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Abstract

In this paper, we provide a model that aims to describe the impact of a massive
cyber attack on an insurance portfolio, taking into account the structure of the
network. Due to the contagion, such an event can rapidly generate consequent
damages, and mutualization of the losses may not hold anymore. The composition
of the portfolio should therefore be diversified enough to prevent or reduce the impact
of such events, with the difficulty that the relationships between actor is difficult to
assess. Our approach consists in introducing a multi-group epidemiological model
which, apart from its ability to describe the intensity of connections between actors,
can be calibrated from a relatively small amount of data, and through fast numerical
procedures. We show how this model can be used to generate reasonable scenarios
of cyber events, and investigate the response to different types of attacks or behavior
of the actors, allowing to quantify the benefit of an efficient prevention policy.
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1 Introduction

Cyber risk is a major challenge in a digital era where industries and public services strongly
rely on numerical tools. The number of cyber incidents and attacks in the recent years (see
for example Kshetri (2020), Agence Nationale de la Sécurité des Systèmes d’Information
(2021)) has even increased with the Covid-19 pandemic and the expansion of teleworking,
see Lallie et al. (2021). In this context, cyber insurance is an essential tool for the industry
to develop a proper protection against this threat, see Xie et al. (2020). These products
typically mix financial compensation, prevention, and assistance in case of incident (see
Romanosky et al. (2019)). But a major concern is the potentially "systemic" nature of the
risk. A single massive attack, striking simultaneously (or in a short lapse) a large number
of victims, could lead to losses of mutualization, endangering the viability of the insurance
mechanism, see Welburn and Strong (2019). The Wannacry (see for example Mohurle and
Patil (2017)) or NotPetya (see Fayi (2018)) episodes are warning signs, whose estimated
costs represent billions of dollars of losses (see Chen and Bridges (2017)). In this paper,
we aim to provide a flexible framework to describe, model, and project the impact of the
accumulation of cyber events on a portfolio. We particularly focus on how network effects
can contribute to the spread of a cyber epidemic. The approach we develop is in the
continuity of Hillairet and Lopez (2021), where a model has been proposed to model the
dynamic of the cyber contagion, and the reaction of the actors.

The network structure is known to have a significative influence on the spread of cyber
attacks. This is true when one focuses on a single company, which wants to monitor the
spread of the infection through the nodes of its information systems (see Adams and
Heard (2014)), but also at an higher level when one looks at a set of different actors that
can be affected through the connections between each others (see Welburn and Strong
(2019), Böhme et al. (2010)). Recently, Fahrenwaldt et al. (2018) illustrated the influence
of different types of networks in cyber insurance and showed how their shape leads to a
faster propagation of an attack or not. We here aim to complete the analysis through a
different model, whose connectivity components are calibrated on OECD data, and only
requires macro-level data.

In all of these previous approaches, the contagion is assumed to spread among the
policyholders. The model we develop is in the continuity of Hillairet and Lopez (2021),
and consists of assuming that contamination is more likely to come from outside the
portfolio than from inside. This seems reasonable, based on the fact that a portfolio is

2



in fact of small size, compared to the global population among which the cyber epidemic
spreads. Moreover, this choice leads to a simple model, which allows to model separately
the dynamic of the contagion, the time for recovery after being hit. In the present paper,
we follow the same path, but focusing on the way to incorporate the network topology
and evaluate its impact.

To model this transmission, we rely on compartmental models widely used in epi-
demiology, namely multi-group SIR models, see for example Beretta and Capasso (1988),
or Guo et al. (2006) or Magal et al. (2018), among many others. We introduce specific
terms in the system of differential equations describing the dynamic, in order to capture
some specificities of cyber risk. We also show how to model the reaction to the crisis
(namely the introduction of countermeasures as soon as the threat has been identified by
the community). More precisely, we take into account that, even after the detection of a
specific attack, some potential victims do not manage to implement a perfect protection
against the threat, but only reduce the risk of being hit.

The rest of the paper is organized as follows. In section 2, we introduce the multi-group
SIR model, and explain how it can be used to quantify the impact of a contagious cyber
event on an insurance portfolio. In section 3, we derive some theoretical properties of this
model. One of the key results is to provide a methodology to easily evaluate the outcome
of a cyber pandemic from solving a fixed point equation. An example of calibration of the
model from OECD data is conducted in section 4, in order to mimic a Wannacry episode
and to quantify the contagiousness of each industrial network, and how their reaction may
help to reduce the spread of the attack. Finally, the impact of the network is investigated
through simulations in section 5.

2 Multi-group SIR model

In this section, we introduce the compartmental models that will allow us to model how
connections between the actors impact the contagion of a cyber pandemic. The multi-
group SIR we use is introduced in section 2.1. We also explain how our model can be
adapted to take into account the fact that failures in the supply chain may be generated
through a cyber event and increase the impact of an incident. Section 2.2 studies the
consequences of the spread of the cyber attack on an insurance portfolio.
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2.1 Definition of the model

Compartmental models, since their introduction by McKendrick (1925) and Kermack and
McKendrick (1927), have become common tools in epidemiology. See for example Brauer
et al. (2012) for a review on this topic, or Di Domenico et al. (2020) for recent work in the
context of the Covid-19 pandemic. The core of these models is to describe the different
states of an individual in a population stroke by a disease. The most simple version, the
SIR model (for Susceptible - Infected - Recovered, see Kermack and McKendrick (1927))
splits the population into three groups:

• the "Susceptibles" are exposed to the risk of developing a pathology. In our case,
the susceptibles will be the entities that can be stroke by the ongoing cyber attack;
for example, in the Wannacry or NotPetya episodes, susceptibles are computers
vulnerable to the Eternal Blue exploit, see Kao and Hsiao (2018). As we can see
from this example, the total number of susceptibles is hard to track - in fact, even
the exact number of computers equiped with a given operating system is impossible
to obtain;

• a susceptible may then become "Infected" by the pathology (here, by the cyber
virus), and is contagious. An infected will contribute to the contagion;

• after some time, an infected becomes "Recovered", or "Removed": it means that
this individual or entity can not transmit the virus anymore. In the context of
cyber risk, the term removed must be understood as the fact that the victim stops
participating to the contamination, because countermeasures have been adopted.
The time before full recovery of a cyber attack can be very long, of a different scale
that the length of the attack itself (the attack lasted around a week for Wannacry,
to be compared with months or years of recovery according to Low (2017)).

The dynamic of the epidemic is then described by a system of differential equations,
governing the rate at which individuals in each of the compartments move from one state
to another. Here, we want to take into account the fact that the population on which
the attack spreads is heterogeneous. Typically, we do not expect the contagion to spread
identically on industries from the health sector or from the financial sectors: the nature
of the assets that can be targeted by hackers, how easy to get a ransom from a given type
of victim, and the difference in terms of level of security in different sectors will indeed
have an impact on contagion (see Al-rimy et al. (2018)).
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For this reason, we will consider a multi-group SIR model (see for example Magal
et al. (2018)). In this case, the population of victims is decomposed into d groups (for
example representing different sectors of activities for industrial actors, but these groups
may also be constituted from the type of behaviors of some categories of victims). For
j = 1, ..., d, and at each instant t ≥ 0, sj(t) (resp. ij(t), resp. rj(t)) is the number of
susceptibles (resp. infected, resp. removed) in category j at time t. Next, the evolution
of each of these compartments is governed by

dsj(t)

dt
= −ηj(t)

{
αj(t) +

d∑
k=1

βk,jik(t)

}
sj(t), (2.1)

dij(t)

dt
= ηj(t)

{
αj(t) +

d∑
k=1

βk,jik(t)

}
sj(t)− γjij(t), (2.2)

drj(t)

dt
= γjij(t). (2.3)

The matrix B = (βk,j)1≤k,j≤d conveys the information on how class k contaminates class
j. This matrix is the key element of the model to capture the network topology. It
materializes the connections between the different groups. An oriented graph can be
associated to B by constituting the adjacency matrix G with coefficients gj,k = 1βj,k 6=0.

Let us emphasize that the matrix B (hence G) is not necessarily symmetric - that is
why we use the term "oriented" graph - since the contamination may not flow identically
from both sides: a group j may strongly contaminate a group k, while group k may be
less contagious for group j since group j developed more security measures to reduce
contamination from group k.

Compared to the most classical version of the multi-group SIR as described in Magal
et al. (2018), we introduce some additional terms in order to take into account specifici-
ties of cyber attacks. First, the vector A(t) = (αj(t))1≤j≤d represents a latent form of
attacks, i.e. not contagious. Through the introduction of this term, we want to consider
a mechanism which is not only contagious, but which can be caused by successive attacks
on different categories of victims.

At the same time, we introduce a protection component against the threat, material-
ized by the vector H(t) = (ηj(t))1≤j≤d. This vector diminishes the rate of new infections
through time, meaning that on the contrary to Hillairet and Lopez (2021), it models here
an imperfect protection, that is which is not 100 % efficient. Indeed, perfect protection is
not always possible. For example, large organizations may have difficulties to implement a
correction throughout their all system in a short amount of time. Moreover, some attacks
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may rely on human factors, like in the case of phishing or attacks based on fraudulent
mails. In those cases, one may increase the awareness on the threat, and thus reduce the
transmission and the risk of infection, but without achieving perfect protection.

Remark 2.1 The framework that we develop is adapted to a contagious mechanism which
is not necessarily purely cyber. Indeed, a possible consequence of cyber attacks is business
interruption (see Hobbs (2021), Romanosky et al. (2019), Cashell et al. (2004)). Hence,
the contagion may not only be caused by the transmission of a virus, but through breaking
the supply chain (see Ghadge et al. (2019), Boyes (2015)). The matrix B can for example
materialize a chain of dependence between sectors of activity, one being hit because it relies
on the production of another that has been stroke by the cyber attack.

2.2 From the multi-group SIR to the impact on an insurance

portfolio

The multi-group SIR defined in section 2.1 describes a dynamic on a large population.
On the other hand, an insurance portfolio is of smaller size, introducing some randomness
in the result. Stochastic SIR models (like in Lefèvre et al. (2017)) are a potential solution
to introduce this randomness. Nevertheless, they are based on the assumption that the
infection spreads within members of the portfolio. Due to the relative small size of the
population of the policyholders, it seems reasonable to think that the infection is more
likely to come from outside, as noticed in Hillairet and Lopez (2021).

Each policyholder m is described by a random variable Tm and a deterministic char-
acteristic xm where

• Tm is the random time at which the m−th policyholder is infected by the cyber
virus;

• xm is deterministic, and represents the category of the multi-group SIR to which
the m−th policyholder belongs (that is xm ∈ {1, ..., d}).

Let us note that Tm can be infinite with non-zero probability. The distribution of Tm is
linked to the dynamic of the cyber attack. Let us introduce the hazard rate function

λTm(t) = lim
dt→0+

P(Tm ∈ [t, t+ dt]|Tm ≥ t)

dt
.

The value λTm(t) quantifies the risk of being infected at time t, which depends on the
current circulation of the cyber virus, and on the protection level.
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Since the portfolio can be understood as a random sample of individuals from the
global population, and since m belongs to group xm, λTm(t)dt should be equal to the
probability of selecting a newly infected individual among the individuals of population
xm that were not infected before t (that is sj(t) if xm = j). Between t and t + dt, there
are ηj(t){αj(t) +

∑d
k=1 βk,jik(t)}sj(t)dt new contaminations in population j. This leads to

λTm(t) = λ(t, j) = ηj(t)

{
αj(t) +

d∑
k=1

βk,jik(t)

}
, if xm = j.

From this hazard rate function, one can deduce the average number of infected poli-
cyholders in the portfolio, which directly derives from the quantities in (2.1)-(2.3). If we
have nj policyholders from category j, the expectation of the number of victims in class
j is

nj

(
1− exp

{
−
∫ ∞

0

λ(t, j)dt)

})
= nj × ν.

Moreover, the variance is then njν(1−ν). More details on approximations of this number
can be found in Hillairet and Lopez (2021).

Remark 2.2 In Hillairet and Lopez (2021), an additional random variable Uj was intro-
duced to describe the length of immediate assistance required after a victim is hit. This
variable is important if one wishes to understand how many policyholders have to be as-
sisted at a given time. This question has important consequences, because if this number
becomes too high, a saturation of the response capacity can lead to additional damages.
In the present paper, we do not focus on this problem, since we are more motivated by
understanding the impact of the network topology on the spread of the infection. Never-
theless, an approach similar to the one of Hillairet and Lopez (2021) can easily be added
to complement this model.

3 Analysis of the outcome of the multi-group SIR model

In this section, we provide theoretical results that rely the total number of victims from
a cyber incident to the parameters of model (2.1)-(2.3). We show in section 3.1 that this
number is the solution of a fixed point equation, in case there is no reaction from the
attacked community (that is ηj = 1 for all j). This result allows to quickly calibrate or
assess the impact of such an episode. In section 3.3, we show that, in some situations,
the solution of this fixed point problem can be obtained from a fast converging iterative
algorithm.
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3.1 Total number of victims

From the multi-group SIR of section 2.1, we can derive the total number of victims in
the global population (hence the average number of infected policyholders) easily from
equations (2.1)-(2.3). This number can be determined by (numerically) solving the system
of differential equations. By measuring the total number of infected individuals in each
group of the population depending on the starting point of the infection, we will have the
ability to better understand the impact of connectivity between classes. In the case of no
reaction from the attacked community (that is protection coefficients ηj = 1 for all j), the
total number of victims in the global population can be determined in a simple and fast
way, by solving a fixed point problem. Let rj(∞) = limt→∞ rj(t). Since every infected
ultimately becomes removed after a finite amount of time, rj(∞) represents the total
number of infected in class j. In Theorem 3.1 below, we show that r(∞) = (rj(∞))1≤j≤d

is the solution of an equation of the type r(∞) = Φ(r(∞)) (the definition of the function
Φ is given in the statement of the theorem). The arguments of the proof is similar to the
one in Magal et al. (2018), but the function Φ is not the same. This difference comes from
the fact that the model we consider is more general, but also from the fact that the path
of the proof is slightly different, and leads to a simpler function.

Theorem 3.1 For j = 1, ..., d, assume that ηj = 1 and let Aj =
∫∞

0
αj(t)dt.

Assume that if for all j, ij(0) = 0 then there exists j0 such that Aj0 6= 0.
Then, for x = (x1, ..., xd)

tr, where tr denotes the transpose, let

Φj(x) = ij(0) + sj(0)

{
1− exp

(
−

(
Aj +

d∑
k=1

βk,j
γj

xk

))}
,

and Φ(x) = (Φj(x))1≤j≤d. The vector r(∞) is the unique solution of the equation

r = Φ(r),

on R = {r : 0 ≤ rj ≤ sj(0) + ij(0)}.

The proof of Theorem 3.1 is postponed in the subsection below. Note that the case where
for all j, ij(0) = 0 and Aj0 = 0 corresponds to the trivial situation with no infected at
time zero and no initial burst of attacks, leading then to the static situation where the
multi-group SIR system is stuck at x = 0 (which is clearly a fixed point in this situation).

Remark 3.2 Theorem 3.1 can be easily generalized to constant protection parameter ηj,
by multiplying αj and the βk,j by ηj, for all j. Similarly, one can also take into account
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constant cross-categories protection effects (ηjk)1≤j,k≤d. In section 4.4, numerical exper-
iments are used to investigate the case of time-varying protection coefficients, that may
for example depend on the current proportion of infected in each group.

3.2 Proof of Theorem 3.1

Let Ij =
∫∞

0
ij(t)dt, and Aj =

∫∞
0
αj(t)dt. We have, from (2.3) rj(∞) = γjIj. On the

other hand, rj(∞) = sj(0)− sj(∞) + ij(0), since all infected become recovered in a finite
time and, from (2.1),

sj(∞) = sj(0) exp

(
−

(
Aj +

d∑
k=1

βk,jIk

))
.

We see that r(∞) = (rj(∞))1≤j≤d is a fixed point of Φ, that is

r(∞) = Φ(r(∞)).

The question is now to prove the unicity of this fixed point. For two vectors x and y,

we write x ≤ y if all the components of xj ≤ yj for all j. If, in addition xj < yj for at least
one j, we say that x < y. Note that Φj(x) < sj(0) + ij(0) for all x ∈ R. Besides, since
we have excluded the trivial case where for all j, ij(0) = 0 and Aj = 0 we get 0 < Φ(0).

Clearly, if x ≤ y, Φ(x) ≤ Φ(y). By induction, we therefore get that

0 < Φ(0) ≤ Φ(2)(0) ≤ · · · ≤ Φ(k)(0) ≤ Φ(k)(n(0)) ≤ · · · ≤ Φ(n(0)) < n(0),

where Φ(k)(x) = Φ(Φ(k−1)(x)) (with Φ(0)(x) = x), and n(0) = (sj(0) + ij(0))1≤j≤d. This
shows that both sequences Φ(k)(0) and Φ(k)(n(0)) converge to a finite limit, respectively
denoted by l0 and ln. Necessarily, since Φ is continuous, Φ(l0) = l0, Φ(ln) = ln. Moreover,
l0 ≤ ln.

The next step consists in showing that l0 = ln.We will proceed by contradiction, assuming
that

d = ln − l0 > 0. (3.1)

Let JΦ(x) = (∂jΦk(x))1≤j,k≤d denote the Jacobian matrix of Φ, where ∂k denotes the
partial derivative with respect to the k−th component. If l0 < ln, we could write

d = Φ(ln)− Φ(l0) =

∫ 1

0

JΦ(l0 + td)ddt. (3.2)

Observe that
∂kΦj(x) =

βk,j
γj

((sj(0) + ij(0))− Φj(x))>0.
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Hence, the differential of Φ inherits some monotonicity properties of Φ, in the sense that,
for all x ≤ y and h ≥ 0,

JΦ(x)h ≥ JΦ(y)h.

This, combined with (3.2), leads to

d ≤ JΦ(l0)d. (3.3)

Let ρ denote the spectral radius of JΦ(l0). Since all the coefficients of JΦ(l0) are positive,
hence the matrix is irreducible, and we can apply the Perron-Frobenius Theorem to ensure
that there exists some eigenvector y0 > 0 such that ytr0 JΦ(l0) = ρytr0 . Hence, from (3.3),

ytr0 d ≤ ρytr0 d,

which implies that ρ ≥ 1. On the other hand, we have

l0 = Φ(l0) =

∫ 1

0

JΦ(0 + tl0)l0dt>JΦ(l0)l0.

This implies that
ytr0 l0>y

tr
0 JΦ(l0)l0 = ρytr0 l0. (3.4)

Since y0 > 0 and ρ ≥ 1, (3.4) contradicts the fact that l0 ≥ Φ(0) > 0. Hence, necessarily,
(3.1) is wrong and ln = l0, which shows the unicity of the fixed point.

3.3 Solving the fixed point problem

From Theorem 3.1, we can approximate r(∞) using a recurrent sequence un+1 = Φ(un)

initialized for example at u0 = n(0) = (sj(0) + ij(0))1≤j≤d. In some situations, the rate
of convergence can be shown to be geometric.

Consider the special case where the matrix B is diagonally dominant, that is for all j,
βj,j ≥

∑d
k=1,k 6=j βk,j. This corresponds to the special case where the contagion is stronger

within each given group than with respect to other actors. In this case, if the intensity
of attacks is strong enough, one can derive a rate of convergence for un. Indeed, the
differential of Φ is a contracting application. First of all, from (2.1),

sj(t) ≤ sj(0) exp

(
−
∫ t

0

αj(s)ds

)
,

which leads to

sj(∞) = sj(0)− rj(∞) ≤ sj(0) exp

(
−
∫ t

0

αj(s)ds

)
,
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therefore R can be replaced by R̃ = {r : sj(0)[1− exp(−Aj)] ≤ rj ≤ sj(0) + ij(0)}.
We have, for h ∈ Rd with ‖h‖∞ = 1, and x ∈ R̃

|(JΦ(x)h)j| =

∣∣∣∣∣
d∑

k=1

∂kΦj(x)hk

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

βk,j
γj

(sj(0) + ij(0)− Φj(x))hk

∣∣∣∣∣
=

∣∣∣∣∣
d∑

k=1

βk,j
γj

sj(0) exp

(
−

(
Aj +

d∑
k=1

βk,j
γj

xk

))
hk

∣∣∣∣∣
≤ 2

βj,jsj(0)

γj
exp

(
−
(
Aj +

βj,j
γj
xj

))
≤ 2

sj(0)

xj

βj,jxj
γj

exp

(
−
(
Aj +

βj,j
γj
xj

))
≤ sj(0)

xj
exp(−Aj) ≤

exp(−Aj)
1− exp(−Aj)

,

where the first inequality comes from the diagonally dominance condition on B and the
third one from the inequality 2x exp(−x) < 1 for all x ≥ 0. As a consequence, ifAj > log 2

for all j, ‖Φ(x)−Φ(y)‖∞ ≤M‖x−y‖∞, withM = supj=1,...,d exp(−Aj)[1−exp(−Aj)]−1 <

1. This leads to
‖un − n(0)‖∞ ≤Mn‖u1 − n(0)‖∞.

Even if the assumptions of this particular case do not hold, the convergence is never-
theless quite fast in the applications we consider below.

4 Illustration on a particular example

In this section, we give an example of calibration of the model based on macroeconomic
data. Our aim is to show that plausible parameters may be obtained through the use of
a relatively small amount of data.

We consider a population composed of five categories of potential policyholders, namely

• Mining and quarrying;

• Manufacturing;

• Electricity, gas, water supply, sewerage, waste and remediation services;
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• Construction;

• Total business sector services.

These classes correspond to categories used by OECD to identify the dependence between
some sectors of activity. We consider a particular form of contagion matrix B = βB0,

where B0 reflects the connectivity between actors. This section is organized as follows.
In section 4.1, we calibrate this matrix B0 which somehow contains information on the
topology of the network formed by the potential victims. Section 4.2 then shows how a
Wannacry type episode can be calibrated for this particular structure of population. In
section 4.3, we investigate the vulnerabilities of the different categories of the population
by focusing on the impact on a cyber attack targeting one single sector. Finally, section
4.4 shows how to quantify the benefit of certain type of interventions during the crisis to
reduce its impact.

4.1 Connectivity between sectors

The groups considered in this study are split into different sectors of activity. To assess
the connectivity between those sectors, we use an OECD study on the origin of value
added in final demand, see OECD (2018). The statistics of this study are shown in Table
1. They represent a way to model how a category depends on another, via the flow of
traded added value. Of course, this does not reflect the digital dependence between these
sectors, which would be a much more accurate information if available. Therefore, we do
not aim here to produce a very accurate vision of the connectivity between these sectors,
but only to determine a reasonable benchmark. Following this objective, the (strong)
assumption that we make is that the digital flow between these categories is, somehow,
proportional to the economical flow reflected by Table 1.

Mining Manufacturing Energy Construction Services

Mining 225.52 1026.27 154.72 506.18 412.55
Manufacturing 14.86 8654.41 94.61 1709.06 1362.29
Energy 4.92 342.46 674.89 165.10 284.47
Construction 1.41 58.85 12.55 3685.20 197.56
Services 33.62 4396.65 249.46 2164.84 22206.97

Table 1: Exchange of added value between sectors - OECD data, 2015. A line represents
the flow of added value sent from the corresponding sector to the sectors in columns.
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More precisely, we want our matrix B to be of the following form, B = βB0, where the
parameter β is here to describe the strength of the contagion (its calibration is discussed
in Section 4.2), and B0 is a normalized matrix (the sum of all of its coefficients is equal
to one) containing only the information regarding the connectivity between actors. The
matrix B0 is calibrated using the OECD data of Table 1 and 2. Indeed, the volume
of exchanges between sectors (given in Table 1) has to be normalized by the number of
companies in each sector, which is the information contained in Table 2, from OECD
(2015).

Sector Number of companies Percentage

Mining 66’492 0.20%
Manufacturing 3’068’178 9.02%
Energy 220’892 0.65%
Construction 4’874’747 14.34%
Services 25’768’765 75.79%

Table 2: Distribution of companies between sectors - OECD data, 2015

The contagion matrix B0 of Table 3 is obtained by dividing the value of a given line
of Table 1 by the number of companies of the corresponding sector (from Table 2), before
normalizing the values in order to ensure that the sum of all coefficients is equal to 1.

Table 3: Normalized Interaction matrix B0.

According to this matrix, we see that the Mining & Quarrying sector would be the most
contagious one, followed by the Energy sector. This high contagiousness is however to be
tempered by the small population size of these sectors. Services and Manufacturing are the
sectors that receive more cross-infections than the others. As expected, the manufacturing
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sector, strongly dependent from the supplies from other sectors, also achieves a high level
of dependence.

Remark 4.1 Let us also note that this high contagiousness of the Mining and Energy
sectors can also make sense from a supply-chain modeling perspective: the approach that
we develop is focused on a case of contagious cyber event. But a cyber event targeting
a sector can also have consequences on another one that is highly dependent, triggering
business interruptions for companies that are not directly stroke by the virus. The frame-
work we develop can also be used to take this type of phenomenon into account, through
a proper design of the matrix B0, see also Remark 2.1.

4.2 Calibration of a Wannacry type episode

In the dynamics described by (2.1)-(2.3), we consider the contagion matrix B = βB0,

where the parameter β helps to design the intensity of the contagion. We here develop
how to calibrate this parameter so that we may obtain a cyber event relatively similar
to Wannacry. For this calibration, we first investigate the case without reaction, that is
ηj = 1 for all j. We follow the path of Hillairet and Lopez (2021), in which a calibration
of a Wannacry type event was proposed, based on indirect information about its dynamic
(namely the timeline of the payments of ransoms, which is publicly available due to the
use of the Bitcoin protocol). Here, the calibration is different in two ways:

• we consider a non homogeneous population with contagion matrix B = βB0, the
total size of the population of potential victims being the same as in Hillairet and
Lopez (2021) (N = 4′064′279) with repartition given by the proportions of Table 2;

• the initialization of the epidemic is done in a different way (see below).

Indeed, in Hillairet and Lopez (2021), a small number of initially infected i0 spreads
the cyber attack. Here, we do not need to use this number (which has to be chosen
arbitrarily), because we prefer to use the functions αj to ignite the epidemic, which seems
more consistent with the patterns of cyber attacks. To calibrate the value of β, we consider
that the attack strikes all classes at the same rate, αj(t) = α01t≤1 for all j : during one
day, there is a burst of infections caused by the hackers that strike the victims at uniform
rate α0.

We follow the approach of Hillairet and Lopez (2021), where a model is chosen from
its ability to replicate the peak of the epidemic - maximum number of victims affected at
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a given moment - and the total number of victims over 10 days, which is the approximate
length of the episode. This leads to the parameters of Table 4.

Parameter Value

α0 7× 10−3

β 1.845× 10−5

γ 1
N 4’064’279

Table 4: Parameters used to simulate a Wannacry-type episode based on a single-type
population. The parameters γ and N (total size of the victim population) have been
taken as in Hillairet and Lopez (2021).

The evolution through time of the infections in each category is reported in Figure 1.
We can observe that the peak of infections is not located at the same time (we see that
this peak is achieved later for services, with a slower decay). The size of this peak can
be of some concern: as pointed in Hillairet and Lopez (2021), this represents the number
of victims needing assistance at a given time. Since many cyber insurance contracts are
supposed to provide immediate assistance to their policyholders when hit, a too high peak
could lead to an impossibility to deliver the service that was contractually guaranteed (also
if assistance comes too late due to saturation, this could increase the amount of damages).

Figure 1: Evolution of the proportion of infected - Uniform bombing

Remark 4.2 Let us recall that N does not represent the number of policyholders in an
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insurance portfolio, which tends to be, in present cyber insurance portfolios, much smaller
than N from Table 4. The number of infected given here represent how the infection
spreads on a population that is much larger (at a national level or even at a global level).
To obtain the (average) impact of such an episode on a portfolio, one can retrieve the
proportion of victims in each sector and apply it to the number of policyholders of this
category in the portfolio.

4.3 Measuring the vulnerability of the different sectors

We now use our matrix B = βB0 (where β is given by Table 4 and B0 is given by Table
3) to investigate which sector seems the most vulnerable and can potentially trigger a
systemic event. To measure the vulnerability of sector j, we concentrate the initial attack
on it (that is αj(t) = α(j)1t≤1, and αk(t) = 0 for k 6= j). Taking α(j) = α0 would not
make things comparable: if the size of the population of sector j is small compared to
N, this would result on a small number of initial infections through these direct attacks
(approximately α0 times the size of this sub-population). Therefore, we take α(j) = α0/pj,

where pj is the proportion of sector j in the total population (see Table 2), which seems
more appropriate. The values of the coefficients α(j) are given in Table 5, where we also
gather results on the total size of the epidemic in each attack scenario, and the peak of
infections (that is the highest number of currently affected victims at a given time).

Targeted sector β α Total infected Peak

Mining 1.845× 10−5 3.5 714’347 89’984
Manufacturing 1.845× 10−5 0.078 587’338 70’815
Energy 1.845× 10−5 1.077 450’824 50’759
Services 1.845× 10−5 0.0049 256’833 27’483
Construction 1.845× 10−5 0.009 223’744 26’233

Table 5: Comparison of the sectors through different attack scenarios. The sectors are
ordered from the one leading to the highest epidemic, to the lowest. We consider a total
population of N = 4′064′279 of potential victims, with the same repartition between
sectors than in Table 2.

From the coefficients of Table 3, it is logical to find that an attack targeting the Mining
and Quarrying sector leads to the most important impact: we already mentioned the high
contagiousness of this sector according to B0. Moreover, as the population of this sector is
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small, almost all companies in this category are infected by the initial attack. On the other
hand, an attack on the Manufacturing sector, although this category is larger (9.02% of
the total population compared to the 0.20% of Mining), also leads to a number of victims
which is higher than the Wannacry episode (same property for the Energy sector, but with
a smaller number of companies and a smaller impact than for Manufacturing). Again,
this is caused by the high contagion spread by this sector.

Table 6 provides more precision on how a category contaminates another in the dif-
ferent scenarios. One can observe that the Mining sector suffers fewer from contagion
when not attacked directly. We can also observe that the largest proportion of victims
is not always achieved in the category where the attack was initiated: in the case of an
attack on Manufacturing, Services are hit at a high rate (16.58%), which corresponds to
510’716 victims in this category, compared to 58’692 in the Manufacturing sector. On
the other hand, we see that the Service sector is less affected when directly hit (except
if we compare with the case of an attack on Construction) than when the initial burst of
infection strikes another sector.

Targeted sector Mining Manufacturing Energy Construction Services

Uniform attack 1,06% 4,11% 0,99% 2,07% 8,86%
Attack on Mining 99,70% 12,69% 1,36% 5,49% 20,37%
Attack on Manufacturing 1,02% 16,01% 0,66% 3,05% 16,58%
Attack on Energy 0,93% 5,96% 64,08% 2,35% 12,93%
Attack on Construction 0,33% 2,49% 0,21% 6,60% 5,72%
Attack on Services 0,25% 2,59% 0,21% 1,01% 7,84%

Table 6: Proportion inside each sector of companies affected by the epidemic, depending
on the targeted sector.

Figure 2 gives another illustration of this phenomenon. If we look at a scenario of an
uniform attack, we can see that each sector - since each of them is highly connected to
Services - generates a large number of infection in this Services sector. To a lesser extend,
we see that Manufacturing and Construction are also affected by this contagion effect.
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Figure 2: Cross-infection between sectors after a uniform burst (proportion by destination)

Additionally, we provide an example of the dynamic evolution of the number of victims
in Figure 3, corresponding to the worst case scenario of an attack on Mining. Compared
to Figure 1, the percentages of victims at a current time are much higher in each sector.
We also can observe that the peak is achieved a little bit later than in the first situation
(except for the Mining sector, which is fast completely contaminated).

Figure 3: Evolution of the proportion of infected - Attack on Mining. Note that the
y-axis has been bounded to 4%, so that the effects of the infection remain readable for
all sectors. Indeed, the value of the peak for the Mining sector is very high at 70% of
infected companies after 10 hours of epidemic.
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This postponed peak is bad news for the total number of victims (which is typically
related to the area under each curve). On the other hand, it also creates an opportunity:
this gives more time to react to the attack by providing countermeasures. This question
of measuring the benefits of such a reaction is the purpose of the following Section.

4.4 Impact of a reaction during the crisis

We now consider the case where, during the crisis, a collective reaction of the victims
occurs and reduces the impact of the episode. The impact of the reaction of the population
is at the core of several modeling and scenario projections developed in the context of
the Covid-19 pandemic, see for example Di Domenico et al. (2020). In the case of cyber
events, the length of the attack (a few days) tends to limit the impact of this reaction,
but efficient measures to prevent infection by the digital virus seems easier to implement.
In the Wannacry case, for example, a « kill switch » was identified (see Mohurle and Patil
(2017)) that allowed to diminish the severity.

In model (2.1)-(2.3), we introduce a function ηj that corresponds to the reaction of
category j. We here investigate the impact of two particular shapes of reaction functions,

η
(1)
j (t) = 1− λ1ij(t)≥s, (4.1)

η
(2)
j (t) = 1− λ1∑d

k=1 ik(t)≥s. (4.2)

In each case, a threshold s triggers the reaction: the threat draws the attention and is
considered worth taking measures only if a sufficient number of victims have been hit.
The difference is that, in the first case, the category j only bothers when its members are
hit: a threat making lots of victims in the other sectors does not lead to a reaction as
long as category j is preserved. The opposite case is the situation where category j pays
attention to what happens to others and reacts accordingly.

We consider three levels of protection, λ = 0.1, λ = 0.3 and λ = 0.5, and three different
thresholds of reaction s = 10′000, s = 50′000 and s3 = 100′000. Tables 7 and 8 show the
impact of reactions (4.1) and (4.2) respectively, in case of an uniform initial attack, and
when only one single sector reacts.

In Table 7, some cells have been darkened to reflect the fact that the reaction thresholds
are sometimes too large to trigger a reaction of the corresponding sector (this is the case
when the threshold exceeds the number of companies in the sector). This situation does
not occur in Table 8 since the reaction (4.2) is not only based on what happens in the
sector itself, but also on the observation of what happens to the other categories.
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λ = 10% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Attack on Mining

Attack on Manufacturing 96.12% 98.01% 99.54% 99.89% 100% 0%

Attack on Energy 100% 0%

Attack on Construction 99.14% 99.72% 100% 0% 100% 0%

Attack on Services 74.45% 78.88% 83.41% 87.07% 92.04% 94.50%

λ = 30% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Attack on Mining

Attack on Manufacturing 89.15% 94.34% 98.66% 99.67% 100% 0%

Attack on Energy 100% 0%

Attack on Construction 97.49% 99.17% 100% 0% 100% 0%

Attack on Services 46.16% 53.84% 63.20% 70.30% 80.99% 86.46%

λ = 50% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Attack on Mining

Attack on Manufacturing 83.17% 91.05% 97.84% 99.47% 100% 0%

Attack on Energy 100% 0%

Attack on Construction 95.93% 98.65% 100% 0% 100% 0%

Attack on Services 32.86% 41.16% 52.48% 60.76% 74.08% 81.10%

Table 7: Impact of the reaction (4.1) on the number of victims, depending on the sector
which reacts (only one sector at a time) and on the threshold s activating the reaction,
in case of an uniform initial attack. The column "Total" shows the ratio between the
number of victims if reaction, over the number of victims without reaction. The column
"Collateral" shows the ratio of the number of victims in the sectors which do not react,
over the number of victims in these sectors if there is no reaction at all.

Clearly, this second type of reactions is more efficient, since it allows to detect quicker
that something happens. For some sectors, warning comes sometimes even too late for
reaction (4.1) even if the threshold is less than the number of companies in this sector.
This is no surprise, but Table 8 helps to quantify the gain obtained through (4.2).

We can also observe that the reaction having the most important impact is the one on
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λ = 10% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Mining 99.80% 99.99% 99,83% 99.99% 99.87% 99.99%

Manufacturing 94.60% 96.99% 95.82% 97.82% 97.09% 98.63%

Energy 99.81% 99.98% 99.84% 99.98% 99.88% 99.99%

Construction 98.51% 99.40% 98.87% 99.59% 99.18% 99.74%

Services 73.10% 77.62% 80.40% 84.36% 86.79% 90.05%

λ = 30% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Mining 99.39% 99.95% 99.49% 99.97% 99.61% 99.98%

Manufacturing 84.99% 91.44% 88.33% 93.78% 91.83% 96.07%

Energy 99.42% 99.93% 99.52% 99.95% 99.64% 99.97%

Construction 95.66% 98.24% 96.70% 98.79% 97.62% 99.23%

Services 43.66% 51.37% 57.35% 64.73% 69.97% 76.61%

λ = 50% s = 10′000 s = 50′000 s = 100′000

Total Collateral Total Collateral Total Collateral

Mining 98.97% 99.90% 99.14% 99.93% 99.35% 99.96%

Manufacturing 76.87% 86.55% 81.92% 90.19% 87.25% 93.77%

Energy 99.03% 99.88% 99.21% 99.92% 99.40% 99.95%

Construction 92.99% 97.14% 94.66% 98.03% 96.14% 98.75%

Services 30.04% 38.29% 45.65% 54.04% 60.53% 68.54%

Table 8: Impact of the reaction (4.2) on the number of victims, depending on the sector
which reacts (only one sector at a time) and on the threshold s activating the reaction,
in case of an uniform initial attack. The column "Total" shows the ratio between the
number of victims if reaction, over the number of victims without reaction. The column
"Collateral" shows the ratio of the number of victims in the sectors which do not react,
over the number of victims in these sectors if there is no reaction at all.

the Services sector. Let us recall that this sector contains the largest number of companies.
This reduction of the size of the cyber epidemic is first of all caused by the fact that less
companies are infected, in this sector, due to the reaction. But it is also interesting to
notice that this induces effects in the other sectors also, since the collateral gains are quite
important too.
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To conclude this section, let us mention that these results are only an illustration, and,
again, the effects of the attack on these different sectors are related to the particular way
the matrix B0 has been calibrated (focusing of exchanges of added value). We want to
emphasize that the contribution we aim to provide is to illustrate, as precisely as possible,
a calibration strategy of the model, and what can be learned from it. In the present case,
we can measure the impacts of having a population composed of small sectors (some being
very contagious like mining) and a larger one which, by its volume more than because of
its connectivity, can generate lots of infections.

5 Simulations

In this section, we try to evaluate via simulations how the connectivity of the network
(namely, the structure of the matrix B) can have influence on the final number of victims.
As in Section 4, we consider matrices of the form B = βB0. The matrix B0 is chosen
in different classes of matrices, each corresponding to some properties that we want the
network to satisfy. To simplify the discussion, we consider the effect of the network in
absence of reaction.

The different classes of matrices (which all are normalized, in the sense that the sum
of the values of all their coefficients is equal to 1) are the following:

• B1 : an "homogeneous" case, where there is no particular structure, coefficients are
generated randomly (independent uniform distributions are used to simulate each
coefficient, then the matrix is normalized);

• B2 : a "clustered" case, where for all j = 1, ..., d,
∑

k 6=j βj,k ≤ βj,j. This situation
corresponds to the case where the contagion occurs mostly within a given sector,
and can extend to others with less intensity;

• B3 : a "non-clustered" case, where for all j = 1, ..., d, βj,j ≤ mink 6=j βj,k. This
corresponds to a situation where contagion mostly occurs from outside a given sector,
and where there is few contagion among susceptibles of the same category;

• B4 : a "cascade" case where all the coefficients of the matrix are 0 except for βj,j for
j = 1, ..., d, and βj,j+1 for j = 1, ..., d − 1. This corresponds to a potential cascade
effect, since an infection coming from the first category must first contaminate the
second, before infecting the third, and so on. The last category does not contaminate
any other class.
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The simulation procedure is exposed in section 5.1. We next introduce in section 5.2
a way to measure the impact of each scenario that we consider. Results are gathered in
section 5.3.

5.1 Simulation procedure

For each class of matrices Bj, we generate randomly (uniformly over Bj) B = 100′000

matrices, (B
(b)
0 )b=1,...,B. For each b, we study the impact of different types of attacks on

different structures of population. The value β is always taken as β = 2× 10−5 (close to
the value of Section 4).

Regarding the structure of the population of potential victims (decomposed into 5
categories), we consider three different compositions, whose total size is taken as N =

5′000′000 (same scale as N calibrated in Section 4):

• Configuration 1: homogeneous, that is each category is made of 1’000’000 potential
victims;

• Configuration 2: a class is larger than the others, with size 1’800’000 (size 800’000
for the others);

• Configuration 3: a class is smaller than the others, with size 600’000 (while the 4
others have size 1’100’000).

In Configurations 2 and 3, we call the "special class" the category which has not the same
population as the others (which are denominated "standard classes" in the following).

Next, we consider different type of attacks, targeted on a single class j0 with intensity
attack of the type αj0(t) = α1t≤1. In Configuration 1, since all classes are similar in terms
of composition, it does not matter which class is initially stroke. In Configuration 2 and
3, we distinguish two cases: attack on the special class or on a standard class.

5.2 Metric used to measure the impact of each scenario

For each attack, we evaluate the value of α which allows to achieve the same number
of victims as Wannacry (estimated at 300’000). For two populations of the same size, a
higher α shows that the hackers need to make stronger efforts to achieve the same effect.
In other words, the structure of the network is more favorable, in the sense that it slows
down the epidemic.
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To better identify this effect, we compare this value of α (say αW ) to the value α∗ that
would be required if the whole population behaved as the initially targeted population.
More precisely, if we are considering a cyber episode obtained from a matrix βB(b)

0 and
an attack on the class j, we consider a benchmark case where we consider a single homo-
geneous population of size N (that is a one-dimensional case where d = 1 with contagion
parameter β×B(b)

0,(j,j), where B
(b)
0,(j,j) is the j−th diagonal coefficient of B(b)

0 . In this bench-
mark case, no contagion effect occurs, only contamination inside a single isolated category
similar to the one where the attack was launched. The value α∗ is the one required so
that the initial attack allows to achieve 300’000 victims.

We next compute the ratio,

ρ =
Naα

W −Nα∗

Nα∗
,

with Na the size of the population that is attacked in the corresponding scenario. A
high value for ρ indicates that the type of structure considered tends to slow down the
transmission and to mitigate the impact of the episode.

5.3 Simulation results

We report in Tables 9 to 12 the mean value and the median value of the indicator ρ
(over these 100’000 replications), for different configurations and different targeted classes,
depending on the contagion matrix class.

Targeted class Special Standard

Mean of ρ Median of ρ Mean of ρ Median of ρ

Configuration 1 5.01 6.02

Configuration 2 4.55 5.48 5.41 6.49

Configuration 3 6.05 7.23 5.05 6.06

Table 9: Mean and Median values of ρ computed from 100’000 simulations of matrices
from the homogeneous class B1.
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Targeted class Special Standard

Mean of ρ Median of ρ Mean of ρ Median of ρ

Configuration 1 2.86 1.67

Configuration 2 2.42 1.44 6.51 6.52

Configuration 3 7.39 7.40 2.79 1.62

Table 10: Mean and Median values of ρ computed from 100’000 simulations of matrices
from the clustered class B2.

Targeted class Special Standard

Mean of ρ Median of ρ Mean of ρ Median of ρ

Configuration 1 0.50 0.37

Configuration 2 0.20 0.10 0.37 0.25

Configuration 3 0.50 0.38 0.21 0.10

Table 11: Mean and Median values of ρ computed from 100’000 simulations of matrices
from the non-clustered class B3.

Targeted class Special Standard

Mean of ρ Median of ρ Mean of ρ Median of ρ

Configuration 1 2.89 1.90

Configuration 2 2.57 1.69 3.12 2.10

Configuration 3 3.53 2.39 2.82 1.88

Table 12: Mean and Median values of ρ computed from 100’000 simulations of matrices
from the cascade class B4.

In each case, we see that the network structure seems to slow down the infection, com-
pared to the situation where all the infected belong to the same group. Table 9 provides
some kind of benchmark case (since there is no particular structure in the network) to
compare the numbers of Table 10 to 12.

From these results, we can also observe that a matrix of type B3 seems the less favorable
situation, since the intensity of attacks required to trigger a Wannacry-type event is lower.
This is no big surprise: with a structure such as B3, the cyber attack has a low propagation
rate inside a given sector. But the contagion quickly spreads to all other sectors, having
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the ability to rapidly expose the whole population from cross-infections. Indeed, the size of
the initially infected category here seems determinant: let us recall that, in Configuration
2 (resp. 3), the "special" (resp. "standard") category is the largest sector, and we see that
the losses are more important if it is the initial target, no matter the class of matrices
considered (and especially in the case of Table 10). With this fast propagation of the
attack to other sectors for networks of type B3, the attack spreads quickly to the whole
population.

6 Conclusion

Multi-group SIR models are simple tools to describe an epidemic, and are widely used in
epidemiology. Their adaptation to the study of contagious cyber events seems relevant
due to the ability of such models to take into account differences of connectivity between
groups of actors. They can also be easily modified to capture particular shapes of at-
tacks. In this paper, we showed how this model can be used to investigate the impact
of a particular shape of network, allowing to identify potential weaknesses in a portfolio.
Moreover, we want to emphasize that, although this model may not provide the most ac-
curate physical description of the phenomenon, its calibration is relatively easy. Indeed,
obtaining precise information about how policyholders are connected with each other (and
with potential other sources of infection) is really hard to get. In the example that we
provided, we showed that the model we develop can be calibrated from a small amount of
data at a macroscopic level. We point out that this illustration is only a rough example,
based on publicly available data related to some kind of economic connectivity between
actors. The aim of this example is only to show a methodology of calibration, and what
can be obtained from it.

To conclude, let us also mention that the model can be adapted to take into account
not only cyber risk, but also its consequences when it comes to breaking the supply chain.
Indeed, a cyber infection can then contaminate other companies not only digitally: a
business interruption in a given sector, from which another sector is very dependent in
terms of supply, could generate some losses for victims that are not directly targeted by
the initial attack. The model we develop can also capture these types of situation, after
adaptation of the parameters (taking for example into account that some reserves of the
product whose supply has been disturbed can delay the propagation of the infection).
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