex PLS: t(126) = 5.4094, p = 0.0 0 0 0). In contrast, for

the thick-patch count ( Fig. 5 C and D), we observed no main effect

of time, and in terms of the main effect of diagnosis, only the PMS

group differed from the ALS group (whole-brain: t[126] = 2.1188,

p = 0.0361; motor-cortex: t[126] = 2.8325, p = 0.0054). For

the standard approach ( Fig. 5 E and F), the main effect “Diagno-

sis” was evident for PMS versus ALS patients (t[125] = 2.9811,

p corr = 0.0035), as well as PL S versus AL S patients for the whole-

brain analysis (t[125] = -3.8097, p corr = 0.0 0 02); likewise for the

restricted motor-cortex analysis, both PMS and PLS patients dif-

fered from ALS (PMS vs. ALS: t(125) = 3.8037, p corr = 0.0 0 02; PLS

vs. ALS: t(125) = -4.9094, p corr = 0.0 0 0 0). Given the differences in

the available follow-up scans in the different study groups, a sup-

plementary analysis was conducted only taking into account the

baseline and 1-year follow-up data in PLS and ALS patients. This

LME revealed significant interaction effects of Time x Diagnosis, for
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Fig. 4. Cortical thickness over the entire brain and in the motor cortex in poliomyelitis survivors (green), ALS (blue) and PLS (red). Box-plots represent the interquartile 

range and whiskers indicate IQRx1.5. Tukey’s honestly significant difference testing was used for post-hoc pairwise comparisons: ( ∗) indicates p -values < 0.05 ( ∗∗) indicates 

p -values < 0.001 (Color version of the figure is available online.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

both whole-brain (t[48] = 2.3004, p = 0.0258) and motor-cortex-

only (t[48] = 2.6795, p = 0.0101) thin-patch count. For standard

CT values, whole-brain average CT revealed significant differences

(t[48] = -2.4035, p = 0.0202), while the restricted motor-cortex

analysis only approached significance (t[48] = -1.9350, p = 0.0589).

4. Discussion 

Our findings indicate divergent cortical signatures in UMN-

predominant, LMN-predominant and mixed UMN-LMN MND phe-

notypes. Our results also reveal co-existing atrophy and increased

cortical thickness in MND, in both LMN- and UMN-predominant

phenotypes. Additionally, our results confirm the feasibility of indi-

vidual patient MRI interpretation using patient-specific normative

data sets. 

Longitudinal imaging in MND is one of the few ways to

characterize progressive pathologic changes in vivo, to evaluate

anatomical propagation patterns, verify concepts of disease-

biology, and validate staging systems. ( Chipika, et al., 2019 ,
Müller, et al., 2020 , Muller, et al., 2016 ) Longitudinal imaging

studies have been published in symptomatic ALS patients and

asymptomatic mutation carriers, but the majority of studies lacked

’disease-controls’ and relied solely on healthy aging populations

for data interpretation. ( Querin, et al., 2019a ) With few excep-

tions, ( Clark, et al., 2017 ) no robust longitudinal studies have

been published in PLS, despite the long course and relatively

good prognosis associated with the condition. Based on clinical

observations, there is a notion that PLS may be slowly progressive

compared to ALS, but no robust quantitative imaging studies exist

to support this notion. ( Finegan, et al., 2019b ) Recent post-mortem

studies confirmed both motor cortex and extra-motor TDP-43

pathology in PLS ( Mackenzie and Briemberg, 2020 ) and neuropsy-

chology studies also highlighted considerable cognitive deficits.

( de Vries, et al., 2019 ) It is increasingly recognized that similarly to

ALS, ( Burke, et al., 2016 ) PLS is also associated with considerable

extra-motor manifestations.( Finegan, et al., 2021 ) 

Imaging studies in PLS have largely revealed comparable

cerebral signatures in AL S and PL S with the shared involvement
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Fig. 5. Linear mixed effects models confirming that for all dependent variables are associated with cortical thinning (A, B, E, F), time was a significant predictor of worsening. 

In contrast, hypertrophy (C and D) was stable over time, showing only a main effect of “Diagnosis” with respect to the poliomyelitis survivors. Lines denote the best-fit line 

of the regressions, the shadowed area around the lines indicate 95% confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the PMC, brainstem, cerebellum, CSTs, and CC. ( Bede, et al.,

2020 , Bede, et al., 2019 , Muller, et al., 2012 , van der Graaff, et al.,

2011a ) Very few PLS studies identified distinguishing radiolog-

ical changes from ALS; and these proposed that contrary to

ALS, the postcentral gyrus may spared ( Finegan, et al., 2019a )

and the subcortical signature of PLS may be different from ALS.

( Chipika, et al., 2020 ,E. Finegan, et al., 2020 , Finegan, et al.,

2019c ) Some studies suggest greater PMC atrophy ( Kiernan and

Hudson, 1994 , Menke, et al., 2018 , van der Graaff, et al., 2010 )

and more marked CST degeneration in PLS ( Agosta, et al., 2014 ,

Van Der Graaff, et al., 2011b ) than in ALS, but others have not

replicated these findings. ( Ferraro, et al., 2017 , Müller, et al., 2018 )

Given the relative lack of convincing cross-sectional differences

between ALS and PLS, longitudinal studies may be better suited

to capture distinguishing features. ( Christidi, et al., 2018 ) The

distinction of PLS and ALS is hugely important in the first years

of symptom onset, as there is often a diagnostic dilemma in early

PLS, and an apprehension that a patient with UMN-predominant

symptoms may transition to ALS. ( Eoin Finegan, et al., 2020a ,
Eoin Finegan, et al., 2020b , Turner, et al., 2020 , Yunusova, et al.,

2019 ) 

MNDs include a range of LMN-predominant conditions

( Lebouteux, et al., 2014 ) including progressive muscular atrophy

(PMA), Spinal muscular atrophy (SMA), Kennedy’s disease (SBMA),

progressive bulbar palsy (PBP), monomelic amyotrophy, flail arm

and/or flail leg syndrome etc. ( Hardiman, et al., 2016 ) The cerebral

imaging literature of these syndromes is particularly scarce as the

primary pathology is in the spinal anterior horns and the brain-

stem nuclei. ( Li Hi Shing, et al., 2021 ) Recent PMA studies captured

cervical spinal cord atrophy ( van der Burgh, et al., 2019 ) without

overt cerebral connectivity alterations. ( Basaia, et al., 2020 ) Some

PMA studies captured decreased cerebral white matter integrity

( Prudlo, et al., 2012 ) and abnormal prefrontal activation patterns

( Raaphorst, et al., 2014 ), while others did not detect FA reductions.

( Cosottini, et al., 2005 , Mitsumoto, et al., 2007 ) Tractography in a

PMA cohort revealed FA reductions subjacent to the PMC with con-

comitant FA increase in the rostral internal capsule and/or corona

radiata. ( van der Graaff, et al., 2011a ) Post mortem studies have
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also captured corticospinal tract degeneration in patients labelled

with PMA on clinical grounds ( Ince, et al., 2003 ) casting doubt

on whether PMA can be viewed as a distinct entity. Radiological

reports of SBMA are just as conflicting. Cerebellar, pyramidal tract,

and limbic white matter degeneration was described by some

studies ( Kassubek, et al., 2007 , Pieper, et al., 2013 , Unrath, et al.,

2010 ), but not confirmed by others. ( Echaniz-Laguna, et al.,

2005 , Nelles, et al., 2008 , Spinelli, et al., 2019 ) Varying degree of

frontal lobe atrophy ( Sperfeld, et al., 2005 ) and hypometabolism

( Lai, et al., 2013 ) have also been described. The biomarker lit-

erature of SMAs is dominated by electrophysiology studies,

( Querin, et al., 2018c ) and existing imaging studies are strikingly

inconsistent. While cerebral changes have been described in SMA

type 0, ( Mendonça, et al., 2019 ) type II, ( Losito, et al., 2020 )

and adult SMA variants, ( de Borba, et al., 2020 ) other studies

specifically highlight the lack of cerebral involvement despite

considerable spinal cord degeneration. ( Querin, et al., 2019b ) 

Our findings reveal distinct cortical signatures in LMN-

predominant, UMN-predominant, and mixed MND phenotypes.

The juxtaposition of the 3 phenotypes helps to highlight disease-

specific traits. Poliomyelitis survivors exhibit increased cortical

thickness in both motor and extra-motor regions revealing a

unique imaging signature. This pattern is readily captured by

both traditional cortical thickness analyses and the individualized

‘mosaic-based’ approach using subject-specific normative data. The

co-existing patterns of cortical atrophy and cortical hypertrophy

in poliomyelitis survivors showcases the importance of 2-way

analyses in MND, and highlights the pitfalls of implementing

hypothesis-aligned, 1-way contrasts only. The widespread regions

showing increased cortical thickness in poliomyelitis survivors

are reminiscent of other LMN conditions such as adult forms of

SMA. ( Querin, et al., 2019b ) UMN-predominant MND patients were

represented by a group of PLS patients in this study. Consistent

with previous reports, they exhibit primary motor cortex (PMC)

atrophy with additional frontotemporal involvement. It is notewor-

thy, that both at group-level, and at individual level, PLS patients

also show regions of increased cortical thickness. The discussion

around the interpretation of these findings is stimulating, as PLS

is an archetypal neurodegenerative condition with considerable

disability which is relatively well-characterized with regards to

TDP-43 burden. ( Mackenzie and Briemberg, 2020 ) Despite rep-

resenting the opposing extremes of the LMN-UMN spectrum, a

shared feature of PMS, and PLS is the realtively long survival

which may permit compensatory processes to take place leading

to structural reorganization. Adaptive cortical changes have been

observed following spinal cord injuries, ( Nishimura and Isa, 2009 )

in response to repetitive tasks, arduous physical training, dex-

terity associated with musical instruments, and association with

cognitive training. Adaptive motor cortex changes have been con-

sistently noted after unimanual training, ( Sale, et al., 2017 ) aerobic

exercise, ( Colcombe, et al., 2006 ) post stroke, ( Sterr, et al., 2013 ),

and in professional musicians. ( Bruchhage, et al., 2020 , Gaser and

Schlaug, 2003 , Hudziak, et al., 2014 ) Extra-motor changes have also

been observed following various exercise regimes, ( Pereira, et al.,

2007 , Thomas, et al., 2016 ) and cognitive tasks. ( Lazar, et al.,

2005 ) Despite ample examples of cortical volume gains in a range

of conditions, cortical thickness increases or volume gains are

seldom evaluated or reported in MNDs. In the ALS cohort, we

have not observed widespread hypertrophic regions which may be

explained the shorter symptom duration of this cohort. Our find-

ings also suggest that longitudinal imaging may be better suited

to differentiate MND phenotypes than cross-sectional imaging, as

propagation patterns, and rate of progression may be more specific

to MND phenotypes than a snapshot of cortical disease burden. 
The comparable cortical disease burden observed in PLS and

ALS stands in stark contrast with the much shorter survival in

ALS. Our longitudinal analyses also demonstrate faster cortical

thinning in PLS than ALS. These observations suggest that cortical

disease burden does not drive survival, and ALS patients are

likely to succumb to the sequelae of LMN degeneration. While

hypertrophic brain regions are seldom reported in ALS, unaffected

regions have been specifically investigated. ( Bede, et al., 2016 ) Fur-

thermore, some ALS studies confirmed divergent imaging profiles

between UMN-predominant, and LMN-predominant ALS patients.

( Abidi, et al., 2020b ) Even tough increased cortical thickness has

not been reported in ALS, functional studies have consistently

captured adaptive changes with the increasing involvement of

cerebellar, subcortical, and contralateral motor regions in the exe-

cution of motor tasks. ( Bede, et al., 2021 , Proudfoot, et al., 2018 ). 

We presented a z-score-based approach to interpret single-

patient imaging data, but several other methods have been

successfully explored in ALS. ( Grollemund, et al., 2019 ) Wet

biomarkers ( Blasco, et al., 2018 , Devos, et al., 2019 ), clinical pa-

rameters ( Elamin, et al., 2015 , Westeneng, et al., 2018 ) and MRI

data ( Bede et al., 2021 , Querin, et al., 2018b , Welsh, et al., 2013 )

have been used in a variety of machine-learning applications

to categorize single subjects into diagnostic ( Bede, et al., 2017 ,

Schuster, et al., 2016 ) or prognostic groups ( Grollemund, et al.,

2020a , Grollemund, et al., 2020b , Schuster, et al., 2017 ). 

This study is not without limitations. Despite our dual-

methodological approach, only cortical gray matter changes have

been evaluated, and white matter integrity has not been assessed

in this study. We have no supporting post mortem data to evaluate

regions of increased cortical thickness and assess the histologic

underpinnings of our imaging findings. Owing to the low incidence

of PLS, we had a relatively limited sample size at our disposal.

While physiological aging is accounted for in our ‘mosaic’ model

by implementing a ‘sliding window’ approach, the availability of

longitudinal control data would have permitted more fine-grained

statistical modelling. The inclusion of additional LMN conditions

may have helped to support our biological interpretation, namely

that cerebral reorganization may occur in anterior horn patholo-

gies. Despite these limitations we have demonstrated different

cortical trajectories along the LMN-UMN spectrum of MNDs. We

have also shown that cortical disease burden can not only be

interrogated at a cohort-level but may also be meaningfully eval-

uated at an individual-level. Our study draws attention to areas of

increased cortical thickness which are notoriously underevaluated

in neurodegenerative conditions despite representing an important

facet of disease biology. 

5. Conclusions 

The longitudinal analysis of cortical disease burden distin-

guishes MND phenotypes, which exhibit markedly differing

trajectories. MND patients don’t solely exhibit cortical atrophy, but

LMN-phenotypes in particular, show regions of increased corti-

cal thickness as well. These radiological changes may represent

adaptive processes, may be indicative of neuroplasticity, but the

post mortem correlates of regions of ’hypertrophy’ remain to be

elucidated. Our study demonstrates that cortical disease-burden

may be interpreted at an individual-levelwhich is particularly

useful in a clinical or clinical trial setting. 
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