
HAL Id: hal-03390569
https://hal.sorbonne-universite.fr/hal-03390569v1

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Reachability in Polynomial Interrupt Timed
Automata

Béatrice Bérard, Serge Haddad

To cite this version:
Béatrice Bérard, Serge Haddad. Revisiting Reachability in Polynomial Interrupt Timed Automata.
Information Processing Letters, 2022, 174, pp.106208. �10.1016/j.ipl.2021.106208�. �hal-03390569�

https://hal.sorbonne-universite.fr/hal-03390569v1
https://hal.archives-ouvertes.fr

Revisiting Reachability in Polynomial Interrupt Timed Automata

Béatrice Bérarda, Serge Haddadb

aSorbonne Université, CNRS, LIP6, F-75005 Paris, France
bLSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay, France

Abstract

Polynomial Interrupt Timed Automata (PolITA) are finite automata with clocks organized along hierar-
chical levels. These clocks are equipped with an interruption mechanism, well suited to the modeling of
real-time operating systems. Moreover, transitions between states contain polynomial guards and updates.
The reachability problem in this class is known to be in 2EXPTIME with a decision procedure based on the
cylindrical algebraic decomposition. We improve this complexity to EXPSPACE mainly using a combinatorial
argument and we include a reduction leading to a PSPACE lower bound.

Keywords: Interrupt timed automata, Reachability problems, Complexity

1. Introduction

Interrupt Timed Automata. Timed Automata
(TA) [1] are appropriate models for the specifica-
tion and verification of real-time systems. How-
ever, adding stopwatches, i.e., clocks which can be
suspended, to TA, makes all the relevant verifica-
tion problems undecidable [2]. In order to address
this issue, the model of Interrupt Timed Automata
(ITA) was introduced in [3]. This model combines
a finite set of control states, organized along hi-
erarchical levels with exactly one active clock per
level. In a state, only this active clock evolves with
time elapsing while all other clocks are frozen, those
of levels greater than the current one being null.
The transitions between states are guarded by affine
constraints on clocks from levels less than or equal
to the current level. When a transition is increasing
the current level or remaining at the same level, the
active clock can be updated by an affine combina-
tion of clocks from lower levels.

Reachability for ITA is in NEXPTIME and model
checking is also decidable for several classes of timed
temporal logics [4, 5]. It was also proved that TA
and ITA do not accept the same timed languages.

Parametric Interrupt Timed Automata. Some-
times the clock constraints of a system are only
partially known. An elegant way to deal with
this issue consists in introducing parameters. In

TA, introduction of parameters yields undecidabil-
ity results [6]. In contrast, for Parametric Interrupt
Timed Automata (PITA) proposed in [7, 8] several
problems including reachability remain decidable.
However the complexity of solving reachability in-
creases to 2EXPTIME when parameters occur as ad-
ditive terms in guards and updates. It increases
again to 2EXPSPACE when parameters may also
occur as multiplicative terms.

Polynomial Interrupt Timed Automata. To tackle
the problem of parameters for ITA, the authors
of [9, 10] chose another direction: They consider
parameters as static clocks. The guards (resp. up-
dates) are also extended: They are defined by ar-
bitrary polynomial constraints on clocks with lev-
els lower than or equal to (resp. lower than) the
current level. This yields the class of Polynomial
Interrupt Timed Automata (PolITA). This class
simultaneously extends the class of PITA and sim-
plifies its syntax (parameters are static).

Before formally defining PolITA, we present a
toy example (from [10]) describing the landing of
a rocket. In the first stage, the rocket approaches
the land from distance d, under gravitation g. In
the second stage, the rocket is subject to a con-
stant deceleration h < 0. Finally, it must reach
the land with a small non negative speed (less than
some fixed ε). The problem is the following: For
all g ∈ [7, 10], does there exist an h ∈ [−3,−1] such

Preprint submitted to Elsevier September 24, 2021

q0, 1 q1, 2 q2, 2

1
2gx

2
1 + gx1x2 + 1

2hx
2
2 = d ∧ 0 ≤ gx1 + hx2 < ε

Figure 1: A PolITA modeling the rocket landing.

that the rocket is landing without crash? Observe
that this problem is harder than reachability since
it includes an alternation of quantifiers. The poly-
nomial interrupt automaton in Figure 1 illustrates
this example. The first stage is modeled by state q0
at level 1 where the system spends x1 time units.
Then the system spends x2 time units in q1, repre-
senting the second stage (deceleration). The target
state q2 is reached if the rocket can land safely.

It is shown in [9, 10] that reachability and ex-
tended problems like the one above are decidable
in 2EXPTIME for PolITA. The proof relies on the
construction of a finite abstraction, obtained via a
cylindrical algebraic decomposition [11, 12] related
to the first order theory of reals.

Contribution. We propose an EXPSPACE proce-
dure solving the reachability problem for PolITA.
Our procedure combines a combinatorial argument
about the length of runs witnessing reachability,
with the resolution of the truth problem in the ex-
istential first-order theory of reals [13]. We also
include a reduction showing that reachability is
PSPACE-hard.

Organisation. In Section 2, we recall the syntax
and semantics of PolITA, illustrated with an ex-
ample. For reachability, we establish the PSPACE
lower bound in Section 3 and the improved upper
bound in Section 4. The corresponding procedure
is illustrated in Section 5 on another example. Fi-
nally, in Section 6, we conclude and give some per-
spectives to this work.

2. Model

We denote respectively by N, Z, Q and R the
sets of natural numbers, integers, rational and real
numbers. The set of non negative real numbers is
denoted by R≥0.

Let X = {x1, . . . , xn} be a finite set of n vari-
ables called clocks. We write Q[x1, . . . , xn] for the
set of polynomials with n variables and rational co-
efficients.

A polynomial constraint is a conjunction of con-
straints of the form P ./ 0 where P ∈ Q[x1, . . . , xn]

and ./ ∈ {<,≤,=,≥, >}, and we denote by C(X)
the set of polynomial constraints. We also define
U(X), the set of polynomial updates over X, by:
U(X) = {∧x∈Xx := Px | ∀x Px ∈ Q[x1, . . . , xn]}.

A (clock) valuation is a mapping v ∈
RX , also identified to the n-dimensional vector
(v(x1), . . . , v(xn)) ∈ Rn. The valuation where
v(x) = 0 for all x ∈ X is denoted by 0. For
P ∈ Q[x1, . . . , xn] and v a valuation, the value of P
at v is P (v) = P (v(x1), . . . , v(xn)). A valuation v
satisfies the constraint P ./ 0, written v |= P ./ 0,
if P (v) ./ 0. The notation is extended to a com-
bination of polynomial constraints: v |= ϕ with
ϕ =

∧
i Pi ./i 0 if v |= Pi ./i 0 for every i.

An update of valuation v by u = ∧x∈Xx := Px
in U(X) is the valuation v[u] defined by v[u](x) =
Px(v) for each x ∈ X. Hence an update is atomic
in the sense that all variables are assigned simul-
taneously. For valuation v, delay d ∈ R≥0 and
k ∈ {1, . . . , n}, the valuation v′ = v +k d, corre-
sponding to time elapsing of d for xk, is defined by
v′(xk) = v(xk) + d and v′(x) = v(x) for x 6= xk.

Definition 1 (PolITA). A polynomial interrupt
timed automaton (PolITA) is a tuple A =
〈Σ, Q, q0, X, λ,∆〉, where:

• Σ is a finite alphabet, with ε the empty word
in Σ∗, the set of words over Σ;

• Q is a finite set of states, q0 ∈ Q is the initial
state;

• X = {x1, . . . , xn} consists of n interrupt
clocks;

• the mapping λ : Q → {1, . . . , n} associates
with each state its level and xλ(q) is called the
active clock in state q;

• ∆ ⊆ Q× C(X)× (Σ ∪ {ε})× U(X)×Q is the

set of transitions. Let e = q
ϕ,a,u−−−→ q′ in ∆ be a

transition with q its source state, q′ its target
state and tr(e) = a its label. The mapping λ
is extended to ∆ by setting λ(e) = λ(q). Let
k = λ(q) and k′ = λ(q′). The guard ϕ is a
conjunction of constraints P ./ 0 with P ∈
Q[x1, . . . , xk] (P is a polynomial over clocks

2

q0, 1

q1, 2 q2, 2

x2
1 ≤ x1 + 1, a

x2
1 > x1 + 1, a′, x1 := 0

(2x1 − 1)x2
2 > 1, b

x2 ≤ 5− x2
1, c

(a) A PolITA A1.

x1

x2

(2x1 − 1)x2
2 − 1 = 0

x2 + x2
1 − 5 = 0

x2
1 − x1 − 1 = 0

a

b

b

b

c

c

(b) Sample trajectory of A1 in R2.

Figure 2: A PolITA and a trajectory.

from levels less than or equal to k). The update
u is of the form ∧ni=1xi := Ci with:

– if k > k′, i.e. the transition decreases the
level, then for 1 ≤ i ≤ k′, Ci = xi and for
i > k′, Ci = 0;

– if k ≤ k′ then for 1 ≤ i < k, Ci = xi,
Ck = P for some P ∈ Q[x1, . . . , xk−1] or
Ck = xk, and for i > k, Ci = 0.

A configuration (q, v) of A consists of a state q
and a clock valuation v.

Definition 2. The semantics of a PolITA A is
defined by the (timed) transition system TA =
(S, s0,→), where S =

{
(q, v) | q ∈ Q, v ∈ RX

}
is

the set of configurations, with initial configuration
s0 = (q0,0). The relation → on S consists of two
types of steps:
Time steps: Only the active clock in a state can
evolve, all other clocks are frozen. For a state q with
active clock xλ(q), a time step of delay d ∈ R≥0 is

defined by (q, v)
d−→ (q, v′) with v′ = v +λ(q) d.

Discrete steps: There is a discrete step (q, v)
e−→

(q′, v′) for transition e = q
ϕ,a,u−−−→ q′ in ∆, if v |= ϕ

and v′ = v[u].

A run ρ of A is a finite path in the graph TA
alternating time and discrete steps starting from s0.
Its length |ρ| is the number of discrete steps and
its duration Dur(ρ) is the sum of all delays. Let
ρ = (d0, e1, d1, . . . , en, dn) be a run denoted by its
sequence of steps. We denote by last(ρ) the target
state of transition en and we define tr(ρ) ∈ Σ∗, its
label, by tr(ρ) = tr(e1) . . . tr(en). We are now in
position to define the language of a PolITA.

Definition 3. Let A = 〈Σ, Q, q0, X, λ,∆〉 be a
PolITA and let qf ∈ Q. The (untimed) language
L(A, qf) ⊆ Σ∗ is defined by:

L(A, qf) = {tr(ρ) | ρ run of A ∧ last(ρ) = qf}.

For the PolITA A1 depicted in Figure 2, bor-
rowed from [9, 10], the transition from q0 to q1 can

only be fired before (or when) x1 reaches 1+
√
5

2 , the
positive root of the polynomial A = x21 − x1 − 1.
Then, transition b from q1 to q2 can only be taken
once x2 reaches the grey areas. Transition c cannot
be taken once the green curve has been crossed.
Hence the loop bc can occur as long as the clock
values remain in the dark gray area or on the green
curve. The run depicted on the right is:

ρ = (q0, (0, 0))
1.2−−→ (q0, (1.2, 0))

a−→
(q1, (1.2, 0))

1.1−−→ (q1, (1.2, 1.1))
b−→

(q2, (1.2, 1.1))
0.3−−→ (q2, (1.2, 1.4))

c−→
(q1, (1.2, 1.4))

0.7−−→ (q1, (1.2, 2.1))
b−→

(q2, (1.2, 2.1))
0.6−−→ (q2, (1.2, 2.7))

c−→
(q1, (1.2, 2.7))

1.2−−→ (q1, (1.2, 3.9))
b−→

(q2, (1.2, 3.9)).
For this run, we have |ρ| = 6, Dur(ρ) = 5.1,

tr(ρ) = abcbcb and last(ρ) = q2. Clock x1 has been
frozen at the value 1.2. The polynomial constraint
B > 0 with B = (2x1 − 1)x22 − 1 which guards
transition b, becomes x22 >

1
1.4 , while C ≤ 0, with

C = x2−5−x21, which guards transition c, becomes
x2 ≤ 3.56.

Given a PolITA A and a state q the reachability
problem asks whether there exists a valuation v and
a run of A from (q0,0) to (q, v). A variant of this
problem where the target is given by a state and
a polynomial constraint ϕ on v can be handled by

3

adding from q a transition guarded by ϕ to a new
state qf and checking reachability of qf .

The reachability problem can be restated as the
emptiness problem: Given a PolITA A and a state
q the emptiness problem asks whether L(A, q) = ∅.
A closely related problem is the word problem:
Given a PolITA A, a state q and a word w ∈ Σ∗,
the word problem asks whether w ∈ L(A, q). The
word problem is in fact a particular case of the
following problem: Given a PolITA A, a state q
and a finite automaton B over Σ, the regular inter-
section problem asks whether L(A, q) ∩ L(B) = ∅.
Observe that by a standard synchronized prod-
uct construction, one can build in polynomial time
an automaton A′ with a target state q′ such that
L(A, q)∩L(B) = L(A′, q′) thus reducing the regular
intersection problem to the reachability problem.

The finite abstraction of TA proposed in [9] for
reachability is consistent with time elapsing, dis-
crete jumps through the crossing of transitions, and
keeps constant the truth value of constraints P ./ 0.
In the resulting model, a state consists of a control
state coupled with a cell of an appropriate cylindri-
cal algebraic decomposition [11, 12]. This abstrac-
tion gives a 2EXPTIME procedure for the reacha-
bility problem.

3. A PSPACE lower bound for reachability

It is known since [14] that the truth problem for
the existential theory of reals is PSPACE-complete.
Figure 3 illustrates a simple reduction of the truth
of a first order formula ∃x1 . . . ∃xnϕ to reachability
of the gray state in the PolITA. The automaton
has n+1 levels in order to choose non negative val-
ues for clocks x0, . . . , xn−1 and the line at level n+1
is used to choose the signs of x1, . . . , xn. Assuming
ϕ is in disjunctive normal form, the arrow leading
to this gray state represents in fact several arrows,
one for each term of the disjunction.

Proposition 4. The reachability problem for
PolITA is PSPACE-hard.

4. An EXPSPACE reachability procedure

The EXPSPACE procedure is inspired from the
one for ITA. It is based on a combinatorial ar-
gument, with the aim of bounding the length of
a run witnessing reachability. Observe that, while
Lemma 5 will later be applied to runs, the sequence

(e1, . . . , e`) of transitions considered in this lemma
is not necessarily a path in automaton A.

Lemma 5 (Counting Lemma). Let A be a
PolITA with E transitions and n clocks. Then in
a sequence (e1, . . . , e`) of transitions of A where
` > (E + n)2n, there exist i < j with ei = ej such
that the level of any transition ek with i ≤ k ≤ j is
greater than or equal to the level of ei, say p, and:

1. either ei updates xp,
2. or no ek with i ≤ k ≤ j updates xp.

Proof. Assume that the conclusions of the lemma
are not satisfied by a sequence σ = (e1, . . . , e`). We
claim that ` ≤ (E+n)2n. For the sake of uniformity,
we enlarge σ as σ̂ by adding dummy transitions e0
at the beginning and e`+1 at the end, with λ(e0) =
λ(e`+1) = 0.
Step 1. We first establish a result about particular
subsequences of σ̂. Let 1 ≤ m ≤ n and consider a
subsequence σ′ = (ei, ei+1, . . . , ej) such that:

• λ(ei) < m, λ(ej) < m,

• and for all i < k < j, λ(ek) ≥ m.

Let U = {k | i < k < j ∧ ek updates xm}. Since
σ does not fufill Assertion 1, |U | ≤ E. Since σ
does not fufill Assertion 2, between two transitions
indexed by consecutive items of U (or before the
first or after the last), there can be no more than
E transitions of level m that do not update xm.
Summing up, there can be no more than E(E+1) ≤
(E + 1)2 transitions of level m that occur in σ′.

Step 2. Now we prove by induction that the num-
ber of transitions at level less than or equal to
m in σ is at most (E + m)2m. This is true for
m = 1 by the previous proof applied to σ̂. As-
sume the formula valid for any m′ ≤ m. Let
Um = {k | λ(ek) ≤ m} and consider any sub-
sequence σ′ occurring between two transitions in-
dexed by consecutive items of Um (or before the
first or after the last). Then, the number of transi-
tions of level m+ 1 in σ′ is less than or equal than
(E + 1)2.

Then grouping the transitions of level m+ 1 be-
tween the occurrences of transition of lower level we
obtain that the number of transitions at levels less
than or equal to m+ 1 is at most:

(E +m)2m + ((E +m)2m + 1)(E + 1)2 ≤
(E +m)2m+2 + 2(E +m)2m ≤

(E +m+ 1)2(m+1)

4

x0

x1

xn−1

xn

true

true
ϕ

n+ 1 levels

xn := xn−1

xn := −xn−1

xn−1 := xn−2

xn−1 := −xn−2

x1 := x0

x1 := −x0

Figure 3: A PolITA for the reduction of the existential theory of reals.

�

Building on the lemma above, we show that
reachability can be checked over runs with length
less than or equal to (E+n)2n, where E is the num-
ber of transitions and n is the number of clocks,
which yields:

Proposition 6. The reachability problem for
PolITA belongs to EXPSPACE.

Proof. Let A = (Σ, Q, q0, X, λ,∆) be a PolITA
with n clocks, let qf ∈ Q be a target state and let
E = |∆| be the number of transitions of A. Con-
sider a run of minimal length ρ from (q0,0) to a con-
figuration (qf , vf) for some vf . Writing (e1, . . . , e`)
for the sequence of transitions underlying ρ, we sup-
pose now that ` > B = (E + n)2n. We build a run
ρ′ from (q0,0) to (qf , vf) that is strictly smaller,
hence contradicting the minimality hypothesis.

Since ` > B, one of the two cases of Lemma 5
applies. Therefore there are two indices i < j such
that ei = ej that we denote by e in the sequel, at
level k. Thus ρ can be written as ρ1eρ̂eρ2 where the
subrun ρ̂ contains only transitions of level higher
than or equal to k. Moreover:

1. Either e updates xk. In this case, all clocks
have the same value after the first and the sec-
ond occurrence of e. Hence removing eρ̂ from
ρ yields a valid run ρ′ of A reaching (qf , vf).
Run ρ′ is strictly smaller than ρ.

2. Either no update occurred for xk in eρ̂. In this
case, upon reaching the second occurrence of e,
the clocks of level i < k have retained the same
value, while xk has increased by d = Dur(ρ̂) =
Dur(eρ̂). Hence when replacing eρ̂ by a time
step of duration d, the resulting configuration
is unchanged. This also yields a shorter run.

The decision procedure works as follows. It non
deterministically guesses a path in the PolITA
with length ` less than or equal to B. In order
to check that this path yields a run, it builds a
polynomial system with variables

{xji | 1 ≤ i ≤ n, 1 ≤ j ≤ `} ∪ {dj , 1 ≤ j ≤ `}

where xji is the value of clock xi after the jth step,
and dj is the delay before the jth discrete transi-
tion. The equations and inequations are deduced
from the guards and updates of discrete transitions
in the path and the delays. The size of this system
is exponential w.r.t. the size of the PolITA.

As such a system can be solved in polynomial
space according to Canny [13], we obtain a proce-
dure in NEXPSPACE= EXPSPACE. �

Using the observation of section 2, one immedi-
ately gets:

Corollary 7. The regular intersection problem for
PolITA belongs to EXPSPACE.

Observe that, given a PolITA without silent
transitions (i.e., labelled by ε), and a word w, we
can use the technique above, guess a path with
length |w| and solve the associated polynomial sys-
tem. This gives a NPSPACE=PSPACE upper bound
for the word problem. Furthermore, using Propro-
sition 4 which is also valid for the word problem,
we obtain:

Proposition 8. The word problem for PolITA
without silent transitions is PSPACE-complete.

5. Illustration

Let us illustrate the polynomial equation sys-
tems associated with two guesses on the example
depicted in Figure 4a with qf as target state.

5

q0, 1

q1, 2 q2, 2 qf , 2

x2
1 ≤ x1 + 1, a

b

c, x2 := −x1

x2 ≤ x2
1 − 3, d

(a) A PolITA A2.

x1

x2

x2 = −x1

x2 − x2
1 + 3 = 0

x2
1 − x1 − 1 = 0

a

b

(b) Geometric view of path ab.

Figure 4: A PolITA with geometric view.

The shortest path from q0 to qf corresponds
to the word abd. We obtain the follow-
ing polynomial system where equations (1,2,3)
(resp. (4,5,6), (7,8,9)) correspond to the transition
labeled by a (resp. b, d).

x11 = d1 (1)

x12 = 0 (2)

d21 ≤ d1 + 1 and d1 ≥ 0 (3)

x21 = d1 (4)

x22 = d2 (5)

d2 ≥ 0 (6)

x31 = d1 (7)

x32 = d2 + d3 (8)

d2 + d3 ≤ d21 − 3 and d3 ≥ 0 (9)

This system has a partial solution over variables x11,
x21, d1, x21, x22, d2 with transitions a and b illustrated
in Figure 4b. However, there is no global solution
because equations (3), (6) and (9) imply:

• d1 ≤ 1+
√
5

2 < 2,

• and 0 ≤ d2 + d3 ≤ d21 − 3 ≤ d1 − 2.

The second shortest path corresponds to the
word abcbd, using one iteration of the loop.
Equations (1,2,3) (resp. (4,5,6), (7,8,9), (10,11),
(12,13,14)) correspond to the transition labeled by

a (resp. b, c, b, d).

x11 = d1 (1)

x12 = 0 (2)

d21 ≤ d1 + 1 and d1 ≥ 0 (3)

x21 = d1 (4)

x22 = d2 (5)

d2 ≥ 0 (6)

x31 = d1 (7)

x32 = d2 + d3 (8)

d3 ≥ 0 (9)

x41 = d1 (10)

x42 = −d1 (11)

x51 = d1 (12)

x52 = −d1 + d4 (13)

−d1 + d4 ≤ d21 − 3 and d4 ≥ 0 (14)

This second system has a solution for any value of

d4 ≤ d21 + d1 − 3 provided −1+
√
13

2 ≤ d1 ≤ 1+
√
5

2 .

The value −1+
√
13

2 is the positive x1-coordinate for
the intersection of the green curve with the dashed
diagonal. A trajectory, for which the final b and d
steps must stay below the green curve is depicted
with a zoom on Figure 5.

6. Conclusion

As described in the introduction, PolITA
presented several advantages over PITA: ex-
tension of expressiveness, simplified syntax and
same complexity for reachability based problems

6

x1

a

b

c

b
d

Figure 5: Zoom for path abcbd.

(2EXPTIME). Our new decision procedure for
reachability in PolITA with reduced complexity
(EXPSPACE) exhibits an additional interest.

There is still a big gap between this upper bound
and the PSPACE lower bound but thanks to the
reduction from the existential theory of reals, any
improvement of the lower bound for this problem
will transfer to reachability in PolITA.

We are now looking for the specification of a re-
stricted temporal logic for which we could design a
decision procedure for the model checking problem
with the same complexity.

Acknowledgement. We thank the reviewer for a
careful reading and in particular for the suggestion
about the lower bound which led to a complete com-
plexity characterization in Proposition 8.

[1] R. Alur, D. L. Dill, A theory of timed automata, The-
oretical Computer Science 126 (1994) 183–235.

[2] T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya,
What’s decidable about hybrid automata?, Journal of
Computer and System Science 57 (1) (1998) 94–124.

[3] B. Bérard, S. Haddad, Interrupt timed automata, in:
Proceedings of FOSSACS 2009, Vol. 5504 of LNCS,
Springer, 2009, pp. 197–211.

[4] B. Bérard, S. Haddad, M. Sassolas, Real time properties
for interrupt timed automata, in: Proceedings of TIME
2010, IEEE Computer Society, 2010, pp. 69–76.

[5] B. Bérard, S. Haddad, M. Sassolas, Interrupt timed au-
tomata: verification and expressiveness, Formal Meth-
ods Syst. Des. 40 (1) (2012) 41–87.

[6] J. S. Miller, Decidability and complexity results for
timed automata and semi-linear hybrid automata, in:
Proceedings of HSCC’00, Vol. 1790 of LNCS, Springer,
2000, pp. 296–309.

[7] B. Bérard, S. Haddad, A. Jovanovic, D. Lime, Paramet-
ric interrupt timed automata, in: Proceedings of RP
2013, Vol. 8169 of LNCS, Springer, 2013, pp. 59–69.

[8] B. Bérard, S. Haddad, A. Jovanovic, D. Lime, Interrupt
timed automata with auxiliary clocks and parameters,
Fundam. Inform. 143 (3-4) (2016) 235–259.

[9] B. Bérard, S. Haddad, C. Picaronny, M. Safey El Din,
M. Sassolas, Polynomial Interrupt Timed Automata,
in: Proceedings of RP’15, Vol. 9328 of LNCS, Springer,
2015, pp. 20–32.

[10] B. Bérard, S. Haddad, C. Picaronny, M. Safey
El Din, M. Sassolas, Polynomial interrupt timed
automata: Verification and expressiveness, In-
formation and Computation 277 (2021) 104580.
doi:10.1016/j.ic.2020.104580.

[11] G. E. Collins, Quantifier elimination for real closed
fields by cylindrical algebraic decomposition, in: Au-
tomata Theory and Formal Languages 2nd GI Con-
ference, Vol. 33 of LNCS, Springer Berlin Heidelberg,
1975, pp. 134–183.

[12] S. Basu, R. Pollack, M.-F. Roy, Algorithms in Real Al-
gebraic Geometry, Springer, 2006.

[13] J. Canny, Some algebraic and geometric computations
in PSPACE, in: Proceedings of the Annual ACM Sym-
posium on Theory of Computing, 1988, pp. 460–467.

[14] J. H. Reif, Complexity of the mover’s problem and gen-
eralizations (extended abstract), in: 20th Annual Sym-
posium on Foundations of Computer Science, San Juan,
Puerto Rico, 29-31 October 1979, IEEE Computer So-
ciety, 1979, pp. 421–427. doi:10.1109/SFCS.1979.10.

7

