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a b s t r a c t 

Molecular and brain regional/network-wise pathophysiological changes at preclinical stages of 

Alzheimer’s disease (AD) have primarily been found through knowledge-based studies conducted in late- 

stage mild cognitive impairment/dementia populations. However, such an approach may compromise the 

objective of identifying the earliest spatial-temporal pathophysiological processes. We investigated 261 

individuals with subjective memory complaints, a condition at increased risk of AD, to test a whole- 

brain, non-a-priori method based on partial least squares in unraveling the association between plasma 

A β42/A β40 ratio and an extensive set of brain regions characterized through molecular imaging of A β
accumulation and cortical metabolism. Significant associations were mapped onto large-scale networks, 

identified through an atlas and by knowledge, to elaborate on the reliability of the results. Plasma 

A β42/40 ratio was associated with A β-PET uptake (but not FDG-PET) in regions generally investigated 

in preclinical AD such as those belonging to the default mode network, but also in regions/networks 

normally not accounted - including the central executive and salience networks - which likely have a 

selective vulnerability to incipient A β accumulation. 

The present whole-brain approach is promising to investigate early pathophysiological changes of AD 

to fully capture the complexity of the disease, which is essential to develop timely screening, detection, 

diagnostic, and therapeutic interventions. 

© 2021 Elsevier Inc. All rights reserved. 
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1. Introduction 

Brain accumulation of amyloid- β (A β) aggregation species is

one of the earliest pathophysiological alterations in the preclini-

cal phase of the Alzheimer’s disease (AD) clinical-biological con-

tinuum ( Bateman et al., 2012 ; Jack et al., 2018 ; Villemagne et al.,

https://doi.org/10.1016/j.neurobiolaging.2021.07.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2021.07.005&domain=pdf
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2013 ). From a therapeutic perspective, the early detection of in-

cipient A β accumulation and downstream co-occurring alterations,

such as spreading of tau pathology, synaptic failure, and neurode-

generation, holds the potential to effectively intervene using tar-

geted disease-modifying therapies that can slow down AD disease

progression during preclinical or prodromal stages ( Aisen et al.,

2017 ; Hampel et al., 2019a ). By contrast, individuals at risk for AD

or any other neurodegenerative disease may have different clinical-

biological trajectories with some developing brain resilience, at

the molecular and network level, while other individuals may de-

velop multi-scale system failure and cognitive decline ( Arenaza-

Urquijo and Vemuri, 2018 ; Elman et al., 2014 ; Perez-Nievas et al.,

2013 ). Therefore, reliable multi-modal exploratory and integrative

approaches are needed for investigating network dysfunction in AD

trajectories but also resilience in individuals displaying incipient

molecular signatures of AD or any other neurodegenerative disease.

Positron emission tomography (PET) studies have shown that

the regional A β accumulation in preclinical AD or individuals at

genetic/clinical risk for AD is associated with different predictors,

including bodily fluid biomarkers ( McKhann et al., 2011 ). Coupling

these findings with functional magnetic resonance imaging (MRI)

studies and experimental models of AD revealed that a selective

vulnerability of distinct brain regions to AD incipient pathophysi-

ology exists. However, A β PET-based studies in preclinical AD typi-

cally employ a-priori, knowledge-based selected regions of inter-

est (ROIs) such as the hippocampus, the anterior and posterior

cingulate, or the precuneus ( Fan et al., 2018 ; Fandos et al., 2017 ;

Nakamura et al., 2018 ; Pérez-Grijalba et al., 2019 ; Vergallo et al.,

2019 ). A limitation of this approach is represented by the fact that

most of these regions have been identified in studies conducted in

populations with more advanced stages of AD-like mild cognitive

impairment (MCI) and dementia. Using approaches that constrain

the number of hypotheses tested may hinder the comprehensive

understanding of early AD pathophysiological dynamics. A model

capable of accounting for a broad set of aging and AD-vulnerable

regions is urgently needed to tackle incipient pathophysiological

alterations timely. 

Novel approaches that allow investigating more brain re-

gions and different hubs of large-scale networks without a-

priori constraints are needed in preclinical AD studies to de-

velop timely screening, diagnostic, and therapeutic strategies. An

ideal knowledge-free method should limit type 1 error infla-

tion - induced by an increased number of hypotheses to test -

and should deal with multicollinearity. This is of significant rel-

evance since neuroimaging studies revealed significant pairwise

correlations of AD hallmarks, like amyloid- β and also tau pro-

teinopathies, between different regional values ( Lockhart et al.,

2017 ; Veronese et al., 2019 ). 

In the present study, we investigated a non-a-priori design

(i.e., hypothesis-free) based on Partial Least Square (PLS) analysis,

a statistical method that allows an exploratory whole-brain ap-

proach. PLS estimates principal components, maximizing the co-

variance within and between 2 tables of the same set of obser-

vations to find shared information ( Abdi and Williams, 2013 ). PLS

is a component-based tool with several advantages compared to

univariate methods, including higher suitability for modeling of

datasets with considerable collinearity among variables. We em-

ployed the Variable Importance in Projection (VIP) criteria applied

to PL S (PL S-VIP) to select the most relevant hypothesis. Indeed,

simulation studies showed that PLS-VIP outperforms other variable

selection methods and is less sensitive to noise and collinearity

( Chong and Jun, 2005 ; Palermo et al., 2009 ). 

We tested the PLS-VIP approach by investigating the associa-

tion of plasma A β42/A β40 ratio, a validated biomarker for screen-

ing of AD pathophysiology ( Jack et al., 2018 ; Nakamura et al., 2018 ;
Palmqvist et al., 2019 ; Vergallo et al., 2019 ), with whole-brain A β-

PET regional indexes. We used multi-modal biomarkers charting

the A β pathway about which several studies have corroborated

a significant covariance between different modality measures (i.e.,

blood concentrations and molecular imaging indexes). Such a con-

fidence in the relationship between the 2 set of variables is pivotal

for the scope of the present article, which consists in testing the

reliability of a PLS-based methodological approach. 

Previous studies in preclinical and prodromal AD showed good

to optimal accuracy of plasma A β42/A β40 ratio in predicting

A β-PET status (positive versus negative) ( Nakamura et al., 2018 ;

Palmqvist et al., 2019 ). Moreover, a correlation between the former

and global/regional A β-PET standard uptake value ratios (SUVRs)

has been reported across different AD cohorts ( Fandos et al., 2017 ;

Nakamura et al., 2018 ; Vergallo et al., 2019 ). 

To test the conceptual validity of our model, we also tested

plasma A β42/A β40 ratio association with 

18 F-fluorodeoxyglucose

(FDG) regional radiotracer binding, a marker of neuronal

metabolism, assuming no relation would stand out as the existing

literature suggests. We investigated this non-a-priori approach in

a cohort of cognitively intact individuals facing subjective memory

complaints (SMC), a clinical condition characterized by normal

performance at a multi-domain neuropsychometric assessment

despite a self-perceived memory impairment ( Buckley et al., 2016 ;

Teipel et al., 2020 ; Timmers et al., 2019 ; van Harten et al., 2018 ).

Several multi-centric and multi-modal biomarkers studies indicate

that SMC, coupled with positivity to A β biomarkers, is associated

with increased risk of developing MCI or dementia within the

clinical spectrum of AD ( Buckley et al., 2016 ; Teipel et al., 2020 ;

Timmers et al., 2019 ; van Harten et al., 2013 ). While this associa-

tion is consistent across studies, partially controversial is the link

between SMC and common risk factors for dementia – including

vascular pathology and or tau pathophysiology ( Clancy et al., 2021 ;

Dubois et al., 2018 ; Van Etten et al., 2020 ). 

We carried out our research proposal in the INSIGHT-preAD

study cohort, a well-defined, large-scale, observational, monocen-

tric, university-based longitudinal cohort of individuals with SMC

and no significant medical comorbidities (see below for more de-

tails). 

2. Materials and methods 

2.1. Study participants 

The study sample consisted of 318 participants with sub-

jective memory complain (SMC), who were enrolled in the

standardized, large-scale, observational, monocentric, French aca-

demic university-based “INveStIGation of AlzHeimer’s Predic-

Tors in Subjective Memory Complainers” (INSIGHT-preAD) study

( Dubois et al., 2018 ) – that is part of the Alzheimer Precision

Medicine Initiative (APMI) and its established Cohort Program

(APMI-CP) ( Hampel et al., 2019b ) . Participants were enrolled at

the Institute of Memory and Alzheimer’s disease (Institut de la Mé-

moire et de la Maladie d’Alzheimer, IM2A) at the Pitié-Salpêtrière

University Hospital in Paris, France. The main objective of the

INSIGHT-preAD study is to explore the earliest preclinical stages

of AD through intermediate to later stages until progression to

conversion to first cognitive symptoms, using comprehensive clini-

cal parameters and biomarkers associated with cognitive decline.

In brief, the INSIGHT-preAD study includes 318 cognitively and

physically healthy white (Caucasian) individuals, recruited from the

community in the wider Paris area, France, aged 70 to 85, with

SMC. 

SMC was defined as a positive response (“YES”) to both of the

following questions: “Are you complaining about your memory?”
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and “Is it a regular complaint that has lasted for more than 6

months?” All participants were required to have an intact cogni-

tive function – defined as a Mini-Mental State Examination score

(MMSE) ≥ 27, a Clinical Dementia Rating scale (CDR) of 0, and a

Free and Cued Selective Rating Test (FCSRT) total recall score ≥ 41.

A β-PET investigation was performed at the baseline visit, as a

mandatory inclusion criterion. Thus, all subjects enrolled into the

study have SMC and are stratified as either positive or negative for

cerebral A β deposition. At the point of the study inclusion, sev-

eral data were collected, namely demographic and clinical data,

and Apolipoprotein E (APOE) genotype (see Supplementary mate-

rials for more details). 

Exclusion criteria were a history of neurological or psychiatric

diseases, including depressive disorders. Medical conditions, poten-

tial causing cognitive decline of non-AD biological nature, were

ruled out at baseline (see Dubois et al., 2018 for more details).

The study was conducted following the tenets of the Declaration

of Helsinki of 1975 and approved by the local Institutional Review

Board at the participating center. All participants or their represen-

tatives gave written informed consent to use their clinical data for

research purposes. 

2.2. Blood sample and plasma immunoassay 

Ten (10) mL of venous blood was collected in 1 BD Vacutainer

lithium heparin tube, which was used for all subsequent immuno-

chemical analyses. Blood samples were taken in the morning, af-

ter a 12-hour fast, handled in a standardized way, and centrifuged

for 15 minutes at 20 0 0 G-force at 4 °C. Per sample, plasma frac-

tion was collected, homogenized, aliquoted into multiple 0.5 mL

cryovial-sterilized tubes, and finally stored at 80 °C within 2 hours

from collection. 

Analyses of plasma A β42 and A β40 concentrations were per-

formed at the Clinical Neurochemistry Laboratory, Sahlgrenska Uni-

versity Hospital, Sweden. In particular, a volume of 0.5 mL of

plasma for each subject was required for performing the analyses

using the platforms mentioned above. Plasma A β1-42 and A β1-40

were analyzed using the Single-molecule array (Simoa) immunoas-

say (Quanterix, Billerica, Lexington, MA, USA). Regarding A β42 , re-

peatability was 4.1% and intermediate precision 7.0% for an internal

QC plasma sample with a concentration of 10.5 pg/mL. Regarding

A β40 , repeatability was 4.0% and intermediate precision 6.4% for

an internal QC plasma sample with a concentration of 203 pg/mL. 

2.3. PET scan acquisition and processing 

A β and 

18 F-FDG-PET investigations were performed at the base-

line visit (M0) – as part of the inclusion criteria – and at 2-year

follow-up (M24). Both scans were acquired in separate sessions,

with a 48 hours interval. 

Brain A β-PET scans were acquired 50 minutes after injection

of 370 MBq (10 mCi) of 18 F-Florbetapir, which has high affinity

for amyloid plaques. Brain 

18 F-FDG scans were obtained 30 min-

utes after injection of 2 MBq/kg of 2-deoxy-2-( 18 F)fluoro-D-glucose

( 18 F-FDG). All acquisitions were performed in a single session on a

Philips Gemini GXL scanner and consisted of 3 × 5 minutes frames

with a voxel size of 2 × 2 × 2 mm 

3 . Images were then recon-

structed using an iterative LOR-RAMLA algorithm (10 iterations),

with a “smooth” post-reconstruction filter. All corrections (attenua-

tion, scatter and random coincidence) were integrated into the re-

construction. Lastly, frames were realigned, averaged, and quality-

checked by the CATI team ( Centre d’Acquisition et Traitement des Im-

ages; http://cati-neuroimaging.com ). CATI is a French neuroimag-

ing platform (available at http://cati-neuroimaging.com ). PET im-

ages were then analyzed with an in-house pipeline developed by
the CATI, including partial volume effect correction, as previously

described ( Dubois et al., 2018 ; Habert et al., 2018 ). 

Finally, standard uptake value ratios (SUVR) were calculated us-

ing as reference regions a composite volume of interest (ROI) in-

cluding pons and the whole cerebellum for Florbetapir images,

whereas the pons for FDG images. SUVR were obtained in 84 corti-

cal and neocortical ROIs extrapolated through Automated Anatomi-

cal Labeling (AAL) atlas. The global A β-PET SUVR was calculated as

the average of the 84 cortical ROIs similarly as previously described

in Farrell et al., 2018 ; Landau et al., 2010 ; Whittington et al., 2018 . 

3. Statistical analysis 

3.1. Preprocessing strategy 

A robust approach for variable selection, widely used in data

science ( Hastie et al., 2009 ; Xu and Goodacre, 2018 ), consists of

dividing the dataset into a training set, used for selecting the vari-

ables, and a testing set, used to evaluate the selection. This latter

provides an unbiased assessment of the variable selection proce-

dure and, thus, enhances the confidence in the findings. To this

end, we randomly split the dataset into a training and a testing

dataset with a ratio of 1:1 stratifying by age, sex, APOE ε4 allele,

education level, and total intracranial volume (TIV). 

We reported descriptive statistics for the strata variables in

the split datasets using the mean and standard deviation (SD) for

quantitative variables and the frequency counts and percentages

for categorical variables. We used Student’s t-tests or chi-squared

tests to evaluate the sampling homogeneity at a significance level

of p < 0.05. 

In the sequel, the training dataset was used for the PLS-VIP se-

lection of the most relevant association between the regional PET

signal and the plasma A β42/A β40 ratio, thus reducing the number

of hypotheses. Then, the test data set was used to further validate

the remaining assumptions. 

3.2. Correlation between ROIs 

First, we conducted correlation analyses on the training dataset

to explore how imaging measurements were related across the dif-

ferent brain sub-regions according to the two PET techniques. To

this end, for each pair of the 84 A β-PET (as well as FDG-PET) ROIs,

we calculate the Pearson’s correlations of the SUVR. Histograms

and boxplots were build up to represent distributions of the pair-

wise correlation coefficients obtained with A β-PET and FDG-PET

data. 

3.3. Data modeling and feature selection 

Associations between plasma A β42/A β40 ratio and either re-

gional A β-PET SUVR or FDG-PET were determined through PLS

models ( Wold et al., 1993 ), on the training dataset (one model was

fitted for each PET technique). Based on the NIPALS (Non-Linear

iterative Partial Least Square) algorithm, PLS is a dimension reduc-

tion method, which is well-suited for managing high levels of cor-

relations like, in the present study, between regional PET measures.

In PLS, the X-matrix of imaging data can be reduced to a subset

of orthogonal latent variables (or components), where each latent

variable is constructed as a weighted sum of the X-variables, max-

imizing the covariance with the variable Y of A β42/A β40 ratios. 

For feature selection, the method combining PLS and the

variable importance in projection (VIP) scores (also called PLS-

IP method) have been introduced to detect the most influ-

ential predictors in explaining the variation of the Y-variable

( Chong and Jun, 2005 ). Based on the PLS components, a VIP score

http://cati-neuroimaging.com
http://cati-neuroimaging.com
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can be calculated for each sub-region to quantify its contribution

to the variance explained by the component ( Mehmood et al.,

2012 ; Wold et al., 1993 ). Predictors with large VIP, larger than

1, are commonly the most relevant for explaining Y ( Chong and

Jun, 2005 ). 

To achieve a stable selection, we used a bootstrap procedure

to compute the VIP scores. Average VIP scores were thus calcu-

lated for each sub-region based on 50 0 0 models obtained from

bootstrap versions of the original dataset. Finally, the averaged VIP

scores, sorted by descending values, were used to select and rank

the most associated regions. For each PET technique, the PLS-VIP

method was performed using the R package mixOmics ( Chong and

Jun, 2005 ; Rohart et al., 2017 ) specifying the “canonical mode”

with 1 PLS component for the PLS model. To avoid confounding

effects of age, sex, APOE ε4 carriers, and education level the train-

ing dataset were pre-processed prior to modeling with the ComBat

method ( Johnson et al., 2007 ) implemented in the R package sva

available at https://bioconductor.org/packages . 

McNemar chi-squared test was used to check for lateralized

dominance between hemispheres for the selected regions. 

3.4. Validation 

The selected regions were further assessed for association with

the plasma biomarkers using data of the testing set with no pre-

processing. This was done through linear regression models (one

model for each selected sub-region used as the dependent vari-

able) to test the predicting effect of plasma A β42/A β40 ratio ad-

justed for the covariates age, sex, and APOE ε4 genotype. 

For each model, the A β42/A β40 ratio coefficient was reported

with standard error (SE), and p-value. The Cohen’s f 2 value was

also calculated to indicate the effect size of A β42/A β40. Finally, all

p -values obtained for A β42/A β40 were corrected using False Dis-

covery Rate (FDR) for multiple testing, and its association with a

sub-region was confirmed when the adjusted p -value was smaller

than 0.05. 

3.5. Internal reproducibility 

As no independent cohort was available, we assessed the repro-

ducibility of our method on data collected at months 12 (M12) and

M24. We expected to find the same regions as previously identi-

fied. Besides, since some associations may vanish over time, it in-

quires sustainability of the identified associations during the sub-

jects’ follow-up period. 

Thus, we replicated the same procedure described above for se-

lecting and validating the regions at the longitudinal level with

data at M12 and M24 with the same split samples used at M0.

We tested A β accumulation and metabolism over a 1-year follow-

up using plasma A β42/A β40 ratio measure at M12 and PET SU-

VRs at M24. Similarly, we tested A β accumulation and neuronal

metabolism over a 2-year follow-up using plasma A β42/A β40 ra-

tio measured at baseline and PET measured at M24. 

3.6. Confounding analysis 

As regional A β-PET SUVR and plasma A β42/A β40 can be in-

fluenced by the total amount of A β accumulation in patients, we

conducted a confounding analysis to test whether the association

between regional A β-PET SUVR and plasma A β42/A β40 can be

explained by the brain overall amount of A β accumulation. This

question was addressed at a cross-sectional level by using struc-

tural equation modeling (SEM) on the testing dataset. SEM is a

convenient approach to model at the same time the relationships
between regional A β and plasma A β42/A β40, between global A β
and plasma A β42/A β40 and between regional and global A β . 

All models (one model by sub-region), including the covari-

ates age, sex and APOE ε4 genotype, were built with the R pack-

age lavaan ( Rosseel, 2012 ). We calculated p-values on all plasma

A β42/A β40, global and regional A β-PET SUVR based on models

fitted with 50 0 0 bootstrap replicates of the original testing set. Fi-

nally, we corrected the p -values for controlling the FDR, and all

associations remaining without the confounding effect of the total

A β accumulation were established for all regions with an adjusted

p -value < 0.05. 

3.7. Interpretation of the PLS results relevance through 

knowledge-based functional networks 

We performed a matching between the ROIs selected by the

PLS and a knowledge-driven selection of large-scale networks, typ-

ically impaired in AD, to assist in the interpretation of the PLS-

based results and gain more insights on whether the approach we

employed may represent viable methodological solution for future

clinical research studies in the field of aging and AD. 

The definition of functional network components was made by

grouping regions based on resting-state network atlas ( Shirer et al.,

2012 ), available at https://findlab.stanford.edu/functional _ ROIs.

html ). We selected networks that have hypothesized functions

in AD-related pathology: auditory network (AN), default mode

network (DMN), central executive network (CEN), salience network

(SaN), sensorimotor network (SeN), and visual network (VN). We

matched the cortical regions of the AAL atlas and the resting-state

network atlas based on our knowledge and visual inspection (see

Supplementary Table S1 for more details). 

Cohen’s kappa ( κ) with 95% confidence interval (95% CI) was

used to assess agreement between selected ROIs and each brain

large-scale functional network. Cohen’s kappa is commonly used

for quantifying agreement between two sets of binary classifica-

tion tasks, considering that the agreement may occur by chance

( Warrens, 2015 ). 

All statistical analyses were performed with R software, ver-

sion 3.6.0 (R Development Core Team, 2019) and plots were gener-

ated with the ggplot2 package ( Wickham, 2009 ). Feature selection

using PLS-VIP and confounding analyses were performed respec-

tively with the R packages mixOmics ( Rohart et al., 2017 ), available

at https://bioconductor.org/packages , and lavaan ( Rosseel, 2012 ),

available at http://cran.r-project.org/web/packages . A script is sup-

plied to allow the reader to apply our method (see Supplementary

material). 

4. Results 

4.1. Datasets description 

Analyses were performed on the 261 participants from the

INSIGHT-preAD cohort who completed structural MRI, A β-PET, and

FDG-PET acquisition at study inclusion. 

Demographic characteristics, APOE ε4 genotype subgroups, and

TIV are summarized for the training and the test datasets in

Table 1 . We did not find any significant difference between the two

datasets regarding sex, APOE ε4 allele, age, education level, or TIV

( p -values > 0.39). The distributions of the stratifying variables in

the training and test sets are provided in the supplementary ma-

terial ( Figure S1 ). Because of the good accordance of data, we con-

sidered both datasets were homogeneous for the subject sampling.

https://bioconductor.org/packages
https://findlab.stanford.edu/functional_ROIs.html
https://bioconductor.org/packages
http://cran.r-project.org/web/packages
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Table 1 

Description of training and test databases at baseline 

Training dataset N = 134 Test dataset N = 127 p -value 

Age, mean ± SD 75.83 ± 3.23 75.81 ± 3.44 0.967 

Sex, n (%) Female 83 (61.9%) 77 (60.6%) 0.828 

Male 51 (38.1%) 50 (39.4%) 

APOE ε4 allele, n (%) Carriers 30 (22.4%) 23 (18.1%) 0.391 

Non-carriers 104 (77.6%) 104 (81.9%) 

Education level, mean ± SD 6.29 ± 2.03 6.40 ± 1.90 0.651 

Total intracranial volume, mean ± SD 1375 ± 136 1369 ± 127 0.705 

Student and Chi-squared tests are used to calculate p-values 

Abbreviations: APOE = apolipoprotein E, N = number of participants, % = percent of participants, and SD = Standard deviation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Regional pairwise correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Regional A β accumulation 

4.2.1. Cross-sectional study 

A β-PET SUVR showed significant pairwise correlations with

cortical regions ( Fig. 1 A). Indeed, the regional pairwise correlation

ranged from 0.58 to 0.99 with a median of 0.87. 

Out of the 84 cortical structures investigated with bootstrapped

PLS-VIP, the averaged VIP scores highlighted a subset of 34 regions

with a score above 1 ( Table 2 ). Most of these regions were located

in the frontal cortex, the cingulate cortex, the bilateral precuneus,

and the right insula. We observed that the selected regions are

mainly located in the left hemisphere (see Supplementary mate-

rial for more details). From the testing dataset, we observed a sig-

nificant negative association between A β42/A β40 ratio and all the

regions previously selected ( Table 2 ). These associations remained

valid after corrections for multiple testing. The values of Cohen’s f 2 

ranging from 0.04 to 0.15 indicated a small to medium effect size

of plasma A β42/A β40. 

Interestingly, the confounding analysis highlighted the signifi-

cant association of seven regions with the plasma A β42/A β40 ra-

tio, which has been characterized after controlling for the con-

founding effect of the global A β-PET SUVR. These regions con-

cerned the bilateral medial cingulate, the left posterior cingulate,

the right inferior frontal orbital, the right frontal superior medial,

the left superior parietal, and the left precuneus ( Table S1 ). 

4.2.2. Longitudinal study 

The 1-year follow-up was assessed using A β42/A β40 ratio at

M12 and A β-PET imaging at M24. Bootstrapped PLS-VIP analysis

selected 25 of the 84 regions ( Table 3 ). These regions were mainly

located in the frontal cortex and the cingulate cortex, including

the bilateral insula. Likewise, the 2-year follow-up investigation on

A β42/A β40 ratio at M0 and A β-PET imaging at M24 selected 19

of the 84 regions ( Table 4 ) mainly located in the frontal cortex

and the cingulate cortex including right insula. Results showed a

left hemisphere dominance for the 1-year follow-up analysis but

not the 2-year follow-up (see Supplementary material for more de-

tails). 

On the testing dataset, we observed a significant negative as-

sociation between A β42/A β40 ratio and amyloid-PET in all the

regions selected over a 1-year follow-up ( Table 3 ) and a 2-year

follow-up ( Table 4 ). Besides, all of these results survived after FDR

correction. Cohen’s f 2 values revealed a small to medium effect

size of plasma A β42/A β40 over a 1-year follow-up and a small ef-

fect size of plasma A β42/A β40 over a 2-year follow-up. 

4.3. Regional cortical metabolism 

4.3.1. Cross-sectional study 

Measures of cortical FDG-PET showed signifcant pairwise corre-

lations with cortical regions ( Fig. 1 B). The minimum regional pair-
wise correlation was 0.50, the maximum was 0.98, and the median

0.82. 

Bootstrapped PLS-VIP selected 16 regions over 84 ( Table 5 ).

These regions were mainly located in the temporal cortex. Inves-

tigation on the testing dataset showed that A β42/A β40 ratio was

not significantly associated with FDG-PET measure in any of these

regions ( Table 5 ). 

4.3.2. Longitudinal study 

Bootstrapped PLS-VIP investigation on FDG-PET imaging at M24

identified 21 regions associated with baseline A β42/A β40 ratio

and 16 regions with M12 A β42/A β40 ratio. Investigation on the

testing dataset showed that A β42/A β40 ratio was not significantly

associated with regional FDG-PET measure over a 1-year ( Table S3 )

or a 2-year follow-up ( Table S4 ). 

4.4. Selected regions and functional networks 

Here we investigated whether selected A β-PET regions at dif-

ferent follow-up visits were involved in specific resting state net-

works (see Supplementary Table S1 for more details). At base-

line, the A β-PET regional subset predominantly overlapped the
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Table 2 

Association between A β42/A β40 ratio and amyloid-PET at baseline 

Region VIP score Regression coefficient (SE) p -value Adjusted p-value Cohen’s f 2 

Angular left 1.04 -3.46 (1.25) 6.35e −3 6.99e −3 0.10 

Angular right 1.21 -4.40 (1.24) 5.80e −4 1.46e −3 0.12 

Calcarine left 1.04 -2.84 (0.98) 4.44e −3 5.59e −3 0.04 

Cingulate Ant left 1.64 -4.32 (1.17) 3.47e −4 1.46e −3 0.11 

Cingulate Ant right 1.29 -5.03 (1.20) 5.10e −5 9.20e −4 0.12 

Cingulate Mid left 1.39 -3.89 (1.19) 1.41e −3 2.09e −3 0.10 

Cingulate Mid right 1.41 -4.13 (1.14) 4.43e −4 1.46e −3 0.12 

Cingulate Post left 1.27 -4.56 (1.29) 6.02e −4 1.46e −3 0.11 

Cuneus left 1.10 -2.90 (1.01) 4.87e −3 5.92e −3 0.04 

Frontal Inf Oper left 1.18 -3.29 (1.01) 1.52e −3 2.15e −3 0.10 

Frontal Inf Orb 2 left 1.21 -3.85 (1.14) 9.83e −4 1.76e −3 0.06 

Frontal Inf Orb 2 right 1.29 -3.71 (1.11) 1.05e −3 1.76e −3 0.13 

Frontal Inf Tri left 1.16 -3.71 (1.11) 1.09e −3 1.76e −3 0.09 

Frontal Med Orb left 1.57 -4.91 (1.33) 3.27e −4 1.46e −3 0.14 

Frontal Med Orb right 1.26 -5.35 (1.28) 5.40e −5 9.20e −4 0.15 

Frontal Mid 2 left 1.24 -4.28 (1.21) 5.62e −4 1.46e −3 0.11 

Frontal Mid 2 right 1.35 -4.54 (1.21) 2.85e −4 1.46e −3 0.13 

Frontal Sup 2 left 1.19 -4.30 (1.20) 5.05e −4 1.46e −3 0.10 

Frontal Sup 2 right 1.20 -4.69 (1.18) 1.26e −4 1.27e −3 0.12 

Frontal Sup Medial left 1.33 -4.20 (1.23) 8.68e −4 1.74e −3 0.12 

Frontal Sup Medial right 1.21 -5.07 (1.29) 1.49e −4 1.27e −3 0.12 

Insula right 1.06 -3.54 (0.97) 3.92e −4 1.46e −3 0.10 

OFClat left 1.08 -4.26 (1.40) 2.96e −3 3.87e −3 0.07 

OFCpost right 1.10 -3.04 (1.15) 8.99e −3 9.56e −3 0.12 

Olfactory left 1.34 -2.46 (1.01) 1.63e −2 1.68e −2 0.11 

Parietal Inf left 1.03 -3.34 (1.20) 6.37e −3 6.99e −3 0.12 

Parietal Sup left 1.05 -3.34 (1.38) 1.71e −2 1.71e −2 0.09 

Precuneus left 1.35 -4.00 (1.42) 5.80e −3 6.80e −3 0.08 

Precuneus right 1.37 -4.25 (1.29) 1.32e −3 2.04e −3 0.10 

Rectus left 1.43 -4.32 (1.26) 8.00e −4 1.71e −3 0.12 

Rectus right 1.26 -4.49 (1.19) 2.40e −4 1.46e −3 0.13 

SupraMarginal right 1.09 -3.78 (1.10) 8.04e −4 1.71e −3 0.10 

Temporal Mid left 1.09 -3.13 (1.03) 2.82e −3 3.83e −3 0.10 

Temporal Sup left 1.12 -2.98 (0.89) 1.03e −3 1.76e −3 0.09 

VIP scores derive from the feature selection with PLS-VIP, while regression coefficient, p -value, adjusted p-value, and Cohen’s f 2 derived from the validation with linear 

models. 

All models are adjusted for age, sex, and APOE ε4 genotype. p-values refer to the test of regression coefficient. Adjusted p-values are calculated using false discovery rate 

correction. 

Abbreviations: SE = Standard error and VIP = Variable Importance in Projection 

Table 3 

Association between A β42/A β40 ratio at M12 and amyloid-PET at M24 

Region VIP score Regression coefficient (SE) p -value Adjusted p -value Cohen’s f 2 

Cingulate Ant left 1.39 -5.12 (1.34) 2.46e −4 1.88e −3 0.17 

Cingulate Ant right 1.38 -5.25 (1.33) 1.47e −4 1.88e −3 0.18 

Frontal Inf Oper left 1.22 -3.21 (1.29) 1.43e −2 1.49e −2 0.10 

Frontal Inf Oper right 1.13 -3.80 (1.25) 3.09e −3 4.19e −3 0.14 

Frontal Inf Orb 2 left 1.02 -3.66 (1.32) 6.75e −3 7.67e −3 0.12 

Frontal Inf Tri left 1.43 -3.69 (1.39) 9.21e −3 1.00e −2 0.10 

Frontal Inf Tri right 1.40 -4.22 (1.37) 2.69e −3 3.95e −3 0.15 

Frontal Med Orb left 1.32 -5.68 (1.51) 3.00e −4 1.88e −3 0.18 

Frontal Med Orb right 1.05 -5.62 (1.49) 2.89e −4 1.88e −3 0.19 

Frontal Mid 2 left 1.22 -4.20 (1.47) 5.07e −3 6.04e −3 0.12 

Frontal Mid 2 right 1.29 -5.16 (1.49) 7.85e −4 2.45e −3 0.18 

Frontal Sup 2 left 1.28 -4.47 (1.44) 2.45e −3 3.87e −3 0.13 

Frontal Sup 2 right 1.23 -5.12 (1.43) 5.27e −4 2.20e −3 0.18 

Frontal Sup Medial left 1.20 -4.71 (1.48) 1.93e −3 3.70e −3 0.13 

Frontal Sup Medial right 1.25 -5.30 (1.50) 6.61e −4 2.36e −3 0.17 

Insula left 1.06 -3.69 (1.17) 2.08e −3 3.71e −3 0.13 

Insula right 1.11 -3.74 (1.20) 2.48e −3 3.87e −3 0.13 

OFCmed left 1.34 -4.72 (1.44) 1.41e −3 3.20e −3 0.15 

OFCpost left 1.03 -3.75 (1.28) 4.38e −3 5.48e −3 0.14 

Rectus left 1.10 -5.30 (1.46) 4.40e −4 2.20e −3 0.18 

Rectus right 1.26 -4.47 (1.38) 1.65e −3 3.44e −3 0.18 

Temporal Mid left 1.10 -4.31 (1.29) 1.21e −3 3.03e −3 0.15 

Temporal Pole Sup left 1.37 -2.95 (0.97) 3.19e −3 4.19e −3 0.18 

Temporal Pole Sup right 1.08 -2.59 (1.07) 1.70e −2 1.70e −2 0.17 

Temporal Sup left 1.07 -3.86 (1.15) 1.15e −3 3.03e −3 0.15 

VIP scores derive from the feature selection with PLS-VIP, while regression coefficient, p-value, adjusted p-value, and Cohen’s f 2 derived from the validation with linear 

models. 

All models are adjusted for age, sex, and APOE ε4 genotype. p-values refer to the test of regression coefficient. Adjusted p-values are calculated using false discovery rate 

correction. 

Abbreviations: SE = Standard error and VIP = Variable Importance in Projection 
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Table 4 

Association between baseline Ab42/Ab40 ratio and amyloid-PET at M24 

Region VIP score Regression coefficient (SE) p -value Adjusted p -value Cohen’s f 2 

Angular right 1.03 -2.82 (0.79) 0.001 0.004 0.08 

Cingulate Ant left 1.20 -2.28 (0.72) 0.002 0.004 0.04 

Cingulate Ant right 1.40 -2.24 (0.71) 0.002 0.004 0.05 

Cingulate Mid right 1.01 -2.29 (0.68) 0.001 0.004 0.06 

Frontal Inf Oper left 1.03 -1.96 (0.68) 0.005 0.005 0.04 

Frontal Inf Oper right 1.16 -2.16 (0.65) 0.001 0.004 0.05 

Frontal Inf Tri left 1.34 -2.02 (0.73) 0.007 0.007 0.04 

Frontal Inf Tri right 1.34 -2.21 (0.72) 0.003 0.004 0.07 

Frontal Mid 2 left 1.22 -2.19 (0.76) 0.005 0.005 0.04 

Frontal Mid 2 right 1.43 -2.46 (0.76) 0.001 0.004 0.06 

Frontal Sup 2 left 1.20 -2.26 (0.74) 0.003 0.004 0.04 

Frontal Sup 2 right 1.34 -2.42 (0.72) 0.001 0.004 0.06 

Frontal Sup Medial left 1.15 -2.55 (0.75) 0.001 0.004 0.03 

Frontal Sup Medial right 1.10 -2.56 (0.76) 0.001 0.004 0.05 

Insula right 1.08 -1.90 (0.62) 0.003 0.004 0.04 

Occipital Inf left 1.03 -2.23 (0.79) 0.006 0.006 0.06 

OFCpost left 1.05 -2.06 (0.68) 0.003 0.004 0.05 

Rectus right 1.01 -2.22 (0.72) 0.003 0.004 0.07 

Temporal Pole Sup left 1.39 -1.60 (0.52) 0.003 0.004 0.07 

VIP scores derive from the feature selection with PLS-VIP, while regression coefficient, p-value, adjusted p-value, and Cohen’s f 2 derived from the validation with linear 

models. 

All models are adjusted for age, sex, and APOE ε4 genotype. p-values refer to the test of regression coefficient. Adjusted p-values are calculated using false discovery rate 

correction. 

Abbreviations: SE = Standard error and VIP = Variable Importance in Projection 

Table 5 

Association between A β42/A β40 ratio and FDG-PET at baseline 

Region VIP score Regression coefficient (SE) p -value Adjusted p -value Cohen’s f 2 

Cingulate Post left 1.97 2.75 (2.62) 0.296 0.804 0.05 

Cingulate Post right 2.27 1.52 (2.44) 0.533 0.804 0.07 

Cuneus left 1.19 3.57 (2.54) 0.162 0.804 < 0.01 

Frontal Med Orb left 1.42 1.10 (2.44) 0.653 0.804 0.01 

Heschl right 1.59 -0.54 (2.70) 0.843 0.865 0.01 

Hippocampus left 1.29 0.67 (1.03) 0.520 0.804 0.04 

Hippocampus right 1.86 0.67 (0.99) 0.503 0.804 0.02 

Lingual right 1.62 2.45 (2.17) 0.261 0.804 0.01 

Occipital Inf right 1.78 2.89 (2.78) 0.301 0.804 0.01 

Occipital Sup left 1.61 1.75 (2.83) 0.538 0.804 0.01 

Olfactory right 1.70 0.39 (1.42) 0.783 0.865 0.02 

Paracentral Lobule left 1.64 1.63 (2.30) 0.479 0.804 < 0.01 

ParaHippocampal left 1.69 0.78 (1.01) 0.444 0.804 0.03 

ParaHippocampal right 1.32 0.55 (1.08) 0.609 0.804 0.02 

Temporal Pole Mid left 1.48 0.78 (1.43) 0.586 0.804 0.01 

Temporal Pole Sup left 1.59 0.26 (1.55) 0.865 0.865 < 0.01 

VIP scores derive from the feature selection with PLS-VIP, while regression coefficient, p-value, adjusted p-value, and Cohen’s f 2 derived from the validation with linear 

models. 

All models are adjusted for age, sex, and APOE ε4 genotype. p -values refer to the test of regression coefficient. Adjusted p -values are calculated using false discovery rate 

correction. 

Abbreviations: SE = Standard error and VIP = Variable Importance in Projection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CEN ( κ = 0.46; 95% CI = [0.27–0.65]) and the DMN ( κ = 0.30;

95% CI = [0.09–0.51]) ( Fig. 2 A). The amyloid-PET regional sub-

set selected at 1-year follow-up, predominantly overlapped the

CEN ( κ = 0.37; 95% CI = [0.16–0.59]) and the SaN ( κ = 0.26;

95% CI = [0.05–0.46]) ( Fig. 2 B). Likewise, the two-year follow-up

amyloid-PET regional subset predominantly overlapped the CEN

( κ = 0.27; 95% CI = [0.04–0.49]) and the SaN ( κ = 0.27; 95%

CI = [0.03–0.5]) ( Fig. 2 C). 

5. Discussion 

This study probes the potential clinical value of a whole-brain,

non-a-priori approach based on PLS-VIP by investigating the asso-

ciation between plasma levels of A β42/A β40 ratio and an exten-

sive set of regions characterized for A β accumulation and cortical

metabolism. 
We used multi-modal biomarkers charting the A β pathway,

which is a valuable tool to explore our approach since several stud-

ies have corroborated a significant covariance between different

modality measures (i.e., blood concentrations and molecular imag-

ing indexes). 

5.1. The PLS-VIP feature selection 

PLS-VIP method allows comprehensive exploration of brain sin-

gle ROIs and hubs of large-scale networks that are likely to be

involved in preclinical/early prodromal stages of AD. Most of the

conventional study designs using knowledge-based a priori selec-

tion of ROIs may fail to capture several particularly vulnerable

regions biologically connected to incipient AD pathophysiological

events, including early stages of proteinopathies. 

To probe our approach, we used data generated in a population

of cognitively healthy individuals with SMC, a clinical condition as-



64 P. Lemercier, A. Vergallo, S. Lista et al. / Neurobiology of Aging 107 (2021) 57–69 

Fig. 2. Cohen’s Kappa between resting state network and amyloid-PET selected regions Bar represent 95% confidence intervalAbbreviations: AN = auditory network, 

CEN = central executive network, DMN = default mode network, SaN = salience network, SeN = sensorimotor network, and VN = visual network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sociated with increased risk of AD ( Buckley et al., 2016 ; van Harten

et al., 2018 ). At baseline, we found that plasma A β42/A β40 ratio

was negatively associated with A β-PET indexes in the frontal cor-

tex, the cingulate cortex, the precuneus, and the insula. The solu-

tions delivered by PLS-VIP were consistent when the analysis was

reproduced on the same cohort at different timepoints, indicating

a robust and stable approach. 

In the present study we confirmed the previously reported as-

sociation between fluid biological signatures of the A β pathway

and A β-PET signal in regions typically picked by a-priory study de-

signs, such as the hippocampus, the anterior and posterior cingu-

late, or the precuneus ( Fandos et al., 2017 ; Nakamura et al., 2018 ;

Pérez-Grijalba et al., 2019 ). Moreover, we also identify additional

regions vulnerable to AD pathophysiology, including the insula, the

angular gyrus, and frontal cortex, as pointed out by previous ROI-

based studies ( Fan et al., 2018 ; Vergallo et al., 2019 ). 

5.2. A preliminary selected ROI – knowledge-based network matching

Finally, we conducted a stepwise knowledge-driven process to

check whether the identified A β-PET ROIs, including those who

remained after controlling for global SUVR, matched with spe-

cific brain large-scale networks. We observed that the majority

of regions whose A β accumulation rates correlate with plasma

A β42/A β40 ratio belonged to distinct macroscale networks either

typically investigated in AD (DMN) or usually not taken into ac-

count for association studies (salience network (SaN), central ex-

ecutive network (CEN)), although their decline over age has been

extensively reported ( Agosta et al., 2012 ; Badhwar et al., 2017 ;

Chiesa et al., 2020 ; Hampel et al., 2019a ; Zhao et al., 2019 ). 
There is consolidated evidence about the DMN functional con-

nectivity decline and its association with AD pathophysiological

hallmarks during the disease’s early stages ( Badhwar et al., 2017 ;

Bero et al., 2011 ; Palmqvist et al., 2017 ; Teipel et al., 2016 ). 

Functional MRI in-human studies indicate that there is spatial-

temporal overlap between DMN activity decay and deposition A β
and tau ( Hampel et al., 2019a ; Li et al., 2019 ; Mormino et al.,

2011 ) and that a decreased functional connectivity in the DMN

is associated with neurodegeneration ( Chhatwal et al., 2018 ;

Palmqvist et al., 2017 ), cortical shrinking ( Hampton et al., 2020 )

and worse cognitive trajectories in individuals displaying elevated

A β burden ( Buckley et al., 2017 ). 

Spatial covariance between A β accumulation and connectivity

and metabolism in the CEN (decreased) has been reported in ag-

ing and AD individuals ( Andrews-Hanna et al., 2007 ; Grothe and

Teipel, 2016 ; Palmqvist et al., 2017 ). A decreased functional con-

nectivity has been reported within the SaN in aged individuals and

patients suffering from early AD in which networks breakdown

take place at different temporal coordinates ( Brier et al., 2012 ;

He et al., 2014 ; Zhou et al., 2010 ). Therefore, our results are in line

with previous evidence indicating that distinct brain regions may

have a higher intrinsic vulnerability to AD early pathophysiologi-

cal alterations ( Bero et al., 2011 ; Chiesa et al., 2019 ; Crossley et al.,

2014 ; Hampel et al., 2019a ). 

5.3. Potential utilization of PLS-VIP approch in resilience studies 

We also found a discrepancy between time points, with DMN

and SaN being associated at baseline but not over time. A clinical

explanation for these findings lies in the general and study-wise

characteristic of our cohort. 
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Although SMC is a condition itself associated with increased

risk for developing AD cognitive decline, the biology underlin-

ing the SMC clinical label, for instance, presence or not of brain

A β accumulation, is heterogeneous and longitudinal trajectories of

SMC individuals may be different with some having or develop-

ing brain resilience, at the molecular and network level, and some

other going toward multi-scale system failure and cognitive decline

( Dubois et al., 2018 ; Hohman et al., 2016 ; Negash et al., 2013 ). 

In the present study, only 4 individuals - out of 261 - developed

objective cognitive decline (MCI or dementia) within the 3-year

follow-up (all of them have positive A β-PET). In line with previous

INSIGHT-preAD publications, we argue that such rates of cognitive

decline, lower than expected in a population at risk for AD [i.e.,

SMC plus signs of A β accumulation] is partially explained by the

average high education level and cognitive reserve of the INSIGHT-

preAD participants, a cohort in which potential compensatory

mechanisms have already been reported ( Babiloni et al., 2020 ;

Dubois et al., 2018 ; Gaubert et al., 2019 ). This cohort is mainly

represented by people who still engage in small post-retirement

works, continuous social and intellectual activity ( Babiloni et al.,

2020 ; Cacciamani et al., 2020 ; Dubois et al., 2018 ). 

In summary, our DMN-related divergent results and believe

that this evidence-based conceptual construct can also explain the

apparent DMN-related inconsistent association over time-points

in our study. We have based our hypothesis on the presence

of cognitive reserve-related resiliency dynamics in our cohort

dataset by capitalizing on extensive evidence and data-driven con-

ceptual frameworks previously published ( Babiloni et al., 2020 ;

Dubois et al., 2018 ; Gaubert et al., 2019 ; Hohman et al., 2016 ;

Negash et al., 2013 ). 

In this conceptual framework lies the potential clinical value of

our proposed study design. In fact, the PLS-based whole-brain ap-

proach could be used not only for investigating network dysfunc-

tion in AD trajectories but also resilience in individuals displaying

incipient molecular signatures of AD or any other neurodegenera-

tive disease. 

Such speculation connects to our intention of carrying out a

non-a-priori approach, like PLS-VIP, to facilitate the investigation

of a broader set of brain functional networks and their association

with AD pathophysiology, thus, enabling the identification of other

network-network connection patterns involved in disease progres-

sion or compensation. 

5.4. No association between glucose metabolism and A β
accumulation according to the PLS analysis 

Our FDG-PET based results suggest that plasma A β42/A β40

ratio is not a suitable marker of neuronal metabolism that

has been reported as a potential surrogate marker of neuronal

loss ( Dubois et al., 2014 ). To our knowledge, only 1 study as-

sessed the association between A β42/A β40 ratio and FDG-PET in

MCI/dementia pooled cohort ( Pérez-Grijalba et al., 2019 ). By con-

trast, no results have been reported on cognitively healthy normal

individuals at clinical and or biological risk for AD. Therefore, an

interpretation of our data in light of the existing literature is hard

to perform. However, it is conceivable to argue that the lack of

FDG-PET signal with plasma A β42/A β40 ratio indicates that the

latter is not a suitable marker for either neurodegeneration or dis-

ease progression. 

5.5. The PLS-VIP method main advantages for AD clinical research 

We believe that our workplan is easily replicable and shows

good intrinsic operability. Of note, we used a set of variables

with known covariance to test the performance of the modeling
approach. The true potential of our approach is for exploratory

purposes besides validation studies. PLS can be considered as a

generalization of multiple regression since, for identical problem

formulations, they both produce similar answers ( Cramer, 1993 ).

Unlike multiple regression, PLS can handle extensive datasets

that may contain more predictors than subjects ( Cramer, 1993 ;

Krishnan et al., 2011 ). 

In addition, PLS is a very versatile method that provides rel-

evant tools for different settings of clinical investigation. For in-

stance, in AD clinical research, PLS was used for diagnostic clas-

sification tasks ( Aguilar et al., 2014 ), omics studies ( Lorenzi et al.,

2018 ; Vardarajan et al., 2020 ; Xicota et al., 2019 ) and early lon-

gitudinal cognitive decline ( Langbaum et al., 2020 ). The diversity

of applications shows that PLS is a suitable tool for both hypothe-

sis testing and explanatory model building. Likewise, PLS-VIP was

used in AD studies to select variables predicting brain volume

changes ( Thambisetty et al., 2011 ) or associated with AD biomark-

ers ( Baldacci et al., 2020 ). PLS-VIP approach is not sensitive to mul-

ticollinearity among predictors, which is a remarkable advantage

compared to conventional feature selection method ( Chong and

Jun, 2005 ; Cramer, 1993 ; Palermo et al., 2009 ). 

The Least Absolute Shrinkage and Selection Operator (LASSO)

regression is another method previously used in AD clinical re-

search for feature selection able to handle correlated variables

( Kohannim, 2012 ; Li et al., 2018 ; Yang et al., 2015 ) ( Dayon et al.,

2018 ). However, LASSO presents significant inconsistency among

the variable selection ( Zou and Hastie, 2005 ) and constraints

all correlated variables but one to have null coefficients i.e.,

the method selects only one feature and drops the others

( Desboulets, 2018 ; Hastie et al., 2009 ). Elastic net regularization

is a good alternative to LASSO that provides better performance

and stability in variable selection ( Zou and Hastie, 2005 ). How-

ever, with the elastic net, the coefficients’ weight is distributed

among the correlated variables, so when we interpret the model,

the strength of the association is underrated. The most relevant

advantage of PLS compred to other methods is to keep all rele-

vant associations, providing a complete overview of the process of

interest, which is appropriate for explicative models and critical for

interpreting the early pathophysiological dynamics process. 

As normally done in machine learning approaches, we split the

dataset to increase the confidence in the significant findings. By

contrast, such a step may reduce statistic power, thus hindering

the detection of some subtle albeit clinically meaningfull associa-

tions. 

5.6. Study limitations 

We acknowledge that different atlases, including cytoarchitec-

tonic and probabilistic maps, have been published lately and some

of them are expected to perform better, especially for those regions

with no clear macro-anatomical landmarks. This methodological

limitation explains why we did not include subcortical regions in

the present study. 

The present study does not include a long-term neuropsycho-

logical clinical follow-up of participants, which represents a limi-

tation. Moreover, although education is widely considered a com-

ponent of the cognitive reserve we thought not to overload our

PLS-based approach and region models with too many covariates,

considering that the dataset is not large enough. 

To expand on the clinical potential of our approach, we set

out to extend the multi-modal biomarker and neuropsycholog-

ical follow-up of the individuals involved in the present study.

In addition, we aim at expanding the dataset through a multi-

centric study where we would use PLS to explore trajectories of

decline versus resilience, also keeping education levels into model.
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This future study would include an independent validation cohort,

the lack of which represents caveat itself. To compensate this is-

sue, we carried out several additional analytical steps (training/test

datasets, bootstrap, correction for multiple tests, and internal re-

production at different timepoints) to increase confidence in the

findings. We also acknowledge the lack of a test cohort of MCI and

dementia individuals with AD pathophysiology as a major caveat

of our study since it may have supported data interpretation from

a biological standpoint and to draw some clinical conclusions. In

this sense, we set out to perform a large-scale longitudinal multi-

center study including at least one discovery and one independent

validation cohort spanning the entire AD continuum, and includ-

ing SMC and MCI either converters or stable. We believe that this

follow-up study is essential for the standardization and harmoniza-

tion of our proposed analytical protocol, and at the same time, to

investigate whether our whole-brain approach may generate reli-

able predictive measures to employ in clinical trials and evolving

healthcare practice. 

6. Conclusions 

Our study shows that plasma A β42/A β40 ratio is negatively as-

sociated with several regional A β-PET indexes at a cross-sectional

and longitudinal level in SMC individuals. Leveraging the PLS-

VIP computational power and using a non-a-priori strategy (i.e.,

hypothesis-free), we find several associations between plasma

A β42/A β40 ratio and brain regions belonging to multiple large-

scale functional networks, including networks normally not inves-

tigated in a-priori study designs for preclinical AD. 

Of note, we do not suggest to set aside a priori hypothesis

investigations but instead promote an integrated approach based

on the notion that a-priori and non-a-priori investigations can be

complementary and provide partially different information for clin-

ical research. We propose that non-a-priori investigations should

be employed in biomarker-guided exploratory studies conducted

in preclinical populations to facilitate the understanding of early

pathophysiological trajectories of neurodegenerative diseases and

to indentify vulnerable regions that may deserve specific attention

for preventive strategies. 
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