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100 Abstract One of the most pressing challenges in the clinical research of
neurodegenerative diseases (NDDs) is the validation and standardization of
pathophysiological biomarkers for different contexts of use (CoUs), such as
early detection, diagnosis, prognosis, and prediction of treatment response.
Neurofilament light chain (NFL) concentration is a particularly promising
candidate, an indicator of axonal degeneration, which can be analyzed in
peripheral blood with advanced ultrasensitive methods. Serum/plasma NFL
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concentration is closely correlated with cerebrospinal fluid NFL and directly
reflects neurodegeneration within the central nervous system. Here, we provide
an update on the feasible CoU of blood NFL in NDDs and translate recent
findings to potentially valuable clinical practice applications. As NFL is not a
disease-specific biomarker, however, blood NFL is an easily accessible
biomarker with promising different clinical applications for several NDDs: (1)
early detection and diagnosis (i.e., amyotrophic lateral sclerosis, Creutzfeldt–
Jakob disease, atypical parkinsonisms, sporadic late-onset ataxias), (2)
prognosis (Huntington’s disease and Parkinson’s disease), and (3) prediction of
time to symptom onset (presymptomatic mutation carriers in genetic
Alzheimer’s disease and spinocerebellar ataxia type 3).

101 Keywords separated
by ' - '

Alzheimer’s disease - Amyotrophic lateral sclerosis - Biomarkers -
Creutzfeldt–Jakob disease - NFL - Parkinsonian syndromes
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12 Abstract
13 One of the most pressing challenges in the clinical research of neurodegenerative diseases (NDDs) is the validation and
14 standardization of pathophysiological biomarkers for different contexts of use (CoUs), such as early detection, diagnosis,
15 prognosis, and prediction of treatment response. Neurofilament light chain (NFL) concentration is a particularly promising
16 candidate, an indicator of axonal degeneration, which can be analyzed in peripheral blood with advanced ultrasensitive methods.
17 Serum/plasma NFL concentration is closely correlated with cerebrospinal fluid NFL and directly reflects neurodegeneration
18 within the central nervous system. Here, we provide an update on the feasible CoU of blood NFL in NDDs and translate recent
19 findings to potentially valuable clinical practice applications. As NFL is not a disease-specific biomarker, however, blood NFL is
20 an easily accessible biomarker with promising different clinical applications for several NDDs: (1) early detection and diagnosis
21 (i.e., amyotrophic lateral sclerosis, Creutzfeldt–Jakob disease, atypical parkinsonisms, sporadic late-onset ataxias), (2) prognosis
22 (Huntington’s disease and Parkinson’s disease), and (3) prediction of time to symptom onset (presymptomatic mutation carriers
23 in genetic Alzheimer’s disease and spinocerebellar ataxia type 3).

24 Keywords Alzheimer’s disease . Amyotrophic lateral sclerosis . Biomarkers . Creutzfeldt–Jakob disease . NFL . Parkinsonian
25 syndromes

26

27 IntroductionQ2

28 Neurodegenerative diseases (NDDs) are currently considered
29 as a continuum of disorders with common pathophysiological

30mechanisms, including misfolded protein deposition, neuro-
31nal synaptic disruption, axonal degeneration, neuroinflamma-
32tion, and oxidative stress [1–3]. Therefore, the greatest current
33challenge in the field of NDDs is to provide biomarkers for the
34pathological mechanisms underlying each clinical picture [4],
35in order to improve the diagnostic and prognostic stratification
36of the patients and to allow early diagnosis and disease mon-
37itoring as well as to test treatment efficacy.
38Within this multifaceted scenario, neurofilament light chain
39(NFL) is, at the present, the most promising candidate biomark-
40er for an early identification of a general neurodegenerative
41process able to support disease diagnosis, prognosis, and pro-
42gression, as well as monitoring an eventual disease-modifying
43treatment [5–7]. It is a component of neurofilaments (NFs) that,
44together with glial filaments, are the main types of intermediate
45filaments (IFs) of the nervous system [9–11]. Its physiological
46function is to confer mechanical stress resistance by preserving
47the characteristic cellular shape, intracellular traffic regulation
48between axons and dendrites, and, indirectly, nerve conduction
49speed modulation maintaining axon diameter [11]. Recent re-
50search suggests that they are also important for normal synaptic
51function [12]. Axonal dysfunction and degeneration are

* Filippo Baldacci
filippo.baldacci@unipi.it

1 Department of Clinical and ExperimentalQ1 Medicine, University of
Pisa, Pisa, Italy

2 Centre National de Référence des Démences Rares ou Précoces,
IM2A, Département de Neurologie, AP-HP - Hôpital
Pitié-Salpêtrière, Paris, France

3 FrontLab, Institut du Cerveau et de la Moelle épinière (ICM),
Paris, France

4 GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP,
Pitié-Salpêtrière Hospital, Sorbonne University, Boulevard de
l’hôpital, Paris, France

5 INSERMU1127, CNRSUMR 7225, Brain& Spine Institute (ICM),
Boulevard de l’hôpital, Paris, France

6 Department of Neurology, Institute of Memory and Alzheimer’s
Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France

Molecular Neurobiology
https://doi.org/10.1007/s12035-020-02035-9

JrnlID 12035_ArtID 2035_Proof# 1 - 06/08/2020

mailto:filippo.baldacci@unipi.it


AUTHOR'S PROOF

U
N
C
O
R
R
EC
TE
D
PR
O
O
F

52 important steps in NDD pathogenesis, occurring long before
53 neuronal cell death and often preceding detectable deposition
54 of misfolded proteins [8]. During these processes, NFL is re-
55 leased into the extracellular space and, consequently, into body
56 fluids, such as the cerebrospinal fluid (CSF) and blood.
57 Broadly speaking, mounting data reported increased CSF
58 NFL levels in NDDs [5, 6, 13]. In the mid-1990s, through the
59 first enzyme-linked immunosorbent assay (ELISA) developed
60 for NFL, Rosengren and colleagues [14] demonstrated that
61 CSF NFL concentration was increased in amyotrophic lateral
62 sclerosis (ALS), Alzheimer’s disease (AD), and vascular cog-
63 nitive impairment (VCI). Although with different magnitudes,
64 further studies revealed that CSF NFL increased also in other
65 several NDDs, such as frontotemporal dementia (FTD) [15,
66 16], Parkinson’s disease (PD) and atypical parkinsonisms
67 (APs) [17, 18], Huntington’s disease (HD) [19], mild cogni-
68 tive impairment (MCI) [20, 21], and Creutzfeldt–Jakob dis-
69 ease (CJD) [22, 23], as well as in non-primary neurodegener-
70 ative disorders, such as multiple sclerosis (MS) [24],
71 neuroinfectious conditions [25], traumatic brain injury [26],
72 acute stroke [27], and cerebrovascular diseases [28].
73 Moreover, in NDDs, CSF NFL levels showed to correlate
74 with poorer cognition, short survival times, brain atrophy,
75 and disease severity and progression [29–31], supporting the
76 notion that it could be useful not only as a diagnostic biomark-
77 er but also as a prognostic and progression biomarker [32]. As
78 a result, it has been proposed as a dynamic biomarker for
79 axonal degeneration [5, 6, 13] with the potential capacity to
80 monitor treatment effectiveness [10, 33].
81 In the last few years, the interest in NFL research shifted
82 toward blood. An ideal biomarker should be easily measur-
83 able, accurate, quantitative, reproducible, and employable to
84 exactly categorize the population in line with a certain disease
85 [34, 35]. To this end, blood-based biomarkers would have
86 significant advantages in time efficiency and cost efficiency
87 compared to CSF and neuroimaging [36, 37]. Moreover, they
88 would offer potential applications at the population level as
89 screening tools in primary care, as well as for longitudinal
90 evaluations with repeated sampling during follow-up. It is
91 not surprising that brain pathophysiological processes are
92 reflected into the periphery. However, CSF proteins partially
93 enters the blood flow, are subsequently diluted in a greater
94 volume compared with CSF, and go through biochemical in-
95 teractions with a large amount of plasma proteins. They are
96 also cleared by blood cells and metabolized by other tissues.
97 Finally, these processes overall hamper their measurement in
98 plasma or serum using traditional techniques. Nevertheless, in
99 the past few years, the development of analytical tools for
100 ultrasensitive quantification—the immunomagnetic reduction
101 (IMR) and the single molecule array (Simoa) techniques—by
102 allowing an efficient measurement of NFL in blood [38],
103 charted a tight correlation between CSF and blood NFL in
104 different NDDs [39]. Therefore, blood NFL was suggested

105as a proxy of any neurodegenerative process, paving the
106way to its use in clinical practice as a reliable risk biomarker
107for neurodegeneration [40, 41]. Nonetheless, its potential ap-
108plication in real life remains unclear [42].
109Biomarker is defined as “a characteristic that is objectively
110measured and evaluated as an indicator of normal biologic and
111pathogenic processes, or pharmacologic responses to a thera-
112peutic intervention” [43]. From a clinical perspective, a bio-
113marker can be also classified in further categories with some
114practical and conceptual overlaps: (1) antecedent biomarkers
115identifying a risk of disease development (risk biomarkers),
116(2) early biomarkers screening a subclinical condition (screen-
117ing biomarkers), (3) biomarkers specifically recognizing a
118full-blown clinical picture (diagnostic biomarkers), (4) bio-
119markers categorizing disease severity (staging biomarkers),
120(5) biomarkers predicting future disease course (prognostic
121biomarkers), and (6) biomarkers predicting treatment re-
122sponse (predicting or monitoring biomarkers) [44].
123Accordingly, it is crucial to define the context of use of a
124certain biomarker (primary care screening, diagnostic, risk of
125progression, disease monitoring, stratification for clinical tri-
126als, and pharmacodynamic or treatment response monitoring).
127This reviewwill attempt to summarize the current literature
128on blood (plasma or serum) NFL in NDDs, trying to translate
129research data in practical considerations, focusing on the con-
130text of use of blood NFL as a biomarker in the framework of
131the NDDs (Table 1).

132Literature Research Methods

133We conducted a systematic review of the literature until
134February 2020, using the key terms “NFL,” “neurofilament
135light chain,” and “neurofilament” to interrogate the PubMed
136database for articles published in English evaluating blood
137NFL concentrations (serum and plasma) in NDDs. Overall,
138we identified 38 studies. The use of internationally accepted
139clinical diagnostic criteria for each NDD, in particular AD
140[45–49], ALS [50–52], dementia with Lewy bodies (DLB)
141[53–55], FTD [56–58], PD [59–61], AP [62–65], and sporadic
142Creutzfeldt–Jakob disease (sCJD) [66, 67], has been checked
143out for any single study. The diagnostic performance of blood
144NFL concentrations to correctly allocate the participants to the
145different diagnostic groups was considered as follows: “excel-
146lent” (area under the ROC curve (AUROC) 0.90–1.00),
147“good” (AUROC 0.80–0.89), “fair” (AUROC 0.70–0.79),
148“poor” (AUROC 0.60–0.69), or “fail” (i.e., no discriminatory
149capacity) (AUROC 0.50–0.59) [68].

150AD

151AD is the most common form of dementia in the elderly,
152accounting for 50–70% of prevalent neurodegenerative
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153 dementia cases with an enormous health and economic impact
154 [69]. The scientific and clinical research is nowadays shifting
155 from dementia to the prodromal or even preclinical phases of
156 AD to find effective therapeutic interventions that can delay or
157 halt neurodegenerative progression [70, 71].
158 Biomarkers hold promise for improving early diagnosis in
159 AD and establishing a tailored approach. The use of specific
160 surrogate biomarkers (neuroimaging, blood [plasma/serum],
161 and CSF) of AD pathology has been included in revised diag-
162 nostic criteria to distinguish AD from other forms of dementia
163 since its early disease stages. However, postmortem studies
164 demonstrate a high degree of neuropathologic heterogeneity
165 in patients who received a clinical diagnosis of AD [72]. The
166 pathogenesis of AD involves interacting pathophysiological
167 cascades in which the deposition of amyloid plaques (Aβ)
168 and the formation of neurofibrillary tangles (NFTs) composed
169 of hyperphosphorylated tau protein would represent only the
170 core events. The recently established “A/T/N” scheme pro-
171 poses three binary biomarker categories which reflect AD
172 pathophysiology, where “A” refers to Aβ pathology, “T” to
173 tau pathology, and N to neurodegeneration [73, 74]. However,
174 emerging evidence stresses the existence of additional molec-
175 ular pathophysiological pathways, such as synaptic dysfunc-
176 tion and degeneration, innate immune response and neuroin-
177 flammation, vascular and cell membrane dysregulation, brain
178 metabolic dysfunction, and axonal disruption [75]. The latter
179 is prominent in AD, and it is more closely related to cognitive
180 decline than Aβ pathology [76], thus leading to propose CSF
181 NFL as a non-specific biomarker to detect early AD patho-
182 physiological alterations [77]. In addition, an increased release
183 of NFL molecules is a consequence of aging that contributes
184 to an axonal degeneration due to subclinical cerebrovascular
185 changes and neuronal atrophy [78]. In this regard, a recent

186prospective community-based study enrolling a cohort of cog-
187nitively intact subjects reported high variability of serum NFL
188levels above 60 years [79].
189Several studies showed that CSFNFL levels are elevated in
190AD patients when compared with healthy controls (HCs) and
191higher NFL concentration is predictive of a rapid disease pro-
192gression along core biomarkers of AD pathology [21].
193Peripheral serum or plasma NFL strongly correlated with
194CSF NFL concentration, suggesting that it reflects the same
195pathological process [80]. In general, we found that the levels
196of NFL are higher in serum than in plasma, but the majority of
197studies used plasma to quantify NFL.

198NFL as Diagnostic Biomarker

199Current evidence revealed that plasma NFL allows to discrim-
200inate AD patients from HC subjects with a good/excellent
201diagnostic accuracy [77, 81] (Table 2). In addition, plasma
202NFL levels showed to be higher in the AD dementia group
203than in the MCI group and in Aβ-positive MCI patients than
204HC [77]. More recently, this finding has been replicated in a
205larger study in the Dominantly Inherited Alzheimer Network
206(DIAN) [82]. Other studies reported higher plasma/serum
207NFL levels in AD and MCI patients compared with controls
208[76, 83, 84], but with conflicting results about the differences
209between MCI and cognitively normal individuals. A recent
210meta-analysis by Wang and colleagues [85] confirmed these
211findings, supporting a possible contribute of plasma NFL in
212the AD diagnostic workup. Moreover, plasma NFL levels
213could also reflect NFT pathology (as determined by
214NFL immunostaining) and neurodegeneration at post-
215mortem evaluation [76].

t1:1 Table 1 Overview on the
possible context of use of blood
NFL as a biomarker in NDDs

t1:2 Diagnostic value Prognostic
value

Monitoring
treatment

t1:3 Preclinical
phase

Prodromal
phase

Full-blown
picture

t1:4 AD ± + + + ±
t1:5 PD ± ± + + ±
t1:6 Atypical parkinsonisms

(4R tauopathies)
± ± + + ±

t1:7 DLB ± ± ± ± ±
t1:8 FTD − ± + ± ±
t1:9 ALS ± ± + ± ±
t1:10 CJD ± + + − ±
t1:11 HD − − − + ±
t1:12 SMA − − − ± +
t1:13 Sporadic late-onset ataxias ± ± ± + ±
t1:14 NDDs as a whole ± + + + ±

Plus sign (+), potential use, supportive data are available; plus–minus sign (±), unknown; negative sign, negative
evidences are available

AD Alzheimer’s disease, ALS amyotrophic lateral sclerosis, CJD Creutzfeldt–Jakob disease, DLB dementia with
Lewy body, FTD frontotemporal dementia, HD Huntington’s disease, NDD neurodegenerative diseases, PD
Parkinson’s disease, SMA spinal muscular atrophy
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216 NFL as Staging and Prognostic Biomarker

217 Studies in AD and MCI-AD patients found a correlation
218 between plasma NFL concentration and cognitive impair-
219 ment, MRI hippocampal volume loss and brain atrophy,
220 and cerebral 18FFDG-PET hypometabolism [76, 81–87].
221 Moreover, higher plasma NFL levels predicted faster cogni-
222 tive deterioration and a higher rate of brain atrophy and
223 hypometabolism in MCI patients over time [77]. Baseline
224 plasma and CSF NFL levels were similarly associated with
225 short-term declines in imaging measures of neurodegenera-
226 tion and with global cognitive worsening, but not with
227 change in amyloid ligand retention on PET [35], differently
228 from CSF t-tau concentration that critically depends on ce-
229 rebral Aβ burden [88]. Instead, increased plasma NFL was
230 related to baseline and longitudinal glucose hypometabolism,
231 which is an unspecific neurodegeneration marker, in AD-
232 related regions of MCI Aβ+ individuals [87].
233 In a longitudinal analysis of NFL plasma levels in a
234 large cohort of subjects enrolled in the Alzheimer’s
235 Disease Neuroimaging Initiative (ADNI), Mattsson and
236 colleagues [82] found increasing rates of NFL changes
237 from preclinical AD stage to frank AD dementia through
238 prodromal phase, suggesting NFL as a dynamic biomarker
239 sensitive to AD disease progression. Of note, longitudinal
240 NFL variations correlated with several baseline AD-related
241 features (CSF biomarkers, imaging measures, and cogni-
242 tion) in the whole population, though with significant dif-
243 ferences regarding clinical stage. Actually, the strictest as-
244 sociations were reported in MCI participants. Longitudinal
245 NFL level was generally increased in patients who were
246 classified as N+ (using temporal brain atrophy as N− indi-
247 cator) and in those who were only T+. Therefore, NFL
248 might reflect a neurodegenerative process that occurred
249 independently from Aβ pathology. Noteworthy, the NFL
250 rate of change, rather than NFL absolute concentration,
251 was subject to a significant increase in mutation carriers
252 compared with non-carriers. Moreover, the NFL rate of
253 change strongly correlated with longitudinal precuneus
254 cortical thinning in both symptomatic and presymptomatic
255 mutation carriers [89].

256 NFL as Risk/Screening Biomarker

257 Blood NFL levels seem to predict the progression to AD de-
258 mentia in patients with subjective memory complaints [77].
259 An association between regional hypometabolism in the right
260 hippocampus and higher plasma NFL levels was reported in
261 cognitively normal participants from the ADNI database [87].
262 Hu and colleagues [90] explored the predictive role to develop
263 AD of plasma NFL at the preclinical stage. Interestingly, plas-
264 ma NFL concentrations were already abnormally high in cog-
265 nitively normal individuals with significant Aβ-related

266pathological changes. Baseline plasma NFL levels did not
267differ in normal elderly volunteers who remain cognitively
268intact during the follow-up, independently from an initial am-
269yloid PET positivity status. Instead, a trend toward elevated
270plasma NFL concentration was observed in Aβ+ individuals
271with subjective memory complaints compared to subjects
272without memory complaints who were Aβ+, and plasma
273NFL resulted to be inversely associated with cognitive perfor-
274mance [91]. By contrast, other groups investigated the corre-
275lation between serum NFL levels with cerebral metabolism in
276MCI patients. Regional hypometabolism in bilateral
277parahippocampal gyri, right fusiform, and middle temporal
278gyri was independently predicted by plasma NFL [92].
279Weston and colleagues [93] reported increased serum NFL
280concentrations also in symptomatic and presymptomatic fa-
281milial AD (FAD) mutation carriers, showing a significant cor-
282relation with the estimated years to/from symptom onset
283across all mutation carriers as well as with cognitive decline
284and MRI atrophy. This finding suggests that increases in se-
285rum NFL precede the onset of AD symptoms. A large study in
286the DIAN cohort confirmed NFL as a sensitive marker of
287early neurodegeneration, finding significant increased serum
288NFL levels in AD mutation carriers (Aβ precursor protein
289(APP) or presenilin 1 (PSEN1) or presenilin 2 (PSEN2))
29016 years before disease onset [89]. The rate of change of
291serum NFL peaked in mutation carriers during the conversion
292phase to clinically evident cognitive impairment and reached a
293plateau in symptomatic carriers; absolute values of NFL
294showed a trend toward a slow increase over time (Table 2).
295Interestingly, the increase in plasma NFL concentration dur-
296ing the follow-up (15–30 months) in 79 elderly participants
297without dementia, including 15 subjects with MCI, was asso-
298ciated with a significant decline in both attention and global
299cognition and with an increase in cerebral amyloid PET up-
300take [32]. More recently, baseline serum NFL was shown to
301be a strong and independent predictor of brain volume loss
302and subtle cognitive changes in a longitudinal study cohort of
303neurologically intact individuals [79].

304NFL as Predictive Biomarker

305Although not yet in humans, transgenic mice models treated
306with aβ-secretase (BACE) inhibitor showed beneficial effects
307on AD-relevant downstream markers, including reduced plas-
308ma NFL concentrations [30].

309FTD

310The term FTD indicates a heterogeneous spectrum of NDDs
311inexorably conveying to a dementia syndrome characterized by
312predominant behavioral—behavioral FTD (bvFTD) [94]—or
313language—primary progressive aphasia (PPA) [58]—
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314 impairment. It is the third most common neurodegenerative
315 dementia after AD and DLB and is typically diagnosed in mid-
316 dle age [95]. bvFTD is the most prevalent phenotype (55–60%
317 of cases) whereas PPA (40–45% of cases) can be further clas-
318 sified as non-fluent/agrammatic variant (nfvFTD) and semantic
319 variant (svFTD) [96]. Notably, an additional clinical PPA var-
320 iant, named logopenic variant, can show AD pathological fea-
321 tures in more than half of subjects [97]. Finally, a clinical over-
322 lap between FTD and ALS is described and about 10–15% of
323 cases with ALS report a dementia syndrome in the FTD spec-
324 trum (ALS-FTD) [98]. The underlying pathologies in FTD,
325 essentially abnormal accumulations of either tau or TAR
326 DNA-binding protein 43 (TDP-43) proteins, may be recog-
327 nized only on postmortem examination. These misfolded pro-
328 tein aggregates lead to atrophy (structural MRI) and
329 hypometabolism (18FFDG-PET) of frontal and/or anterior tem-
330 poral lobes depending on phenotype [41].
331 Unfortunately, with the exception of causative mutations in
332 genetic forms (about 10% of cases: hexanucleotide repeat ex-
333 pansions near the chromosome 9 open reading frame gene
334 (C9orf72), progranulin (GRN), and microtubule-associated
335 protein tau (MAPT) [99]), CSF poly(GP) detection in
336 C9ORF72 expansion carriers, and decreased CSF/blood
337 progranulin levels in GRN mutation carriers, specific patho-
338 physiological biomarkers for FTD are completely lacking.
339 However, the diagnosis of FTD remains very challenging,
340 especially for behavioral variant as its diagnosis is mainly
341 based on clinical assessment and because its symptoms show
342 a significant overlap with primary psychiatric disorders [100].
343 In this context, blood NFL is a promising candidate bio-
344 marker for FTD, especially for disease differential diagnosis,
345 monitoring, and prognosis [101, 102]. Recent evidence
346 proved that blood and CSF levels of NFL are tightly related
347 and significantly higher in FTD subjects than in HC [103],
348 without gender differences [104]. Furthermore, although
349 NFL levels generally increase with aging, this association
350 seems not present for FTD patients [16, 105–107]. Blood
351 NFL levels tightly correlate with CSF values in almost all
352 studies measuring this biomarker in both fluids, thus suggest-
353 ing that the peripheral concentrations of NFL substantially
354 reflect the pathophysiological modification within CNS lead-
355 ing to NFL increase in CSF.

356 NFL as Diagnostic Biomarker

357 Serum NFL levels distinguished FTD patients from controls
358 with good/optimal diagnostic accuracy (Table 2) [105,
359 108–110]. Interestingly, this biomarker was higher in bvFTD
360 individuals in comparison with psychiatric patients affected by
361 depression, schizophrenia, and bipolar disorders [106], in
362 which bvFTD misdiagnosis is common [100]. The diagnostic
363 accuracy to differentiate bvFTD from psychiatric disorders was

364above 80% (Table 2), independently from the specific psychi-
365atric condition (mood or psychotic disorders) [106, 107].
366Only one study compared both FTD and AD subjects,
367reporting that serum NFL levels were higher in bvFTD patients
368[109], and separated the two groups with a sensitivity and spec-
369ificity of 93% and 61%, respectively (Table 2), after a prelim-
370inary exclusion of bvFTD patients with an AD biomarker pro-
371file and clinical AD subjects without a core biomarker confir-
372mation. Moreover, serum NFL concentrations seemed to be
373higher in nfvPPA and svPPA than lvPPA subjects [105],
374though with only moderate accuracy. A further study showed
375no significant differences between PPA subtypes [110].
376Finally, although FTD individuals had higher serum NFL
377levels than subjects with other cognitive disorders such as AD,
378ALS patients reported even more elevated concentration
379[108]. Notably, ALS subjects present a TDP-43 pathology in
380about 95% of cases, suggesting a potential association be-
381tween increased NFL concentration and TDP-43 pathology.
382Further confirmation of this hypothesis is supported by ob-
383serving that FTD forms expected to be TDP-43 positive
384(C9ORF72 and GRN mutation carriers, or svPPA phenotype)
385reported higher concentration of this biomarker than FTD
386subtypes expected to be tau positive (MAPTmutation carriers
387and nfvPPA) [16, 99, 104].

388NFL as Staging and Prognostic Biomarker

389In different studies, serum NFL increases overtime in FTD
390subjects, independently from the phenotypes, with the excep-
391tion of lvPPA [105, 109]. A longitudinal Mini-Mental State
392Examination Q3(MMSE) decline was correlated with baseline
393serum NFL levels [107]. Disease duration was not associated
394with NFL concentration although one study reported a poor
395survival in FTD subjects in the higher tertile of serum NFL
396levels (Table 2).
397Additionally, peripheral blood NFL concentrations appeared
398to reflect specific regional brain atrophy related to clinical phe-
399notypes (PPAs or bvFTD). In bvFTD patients, serum NFL was
400associated with a low cognitive score and a reduction in whole-
401brain volume and was correlated with brain atrophy, including
402frontal and subcortical regions [99, 104, 109, 110].
403Serum NFL was correlated with baseline cognitive impair-
404ment, cognitive decline overtime, and atrophy progression of
405the left frontal lobe and the right middle frontal gyrus in PPA
406individuals and nfvPPA/svPPA subjects, respectively [105,
407107]. On the other hand, although only in one study, serum
408NFL concentration was not related to specific hypometabolic
409regions on 18FFDG-PET in PPA subjects [110].

410NFL as Risk/Screening Biomarker

411Noteworthy, serum NFL was higher in genetic FTD with a
412full-blown clinical picture but not in presymptomatic carriers
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413 compared to HC, independently from the gene mutation.
414 Moreover, it was consistently higher in converters than in
415 non-converter carriers [104] and increased overtime in con-
416 verters but not in symptomatic FTD as well as non-converters.
417 Therefore, serum NFL could differentiate genetic FTD pa-
418 tients from presymptomatic carriers, with an excellent diag-
419 nostic accuracy (Table 2) [16]. By contrast, the discriminatory
420 accuracy of the biomarker relative to presymptomatic genetic
421 carriers and controls resulted quite poor (Table 2).

422 ALS

423 ALS is a progressive neurological disease in which upper
424 motor neuron (UMN) and lower motor neuron (LMN) degen-
425 erate, leading to paralysis and death, typically within 3–
426 5 years from symptom onset. To date, there is no definitive
427 diagnostic test for ALS, and confirmation of diagnosis is
428 based on clinical findings, electromyography results, and ex-
429 clusion of mimics [52]. Despite efforts to increase the sensi-
430 tivity of diagnostic criteria, often the diagnosis is made only
431 after the onset of symptoms for both sporadic and familial
432 ALS [111, 112]. An early diagnosis would be paramount,
433 since it was observed that the benefit of riluzole is related to
434 its early administration.
435 A large body of research exists on neurochemical ALS
436 biomarkers [113, 114], among which phosphorylated neuro-
437 filament heavy chain (pNFH) and NFL have been postulated
438 as the most interesting candidates [115, 116]. This is not sur-
439 prising, given the axonal impairment that characterizes the
440 disease already at the early stage, with a large release of NF
441 in CSF [117]. Additionally, previous studies indicate cyto-
442 skeletal proteins as one of the key factors contributing to neu-
443 rodegeneration in ALS [118–123]. Other evidences provide
444 additional support that NFL aggregation is an early event in
445 motor neuron disease [124], and that NFL is involved in the
446 aggregation and neurotoxicity of other proteins in motor neu-
447 rons [125]. At the same time, elevated NFL levels in ALSmay
448 be explained by the higher content of axonal proteins in motor
449 neurons compared to other neuronal populations [126].
450 Nonetheless, several data highlighted that NFL is able to dis-
451 criminate ALS patients from healthy and disease controls [14,
452 117, 127, 128], especially in cases with predominant UMN
453 signs, and correlates with clinical disability [129], disease
454 stage, progression, and/or prognosis [130, 131], probably
455 reflecting the burden of motor neuron degeneration.
456 Although CSF NFL remains the more robust fluid biomarker
457 for ALS because of its directly reflecting alterations in the
458 CNS, a high correlation between CSF and blood NFL concen-
459 trations has been reported [132]. Moreover, at odds with other
460 neurodegenerative diseases such AD, NFL concentrations do
461 not correlate with age in ALS individuals [133–135].

462NFL as Diagnostic Biomarker

463Mounting evidence reports significantly higher blood NFL
464levels in ALS patients when compared to controls (Table 2)
465[40, 135–138]. The diagnostic performance of serum NFL in
466discriminating ALS and non-neurodegenerative subjects
467showed excellent sensitivity and specificity (Table 2) [139,
468140]. These findings led authors to propose the introduction
469of serum NFL measurement into clinical practice as support-
470ive diagnostic tool. In addition, serum NFL showed signifi-
471cantly elevated concentration in ALS even at the onset of the
472first symptoms, confirming its potential role as a biomarker
473for early detection of symptomatic sporadic ALS. In this re-
474gard, serum NFL concentrations demonstrated optimal sensi-
475tivity and specificity also in distinguishing early symptomatic
476ALS from other neurologic diseases or motor neuron disease
477mimics, independently whether diagnosis was definite, prob-
478able, or possible, following the El Escorial criteria (Table 2)
479[134]. Interestingly, Gille and colleagues [135] reported an
480increase of serum NFL as a function of the number of regions
481(i.e., cranial, cervical) affected by UMN degeneration.
482Accordingly, in a MRI-based study, elevated CSF and serum
483NFL concentrations were significantly associated with lower
484diffusion tensor imaging (DTI) fractional anisotropy and in-
485creased radial diffusivity in the corticospinal tract of ALS
486patients, as well as with clinically UMN score burden [133].
487On the other hand, previous studies have shown that NFL
488levels were not increased in Kennedy disease and spinal mus-
489cular atrophy (strictly LMN diseases) [128, 134]. As a conse-
490quence, a subclinical involvement of the UMN is likely in
491ALS patients with isolated LMN symptoms and elevated se-
492rum NFL concentration [117]. However, the neuroanatomical
493correlate of NFL increase is not yet clear since Verde and
494colleagues [139] showed a lack of association with DTI-
495MRI measurements of the integrity of cerebral white matter
496tracts in the brain of ALS patients. Finally, serum NFL levels
497were reported relatively lower in patients with primary lateral
498sclerosis (PLS) and hereditary spastic paraplegia (HSP), two
499UMN-isolated syndromes, compared with ALS subjects, sug-
500gesting in such patients different pathophysiological processes
501and rates of Q4neurodegenerative diseases [134, 135].

502NFL as Staging and Prognostic Biomarker

503Several studies reported that blood NFL levels correlate with
504disease severity parameters, such as the decline in the ALS
505Functional Rating Scale-Revised (ALSFRS-R) score and the
506ALS Milano-Torino Staging (MITOS) system score [135,
507137, 140, 141].
508Furthermore, serum NFL levels at recruitment or at the
509time of diagnosis predicted survival independently from other
510clinical variables and were negatively associated with disease
511duration (Table 2) [136, 138, 142]. Thouvenot and colleagues
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512 [140] evaluated the largest series ever of serum samples taken
513 from ALS patients, finding that NFL concentration was the
514 most important parameter related to ALS survival in multivar-
515 iate models (Table 2). Likewise, serum NFL concentrations in
516 the middle and high tertile were associated with an increased
517 HR compared with those of patients in the lowest tertile
518 (Table 2) [135]. Interestingly, unlike pNFH, NFL levels seem
519 to change minimally throughout the course of the disease,
520 maintaining distinct temporal profiles from controls, and a
521 steady trajectory [136].
522 However, not all studies confirmed blood NLF as a robust
523 prognostic biomarker in ALS patients, even if all proved low-
524 er NFL concentration in slow disease progressors [141].
525 Notably, the ALSFRS-R and the ALS MITOS system better
526 correlated with CSF than serum at the baseline [137]. No
527 significant correlation has been found between blood NFL
528 levels and cognitive dysfunction in ALS [135].

529 NFL as Risk/Screening Biomarker

530 In contrast with AD, CSF and blood NFL levels are reported
531 normal in presymptomatic ALS mutation carriers (C9orf72,
532 SOD1, FUS/TLS, or TARDBP), but they increase suddenly
533 with symptom onset in symptomatic mutation carriers as dem-
534 onstrated by Weydt and colleagues [143]. Furthermore, using
535 the parental age of disease onset as a proxy for assumed age of
536 clinical onset, any trend toward an increase of NFL concen-
537 tration was observed in asymptomatic mutation carriers.
538 Despite recent longitudinal data on a large cohort of presymp-
539 tomatic, SOD1 mutation carriers provided evidence that an
540 increase in CSF and blood NFL levels occurs at least 1 year
541 before of any clinical manifestations of the disease [144].

542 NFL as Predictive Biomarker

543 It would be interesting to determine whether riluzole reduces
544 blood NFL levels over time given its neuroprotective effects
545 and, although minimally, its capacity to slow disease progres-
546 sion. Currently, no studies investigated blood NFL as an indi-
547 cator of treatment response in ALS, and no difference in blood
548 NFL levels between patients treated and not treated with
549 riluzole has been reported so far [136, 139]. On the other hand,
550 recent studies on spinal muscular atrophy (SMA), a group of
551 severe autosomal recessively inherited neurodegenerative dis-
552 orders characterized by degeneration of the spinal alpha motor
553 neurons, have highlighted an emerging role of NFL in track-
554 ing disease progression and response to treatment. Of note,
555 recent data provided evidence that CSF NFL levels normalize
556 and correlate with motor improvement in children with SMA
557 treated with nusinersen, with a greatest benefit found in chil-
558 dren who received treatment earliest during the course of dis-
559 ease [145]. Nusinersen, an antisense oligonucleotide delivered
560 intrathecally by a spinal tap, is the first drug clinically

561approved for the treatment of all SMA types, with a rather
562dramatic impact on phenotype [146]. The levels of two addi-
563tional biomarkers of neurodegeneration (CSF tau and glial
564fibrillary acidic protein (GFAP), an intermediate filament
565present in astrocytes) decreased together with CSF NFL after
566nusinersen administration, indicating that the neuronal and
567astroglia damage can be restored by nusinersen treatment
568[145]. Moreover, the decrease of NFL concentration was
569much larger than that of tau and GFAP, suggesting NFL as
570an early treatment response biomarker in SMA patients, help-
571ful to select those patients will benefit to continue such an
572invasive treatment. Further studies with a long follow-up are
573needed, but these preliminary results in SMA indicated NFL
574as a promising marker for upcoming disease-modifying ther-
575apies in diseases beside SMA. Conversely, it is worth men-
576tioning that the diagnostic and monitoring value of NFL in
577CSF and blood has not been confirmed in adolescent and adult
578SMA-type (SMA types 2 and 3) patients treated with
579nusinersen [134, 147]. It was hypothesized that NFL release
580is lower in late-onset SMA than in the infantile-onset subtype.
581Actually, the first phenotype is characterized by a long-lasting
582and chronic disease course while the foster by an acute and
583highly aggressive onset. Additionally, subjects with infantile-
584onset SMA report a significantly better response to nusinersen
585therapy when compared to individuals with adult-onset one.
586In this regard, the finding of normal blood levels of NFL in
587SMA could be used in a diagnostic panel of biochemical
588markers to help differentiate patients presenting with motor
589neuron deficits, separating SMA fromALS. Indeed, a substan-
590tial proportion of patients with SMA initially receive a diag-
591nosis of ALS [148].

592Degenerative Parkinsonisms

593PD is the most common degenerative parkinsonism, with ev-
594idence of progressive loss of dopaminergic neurons in the pars
595compacta of the substantia nigra. Diagnostic criteria have been
596recently revised to improve diagnostic accuracy imaging bio-
597markers as supportive features [61]. However, early diagnosis
598and progression prediction remain challenging for physicians.
599Of note, the differential diagnosis between PD and AP can be
600difficult, mainly at the early clinical stage. Similarly, evolution
601of diagnostic criteria for AP improved accuracy, but misdiag-
602nosis rates are still high [149–152]. The APs that most com-
603monly mimic PD are progressive supranuclear palsy (PSP)
604and multiple system atrophy (MSA), whereas among APs,
605the lowest diagnostic accuracy regards the corticobasal degen-
606eration (CBD).
607Currently, biochemical biomarkers for PD and AP are an
608unmet need, but many CSF/serum molecules are under eval-
609uation. CSF NFL concentration overlaps in patients with PD,
610PD with dementia (PDD), and DLB and are comparable with
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611 those in HC [31]. In contrast, it has been demonstrated that
612 CSF NFL levels are markedly increased in AP patients.
613 Accordingly, it might discriminate between PD and AP with
614 a high degree of diagnostic accuracy [17, 18, 153, 154]. This
615 is in line with the remarkable axonal degeneration of large
616 myelinated axons occurring in AP as well as with the rapid
617 neuronal loss in such conditions [155]. Furthermore, CSF
618 NFL concentration correlates with measures of disease sever-
619 ity and other clinical variables, demonstrating its capability to
620 reflect neurodegenerative mechanisms. However, to over-
621 come the well-known limits related to CSF examination,
622 blood-derived NFL would be a more favorable biomarker.
623 In this regard, the strong correlation between blood and CSF
624 NFL levels in parkinsonian syndromes holds potential for an
625 application in clinical practice [156].

626 PD

627 NFL as Diagnostic Biomarker

628 Similar to CSF results, NFL concentration in serum/plasma is
629 considered useful for a differential diagnosis between PD and
630 AP [157]. This has been tested for the first time in three inde-
631 pendent prospective cohorts of PD, PSP, MSA, and CBD pa-
632 tients, compared with HC. Blood NFL levels in AP were sig-
633 nificantly elevated compared with those in PD, showing a di-
634 agnostic accuracy ranging from good (in the early cohort with
635 disease duration < 3 years) to excellent (in the Lund cohort)
636 (Table 2) [156]. Conversely, blood NFL levels were not able
637 to accurately separate PD from HC. A subsequent study in
638 subjects with an uncertain diagnosis at the time of inclusion
639 confirmed similar results (Table 2) [158]. Nevertheless, recent
640 studies support the promise of plasma NFL as a diagnostic
641 biomarker also in PD, demonstrating relatively higher NFL
642 levels in cases vs controls [159] and a good diagnostic accuracy
643 in differentiating PD patients from HC (Table 2) [160].
644 Moreover, higher serum NFL levels were found even at early
645 stages of the disease and in participants at risk of disease pro-
646 gression (prodromal PD and symptomatic and asymptomatic
647 mutation carriers of known PD genetic mutations), indicating
648 the presence of active disease and potential for conversion to
649 either PD or parkinsonian syndromes [161].

650 NFL as Staging and Prognostic Biomarker

651 Heterogeneous results regarding possible correlations be-
652 tween blood NFL and PD clinical features in three indepen-
653 dent PD cohorts have been provided in the prospective and
654 longitudinal study of Hansson and colleagues [156]. In gen-
655 eral, higher blood NFL levels were observed in more ad-
656 vanced PD and, in the Lund PD cohort, a higher blood NFL
657 concentration was associated with disease duration and more

658severe motor symptoms (measured as Hoehn and Yahr
659(H&Y) stage, Unified Parkinson’s Disease Rating Scale
660(UPDRS) III motor score, Timed Up and Go Test, and
661Tandem Gait Test). Conversely, no clinical correlations were
662described in the London cohort and the early-stage disease
663cohort [156]. However, further studies confirmed the positive
664relation between plasma NFL levels and motor symptom se-
665verity (measured as H&Y stage and UPDRS part III score)
666and proved a significant correlation between plasmaNFL con-
667centration and cognitive dysfunction at MMSE [161, 162]. In
668another study, PDD patients reported higher plasmaNFL level
669compared with PD subjects without dementia [84], supporting
670an association between plasma NFL and cognitive function in
671PD patients [84]. Furthermore, higher baseline plasma NFL
672concentrations in PD patients were found to be longitudinally
673associated with a higher risk of progression for both motor and
674cognitive symptoms, suggesting that serum NFL may be a
675biomarker of clinical progression in PD (Table 2) [160–162].

676PSP

677NFL as Diagnostic Biomarker

678Two other studies confirmed the diagnostic value of blood
679NFL in PSP patients showing good capability to discriminate
680between PSP and HC (Table 2) [163, 164]. In contrast, blood
681NFL is not suitable to separate PSP from other forms of AP
682[156] and similar levels are reported in patients with MSA and
683PSP [158].

684NFL as Staging and Prognostic Biomarker

685Greater baseline NFL levels in serum/plasma seem to correlate
686with disease severity and clinical progression in PSP patients,
687though with conflicting results. Such heterogeneity may re-
688flect differences in study design, since PSP patients have been
689evaluated as a separate group in some studies but not in others
690where PSP, MSA, and CBD patients have been combined as a
691whole group. Specifically, blood NFL levels positively corre-
692lated with motor symptom severity, evaluated as H&Y stage
693and with UPDRS III motor score, but not with disease dura-
694tion or other clinical assessments, in the AP group (including
695also MSA and CBD patients) [156]. Similarly, serum NFL
696concentration at baseline correlated with motor performances,
697measured with the International Cooperative Ataxia Rating
698Scale score and Tandem Gait Test in another cohort of AP
699patients including PSP [158].
700In studies focusing exclusively on PSP patients, higher
701serum NFL levels were related to more severe motor, func-
702tional, and cognitive disability as well as shorter survival but
703not with age at symptom onset or disease duration (Table 2)
704[163]. Notably, NFL levels in the higher tertile were
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705 associated with worse survival (Table 2) [164]. Higher base-
706 line plasma NFL levels also predicted greater whole-brain
707 and superior cerebellar peduncle volume loss at 1-year fol-
708 low-up [163].

709 MSA and Degenerative Ataxias

710 NFL as Diagnostic Biomarker

711 As for PSP, studies indicate elevated blood NFL concentration
712 in MSA patients, suggesting its use in discrimination of MSA
713 from PD and HC with a good diagnostic accuracy (Table 2).
714 However, as aforementioned, NFL cannot discriminate
715 among APs [158].
716 Moreover, blood NFL was proposed to improve the differ-
717 ential diagnosis of degenerative ataxias. In a pilot study eval-
718 uating serum NFL levels in patients with a clinical diagnosis
719 of probable cerebellar-MSA (c-MSA) subtype, sporadic adult-
720 onset ataxia (SAOA), and frequent repeat-expansion
721 spinocerebellar ataxias (SCAs 1, 2, 3, and 6) and in HCs,
722 serum NFL concentration was found to be higher in SCA
723 patients and in the c-MSA group compared with controls.
724 This is probably the result of the diffuse involvement of
725 spinocerebellar and corticospinal tracts in these multisystemic
726 neurodegenerative ataxias [165]. However, the performance
727 of serum NFL differentiating c-MSA from SAOA was only
728 moderate (Table 2), in contrast with a higher accuracy previ-
729 ously reported for CSF NFL (AUC= 0.93) [166]. NFL levels
730 were significantly lower in SAOA and comparable with those
731 of HC. A further study investigated serum NFL concentration
732 in large cohorts of SCA-3 subjects and demonstrated higher
733 levels in both preclinical and manifest SCA-3 individuals
734 compared with HC [167]. Serum NFL levels discriminated
735 manifest SCA-3 from HC with excellent accuracy, and the
736 diagnostic performance remained good in distinguishing pre-
737 clinical SCA-3 subjects from HC (Table 2) [167]. Recently,
738 plasma NFL concentrations resulted higher also in patients
739 affected by Friedreich’s ataxia (FA), which is the most com-
740 mon autosomal recessive ataxia caused by CAG repeat expan-
741 sion in the ATXN3/MJD1 gene, compared with aged-
742 matched controls [168].

743 NFL as Staging and Prognostic Biomarker

744 SerumNFL in c-MSA patients does not seem to correlate with
745 clinical disease severity (as assessed by the Scale for the
746 Assessment and Rating of Ataxia (SARA)) or disease progres-
747 sion [165]. Similarly, a recent study in 99 patients with genet-
748 ically confirmed FA did not find a correlation with disease
749 severity (as defined by SARA score), age at onset, or disease
750 duration [169]. Moreover, serum NFL concentration remains

751stable in a subgroup of 14 FA patients who received a 2-year
752follow-up evaluation [169].
753Conversely, serum NFL concentration increased with dis-
754ease severity in a large cohort of SCA-3 patients, including
755manifest and preclinical individuals, and correlated with both
756clinical scales (according to SARA and International
757Cooperative Ataxia Rating Scale (ICARS) scores) and reduc-
758tion of cerebellar and brainstem volume [167]. Preclinical
759SCA-3 group was divided in early and late preclinical sub-
760groups using the median predicted number of years to onset of
761manifest disease. Serum NFL concentrations resulted higher
762in manifest than preclinical SCA-3 subjects and in late pre-
763clinical SCA-3 subjects compared with early preclinical SCA-
7643 individuals. However, no differences were observed be-
765tween early preclinical subjects and HC [167]. Despite CAG
766repeat count is a well-known prognostic factor for SCA-3 and
767FA, a correlation between serumNFL and CAG repeat lengths
768has been inconsistently reported [168, 169].

769NFL as Risk/Screening Biomarker

770In their study on 133 SCA-3 patients, Li and colleagues [167]
771demonstrated higher serum NFL concentrations in 26 preclin-
772ical ATXN3 mutation carriers (patients with SARA score < 3)
773compared with controls. Moreover, a correlation between mo-
774tor symptoms, neuroimaging markers, and serum NFL was
775found in all ATXN3 mutation carriers, suggesting that NFL
776may serve to track neurodegeneration and disease progression
777already in pre and prodromal SCA-3 phases.

778HD

779Among the most common neurodegenerative diseases, HD is
780unique, since the major part (≈ 99%) of individuals presenting
781a HD phenotype have a mutation in the same gene [170].
782Indeed, HD is an autosomal dominant inherited neurodegen-
783erative disease with the typical manifestations of involuntary
784movements, psychiatric symptoms, and cognitive decline.
785The etiological basis is the deleterious expansion of
786polyglutamine encoding CAG repeats in the huntingtin
787(HTT) gene, leading to the expression of neurotoxic mutant
788huntingtin (mHTT) and extensive degeneration of neurons
789primarily occurring in the striatum and cortex [171]. The dis-
790ease usually starts in midlife, with age of onset inversely cor-
791relating to CAG repeat number [171]. Although the cause is
792known, disease-modifying treatments are not yet available. In
793HD, a reliable genetic test confirms a clinical diagnosis in
794symptomatic people or predicts disease onset in asymptomatic
795mutation carriers [172]. As a consequence, a novel biomarker
796should be directed to track disease progression and predict a
797treatment response to targeted therapies. Although not conclu-
798sive, the results of the available studies display that blood NFL
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799 could have a role in this context. Previous reports on CSF
800 NFL indicate elevated concentrations in HD subjects [19,
801 173, 174]. This is not surprising because mtHTT interacts with
802 other proteins altering their function and finally leading to
803 abnormal protein aggregation and impaired axonal transport
804 [175]. Furthermore, the level of misfolded mtHTT protein
805 correlates with NFL concentration in CSF, thus suggesting a
806 contemporary releasing of both proteins from damaged neu-
807 rons [176].

808 NFL as Staging and Prognostic Biomarker

809 In the first retrospective study investigating NFL concentra-
810 tions in the blood of premanifest HD (preHD) and early-stage
811 HD patients enrolled in the TRACK-HD cohort, Byrne and
812 colleagues [177] showed higher baseline NFL levels in 201
813 HTT mutation carriers, including 58 with early premanifest
814 and 46 subjects with late premanifest disease, than in controls.
815 Moreover, NFL concentration reflected baseline motor and
816 cognitive deficits in HD patients and differed significantly
817 with increasing disease stage. Positive associations were
818 found between plasma NFL concentration, age, and CAG
819 triplet repeat counts, with higher CAG lengths being associat-
820 ed with earlier and steeper increases in plasma NFL [177].
821 Therefore, NFL is the first biofluid marker showing a direct
822 relationship with a causative gene expansion [178].
823 Of note, baseline plasma NFL predicted rates of brain at-
824 rophy, cognitive decline, and worsening of functional ability
825 and motor performance in mtHTT carriers [177].
826 Interestingly, it was closely associated with the rate of
827 whole-brain atrophy than with the rate of striatal one, suggest-
828 ing that plasma NFL reflects more the rate of global neuronal
829 degeneration than that of a specific brain area [177].
830 Additionally, in the same TRACK-HD cohort, Johnson and
831 colleagues [179] showed voxel-wise region-specific associa-
832 tions between plasma NFL levels and both cross-sectional and
833 longitudinal MRI cortical thinning and white matter volume
834 reduction, highlighting the value of NFL as a dynamic and
835 robust marker of brain atrophy. Notably, higher concentra-
836 tions of NFL in plasma were associated with lower volume
837 in regions known to be affected in HD and predicted subse-
838 quent occipital graymatter atrophy andwidespreadwhite mat-
839 ter reduction over the 3-year follow-up, independently of age
840 and CAG length repeats [179]. NFL increased significantly
841 from baseline both in individuals with premanifest HD and
842 in those with manifest HD [179]. Remarkably, in a subsequent
843 study, Byrne and colleagues [180], combining CSF/plasma
844 NFL and CSF mutant huntingtin protein (mHTTp) as biofluid
845 biomarkers, demonstrated that NFL levels were more accurate
846 than mHTTp to discriminate between premanifest and mani-
847 fest HDs and correlated with severity of symptoms better than
848 mHTTp in manifest HD.

849CJD

850CJD is the most common human prion disease. Approximately
85185% of cases are sCJD, but in a minority of cases, CJD can be
852genetically determined (gCJD) [181]. The disease is a rapidly
853progressive and fatal neurodegenerative condition, whose differ-
854ent phenotypes depend, at least in part, by polymorphisms on
855the gene encoding prion protein (PrP) [182]. Diagnosis is fre-
856quently tardive and relies on clinicalWorld Health Organization
857(WHO) criteria supported by detection of the 14-3-3 protein
858and, more recently, t-tau in the CSF [66, 183, 184]. Also, CSF
859NFL recently demonstrated to be a reliable biomarker in the
860CJD diagnostic workup. Although few studies explored its role
861as a biomarker in CJD patients so far, CSF NFL levels are
862significantly increased in CJD (including those with more slow-
863ly progressive and atypical disease course) compared with AD,
864FTD, otherNDDs (dementia), and controls, indicating amassive
865synaptic degeneration and neuroaxonal damage in CJD [22, 23,
866185, 186]. Additionally, it is noteworthy that NFL concentra-
867tions in CSF appear highly variable among different sCJD sub-
868types, with higher NFL levels in those with more rapidly
869progressing disease [187]. Importantly, plasma NFL correlates
870with CSF NFL concentration and recent studies suggest that
871bloodNFL can accurately reflect themassive neurodegeneration
872in CJD patients.

873NFL as Diagnostic Biomarker

874Diagnostic accuracy of serum NFL for discrimination be-
875tween CJD and controls was excellent (Table 2) [185].
876These findings have been independently replicated in other
877two studies. Serum NFL distinguished patients from controls
878with 100% sensitivity and 100% specificity in 45 sCJD pa-
879tients enrolled in the National Prion Monitoring Cohort [188].
880Noteworthy, Kovacs and colleagues [189] reported high sen-
881sitivity and specificity of plasma NFL concentration in dis-
882criminating CJD subjects from non-CJD controls in a cohort
883of 132 pathologically classified patients (sCJD, gCJD, and
884AD cases) showing a rapidly progressive neurological picture.
885However, in this study, the diagnostic value in the differenti-
886ation between prion and other disease cases resulted lower
887than previously reported investigations (Table 2) [189].
888Moreover, serum NFL values have been elevated since the
889early phases of the disease, suggesting a possible role as a
890screening biomarker [188]. Conversely, serum NFL concen-
891tration overlapped between ALS and CJD patients in a recent
892prospective study, even though the size of CJD group was
893very small [139].

894NFL as Staging and Prognostic Biomarker

895Longitudinal changes in serum tau and NFL levels were in-
896vestigated in the aforementioned study of Thompson and
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897 colleagues [188]. However, despite a trend toward increasing
898 concentrations of both tau and NFL over the last 12 months
899 before death, at variance with tau, no association was found
900 between serumNFL concentration and speed of decline on the
901 Medical Research Council (MRC) Prion Disease Rating Scale
902 [188]. Also, a recent study strengthens the tight association of
903 plasma tau levels with the rate of disease progression and
904 survival time in sCJD [190].

905 NFL as Risk/Screening Biomarker

906 gCJD forms are linked to mutations in the prion protein gene
907 (PRNP) inherited with an autosomal dominant pattern and
908 variable penetrance [191]. The relationship between genotype
909 and phenotype remains a matter of debate, and index cases do
910 not always have a family history [192]. Under this scenario,
911 the discovery of biomarkers serving as surrogates of outcome
912 in clinical trials may be crucial because PRNP mutation car-
913 riers might benefit from a presymptomatic intervention. PrP-
914 lowering therapeutics are now in preclinical development, and
915 to this end, CSF total PrP has demonstrated to be a strong
916 candidate fluid biomarker showing stable low levels in an
917 ongoing natural history study including presymptomatic mu-
918 tation carriers and normal controls [193].

919 Conclusions

920 The impact of physiological variables on blood NFL concen-
921 tration, such as sex and age, has not been systematically in-
922 vestigated across published studies. Other variables possibly
923 affecting its modification in peripheral blood, including sys-
924 temic comorbidities and concomitant drug therapies, were not
925 taken into account. Liver and renal clearance as well as blood
926 cell counts and plasma protein composition could affect bio-
927 marker concentrations [194]; however, these factors were not
928 investigated. Indeed, blood NFL concentration alterations as-
929 sociatedwith renal and hepatic dysfunctions remain unknown,
930 thus representing a potential relevant methodological bias,
931 especially in subjects with NDDs, being generally old and
932 frequently exhibiting vascular comorbidities. In general,
933 blood NFL concentrations correlate with aging due to a subtle
934 axonal degeneration and vascular changes in elderly.
935 However, such an association was clearly absent in CJD,
936 ALS, and AP. This suggests that the probable contribution
937 of aging on NFL concentrations and neurodegeneration be-
938 comes trivial in highly aggressive forms of NDDs [195].
939 Blood NFL concentrations are reported to be massively
940 elevated in ALS patients, even in early disease stages, indicat-
941 ing its value as an efficacious, yet unspecific, biomarker in the
942 differential diagnosis of ALS from ALS mimics. Moreover,
943 blood NFL concentrations can reflect disease severity and/or
944 progression in ALS, suggesting that peripheral NFL could

945contribute to support ALS prognosis. Other confounding var-
946iables, such as the discordant disease progression in the dif-
947ferent clinical subtypes of ALS, should be elucidated in fur-
948ther studies. Actually, blood NFL could help better stratify the
949multifaceted clinical presentation of ALS phenotypes.
950However, further studies are needed to confirm its prognostic
951value. In contrast with genetic forms of AD, blood NFL con-
952centrations are not increased in presymptomatic ALS muta-
953tion carriers appearing to tightly link to the symptomatic phase
954of the disease.
955Another NDD where blood NFL increases result impres-
956sively is CJD. Because of early diagnosis remains challeng-
957ing, NFLmight be a reliable screening blood-based biomarker
958with a potentially high negative predictive value for CJD sub-
959jects, ruling out more common and less aggressive neurode-
960generative dementia, such as AD. Definitely, blood NFL
961could be of usefulness as a first-step examination to promptly
962detect CJD during its prodromal phase and to start future
963disease-modifying treatments. On the other hand, preliminary
964findings do not support a potential use of NFL as a predictor of
965longitudinal disease progression in CJD, and its specificity
966should be further substantiated in comparison with other high-
967ly aggressive forms of NDD.
968All reported studies showed a good or even excellent diag-
969nostic performance of blood NFL in distinguishing patients
970with neurodegenerative disorders fromHC. The potential con-
971tribution of this biomarker candidate to discriminate between
972different dementia disorders remains ambiguous given the
973lack of pathognomonic specificity. However, mounting data
974suggest that blood NFL could be a useful diagnostic tool in the
975diagnostic workup of FTD, to distinguish FTD (especially
976FTDwith a TDP-43 pathology) fromAD patients and to iden-
977tify PPA with a likely underlying AD pathology, including
978lvPPA. Moreover, it can represent a biomarker tracking the
979disease progression and potentially identifying the transition
980phase from the presymptomatic to the symptomatic stage of
981the genetic forms of the disease. Most importantly, serum
982NFL is assumed to be a promising screening tool to rule out
983an underlying neurodegenerative disease in individuals with
984psychiatric disorders.
985In AD, blood NFL may predict progression to dementia
986in individuals with MCI at high risk and identify preclin-
987ical AD before the conversion phase. Moreover, NFL cap-
988tures early neurodegenerative changes in presymptomatic
989familiar AD mutation carriers in which blood NFL con-
990centrations correlate with the predicted time to symptom
991onset. Further studies are crucial to calculate the negative
992predictive value of blood NFL as a screening tool in large
993and selected cohorts of individuals at risk of neurodegen-
994eration and AD, such as individuals with subjective mem-
995ory complaints and/or decline, late-onset psychiatric dis-
996orders, cerebrovascular disease, and diabetes, as well as in
997aging and elderly individuals in general.
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998 Because of the high negative predictive value of elevated
999 blood NFL concentrations in excluding PD, this candidate
1000 biomarker can represent a valid screening tool for clinicians
1001 in the early differential diagnosis between PD and AP in cases
1002 with confounding clinical presentations. In contrast, blood
1003 NFL measurements do not suffice to differentiate PD patients
1004 from controls and cannot be used to separate PSP, MSA, and
1005 CBD from each other. Nevertheless, blood NFL may be a
1006 prognostic tool in clinical practice in both PD and AP patients.
1007 Currently, to the best of our knowledge, there are no studies
1008 investigating blood NFL in patients with DLB, and few stud-
1009 ies are available for PDD patients.
1010 Regarding other relevant clinical neurological presenta-
1011 tions, blood NFL may support the classification of sporadic
1012 late-onset ataxias, notably helping in differentiating c-MSA-C
1013 from SAOA. In choreic patients, blood NFL appears to be a
1014 robust prognostic biomarker of HD disease onset and progres-
1015 sion and holds potential as a predictive biomarker of response
1016 to disease-modifying agents in clinical trials.
1017 Finally, blood NFL seems to be a promising candidate
1018 predictor of the timing of clinical phenoconversion in pre-
1019 symptomatic mutation carriers with AD, HD, and SCA-3.
1020 Conversely, blood NFL concentrations are mostly normal in
1021 premanifest ALS and FTD mutation carriers but promptly
1022 increase with the onset of clinical symptoms.
1023 In general, given the rapid advances in elucidating the path-
1024 ophysiological mechanisms of diseases, at the molecular di-
1025 agnostic level, biomarkers are excellent flexible tools to im-
1026 prove and inform all phases of drug discovery and develop-
1027 ment by enabling validation of mechanisms of actions [196,
1028 197]. For this reason, NFL is assumed to act as an innovative
1029 molecular mechanistic biomarker supporting in vivo detection
1030 and the measurement of definite pathophysiological mecha-
1031 nisms across the spectrum of different NDDs. Together with
1032 other innovative molecular indicators, NFL will help establish
1033 panels of biomarkers—i.e., molecular signatures—
1034 encompassing the entire spectrum of molecular events of the
1035 NDD spectrum disorders. Applying these molecular signa-
1036 tures in longitudinal investigations will be critical to provide
1037 information to depict the pathophysiological processes char-
1038 acterizing different NDDs [198]. These innovative biomarkers
1039 will enable the selection of the most appropriate therapies for
1040 individual patients by defining which molecular pathophysio-
1041 logical events account for the patient’s clinical symptoms at
1042 different stages of the disease [199, 200]. This will establish
1043 the grounds to develop effective targeted treatment strate-
1044 gies—i.e., “molecularly” targeted therapies—for the accurate
1045 treatment of specific molecular pathophysiological pathways.
1046 Future developments in investigating NDD heterogeneity will
1047 allow clinicians to deliver targeted interventions that are “cus-
1048 tomized,” i.e., tailored, to the definite profiles of the individual
1049 NDD patient, according to the precision medicine paradigm.
1050 Such a precision medicine–based strategy is now increasingly

1051facing the clinical and biological/genetic complexity and het-
1052erogeneity of the various forms of NDD [198]. Precision med-
1053icine emphasizes the need of clinical medicine to focus on the
1054pathophysiology of the individual patient, with his/her own
1055distinctive, diverse, and complex matrix of multisystem fea-
1056tures [200]. Concerted global efforts will pave the way for a
1057future of neurology, in which drugs will timely and effectively
1058support the prevention and treatment of diseases with very
1059precise biomarker-guided targeted approaches for the right
1060patient at the right time [201].
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