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Dynamics of drop absorption by a swelling fiber

Pierre Van de Velde,∗a Suzie Protièreb, and Camille Duprata

Swelling of individual fibres exposed to a favorable solvent may affect the mechanical properties or
shape of a fibrous material. We provide experimental results of the absorption dynamics of a single
drop deposited on a swellable fibre and show that the total absorption time is highly dependent
on the fibre geometry and drop volume. The curvature of the fibre prevents the total spreading of
a drop even if the fluid is fully wetting the fibre. For drops larger than a critical volume, a local
saturation of the fibre is thus reached below the drop, leading to a strong increase in the total
absorption time. These observations are then rationalized with a simple pseudo-diffusive model
to understand the drop absorption and fibre swelling dynamics. This minimal model provides
quantitative predictions of the total absorption time.

1 Introduction
At the macroscopic scale, swelling can be viewed as the growth of
a material during the imbibition of a fluid. This phenomenon has
particularly strong implications in many processes where fibrous
materials are involved. Fibre swelling can be observed during
the fabrication of paper, where the swelling of cellulosic fibres
in water affects several parts of the process and handling of pa-
per1, or upon wetting of textiles. Most textiles are composed of
several yarns, which are themselves formed of multiple monofila-
ments (fibres). Many of these fibres absorb moisture (e.g. cot-
ton, viscose) which modifies the wicking kinetics in the yarns
and induces deformations at the scale of the textile2. Moreover,
biosourced fibres such as cellulose or flax, which can be locally
produced and readily available, and thus seem to be a promis-
ing option for garment production, construction and many other
technical uses, strongly absorb solvents which leads to an alter-
ation of their properties and shape once wetted or after drying.

Swelling dynamics is often studied through the growth of un-
constrained elastomeric gels in a solvent3. However, the rate
of swelling depends not only on the gel property but also on its
geometry via the mechanics of swelling itself. For example, im-
mersed spherical gels develop wrinkles and folds due to a rapid
outer layer growing while the inner core is still constrained4,
while spaghetti will grow and sag during hydration5. A com-
mon example of morphological changes induced by swelling is
observed when a sheet of paper starts to bend when placed at
the surface of water6. These large shape changes are due to the
differential swelling occuring as the bottom layer in contact with
water swells while the top layers remain dry and unswollen, until
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the swelling front diffuses to the top of the sheet. When studying
the non-homogeneous exposure of a thin elastic plate to a drop of
favorable solvent, large shape changes can be induced, depend-
ing on the rate of swelling7. When the plate’s thickness increases
shape changes are localized to the swelling front and thus depend
on the drop volume as well as the plate geometry8.

In this paper we investigate a model system consisting of a fi-
nite amount of liquid, namely a drop, placed on a swellable fibre.
We propose a diffusive model, coupled with a description of the
drop shape, that quantitatively describes the absorption dynam-
ics.

2 Absorption dynamics of a drop on a swelling fibre

2.1 Experiments

Fibres of controlled properties are formed by moulding a degased
liquid oligomer solution (polyvinylsiloxane (PVS), Zhermack Elite
double 8, 32 or polydimethylsiloxane (PDMS, Sylgard 184, Corn-
ing, PDMS to curing agent 10:1 ratio) into glass capillaries (inner
radius r0 = 250, 315 and 475 µm) before extracting them after sev-
eral hours to obtain elastomeric fibres by breaking the glass cap-
illary and pulling gently on the fibers. No preliminary treatment
is done to the glass. For PVS, the fibres’ Young moduli E = 0.2
(PVS8) and 0.9±0.1 (PVS32) MPa and Poisson ratio νP = 0.5 are
obtained by measuring the deflection of a clamped fibre under its
own weight and with a simple stretching experiment. To ensure
the fibre remains horizontal, we impose an initial tension on the
fibres such that L

L0
= 1.15, where L0 = 4±1 cm is the fibre length

at rest, and keep this value constant for all experiments. When
the fibre is stretched its radius decreases. We call rs the fibre ra-
dius in the stretched state and measure rs = 233, 293 and 442 µm
with a variation of ±20 µm arising from errors in the measure-
ment of the initial radius as well as variations in the tension from
one experiment to another. All experiments are done at room
temperature i.e. 20± 1◦C. We place a drop, of varying volume
0.5 < V < 6 µL, of silicone oil (Carl Roth, M2, M3 and M5, of
kinematic viscosities ν = 2,3 or 5 mm2.s−1, respective densities
870, 910 and 930 kg.m−3 and dynamic viscosities µ = 2.3, 3.3 and
5.4 mPa.s, and surface tension 0.018±0.001 N/m measured with a
pendant drop experiment), on the horizontal stretched fibre with
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Fig. 1 Absorption dynamics of a drop on a swelling fibre.(a, b) Drop
of silicone oil (ν = 2 mm2.s−1) sitting on a PVS32 fibre (rs = 233 µm)
for initial volumes of 0.6 and 2 µL respectively. Pictures are taken at 0,
50, 100 and 150 s for pictures (i) to (iv) and at 0, 1200, 6000, 7000 s
for pictures (v) to (viii). (c) Drop height H in time on a swelling fibre
for various initial volumes (V= 0.05, 0.1, 0.5, 1.4, 3.2, 4.1, 3.9, 5.7 µL).
The height is always measured from drop apex to drop apex as shown in
the inset.

a micropipette. Both PDMS and PVS spontaneously swell by ab-
sorbing the silicone oil. Pictures of the drop are taken at regular
intervals using a Nikon D810 camera and a 105mm macro lens.
The characteristic evaporation time for a drop of 2 µL on a fibre
of radius 250 µm, tevap ' 80000s, is significantly larger than the
duration of a typical experiment. We thus neglect evaporation
effects.

The drop is absorbed by the fibre over time, leading to a lo-
calized swelling of the fibre (figures 1 (a) and (b)). Notations
are defined in the inset of figure 1 (c). Depending on the initial
volume of the drop, the time taken to absorb the liquid can vary
from a few seconds to several hours. We distinguish two different
situations reflected by the variations of the drop height H with
time (figure 1 (c)).

For a small initial volume (V = 0.6 µL, points (i)-(iv), blue-
framed pictures in figure 1 (a) and corresponding blue curve in
figure 1 (c)), the fibre swells as the drop height decreases: the liq-
uid is absorbed progressively into the fibre. The drop height H

2rs

decreases quickly to reach a plateau value slightly over 1. The ex-
act value of H after absorbing the drop depends on how much the
fibre has swollen locally. For a larger drop (V = 3.9 µL, points (v)-
(viii), green-framed pictures in figure 1 (b), and corresponding
green curve in figure 1 (c)), we observe three different regimes.
In the first few minutes (from (v) to (vi)), similarly to small drops,

the drop height H decreases quickly and the fibre radius at the
position of the drop becomes larger. From (vi) to (vii), the fibre
radius remains constant and the decrease of H slows down signif-
icantly as the liquid diffuses slowly from the drop edges. In the
third regime (from (vii) to (viii)), once most of the drop is ab-
sorbed within the fibre, the decrease of H accelerates again until
the drop is fully absorbed by the fibre. After point (viii), the drop
is no longer visible: the fluid eventually diffuses within the fibre
leading to a slow decrease of H.

These experiments show that a small increase in the initial
drop volume can have a dramatic effect on the total absorption
time. Indeed, a threefold increase in drop volume leads to an
over hundred-fold increase in absorption time. We measure the
total absorption time, Tabs, a fibre takes to absorb a single droplet.
This time is defined at the inflexion point of H

2rs
(points (iv) and

(viii) in figure 1). We plot the total absorption time as a function
of the initial drop volumes (figure 2). For small drops this time
remains below a few minutes. For drops that are larger than 3µL,
Tabs increases sharply with the drop volume. The slowing down
of the absorption (between points (vi) and (vii) in figure 1) thus
only happens for drops larger than a critical volume.

Fig. 2 Total absorption time as a function of the initial volume for various
fibre radii (blue: rs = 233 µm, green: rs = 293 µm, brown: rs = 442 µm).
The lines are given by equation (14) obtained with the average measured
radius rs and swelling ratio λmax (plain line) and with the extreme values
of the measured swelling ratios and radii (dashed lines). V ∗ is the critical
volume found theoretically as described in section 3.2.

In the next sections, we build a model for the absorption dy-
namics, and demonstrate the existence of a critical volume that
highly depends on the fibre radius and swelling properties. In
order to construct a model of these dynamics, we first need to de-
scribe the drop geometry depending on its volume (section 2.2)
as well as the swelling dynamics of a fibre immersed in a liquid
bath (section 2.3).

2.2 Drop geometry on a fibre without swelling and in the
presence of gravity

The shape of a drop on a fibre without gravity is well described
and characterized both experimentally and analytically9 10 11 12.
For fully wetting drops, the shape of the drop can be described an-
alytically. In particular, using surface minimization and geometry
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Fig. 3 Drop geometry on a fibre without swelling: Measured height
and length (inset) of a drop of viscous silicone oil (ν = 100 mm2.s−1) for
various fibre radii: rs = 233 (blue �), 293 (green4) and 442 µm (brown ◦)
with empty symbols, and on the same fibres pre-swollen overnight (filled
symbols). Plain lines corresponds to the analytical prediction without
gravity given by eqs. (1-2), and dashed lines to the empirical prediction
given by eq. (4) for dry fibres (small dash, r = rs) and pre-swollen fibres
(dash-point, r = 1.5× rs).

arguments, Carroll11 derives equations relating the drop volume,
length and height depending on the fibre radius:

V =
2πH

3
[(2r2 +3rH +2H2)E(χ)− r2F(χ)]−πr2l (1)

l = 2[rF(χ)+
H
2

E(χ)] (2)

where

χ
2 =

H2−R2

H2 (3)

and F(χ) and E(χ) are complete elliptic integrals of the first and
second kind. We can solve these equations numerically for H and
l and obtain the curves shown in figure 3. Less attention has been
devoted to drops placed on fibres and subjected to gravitational
effects13 14. In our experiments, drops are deformed by gravity
(as seen in figure 1) and we look for a relation between the drop
height H and length l with its volume V , without any swelling. In
order to have no swelling effect, we used silicone oil of same sur-
face tension and wetting properties on the PVS, but high viscosity
(ν = 100 mm2.s−1) so that no swelling can be observed during
our measurements of the drop shape. We have first verified that
no swelling occurs over an immersion of 2 hours of PVS fibres
in the high viscosity oil. Drops of high viscosity oil placed on a
horizontal stretched fibre are thus at equilibrium. We weight the
fibre and drop system with precision scales in order to accurately
determine the drop volume (Mettler Toledo, precision: 0.0001 g).
Pictures are taken perpendicular to the fibre orientation in order
to carefully measure the drop’s height and length, which are then
plotted for different liquid volumes (figure 3). The drop’s height
increases with the volume of the drop following the analytical
prediction without gravity up to V ≈ 4µL, when gravity can no
longer be neglected. For higher volumes, the drop shape is then
modified by gravity: axisymmetry is lost and the drop stretches in

the vertical direction. Indeed, when V ≥ 4µL, the drop height in-
creases above the predicted value and its length reaches a plateau,
i.e. gravity keeps the drop more compact in the horizontal direc-
tion. Moreover, for identical volumes, the drop length increases
with the fibre radius. We use these experiments to find an empir-
ical relationship between liquid volume and drop height H in the
form of

H−2r = aV b (4)

While this relationship can be refined for every individual radius,
a = 534m−2 and b = 0.67 give satisfactory results for all radii. In
order to have the same conditions as in the swelling experiment,
i.e. the same fibre radius and the same wetting condition, we
also pre-swell fibres by immersing them overnight in a bath of
low viscosity oil (viscosity ν = 5 mm2.s−1), and similarly place
single drops on them. The results are reported in figure 3 and we
observe the same scaling for pre-swollen and dry fibres. There is
thus no effect of swelling on the drop shape, i.e. swelling only
changes the radius of the fibre. There is thus a unique drop shape
for a given volume and fibre radius. We thus use the empirical
relation (4) to describe the drops during the whole absorption
experiment, i.e. to guess the exact volume of the drop at all times,
using the measured swollen radius and drops’s height H. Note
that this relation depends on the contact angle between the liquid
and the solid, as well as the surface tension and density of the
fluid and has thus to be determined for each given material.

2.3 Swelling dynamics of a fully immersed fibre

Fig. 4 Swelling dynamics of an immersed fibre. Evolution of the renor-
malized swelling ratio of a PVS fibre immersed in a bath of silicone
oil (µ = 2.3 mPa.s (dark blue), µ = 3.3 mPa.s (light blue) and µ = 5.4
mPa.s (brown)) for various fibre radii (r0 = 250, 315 and 475 µm). The
red plain line corresponds to eq (6). The inset shows the value of Tswell
as a function of fibre radius and diffusion coefficient for PVS (r0 = 250
(blue squares), 315 (light blue triangles) and 475 µm (brown circles))
and PDMS (r0 = 475 µm, yellow diamonds).

We study the swelling dynamics of one fibre. In our experi-
ments, the unsaturated fibre at the drop position is locally sur-
rounded by oil. The liquid is first absorbed at high speed as can
be observed from the rapid decrease in drop size during the first
few minutes of the experiment (figure 1 (c)). To understand the
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swelling dynamics in this region, we measure the swelling rate
over time of a fibre fully immersed in a bath of oil. We immerse
single fibres of various radii (r0 = 250,315 and 475 µm) into a
bath of silicone oil (of various viscosities µ = 2.3, 3.3 and 5.4
mPa.s) and track their lengths and radii in time. The fibres are
only clamped at one end to be held in place. The swelling is thus
unconstrained. No significant difference between the swelling in
the radial and in the axial direction is observed. We assume the
swelling to be isotropic and measure the fibre’s length L as it in-
creases with time and compare it to its initial length L0.

We define the swelling ratio as

λ (t) =
L(t)
L0

=
r(t)
r0

. (5)

Once the fibre is immersed into the oil, λ increases until it reaches
a plateau value between 1.43 and 1.55. Variations might come
from slight variations in the composition of the fibre or strain-
dependent effects that will be further discussed in section 4. We
define the maximal swelling ratio as λmax =

L(t=∞)
L0

. All the data
collapse onto a single line by plotting the renormalized swelling
ratio λ (t)−1

λmax−1 as a function of nondimensional time t
Tswell

, where
Tswell is a measured characteristic swelling time (figure 4). This
dynamics is similar to that observed for the swelling of vari-
ous gels5,15. The swelling dynamics of fully immersed objects
such as spheres4 or cylinders3 is generally modeled by describing
the complete thermo-mechanical processes of a swelling polymer,
or by using pseudo-diffusive models to describe small deforma-
tions16,17. Here, we describe the evolution of the renormalized
swelling ratio with a simple model such that

λ (t)−1
λmax−1

= 1− e
−t

Tswell , (6)

A similar expression has been used to describe the hydration of
dehydrated cylindrical spaghetti5. While λmax is constant for a
given fibre material, Tswell strongly depends on the initial fibre
radius and oil viscosity as shown in the inset figure 4, such that

Tswell =
r2

0
D∗

(7)

where D∗ is a pseudo-diffusion coefficient that depends on the oil
viscosity and material properties. Here, since we consider a fibre
for which the radius is small compared to its length, the important
length-scale to consider is the fibre radius r0. We measure Tswell

for several fibre radii, fibre composition and oil viscosity (inset
Fig. 4), and determine D∗ for each material and viscosity. We
performed these experiments with two different kinds of PVS and
PDMS. The characteristics of the different elastomers are detailed
in table 1.

3 Total absorption time and complete absorption
dynamics

We investigate the complete dynamics of a drop absorption on a
fibre. We can accurately describe the early time of the swelling
dynamics observed in figure 1 with equation (6), as a drop of sol-
vent deposited on a fibre locally acts similarly to a bath of fluid

Table 1 Values of E, and D∗ for two different batches of PVS (polyvinyl-
siloxane Zhermack Elite double 32 and 8) and PDMS (polydimethylsilox-
ane, Sylgard 184, Corning) depending on oil viscosity.

Material E(MPa) µ (mPa.s) D∗ (m2.s−1)

PVS 8 0.2
2.3 2.31 ·10−10

3.3 1.54 ·10−10

5.4 0.92 ·10−10

PVS 32 0.9
2.3 2.34 ·10−10

3.3 1.55 ·10−10

5.4 0.93 ·10−10

PDMS 1
2.3 1.68 ·10−10

3.3 1.11 ·10−10

5.4 0.67 ·10−10

on a swelling fibre. Indeed, the Laplace pressure inside the drop
Plaplace ' γ

H ' 10 Pa is significantly smaller that the swelling driv-
ing pressures, i.e. the osmotic pressure18, Πmix ' RT

Vmol
' 106 Pa,

where Vmol is the molar volume of the solvent, and the pore pres-
sure ∼ Eλ 3 ∼ 105 Pa. We thus estimate that the increase of pres-
sure inside the drop due to its interface curvature does not affect
the swelling dynamics at early times. We indeed observe a rapid
decrease of the height of the drop H

2rs
with a typical time of order

of (4±2)Tswell .
We measure the fibre radius r(t) close to the drop center during

the experiments presented in the first section (figure 5 (a)). Since
the drop is acting as a liquid lens, it is not possible to measure the
fibre radius directly below the drop with accuracy; we thus mea-
sure the radius on the edge of the drop. From its initial value rs,
the radius increases quickly, following a dynamic close to the one
found in section 2.3 (dashed blue line, eq. (6)), before reach-
ing a plateau value. The time at which the plateau is reached
corresponds to the end of the sharp decrease in drop size ((vi)
figure 1 (c)). We note that here, the value of the swelling time
is larger than the one of the immersed fibre Tswell (about 4Tswell).
This factor 4 might arise from the fact that we measure the radius
on the side of the drop, which might differ from the radius below
the drop. Furthermore, the model, obtained for fully immersed fi-
bres, only accounts for radial diffusion, while axial diffusion from
the drop edges might occur, slowing down the initial swelling.
Provided that the volume is large enough, the radius reaches the
maximal radius rmax = λmaxrs. Indeed, we must define a critical
volume Vcap as the maximum fluid volume that can be absorbed
by the fibre portion that is in contact with the drop at t = 0, i.e.:

Vcap = (λ 2
max−1)πr2

s l0. (8)

where l0 is the drop length at t = 0. This volume strongly depends
on the geometry since the fibre radius also affects the drop length
l0. In fig. 5 (b), we plot the final swelling ratio r(t = Tabs)/rs as a
function of the drop volume compared to the critical volume. For
small volumes, V <Vcap, r(Tabs)/rs remains smaller than λmax, i.e.
the initial volume is not sufficient to fully swell the fibre locally.
For larger volumes, we reach a plateau value of λmax = 1.5,
i.e. the fibre reaches its maximum radius at the position of the
drop during the experiment and the fibre is fully saturated with
liquid below the drop. The transition occurs for V/Vcap & 1. The
sharp increase in absorption time corresponds to the volumes
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Fig. 5 (a) Evolution of the radius of the fibre beneath the drop for
various initial drop volumes corresponding to the experiments shown in
Fig. 1 with corresponding colors (ν = 2 mm2.s−1, PVS32, rs = 233 µm,
V = 0.05,0.1,0.5,1.4,4.1 µL) . For high volumes (lighter curves) the fi-
bre radius reaches its maximum value rmax = λmaxrs whereas for smaller
volumes (darker curves), the swelling stops when there is no more fluid
available in the drop. The dashed line corresponds to equation (6) with
T ′ = 4Tswell . (b) Final swelling ratio at the initial drop position vs. initial
drop volume compared to Vcap for various fibre radii: rs = 233 (blue �),
293 (green 4) and 442 µm (brown ◦).

at which the fibre is locally saturated with oil at the drop position.

3.1 Model

The localized saturation of the fibre is responsible for the large
differences in total absorption times. We divide the dynamics
into two different stages. At short times, the absorption dynamic
is dominated by diffusion in the radial direction: the fibre lo-
cally swells and absorbs the oil quickly until reaching its maximal
swelling ratio (saturation). Then, the dynamic is dominated by
diffusion of the fluid within the fibre in the axial direction. We
assume that at a given time t the drop has a volume V and the
fibre has a radius r. Knowing V and r we calculate H and l (the
drop length) using equation 4 and the notations presented in the
schematic (figure 6 (a)). The portion of the fibre in contact with
the drop at t is a cylinder of radius r and length l. We then cal-
culate the decrease in drop volume that is directly associated to
an increase in fibre radius: Assuming molecular incompressibility
we can write that the variation in fibre volume V f is equal to the
variation in drop volume, i.e.:

∂V
∂ r

=−∂V f

∂ r
(9)

The volume of the wetted fibre portion has a volume Vwet = πr2l.
Let us temporarly consider this wetted fibre portion as a cylindre
that will swell isotropically (as from figure 6 (a) (ii) to (ii bis)).
For mathematical consistency, we call lwet the length of the wetted
cylindre, such that

∂Vwet

∂ r
= 2πrlwet +πr2 ∂ lwet

∂ r
(10)

Assuming that the swelling is isotropic, we have ∂ lwet
∂ r = lwet

r and
thus

∂V f

∂ r
=

∂Vwet

∂ r
= 3πrlwet = 3πrl (11)

l(V,r) is given by equation (2). Using this relationship we can
increment r (until it reaches rmax) and calculate l, V , and deduce
H for every step. Here, we use equation (2) to calculate l which is
satisfactory for small drops (V < 4µL) as can be seen in the inset
of figure 3. To reproduce the path taken by the drop in the (V,H)

space during the experiment, we divide the simulations into the
two regimes described above (figure 6 (a)):

1. At first, the fibre radius increases from rs (i) to λt=∞rs (ii). If
λt=∞ = λmax (iii), we proceed to the second step. If λt=∞ <

λmax, we stop. We estimate that the dynamics of this first
phase (before saturation, i.e. going from a dry to a saturated
fibre) is identical to the case of an immersed fibre, and thus
occurs over a time close to Tswell .

2. If saturation is reached, we move on to the second phase.
The fibre is saturated in fluid at the position of the drop. We
define Ṽ as the remaining volume of the drop when satura-
tion is reached (i.e. the point at which the upper curve is
reached), which is calculated using our model eqs (9-11).
The drop volume then reduces through diffusion in the axial
direction of the fibre until it reaches 0 (iv).

In the second phase, we assume that the fluid diffuses inside the
fibre in the axial direction with a typical diffusion coefficient D∗,
whose value is the one deduced from our experiments with an
immersed fibre. We thus have

Ldi f f =
√

D∗t, (12)

where Ldi f f is the length over which the fluid has to move (fig-
ure 6 (a)). During this phase, we consider a constant droplet
length. We calculate Ldi f f by estimating the length of fibre neces-
sary to absorb the remaining fluid (Ṽ ) once saturation is reached
(in green, figure 6 (a)). Since the fibre radius increases from rs to
λmaxrs, we get the following:

Ldi f f =
Ṽ

2πr2
s (λ

2
max−1)

. (13)

The factor 1/2 comes from the fact that the fluid can diffuse from
both sides of the drop. We can now obtain an estimation of Tabs

as a sum of the time taken for the two phases, i.e. Tswell (phase
1) and L2

di f f /D∗ (phase 2) :

Tabs ' Tswell +
Ṽ 2

4π2D∗r4
s (λ

2
max−1)2 . (14)
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3.2 Results

We can now plot the evolution of the drop volume and drop
height during the absorption for different initial volumes (figure
6 (b)). Our model (dashed lines) is in good agreement with
the experimental data. The experiments always start on the
lower curve H(V ) found empirically for a dry fibre (eq. (4) with
r = rs). The drop then gets absorbed by the fibre leading to a
decrease of V and H. The paths taken by the drops are given
by the dashed lines. If the path reaches the upper curve, which
corresponds to the curve H(V ) found empirically for a swollen
fibre (eq. (4) with r = rmax), the fibre is locally saturated. The
drop then gets absorbed slowly by diffusion in the axial direction
of the fibre and moves along the upper curve until it reaches
H
2rs

= λmax. We note that, as the time-step between two points is
regular for each experiment (∆t = 60s), their decreasing spacing
thus indicate that the absorption speed decreases as we get
closer to the upper curve corresponding to a locally saturated
fibre. For small volumes, the upper curve is not reached and
the fibre remains unsaturated. We can deduce the smallest
initial volume for which the fibre is saturated V ∗. We indicate
this volume for two fibre radii in figure 2. V ∗ is close to Vcap

but also accounts for some of the diffusion occurring in the
axial direction during the first phase of the experiment. For the
experiments presented in figure 6 (b), we predict a critical vol-
ume V ∗ = 1.08 µL; experimentally, we find a value close to 1.4 µL.

Our prediction of Tabs given by eq (14) is in good agreement
with the experiments (Figure 2 (a)), i.e. our model captures the
general behaviour of the system. Nevertheless, the predictions
for this time are highly dependent on the swelling ratio λmax and
initial radius rs of the fibre. Dashed lines correspond to the ex-
treme values of the measured swelling ratios and radii, which
vary slightly in the experiments. The dependance of Tabs on λ 2

max
and r4

s explains some of the variability of Tabs. Moreover, the dif-
fusive model is also an approximation in itself, and we do not
account for variations in tension or fibre length. More precise
calculations could be done using a full modeling of the swelling
dynamics19, as will be discussed in the next section, but this is
beyond the scope of this study.

4 Discussion

In this study we have established a quasi-diffusive model that ac-
curately describes the absorption dynamics of a drop placed on a
swellable fibre. In particular, it highlights the existence of a crit-
ical drop volume for which fibre saturation is reached below the
drop, leading to a dramatic increase in the total absorption time.
Porous but non swellable fibres should exhibit similar dynamics
as liquid imbibition in any porous material also follows a pseudo-
diffusive law. However, the driving forces at play are not the
same: capillary pressure in the pores induces motion of the wick-
ing front whereas absorption is responsible for the swelling of the
elastomer in our experiments. Chen et al20 studied the wicking
kinetics of a liquid droplet into a porous yarn. The drop slowly

wicks into the yarn without any changes in yarn radius. They
observe that, for drops that saturate the yarn below the drop, the
droplet is absorbed into the yarn in accordance with the diffusive-
like Lucas-Washburn equation, and that the time of droplet ab-
sorption is a linear function of the initial droplet volume squared
V 2, which is similar to the scaling of eq. (14), neglecting the
initial radial penetration of liquid below the drop. However, the
presence of swelling modifies the absorption kinetics strongly, as
a 50% increase in fibre radius reduces the diffusion time by a fac-
tor 0.2, since the fluid moves over a much shorter distance than
without swelling. This effect is evidenced by the factor λ−4

max in eq.
(14).
Furthermore, some aspects of our model could be perfected by
adding the detailed poroelastic features of our system. The
swelling time that we found in section 2.3, corresponds to the
typical poro-elastic time-scale4,7,15,21 r2

0/D∗, where D∗ ≡ Ek/µ, k
being the permeability of the material. For most experiments, we
use Zhermack Elite double 32 PVS for which µD∗ = 4.67 · 10−13

kg−1.m−1, corresponding to a permeability of order k ∼ 10−18

m2 in agreement with previously reported results7,22. A differ-
ent elastomer (Elite Double 8 PVS), which is both softer (lower
E) and more permeable (higher k) actually has a similar constant
D∗. We also perform experiments with PDMS, which is more rigid
but more permeable and has a slightly smaller diffusion coeffi-
cient. Both experimental and theoretical studies23 show that the
swelling ratio of a polymer (and thus in our case the final ra-
dius of the fibre) is dependent on the strain. In our experiments,
we found the final radius to be very similar in both the uncon-
strained case of an immersed fibre (section 2.3) and in the case
of a stretched fibre (2), with some variability (±0.05) in λmax from
one experiment to another. Since swelling leads to a decrease in
fibre tension, the final strain and thus the final radius at t = Tabs

depends on the initial tension, the fibre length and the drop vol-
ume. The variation in fibre length might explain some of the
dispersion observed in λmax and in Tabs. These effects might be of
importance in further studies of fluids interacting with stretched
fibres.

5 Beating the saturation
The cylindrical geometry of the fibre keeps the drop within a small
portion of the fibre. In this case, although the drops are totally
wetting, they will not spread but remain compact due to this
specific shape. This particular characteristic prevents the rapid
spreading and thus rapid absorption which is generally observed
on a flat surface. The dynamics of absorption can be explained
using the swelling dynamics of an immersed fibre and the drop
geometry. Using simple diffusion arguments, we find that for
drop volumes higher than a critical value dependent on the fi-
bre radius, the total imbibition time increases dramatically, as the
solvent diffuses slowly over a much larger distance in the fibre
direction than only in the radial direction. To decrease this total
absorption time it is critical to avoid local saturation of the fibre.
Different strategies can be used to avoid saturation. Firstly, the
drop can be forced to move e.g. by inclining the fibre or by vary-
ing the fibre geometry24,25. Secondly, one could force the drop to
spread over a much larger distance. This can be achieved by using
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Fig. 6 (a) Notations for the absorption of a drop by a swelling fibre. (b) Evolution of drop volume and drop height H(V ) during the absorption
corresponding to the experiments shown in Fig. 1 and 5 with corresponding colors (ν = 2 mm2.s−1, PVS32, rs = 233 µm, V = 0.05,0.1,0.5,1.4,4.1 µL).
The full lines represent the drop height vs. volume for a dry fibre (lower curve, eq. (4) with r = rs) and a fully swollen fibre (upper curve, eq. (4) with
r = rmax). The trajectories (dashed lines) are predicted using the model presented in section 3.1. The arrows indicate the time evolution of H(V ).

several parallel fibres26,27: while the typical absorption time of
isolated drops on fibres is of order of 10 hours, a drop deposited
on two parallel fibres quickly wicks between them, and the to-
tal absorption time is reduced to a few seconds. These results
are reminiscent of experiments recently reported on cotton fab-
rics28; while a drop spreading between the filaments of a yarn is
absorbed in less that a millisecond, its absorption time on a single
fibre is 1.6 s, i.e. 5000 times higher. In general, the absorption
time will strongly depend on the local geometry and liquid dis-
tribution and movement. The absorption dynamics will thus be
particularly complex in fibrous networks, where the imbibition
fronts are generally non uniform, and liquid may spread ahead
of the wetting front in the form of precursors films along fibres
or within yarns29–33. The model experiments presented in this
paper may provide a base to study more complex dynamics and
morphological changes occuring in fibrous media during swelling.
They are also a basic example of a localized swelling phenomenon
occuring in a poroelastic material.
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