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Abstract: 

Many functions have been attributed to the orbitofrontal cortex (OFC) - some classical roles, 

such as signaling the value of action outcomes, being challenged by more recent ones, such as 

signaling the position of a trial within a task space. In this paper, we propose a unifying neural 

network architecture, whose function is to generate a value from a set of attributes attached to 

a particular object. Our model reverses the logic of perceptual choice models, by considering 

values as outputs of (and not inputs to) the neural network. In doing so, the model explains why 

univariate value signals have been observed in both likeability rating and economic choice 

tasks, while the features associated to a particular task trial can be decoded using multivariate 

analysis. Moreover, simulations show that a globally positive correlation with subjective value 

at the population level can coexist with a variety of correlation coefficients at the single-unit 

level, bridging typical observations made in human neuroimaging and monkey 

electrophysiology studies of OFC activity. To better explain binary choice, we equipped the 

neural network with recurrent feedback connections that enable simultaneous coding of values 

associated to currently-attended and previously-considered objects. Simulations of this 

augmented model show that virtual lesions produce systematically intransitive preferences, as 

observed in patients with damage to the OFC. Thus, our neural network model is sufficiently 

general and flexible to account for a core set of observations and make specific predictions 

about both OFC activity during value judgment and behavioral consequence of OFC damage. 
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Main manuscript: 

 

The problem of value construction 

One of the most common signals observed in recordings of OFC activity is related to subjective 

value. The notion of subjective value is borrowed from economic decision theories assuming 

that options in a choice set are positioned on a common scale, which assigns them both rank 

order and distance metric. Subjective value may be seen as a generalization of the expected 

utility concept (a function of objective attributes like magnitude and probability of monetary 

gains), to the case where there are no explicit attributes (like when one chooses between an 

apple and a banana, or between a between football game and a theater play). Qualification as 

‘subjective’ simply designates the fact that different individuals might assign different values 

to the same option, which would be captured by different parameters in utility functions. In 

economics, expected utilities are typically considered as abstract quantities that describe a 

pattern of choice behavior, without a need for actual implementation in the mind / brain. 

Somewhat ironically, neuroscience studies in the last two decades have repeatedly reported 

observations of value signals in brain activity, primarily in the OFC (Fig. 1), on top of several 

other brain regions. Our aim here is to provide a mechanistic account for how the OFC can 

generate value signals in most typical situations. 

 Value signals have been observed in different species (human and non-human primates 

mostly) using different types of signals (from single-unit spiking to population-level 

hemodynamic activity). Yet two important differences have been noticed: first, 

electrophysiological studies in monkeys have more frequently investigated and reported value 

signals in the lateral OFC (Padoa-Schioppa & Assad, 2006; Rich & Wallis, 2014; Tremblay & 

Schultz, 1999), whereas meta-analyses of human fMRI studies have located value signals in 

the medial OFC and adjacent regions along the medial wall (Bartra et al., 2013; Clithero & 
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Rangel, 2014; Peters & Büchel, 2010), forming the so-called ventromedial prefrontal cortex 

area (vmPFC). This discrepancy might relate to inter-species differences in functional anatomy, 

to differences in behavioral tasks and training duration, or to differences in recording techniques 

and analytical approaches. Indeed, recent studies investigating intracerebral activity through 

implanted electrodes in humans have recorded similar value signals in the medial and lateral 

OFC (Lopez-Persem et al., 2020; Saez et al., 2018). For our purposes, we will consider OFC as 

a whole, with no distinction between medial and lateral parts. The idea is to develop a neural 

model of how a brain region like the OFC may implement the general function of providing 

value signals, not to account for the functional specificities of OFC subregions. A second 

difference between human and monkey studies is that correlation with value is systematically 

positive in population-level hemodynamic signals, while it is widely distributed over negative 

to positive coefficients across individual neurons (Abitbol et al., 2015; Bartra et al., 2013; 

Lopez-Persem et al., 2020; Padoa-Schioppa & Conen, 2017; Strait et al., 2014; Tom et al., 

2007). We will consider this difference between micro-scale and meso-scale activities as an 

important pattern that must be accounted for in a neural model of OFC function. 
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Figure 1 – Value signals across techniques and species 

The three panels depict estimates of correlation between value and OFC activity recorded using iEEG, 

fMRI, or extra-cellular electrodes. Brain scans on the top row show lOFC and vmPFC regions 

(anatomically defined from the AAL atlas) sampled with local field potential recording electrodes in 

patients with epilepsy (A), significant clusters activated with the keyword ‘value’ in meta-analysis of 

human fMRI studies using the Neurosynth platform (B) and OFC regions sampled with spike recording 

electrodes in macaque monkeys (C). Plots on the bottom row show for different positions along the 

medio-lateral axis the posterior estimates of the correlation with likeability rating (A and B) or intensity 

of lipping behavior (C). Dots are group-level estimates in bins of contact electrodes (A), in voxels 

normalized to the MNI template (B), and in individual neurons (C). Data were taken from previously 

published studies (Lopez-Persem et al. 2020 for A and Abitbol et al. 2015 for B and C). 

 

Critically, OFC value signals have been observed in a variety of contexts (Fig. 2), not 

only in choice tasks where subjects select an option among two or more, but also in Pavlovian 

or instrumental learning tasks where subjects are shown cues and outcomes (Palminteri et al., 

2012; Pauli et al., 2019), as well as in tasks where (human) participants assign numbers, such 

as willingness-to-pay or likeability ratings, to options presented one by one (Lebreton et al., 
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2009; Plassmann et al., 2008; Polanía et al., 2019; Suzuki et al., 2017). Choice tasks present 

complex situations because several values, attached to the different options, must be signaled 

at the same time. Many different combinations of option values have been reported in these 

situations, with a predominance for the value of the chosen option, which generally happens to 

also be the option that is most attended and/or that corresponds to prior preference (Hunt et al., 

2012; Ian Krajbich et al., 2010; Lopez-Persem et al., 2016; Wunderlich et al., 2009). Learning 

tasks also present a complication related to the progressive building of expectations at the time 

of cue onset, which may attenuate value signals at the time of outcome onset, according to 

principles of predictive coding. Many studies have consistently observed that OFC activity was 

correlated with both expected value at cue onset and prediction error at outcome onset (Bartra 

et al., 2013; Fouragnan et al., 2018; Garrison et al., 2013; Palminteri et al., 2012). Thus, the 

most straightforward situation to investigate is perhaps likeability rating, where a single value 

signal is induced at every trial by a novel item displayed on screen.  

 

Figure 2 – Different types of value-based behavioral tasks 

To investigate the valuation process, the most straightforward task is likeability rating (A), as there is 

only one novel option to valuate on each trial. Choice tasks (B) propose at least two options and thereby 

involve the additional stages of comparing option values and selecting the best option. On top of these 

two stages, instrumental learning tasks (C) additionally involve updating the value of chosen options, 

which gradually converge to the values of their respective outcomes. 
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Surprisingly, the neural mechanisms underlying likeability ratings remain poorly 

understood. Most functional models have focused on how values are transformed into choices, 

following on economic decision theories. In these models, by construction, values are inputs 

meant to explain choice outputs (Fig. 3). The simplest model is certainly the softmax function 

(Pleskac, 2015; Sutton & Barto, 1998), which in the case of binary choice reduces to sigmoid 

mapping from decision value (difference between the two options) to selection probability 

(assigned to each option). More sophisticated models have built on the accumulation-to-bound 

principle, originally applied to perceptual decisions, in order to generate distributions of 

response time, on top of choice probabilities (Krajbich & Rangel, 2011; Ratcliff et al., 2016; 

Tajima et al., 2019). In these models, decision value is incorporated as the mean of drift over 

time, such that choice probability scales with the signed difference between option values (the 

best option is chosen more frequently), and response time with the unsigned difference (choice 

is faster for more distant options).  

 

Figure 3 – Choice models are about selection (not valuation) 

The three models are applied to the case of binary choice between options a and b. They are meant to 

explain how option values Va and Vb influence first choice probability (A), then choice duration (B), 

and last underlying neural activity (C). In the softmax function (A), the decision value (Va-Vb) is 

mapped onto choice probability (Pa and Pb=1-Pa) through sigmoidal transformation. The multiplicative 

slope parameter adjusts for choice stochasticity, while an additive bias parameter could account for an 

indifference point (Pa=0.5) shifted from null decision value (Va-Vb=0). In the drift diffusion model (B), 

a decision variable is incremented at each time step by the decision value plus some noise. The decision 

is made at the time when it reaches one of two bounds corresponding to the two options. In addition to 
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decision value, choice duration depends on starting point S and on the distance between bounds. In the 

attractor network model (C), two pools of neurons compete for their favorite option, through a pool of 

inhibitory interneurons. When one of the two attractor states is reached, the winning pool is then 

signaling which option has been selected by the network.  

All these models account for how values are transformed into choices, with increasingly rich predictions, 

but not for how values might be computed. 

 

Finally, neural network models, again inspired by perceptual decision, have been 

developed to account for economic choice. They typically implement two populations of 

neurons, each voting for its preferred option (taking its value as an input) and competing with 

the other through a pool of inhibitory interneurons. The network converges to an attractor state 

where one of the populations reaches stable ceiling activity, while the other is silenced, 

following a winner-takes-all logic. On top of reproducing the functions relating values to choice 

probability and response time, these attractor networks make predictions about neural activity, 

which could account for some of OFC value signals (Hunt et al., 2012; Rustichini & Padoa-

Schioppa, 2015; Wang, 2002). Yet all these models of choice behavior and underlying neural 

activity focus on how the best option is selected; they remain entirely agnostic about the issue 

of how values are computed in the first place. We would argue, along with other authors 

(Juechems & Summerfield, 2019; O’Doherty, 2014), that understanding the generation of value 

signals is the hard problem, compared to which the selection of the best option is an easy 

problem.  

 Our intention in this paper is to suggest a neural network architecture that provides 

values as outputs. By value we mean an absolute position on a scale, equivalent to a neural 

common currency, and not just a rank order. This is mandatory because we intend to explain 

how OFC activity can solve the task of reporting likeability feelings, for which relative 

preference is not enough. There is a crucial difference between our concept of value 

construction and earlier suggestions based on probabilistic population coding (Polanía et al., 
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2019; Pouget et al., 2013). These earlier suggestions stem from an analogy with perception: 

some specific neurons would encode values with tuning functions (accounting for receptive 

fields), just as other populations of neurons would encode speed or direction of a luminous 

stimulus. We believe that the idea of explaining value signals with sensory coding principles is 

ill-conceived for two reasons. The first is empirical: if different OFC neurons have tuning 

curves that peak at different values, following a basic assumption of probabilistic population 

codes, there is no reason why population-level activity (measured with fMRI or iEEG) would 

correlate with the value of the item expressed in likeability rating. This is because every value 

would activate a similar fraction of neurons (those with ad hoc receptive fields), and hence yield 

similar total activity, unless we throw in some post hoc assumptions, like neurons coding for 

high values are more numerous or fire more. The second reason is conceptual: while it makes 

sense for a piece of brain to encode some perceptual feature of the outside world, such that the 

rest of the brain can use the information, it seems absurd for a brain region to encode subjective 

value. Indeed, subjective value is not a dimension of the outside world, it is an internal feature 

that would necessarily come from another brain region, which would therefore have already 

done the job of making value information available. This is why we insist on the idea that some 

brain region must be constructing value, while there is no need for a brain region encoding 

value. Although we focus here on OFC as the most likely candidate for implementing the value 

construction process, it is certainly not the only one and other brain regions might be 

constructed other values in parallel as well. 

 

The solution: a neural network that translates features into values 

If value is the output of OFC computations, the question is about what the input can be. Here, 

it is important to recollect that value is not the only information that is represented in OFC 

activity. Several recent studies, seemingly shifting away from any value-related function, have 
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demonstrated that the position of a particular stimulus or trial, within the space of possibilities 

offered by the task, can be decoded in OFC activity (Schuck et al., 2016; Wilson et al., 2014). 

Some structure of task space encoding in OFC activity has even been identified. Notably, in 

tasks where stimuli are systematically varied along two dimensions, some 60-degree periodicity 

found in OFC activity provided evidence for hexagonal paving of task space, similar to the 

grid-cell type of coding for physical space (Bao et al., 2019; Constantinescu et al., 2016). To 

reconcile this new literature with the old one, a neural network model of OFC function must 

therefore represent both stimulus features and subjective values. A natural solution is to 

consider that the function of the OFC is precisely to transform stimulus features into subjective 

values.  

 We are not the first of course to suggest that stimuli may first be decomposed into 

features (or attributes), which would then be combined to generate subjective values. Common 

features are for instance constituent nutrients (Suzuki et al., 2017), or healthiness versus 

tastiness for food items (Hare et al., 2009); they could be extended to any relevant dimension 

along which the item under valuation may vary. Our aim here is to derive some consequences 

of the postulate that the integration of features for the construction of subjective values occurs 

within the OFC. For this transformation to occur, the minimal architecture is a two-layer neural 

network, with an input layer that sparsely encodes information about the item (its coordinates 

on relevant features indicating its position in task space), and an integration layer that combines 

these pieces of information to generate a distributed value signal (Fig. 4A). A efferent neuron 

downstream to the integration layer, outside the OFC, could then decode the value through a 

weighted sum of single-unit activities.  
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Figure 4 – A neural network for value construction 

In our model (A), the OFC is composed of two layers: an input layer that sparsely encodes some features 

of a particular event and an integration layer that generates a decodable value signal. The tuning 

(input/output) functions implemented in neurons and the pattern of connections between neurons would 

not change the correlations between value and neural activity. However, simulations (B) show that two 

factors do change the (color-coded) correlations at both the single-unit and population levels: the 

proportion of integration vs. input neurons in the OFC network (y-axis), as well as the proportion of 

positive vs. negative weights in the output decoder (x-axis). The region of the two-dimensional space 

framed in black shows the global correlation (left graph) that is typically observed in human fMRI or 

iEEG studies, between hemodynamic or broadband gamma OFC activity and a proxy for value such as 

likeability rating. To produce this level of global correlation (between 0.05 and 0.1) between value and 

total activity (sum over units), the network was found (right graph) to have a rather balanced proportion 

of positively vs. negatively correlated neurons (between 49.8 and 65.6 %). 
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Simulation of this simple architecture (Fig. 4B) shows that it can, under a certain range 

of specifications, generate the expected pattern: when correlating activity with value, 

coefficients are widely distributed over single units, but positive at the population level (taking 

total network activity as the sum over all neurons). In the simulations (see methods), we did not 

incorporate any temporal dynamics: on every trial presenting a single item to valuate, the 

activity in each neuron is represented by one number. Correlations between these numbers and 

values (across trials) depend on two factors: first, the proportion of neurons in the input and 

integration layers, and second, the proportion of positive weights in the decoder that reads value 

out of the integration layer. The effects of these factors are quite intuitive: if all weights were 

positive, and if there was no input layer but just an integration layer, the correlation between 

activity and value would be trivially positive, at both the single-unit and population levels. In 

contrast, with negative weights in the decoder (integration units whose activities decrease with 

value) and/or units in the input layer (whose activity is tuned to features, not value), correlation 

coefficients are more largely distributed over neurons, and the global correlation can even be 

negative. 

For every point of the space formed by these two factors (see Fig. 4B), we correlated 

value to each single-unit activity and also to total activity. This simulated total activity should 

approximate the BOLD signal recorded with fMRI and the broadband gamma activity recorded 

with iEEG, which are both linearly linked to the aggregation of firing rates over neurons 

(Logothetis et al., 2001; Ray et al., 2008; Scheeringa et al., 2011; Bastin et al., 2012). We 

therefore restricted the simulation space to those regions showing global correlation coefficient 

within the range typically observed in human fMRI or iEEG studies, which is quite low 

(between 0.05 and 0.1) in our datasets (see Fig. 2). In those regions, the proportion of neurons 

showing positive regression coefficients varied between 49.8 and 65.6%, with a mean at 52.2%. 

In a previously published dataset of single-unit recordings from both the medial and lateral 
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OFC in monkeys (Abitbol et al., 2015), where value was inferred from lipping behavior 

following the presentation of visual cues associated to liquid rewards of different magnitudes, 

the proportion of positive coefficients was 53.8%.  

These results suggest that the positive correlation between subjective value and 

population-level hemodynamic or electrophysiological activity (typically observed with human 

fMRI or iEEG studies) is perfectly compatible with a near 50/50 proportion of neurons with 

positive and negative correlation coefficients. Although the numbers are not always reported, 

we believe that a balanced mix of positive and negative coefficients is a frequent observation 

in monkey single-unit recordings (for another example, see Morrison & Salzman, 2009). 

However, we acknowledge that we do not know the ground truth about the proportion of 

positive and negative coefficients among OFC neurons. It might be less balanced in reality, and 

the low correlation observed at the population level could instead arise from noise in fMRI or 

iEEG recording. Note that the simulations are symmetrical, such that in principle, a mix of 

positive and negative coefficients at the single-cell level can also coexist with a negative 

correlation at the population level, which has been documented in a recent study using fMRI in 

monkeys (Papageorgiou, 2017).  

The above results were obtained irrespective of other factors that were drawn at random 

for simulations, such as the pattern of connections between neurons and the peak or shape 

(sigmoidal vs. gaussian) of their tuning functions. Thus, the model reliably reproduces an 

observation that has been taken (wrongly, in our opinion) as evidence against a role for the OFC 

in value-related functions: the position of a particular trial within the task space can be decoded 

in OFC activity even when controlling for its value. This is exactly what should be obtained 

from a neural network transforming features into values. Indeed, position in task space may be 

nothing but a set of coordinates along the different dimensions, i.e. precisely the information 
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about the level of relevant features that is encoded in the input layer of the neural network, and 

recombined to generate subjective value signals in the integration layer. 

 

How the value-making network may contribute to decision-making 

Now that we have addressed the basic situation of likeability rating, where there is only one 

value judgment to provide, the next question is how the network can deal with choice situations, 

where there are at least two options to valuate. We know that the OFC contributes to economic 

choice, because damage to this region (more precisely to the vmPFC, in patient studies) impairs 

the rationality of decisions (Schneider & Koenigs, 2017). One rationality criterion in particular, 

the transitivity of preferences, is degraded following damage to the OFC area in stroke patients 

(Camille et al., 2011). Intransitive preferences mean that options cannot be ordered on a value 

scale, because for example patients declare preferring C to A, even if they previously stated 

that they prefer A to B and B to C. Virtual lesions removing part of a neural network used to 

simulate OFC dysfunction should therefore reproduce this pathological behavior. It is obviously 

expected that choices may be affected by an alteration of the neural network that provides 

subjective values to the decision-making machinery. However, a specific increase in transitivity 

violations does not trivially follow from the OFC functional architecture that we have proposed 

so far. To account for this observation, we must first explain how the neural network can 

represent more than one value at a time. 

  Standard models of decision-making posit that in the case of a binary choice, two 

distinct populations of neurons are voting for the two options A and B (Fig. 3C). However, 

labels A and B are artificially imposed on the neural network simulations. It is unclear how the 

network by itself could flexibly adapt to a new choice situation, unless the framing A vs. B has 

a very general meaning. Let us consider the main frames that have been suggested in the 

decision-making literature. A spatial frame (like ‘left vs. right’ options) has been originally 
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inspired by perceptual decision-making models (Hunt et al., 2012; Wong, 2006), opposing 

neurons with different spatial receptive fields. Although spatial framing can be easily applied 

to economic choice tasks showing two options side by side on a visual screen (Palminteri et al., 

2009), it is difficult to figure how it could work in the case of options that succeed each other 

in time and/or that are only envisaged in imagination. Another kind of framing is ‘default vs. 

alternative’ options, originally inspired from foraging theory about decisions whether to stay 

and exploit a given patch or switch and explore new patches. The notion of default, defined as 

the option that the agent would take if no deliberation is engaged, has been used in a variety of 

choice situations (Fleming et al., 2010; Hayden et al., 2011; Kolling et al., 2012; Lopez-Persem 

et al., 2016; Tsetsos et al., 2014). However, it remains limited to cases where a prior preference 

can be identified, excluding choices between two novel alternatives. A last kind of framing is 

‘attended vs. unattended’ options, which was shown to explain the link between OFC value 

signals and gaze fixation patterns (Krajbich et al., 2010; Lim et al., 2011). We would argue this 

attentional frame can be naturally generalized to any choice situation, including when the 

options are only imagined and not perceived as visual cues, meaning when attentional shifts are 

covert and not apparent in eye movements. The attentional frame is in fact confounded with a 

temporal frame, since options are necessarily attended one at a time, such that one option is 

always considered before the other. Note that it is also related to the ‘chosen vs. unchosen’ 

frame, because the option that is chosen in the end is also more looked at on average (Krajbich 

& Rangel, 2011).  

 Thus, we will assume in the following that the OFC network can simultaneously 

represent the values of at least two options (decomposed into features): the currently attended 

option and the previously considered option. In doing so, we keep the logic of a value-

construction network, as opposed to a value-comparison network that would implement a 

competition between neural pools in order to select the best option. Thus, in the augmented 
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OFC network (Fig. 5A), two values can be read out from neuronal activity in the integration 

layer, with different codes (i.e., different vectors of weights). We prefer not assuming that the 

two values are represented in distinct neurons, as in standard decision-making models, for two 

reasons. First, this would mean losing generality, as two distinct populations is just a subcase 

of two distinct codes (with 0 weight on some neurons and 1 on the others). Second, multivariate 

pattern analysis of vmPFC single-unit recordings, in monkeys choosing between two successive 

options, showed that current and past option values could be decoded from the same neurons, 

by multiplying their activity with different weights (Tim Behrens, personal communication).  

 This double value coding imposes an important constraint on the network that precludes 

random connections between neurons. Indeed, for the network to be reliable, an option value 

must be the same when applying the current value code (at a given time) and when applying 

the previous value code (at the next time step). Nevertheless, mathematical derivations 

identified analytical solutions (i.e., a class of connection patterns) that ensure the stability of 

option values across the two neural codes (see methods). These solutions involve recurrent 

feedback connections in the integration layer, creating a sort of working memory. For the sake 

of simplicity, these derivations were worked out with linear integration of input activities, and 

for two value decoders only. In principle, the mechanism of multiple value decoding could be 

generalized to more than two options, although there is no strong evidence, to our knowledge, 

that OFC activity can represent more than two option values at the same time. This would imply 

that when people choose among more than two options, they need additional working memory 

systems implemented in brain regions outside the OFC. In other words, binary choice would be 

an easy case for the brain, because it would fit with the OFC specific architecture for value 

construction. 
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Figure 5 – A double value-making neural network for binary choice 

The OFC neural network model (A) has been augmented with (red) recurrent feedback connections in 

the integration layer. For the sake of visibility, only half the possible connections (those going from top 

to bottom nodes) are shown, while the other half (those going from bottom to top nodes) are omitted. 

When these feedback connections are appropriately set, the neural network implements a form of 

working memory that enables decoding the values of both currently and previously attended items, at 

any time step. Graphs (B) show the effect of cutting neurons out of the integration layer, after 

connections are adjusted so as to reliably signal both current and previous values. Simulations of the 

lesioned network were used to generate the values assigned to first and second options in a series of 

three binary choices (a vs. b, b vs. c, c vs. a). Preferences are classified as intransitive (left) here when 

the three options cannot be ordered on a value scale (e.g., when Va > Vb, Vb > Vc and Vc > Va). Chance 

level is 25% (dotted line) because under the null (with random values), transitivity violations can only 

be assessed in 50% of trials, and have a 50% probability to occur. Value dispersion (right) was calculated 

as the standard deviation of decision value (difference between option values), averaged over choices. 

When the integration layer is entirely removed, the network loses its capacity to discriminate between 

values, and hence the capacity to generate detectable transitivity violations. In both plots, error bars 

show standard errors across simulations (networks with different connections / tuning functions). 
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 Now that our network is proven to function properly, translating the features of previous 

and current options into decodable and stable values, let us examine the consequences of virtual 

lesions. The intuition is that lesions will not affect in the same manner the values associated 

through the two neural codes to current and previous options. Indeed, if a random set of 

integration neurons is cut out of the network, it will likely remove distinct contributions to 

current and previous option values. Therefore, a same option would be valuated differently 

when considered first or second in a binary choice, degrading the transitivity of preferences. 

This was verified in simulations of trials including three binary choices: options a vs. b, options 

b vs. c, options c vs. a. In this series of choices, each option alternates between first and second 

positions. Transitive preferences mean that the three options can be ordered on a scale, with for 

example Va > Vb > Vc. Thus, we did not simulate the choice process, but just read out the 

values generated by the network for every three-option set (see methods).  

For each simulated network, connections were drawn at random but then adjusted such 

that the network was perfectly reliable, hence the preferences perfectly transitive. As expected, 

the proportion of trials with transitivity violation increased with the proportion of integration 

units taken out of the network (Fig. 5B). The raw number of transitivity violations was 

obviously dependent on the degree of redundancy in the integration layer. If many neurons exist 

with the same weights on values, then a given lesion might spare some copies and hence have 

a lesser impact. Yet when the lesion killed more than 70% of integration neurons, the rate of 

transitivity violations was augmented beyond chance level (corresponding to what would be 

obtained with a network generating random values). Interestingly, when the extent of virtual 

lesions reached the totality of integration neurons, the number of transitivity violations dropped 

to zero. On closer inspection, this was due to a drastic reduction in value dispersion: when the 

network is deprived of integration neurons, it loses its ability to discriminate between option 

values. Note however that if we introduce choice in the model (with some stochasticity), and 
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define transitivity violation based on options actually selected (and not on their values), then 

closer option values would result in a higher rate of transitivity violations. Thus, there are (at 

least) two explanations for why OFC damage may result in intransitive choices. One, rather 

trivial, is that without a system able to differentiate option values, choices would be more 

random, and would therefore violate transitivity by accident. The other, more interesting, is that 

with a distorted system assigning different values to a same option considered first or second, 

the resulting preferences would be intransitive in a systematic way. We have shown that such 

distortion can account for increased intransitivity because this was the deficit observed in 

patients with OFC lesions, but the same mechanism would also predict increased inconsistency 

if the choices were repeated with the same two options presented in a reversed sequential order. 

While the interest of this double value-making system is evident for making binary 

decisions, it is rather dubious for making likeability judgments. If, as we assumed, the double 

code stems from feedback recurrent connections, then the OFC neural network would 

mechanistically generate two values, even when items are presented one by one for likeability 

rating. It is possible that the previous item value is simply ignored by the neural system in 

charge of producing a response (i.e., assigning a likeability rating to the current item). 

Alternatively, it is possible that the previous item value is used to compute a distance with 

current item value and help with positioning the cursor on the rating scale. Further 

investigations are needed to elucidate whether and how value comparisons are achieved across 

trials during likeability rating tasks. The impact of OFC damage on likeability rating is more 

elusive than with economic choice, mostly because rational norms of decision theory (such as 

transitivity axiom) have been defined with respect to preferences (ordering of options) as 

revealed by choices, not ratings. Nevertheless, a difficulty in integrating several dimensions 

normally contributing to value judgment has been recently documented (Pelletier & Fellows, 

2019; Vaidya et al., 2018). This is what could be expected from the view that the OFC network 
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is integrating features to generate values. If the network is only partially lesioned, and its inputs 

topographically organized, the weights on some features may be attenuated, while some other 

features would become dominant. In this case, preferences could be systematically shifted, as 

it does happen in fronto-temporal dementia, a neurodegenerative disease affecting the OFC 

(Lebreton et al., 2013; Piguet et al., 2011). If the OFC network is totally impaired, by a stroke 

for instance, patients might instead base their value judgment on a single, easy-to-quantify 

dimension of the stimulus. 

 

Extension to other properties of the OFC valuation signal 

Recent neuroimaging studies in humans have identified some core properties of the brain 

valuation system, verified in both the vmPFC and lateral OFC activity, recorded using either 

fMRI or iEEG. In the following, we examine whether these functional properties are compatible 

with the OFC neural network model suggested in this paper.  

 A first property is generality, meaning that the OFC associates value signals to items 

belonging to distinct categories (Chib et al., 2009; Lebreton et al., 2009; Lopez-Persem et al., 

2020), thereby providing a so-called ‘common neural currency’ (Levy & Glimcher, 2012). It is 

an important property because it enables choosing between seemingly incommensurable 

options, like doing paperwork versus surfing on the net. Our neural network is general by 

construction, as we have not specified the kind of features that may be fed into the OFC. These 

features could be concrete attributes, either directly perceived, such as color and shape for a 

fruit, or extracted by inference, such as sugar content for a food item. More abstract features 

could also enter the valuation network, either semantic information like delay in reward 

delivery, or prospective episodes elaborated from memory fragments, like vacations in Paris. 

There has been a debate (see Cisek & Kalaska, 2010; Padoa-Schioppa, 2011) about whether the 

OFC only integrates dimensions of the good space (to compute the outcome value) or whether 
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it also integrates attributes of actions (to compute a net value). In principle, action-related 

features could input the valuation network, which would accord with increasing evidence that 

OFC activity reflects expected rewards discounted by costs such as effort intensity (Aridan et 

al., 2019; Lopez-Gamundi et al., 2021).  

 A second property of OFC function is the ability to signal confidence (in the behavioral 

response) on top of stimulus value. Confidence is defined here as the subjective accuracy of the 

response, which can be reduced to the probability of being correct in the case of a multiple-

choice question. For our OFC network to generate confidence, it would be sufficient to feed it 

with the response (just intended or already given), and the evidence on which the response is 

based, as input features. Correlates of confidence have been observed in OFC activity during 

both likeability rating and economic choice (De Martino et al., 2013; Lebreton et al., 2015; 

Lopez-Persem et al., 2020), as well as during perception and memory tasks (Gherman & 

Philiastides, 2018; Hebscher et al., 2016). While the OFC is the most prominent region 

activated by positive correlation with confidence, a large set of brain regions, in both the parietal 

and prefrontal cortex, show negative correlations. Thus, the OFC is far from being a unique or 

central spot for processing confidence, or more generally for implementing meta-cognitive 

processes. One may argue that the reason why the OFC activates with confidence level is 

because confidence is inherently valuable. We would even argue that what is maximized when 

picking a response is precisely confidence (in making the right choice, or providing the right 

judgment). In other words, the OFC would compute confidence because it is a general valuation 

device, and confidence is just one particular kind of value. 

 A third functional property is automaticity, meaning that the OFC can signal the values 

of items even when doing so is not instrumental for solving the task at hand (Abitbol et al., 

2015; Lebreton et al., 2009). A key condition for observing automatic value signals is that the 

item should be attended, for other purposes or for no particular purpose. This property has been 
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exploited in passive or Pavlovian paradigms, where participants have no voluntary action to 

perform in response to stimuli (Harvey et al., 2010; Levy et al., 2011). It has also been 

demonstrated in rating tasks where the dimension to estimate is decorrelated from stimulus 

value, such as the age of buildings or paintings (Lebreton et al., 2009; Lopez-Persem et al., 

2020). We do not take automatic in the strong sense of irrepressible, but simply in the weak 

sense that value signals can be spontaneously generated even if not required for behavioral 

control. Indeed, some studies failed to detect such automatic value signals in the OFC 

(Grueschow et al., 2015), suggesting that they may be restricted to certain classes of stimuli or 

to tasks leaving sufficient time for triggering useless valuation processes. Faces for instance 

yield robust first-impression automatic value signals that predict later preferences between 

individuals (Ito et al., 2020; Kim et al., 2007). It is quite plausible indeed that stimuli whose 

valuation is essential for survival (such as fruits), or stimuli whose valuation is culturally trained 

(such as paintings), would more easily trigger automatic processing than stones or batteries. 

Besides, a traveler peacefully waiting for a train would have the leisure to appreciate attractive 

faces, whereas a parent rushing through the station to retrieve a lost child would probably miss 

them all. For our neural network, the issue of automaticity is again about input connections: is 

the routing of features to the OFC a controlled process, only engaged when a value judgment 

is needed, or is it mechanistically achieved for any attended object, such that the OFC would 

automatically generate a value? The answer could be mixed, the decomposition into features 

being hard-wired for some kinds of objects and more flexibly elaborated on demand for others.  

 A fourth functional property is hysteresis, meaning the fact that the value of preceding 

events, or the value of some elements in the surrounding context, influences the value assigned 

to the item currently presented (Lopez-Persem et al., 2020; Vinckier et al., 2018). For example, 

the pleasantness of a music excerpt played in the background was found to influence the 

likeability judgment assigned to a painting, by shifting baseline OFC activity before the 
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painting is displayed on screen (Abitbol et al., 2015). This sort of interference can be seen as a 

case of misattribution bias (leading us to believe that we like the painting when we actually like 

the music), which may result in irrational choice behavior. It presupposes the other functional 

properties: for this interference to occur, OFC-mediated valuation must be generic (applied to 

both auditory stimuli such as music and visual stimuli such as painting) and automatic 

(associating value to music even if the task is to judge the value of paintings). It may also 

involve the property of signaling confidence, since interference between value and confidence 

has been reported as a case of desirability bias, notably in tasks where confidence in meeting a 

challenge increases with the reward at stake (Lench et al., 2014; Tappin et al., 2017). It is 

tempting to relate interference between successive value judgments to the double value coding 

posited in our neural network. As we have shown, for any random wiring, it is possible to rewire 

the network such that value coding is reliable: it ensures that the value does not depend on the 

position (current or previous item) and on the value or the other option. However, if we relax 

this constraint on the network, then unwanted interferences between values might occur, 

opening the possibility of misattribution bias and ensuing irrational choice behavior.  

 

Conclusion 

In this paper, we have suggested a functional architecture for a neural network to account for 

how the OFC generates value signals. This neural network has the merits of 1) reconciling 

value-construction and position-in-task-space accounts of OFC function, 2) unifying the 

contribution of the OFC to both likeability rating and economic choice, 3) bridging the gap 

between single-unit and population-level OFC recordings, 4) explaining distortions of value 

judgment following OFC damage. In addition, our OFC neural network is compatible with the 

core functional properties attributed to the brain valuation system (generality, automaticity and 

hysteresis) and to the additional construction of confidence signals. At the neural level, our 
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model makes specific predictions, notably that the values of currently and previously attended 

options should be both decodable from OFC activity but with different vectors of weights. At 

the behavioral level, it predicts that choice consistency should be degraded when options switch 

their position in a sequential presentation, particularly after damage to the OFC.  

However, we have left in the dark many processes, both upstream and downstream to 

the OFC network. On the input side, the principles underlying the decomposition into features 

are yet to be specified. A purely analytical decomposition of the object itself, into dimensions 

like for instance nutrients concentration for food items, is not very plausible. It is likely that 

associations to previous experiences, with similar objects stored in memory, play a role. 

Another kind of decomposition would involve dimensions such as the degree of similarity with 

a particular cluster of objects whose value is already well established. We have left open the 

anatomical location of the input and integration layers of the OFC network. These layers could 

be homogenously implemented all over the OFC, or segregated between distinct areas, for 

instance in more lateral parts for input features and more medial ones for output values. More 

generally, what specific information (about which features) is integrated in the different OFC 

subregions requires further exploration. A possible line of divide could stand between the 

medial OFC, processing internal information (coming from the body or memory/imagination), 

and the lateral OFC, processing external information (coming from perceptions of the 

environment). 

On the output side, the processes through which values are mapped onto a rating scale, 

or compared so as to select the best option, are still to be specified. We have excluded neural 

competition processes from our network, but these may very well be implemented within the 

OFC, on top of value construction. The alternatives would be that the comparison of options 

takes place in other brain regions linked to cognitive control, such as the dorsolateral prefrontal 

cortex, or closer to motor outputs, such as the supplementary motor area. Further theoretical 
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and experimental work is needed to understand how made-in-OFC value signals are used to 

guide the behavior. Finally, we have not addressed the important issue of how the mapping 

from features to value is learned. Our network model accounts for a steady state, in which the 

weights are stable. If values change across contexts in this steady state, it is because different 

features are integrated in the network, not because weights are adapted. Yet the question of how 

the weights are tuned for the network to generate adaptive values remains a critical puzzle.  
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Supplementary methods: 

 

 Likeability rating 

What we describe hereafter is an artificial neural network (ANN) that transforms a set of features into a 

value signal that can be decoded to provide a response in a likeability rating task presenting a novel item 

on every trial (see illustration in Fig. 4A). 

Without loss of generality, let  be the coordinates of the item under the 

attentional focus (in an nD-features space), at time or trial . 

We assume that the input feature  is encoded into the activity of neurons 

 of its dedicated "input layer", where  is the number of neurons in the 

input layer . What we mean here is that the neuron  in the input layer  responds to  as follows: 

          (1) 

where  is the neuronal activation function (here either a sigmoid or a gaussian mapping). The 

parameters  capture idiosyncratic properties of the neuron  in the input layer  (e.g., its firing rate 

threshold). This means that, collectively, the activity vector  forms a representation of 

input  in the form of a population code. 

Then activity is passed to the so-called integration layer , which mixes and 

rescales the representations of input features , i.e. the neuron  of the integration layer responds to 

 as follows: 

         (2) 

where  is the connection weight from the neuron  in the input layer  to the neuron  of the 

integration layer, and  capture idiosyncratic properties of the integration neuron . 
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The value  of the attended item at time  is then read out from the integration layer as follows: 

          (3) 

where the  can be thought of as connection weights to another system that would use the value 

signal (e.g., to make decisions).  

Crucially, value is not encoded by this ANN. Rather, it is constructed out of input features, in the sense 

that what the ANN does is to transform the input features and output value. This can be seen by replacing 

Equations 1-2 into Equation 3: 

       (4) 

Provided there are enough neurons in input and integration layers, this ANN architecture can capture 

any value function defined on the nD-feature space.  

 

The first question we may want to ask with this model is why does aggregated OFC population activity 

(as measured with, e.g., fMRI) positively correlate with value whereas single-unit recordings do not? 

Let  be the sum of activity across all ANN units. In our simulations, we take 

 as a proxy for aggregated OFC population activity. For the simulation results presented in Fig.4B, 

we used a network structure of 128 units in total. We systematically varied the ratio of input vs. 

integration units and the ratio of positive weights in the decoder (from 0 to 100%, with 5% steps). For 

each ratio, we randomly draw the input-to-integration connectivity matrix , and the population code 

. We then simulate 100 trials, each consisting in a set of random input features. Correlations with 

value, for both single-unit and aggregated activities, are calculated across the 100 trials. The procedure 

is then repeated 1000 times, meaning that each ratio (i.e., each cell in Fig. 4B) involves 1000 simulations 

of 100 trials, each time with a different network structure. It turns that, under very weak assumptions, 

the correlation between value and single-unit activity in the ANN may be zero on average (across ANN 

units), still there may be a stable a positive correlation between value and .  
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Binary choice 

So far, we focused on situations where the OFC only has to map a value to attended items. Here, we 

consider situations in which the brain has to perform a value-based choice between two (or more) items. 

We assume that the mechanism described above is used to map the value of any element of the choice 

set that is currently attended. However, we consider an additional process, by which value is transiently 

stored in short-term memory, using a different population code (but using the same neurons). As we will 

see, this is made possible through recurrent feedback connections on the integration layer (see 

illustration in Fig. 5B). 

Recall that Equation 3 expresses how value is constructed from activity in the integration layer. In the 

context of choices, where more than one option is being valued, Equation 3 expresses the value  of 

the currently attended item. But a different population code may be used to decode the value  of 

the previously attended item: 

          (6) 

where  and  are the effective weights of the value population code for the currently and 

previously attended item, respectively. Note that both current and previous values are read from the 

same activity  in the integration layer. 

We now ask whether we can find a re-wiring of the ANN that makes Equation 6 hold, irrespective of 

the population codes  and . 

Let us start with a linear simplification of the above ANN, whereby neural activation functions of the 

integration layer can be written as: , where  and  are arbitrary constants. We 

also consider that previous activity of the integration layer is fed back to the integration layer through 

recurrent connections. Equation 2 thus takes the following form: 

tV

1tV -

( ) ( )
0

1

( ) ( )
1 1

1

q
k k

t t
k
q

k k
t t

k

V W z

V W z

=

-
=

=

=

å

å

0W 1W

tz

0W 1W

( ), k k kf x a b xf » + ka kb



 35 

       (7) 

where  effectively re-wires the input layers to the integration layer,  is a recurrent feedback 

connection,  is a baseline input pattern, and  and  are 

the vectorized affine coefficients. 

The question now reduces to finding connection matrices  and  (and baseline input pattern ) 

such that Equation 6 is verified, irrespective of the network state. 

To simplify notations, let us set  and . 

Replacing Equation 7 into Equation 6 then yields: 

   (8) 

First, note that one does not want the value of the previously attended option to depend upon the current 

state of the input layer, i.e. . From the second line of Equation 8, this yields: 

. In other words, should belong to the null space of . A simple solution is to define  as the 

residual-forming projector matrix of , as follows: 

         (9) 

Second, one wants that the value of the currently attended option to depend only upon the current state 

of the integration layer. In other words,  should not depend upon , i.e.: . From 

the first line of Equation 8, this implies that:  (i.e.   belongs to the null space of ). 

Third, one wants that the value of the previously attended option, when decoded with the population 

code , equates the previous attended value, i.e.: . Thus, the following condition 

must be verified: 
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(10) 

where we have used Equation 9 to enforce the constraint . 

Equation 10 must hold irrespective of  and , which yields: 

       (11) 

(The condition one gets with  is slightly more general but holds if Equation 11 holds). Equation 11 

simply means that  maps  onto . 

Taken together, the recurrent feedback connection matrix  has to satisfy two constraints. A solution 

to this problem is given by: 

     (12) 

Replacing Equation 11 into Equation 10 finally yields: 

          (13) 

Equations 9, 12 and 13 solve the problem of how to re-wire the ANN such that applying the population 

codes  and  recover the value of the currently and previously attended option, respectively. In 

principle, this means that the ANN can always re-wire itself (through, e.g., hebbian plasticity) to make 

sure that downstream decoding of the currently and previously attended options are possible. Note that, 

in theory, the value memory span of OFC is not limited to one item. The same principle can be applied, 

eventually yielding a value memory span of the same order of magnitude as the number of units in the 

integration layer. However, the necessary re-wiring of the network may become too complex to sustain 

large memory spans. 

The previous short-term memory mechanism enables a value comparison, which relies upon reading the 

value of both the currently and the previously attended option from the current activity in the integration 

layer. 
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 Transitivity violations 

Our last question is how the properties of the ensuing decisions would change as increasingly wide 

anatomical lesions distort the value mapping. Intuitively, if lesions randomly shut neuronal integration 

units down, then this will not impact the value of the currently and the previously attended item in the 

same way. In turn, this might cause some form of decision irrationality, e.g., violations of preference 

transitivity. One would thus expect that the rate of preference transitivity violations increases with the 

amount of lesioned units in the integration layer. We note that lesions on the input layers should not 

induce preference transitivity violations, because it would not yield differences between value codes of 

the previously and the currently attended items.  

Recall that transitive preferences mean than if V1>V2 and V2>V3, then V1>V3. In what follows, we 

measure the rate at which such relations are violated, as a function of the proportion of lesioned 

integration units. To simplify things, we consider linear (i.e. affine) neuronal activation functions. Our 

network structure involves 2 inputs, 32 units per input, and 64 integration units. In each simulation, we 

randomly draw offset and slope parameters (  and ), the input-to-integration connectivity matrix 

, and the population codes  and . We then simulate 100 “trials”, each of which consists of 3 

pairwise comparisons of 3 items with random input features. Each of these trial series is repeated with 

increasing ratios of lesioned units in the integration layer (from 0% to 100%, with steps of 5%). For 

each lesion ratio, we measure the rate of preference transitivity violations. To average over the network 

structure, we repeat this procedure 1000 times, and average the results over all simulations. The results 

(Fig. 5B) are summarized in terms of the rate of preference transitivity violations as a function of lesion 

ratio, associated with the average dispersion of compared values. 
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