
HAL Id: hal-03399742
https://hal.sorbonne-universite.fr/hal-03399742

Submitted on 28 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconciling optimization with secure compilation
Son Tuan Vu, Albert Cohen, Arnaud de Grandmaison, Christophe Guillon,

Karine Heydemann

To cite this version:
Son Tuan Vu, Albert Cohen, Arnaud de Grandmaison, Christophe Guillon, Karine Heydemann. Rec-
onciling optimization with secure compilation. Proceedings of the ACM on Programming Languages,
2021, 5 (OOPSLA), pp.1-30. �10.1145/3485519�. �hal-03399742�

https://hal.sorbonne-universite.fr/hal-03399742
https://hal.archives-ouvertes.fr


142

Reconciling Optimization with Secure Compilation

SON TUAN VU, Sorbonne Université, CNRS, LIP6, France
ALBERT COHEN, Google, France
ARNAUD DE GRANDMAISON, Arm, France

CHRISTOPHE GUILLON, STMicroelectronics, France

KARINE HEYDEMANN, Sorbonne Université, CNRS, LIP6, France

Software protections against side-channel and physical attacks are essential to the development of secure

applications. Such protections are meaningful at machine code or micro-architectural level, but they typically

do not carry observable semantics at source level. This renders them susceptible to miscompilation, and security

engineers embed input/output side-effects to prevent optimizing compilers from altering them. Yet these

side-effects are error-prone and compiler-dependent. The current practice involves analyzing the generated

machine code to make sure security or privacy properties are still enforced. These side-effects may also be

too expensive in fine-grained protections such as control-flow integrity. We introduce observations of the

program state that are intrinsic to the correct execution of security protections, along with means to specify

and preserve observations across the compilation flow. Such observations complement the input/output

semantics-preservation contract of compilers. We introduce an opacification mechanism to preserve and

enforce a partial ordering of observations. This approach is compatible with a production compiler and does

not incur any modification to its optimization passes. We validate the effectiveness and performance of our

approach on a range of benchmarks, expressing the secure compilation of these applications in terms of

observations to be made at specific program points.

CCS Concepts: • Software and its engineering→ Compilers.

Additional Key Words and Phrases: compilation, security, optimization, debugging, LLVM

ACM Reference Format:
Son Tuan Vu, Albert Cohen, Arnaud De Grandmaison, Christophe Guillon, and Karine Heydemann. 2021.

Reconciling Optimization with Secure Compilation. Proc. ACM Program. Lang. 5, OOPSLA, Article 142 (Octo-
ber 2021), 30 pages. https://doi.org/10.1145/3485519

1 INTRODUCTION
Programmers expect compilers to preserve the Input/Output (I/O) behavior of a program. “I/O

behavior” itself is loosely defined as any value or side-effect that is “externally visible”. Compilers

achieve this by preserving the semantics of input or output operations, and functionally linking

input to output values. In particular, optimizing compilers make sure that computations resulting

in I/O take place in the order and under the conditions specified in the source program, or that

they are replaced by observationally equivalent alternatives.
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Interestingly, solely preserving I/O behavior is not enough. In many scenarios, computations

that do not result in I/O also need to be preserved, but optimizations are too aggressive at removing,

reordering or otherwise modifying such computations. We focus on two such notable scenarios:

(1) Securing applications. Optimizing compilers are known to interfere with a wide range

of security protections. For example, dead store elimination may optimize out procedures

specifically designed to erase sensitive data in memory, thereby exposing encryption keys

and other secrets to be accessed by an attacker or captured in a memory dump [D’Silva et al.

2015; Percival 2014; Simon et al. 2018]. In cryptography applications, countermeasures against

side-channel attacks are evenmore fragile: optimizationsmay invalidatemasking protections—

randomizing sensitive data [Rivain and Prouff 2010]—by reordering elementary operations

in masking expressions [Bayrak et al. 2013]. Related to this and to forestall timing attacks,

encryption/decryption kernels are usually designed to run for a constant amount of time,

independent of secret data [Yarom et al. 2017]. To achieve this, security engineers go to great

lengths to write straight line code, carefully avoiding control flow depending on sensitive data

[Simon et al. 2018]; unfortunately, compilers often substitute dataflow encodings of control

flow (conditional moves, bitwise logic) with more efficient, performance-wise or size-wise,

conditional control flow, defeating the purpose of the constant time implementation [Simon

et al. 2018]. As for fault attacks, which can alter the system’s correct behavior by means of

physical interference [Yuce et al. 2018] and are a growing threat for embedded systems, the

situation is even worse. Software countermeasures against such attacks usually involve some

form of redundancy, such as replicating data and operations on the data then comparing

the results [Bar-El et al. 2004; Barry et al. 2016; Hillebold 2014; Proy et al. 2017]. Preserving

these redundant computations fuels a permanent fight with compilers striving to remove

redundant code [Hillebold 2014; Simon et al. 2018]. Another countermeasure detecting fault

attacks altering the program’s control flow consists in incrementing and checking counters

alongside with the execution of individual instructions, source code statements, function

calls, etc. [Lalande et al. 2014]. Once again, compilers will remove such trivially true counter

checks or coalesce multiple incrementations into a single addition.

(2) Testing, inspecting or verifying machine code. In security-sensitive applications, these

are classical procedures, mandated by certification authorities and standards. It includes

checking for the presence of countermeasures against attacks of the form described in the

previous item. There has been a large body of work showing the importance of analysis and

verification tools to query program properties—expressed in propositional logic—at the level of

machine code [Balakrishnan and Reps 2010; Bréjon et al. 2019; Shoshitaishvili et al. 2016]. The

need for such analyses derives from the observable mismatch between the behavior intended

by the programmer and what is actually executed by the processor [Balakrishnan and Reps

2010], or from the essential role played by low-level (micro-)architectural features [Bréjon

et al. 2019]. More generally, machine code analysis tools and runtime monitors (including

debuggers) often need program properties associated with a high-level specification, from

which the static or dynamic analysis may determine whether the application is secure against

a given attack [Bréjon et al. 2019]. Still, it is generally challenging to propagate source-level

properties all the way down to machine code [Vu et al. 2020]. Compilers have no notion of

the link between properties expressed as annotations, semantical comments or pragmas, and

the semantics of the code they refer to. As a result, compilers generally fail to preserve this

link or to update properties according to the transformations they apply to the code (e.g.,

updating static bounds on the number of loop iterations when performing loop unrolling).
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Besides, variables referenced in properties may also be affected by compiler optimizations,

e.g. such variables may be optimized out, thus invalidating the property.

The common pattern in the above scenarios is that program transformations along the com-

pilation flow—such as abstraction lowering steps and optimizations—have no means to reason

about high-level properties that the programmer would like to enforce and to convey down to the

machine code. Indeed observational equivalence is conventionally defined w.r.t. I/O effects, and

unless high-level properties are captured together with I/O effects, the compiler does not have

to preserve them. As a result, security engineers resort to embedding I/O effects into security

protections and assert-like statements for testing.

1.1 Motivating Example
Let us illustrate the challenge on Listing 1, a (simplified) string comparison function with a source-

level protection against fault attacks induced by physical injection means such as laser beams

or electromagnetic pulses [Yuce et al. 2018]. The protection aims to detect register corruption

or instruction skip inside the loop, avoiding early loop termination [Proy et al. 2017]. This is

implemented by checking a duplicate counter i2 and duplicate bound n2. Note that the copies and
checks take place before and after the loop, respectively. This is safe according to a fault model that

only considers attacks on the loop itself [Proy et al. 2017]. We will use this function as a running

example. An optimizing compiler will easily eliminate all computations and checks involving

these duplicate variables. Inserting I/O effects dependent on the values of i, i2, n and n2 will help

preventing their elimination. But it is not sufficient to preserve the redundant incrementation and

checks as the compiler still has access to equality properties such as i = i2 (in the absence of

faults). As a result, security engineers also resort to “opacifying” the duplicate values, using coding

and compilation tricks [Paul Bakker, ARM 2019; The OpenSSL Project 2003]; yet these tricks remain

fragile [Percival 2014; Simon et al. 2018].

1 unsigned compare(char* a, char* b,
2 unsigned n) {
3 unsigned res , i, i2, n2 = n;
4

5

6 for (i = 0, i2 = 0; i < n;
7 ++i, ++i2)
8 res |= a[i] ^ b[i];
9 if (i2 < n2 || n2 != n)
10 fault_handler ();
11 else return res;
12 }

Listing 1. Secure comparison

1 unsigned compare(char* a, char* b,
2 unsigned n) {
3 unsigned res , i, i2, n2, a0, ai2 , an;
4 barrier(n, &an); n2 = an;
5 barrier(0, &a0); i2 = a0;
6 for (i = 0; i < n;
7 ++i, barrier(i2, &ai2), i2 = ai2 + 1)
8 res |= a[i] ^ b[i];
9 if (i2 < n2 || n2 != n)
10 fault_handler ();
11 else return res;
12 }

Listing 2. Secure comparison with side-effecting barriers

Vu et al. [2020] recently demonstrated how to reduce the correct compilation of security pro-

tections to the observation of values and memory locations. These observations are preserved

automatically across program transformations through the insertion of barriers isolating upstream

values from downstream ones using I/O effects. In addition, the inserted I/O effects induce a total

ordering of all observations, which is a conservative solution but also incurs significant performance

overhead (note that preserving one observation requires more than one I/O effect).

Back to our string comparison example, Vu et al. would implement the observation of the

successive incrementations of the duplicate i2 by means of I/O side-effecting barriers. We represent

these with the barrier call in Listing 2. These barriers instruct the compiler to preserve the
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evaluation of their first argument, while opacifying and duplicating its value into the second

argument.
1
In this example, a0 and an hold an opaque duplicate of the constants 0 and n, respectively,

avoiding forward substitution of these constants into arithmetic expressions or comparison on i2.
The incrementation of i2 itself is protected with the same mechanism using ai2. This approach is

effective, but forces the sequential execution of all barrier calls and introduces many I/O effects

restricting the effectiveness of compiler optimization. For example, even when the loop is unrolled,

the loads from a and b and the definition of res would not be vectorized over multiple iterations.

1.2 Introducing Opaque Observations
This paper refines the notion of observation and its preservation. We propose a means to specify
and preserve observations down to machine code. We do so in a very general and portable manner,
avoiding to modify each and every compiler pass, extending automatically to future transformations,
and with as little performance impact as possible.We control how information about program values

is made visible to the compiler’s static analyses by means of an opacification mechanism, i.e., the

ability to hide information about an atomic expression of operational semantics. Opacity means

the compiler sees the result of such opacification operations as statically unknown yet functionally

deterministic values. We tie observations and opacification together as a single operation called

an opaque observation. In general, program transformations may delete, duplicate or create an

opaque observation, but the compiler is restricted in what analyses it can perform on them. We will

formalize this notion in the following, but one may informally reflect on what analyses a compiler

may perform:

• gathering the uses of an opaque observation;

• determining whether it loads from references or memory, and from which memory addresses;

• deciding whether it has I/O effects;

• deciding whether two opaque observations are identical up to variable renaming;

and on what analyzes a compiler may not perform:

• establishing a correlation between the uses of an opaque observation and the values it defines;

• or a correlation between observed references/addresses and the data they hold in memory.

In this model, I/O is a special case of opaque observation that compilers must preserve.

Eventually, we let security engineers build dependence chains of opaque observations called opaque
chains, serving two purposes: they provide a portable and efficient means to protect the evaluation of
security-sensitive expressions by chaining them to downstream I/O effects; they also provide a portable
and efficient means to enforce a partial ordering on the evaluation of security-sensitive values. Opaque
chains take the form of an alternating sequence of opaque observations and regular instructions,

implementing a dependence chain. An opaque chain starts with an opaque observation and ends

with an opaque observation. There are subtle “information-carrying guarantees” restricting what

instructions may occur on an opaque chain: the compiler should not have enough information on

opaque values or on the possible control-flow paths dependent on an opaque value to break an

opaque chain into distinct dependence chains. We will detail this when formalizing the concept.

1.3 Back to the Example
Let us informally illustrate these concepts on the string comparison example again. A security

engineer may observe the initialization and successive incrementations of the duplicate i2 of i.

1
Note: Vu et al. [2020] do not directly write to the duplicate through a pointer, but insert an artificial SSA definition instead

(hence the prefix a in the second argument); we use this syntax for improved readability.
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They may insert three observe expressions as shown on Listing 3,
2
instructing the compiler to

preserve the evaluation of specific values. The observe returns the value of its first argument,

made opaque to compiler analyses. It also takes an arbitrary number of additional arguments.

This allows to bundle the observation of one or more variables with the construction of use-def

chains serving as dependence constraints. For example, i2 = observe(0, n2) defines i2 to an

opacified version of the constant 0, while also forcing the initialization of i2 to happen after the

one of n2 (this forces the duplication of n to take place before the loop, which is important to

detect a fault corrupting n while the loop executes). The programmer also expresses the need to

evaluate individual incrementations of i2 in sequence, rather than substituting i2 with a closed

form expression. This conjunction of observation, opacification and (partial) ordering is the tool

we offer to security engineers to implement a semantics-preservation contract with the compiler.

1 unsigned compare(char* a, char* b, unsigned n) {
2 unsigned res , i, i2, n2 = observe(n);
3 for (i = 0, i2 = observe(0, n2); i < n; ++i, i2 = observe(i2) + 1)
4 res |= a[i] ^ b[i];
5 if (i2 < n2 || n2 != n) fault_handler ();
6 else return res;
7 }

Listing 3. Secure comparison with observations

Finally, while our simple example only considered observations of scalar values, many scenarios

involve preserving the evaluation and the storage of a specific value at a specific memory location.

The volatile keyword in C serves that purpose, but opaque observations extended to operate

on references and memory addresses provide a more efficient mechanism. Consider the following

sequence: *p = 42; v = *p; observe(v). The compiler may implement a store-load forwarding

transformation, replacing the sequence with observe(42). But this is not the case of *p = 42;
observe(p): the compiler can determine that the opaque observation reads memory at address p,
but it is not allowed to determine what data is stored at that address.

1.4 Outline
The paper is structured as follows. It starts with a discussion of the most closely related work

(Section 2). Then we illustrate our approach on programming patterns that include security hard-

ening and software protections typical of security-sensitive applications (Section 3); these patterns

range from straight-line scalar code to interprocedural control flow and capture common security

properties that optimizing compilers frequently end up corrupting. We express the secure com-

pilation of these programming patterns in terms of opaque observations to be made at specific

points of the computation. Considering clang/LLVM with aggressive optimizations turned on,

we also show that preserving observations does not require significant modifications to existing

compilers (Section 4). Based on this motivation and experience, we provide a formal semantics for

observations (Section 5), and for the proposed opacification and chaining mechanisms (Section 6).

This allows us to prove the main contribution of this paper: the protection of opaque observations

through opaque chains for arbitrary valid transformations. We validate that the implementation

preserves opaque observations and the security properties expressed on top of them (Section 7).

Finally, we evaluate the performance and compilation time of our approach, and discuss alternative

implementations (Section 8).

2
More observations could be inserted according to the security properties to be enforced and validated—e.g. the values of

conditional expressions.
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2 RELATEDWORK
There is a large body of research and engineering on secure compilation [Abadi 1998; Abadi and

Plotkin 2012; Abate et al. 2018; Devriese et al. 2016; Gorla and Nestmann 2016]. The correctness of

a compiler is defined w.r.t. a notion of behavioral equivalence. It may take different forms, from

full abstraction to more specific type and isolation properties [Abadi 1998; Abadi and Plotkin

2012; Chlipala 2007; Patrignani et al. 2015] or even hyperproperties not directly captured in terms

of behavioral equivalence [Abate et al. 2019]. Behavioral equivalence is generally defined w.r.t.

the capabilities of an attacker. We are interested in enforcing properties of the machine state

resulting from the compilation of the program, including logical properties of side-channels and

countermeasures to physical attacks. Like Barthe et al. [2020] we extend the semantics of a host

language to reason about these extra-functional properties. But unlike Blazy et al. we do not focus

on a specific kind of property (execution time in their case). Instead, we provide a means to express

observations at deterministic points of the execution and to preserve these while subjecting program

to aggressive transformations; Vu et al. [2020] previously showed such observations enable the

expression and validation of a wide range of logical properties [Baudin et al. 2008].

To prevent interference from compiler optimizations, security engineers resort to embedding I/O

or volatile side-effects into security protections [Vu et al. 2020]. But as our experiments will show,

I/O side-effects may be too expensive in scenarios such as fine-grained control-flow integrity. This

fact motivates our effort to distinguish observations from regular I/O mechanisms, and not encoding

observations as fake I/O instructions. As discussed in the introduction, Vu et al. [2020] proposed a

means to automate the embedding of I/O effects into a general-purpose compiler; yet they relied

on a restrictive notion of behavioral equivalence by enforcing the equality of I/O and observation

traces. In this paper, we provide security engineers with finer-grained control on the preservation

of observations across transformations, and on the partial ordering of these observations.

In order to bound the worst-case execution time of a reactive method, compilers for hard real-time

systems are often capable of carrying loop trip count information down to the emitted assembly

code. These so called flow facts also capture infeasible paths and program points that are mutually

exclusive during a given run [aiT 2003; Ballabriga et al. 2010]. CompCert provides such a mechanism,

but does not formalize the preservation of control-flow information as a correctness requirement.

Instead, CompCert relies on known and implementation-specific limitations of the compiler: it

introduces a builtin function modeled as a call to an external function producing an observable

event, without emitting it as machine code [Schommer et al. 2018].

The ENTRA (Whole-Systems ENergy TRAnsparency) project Deliverable D2.1 [Eder et al. 2016]

describes a similar mechanism to transfer information from source to machine code. Data and

control flow properties are encoded as comments written as inline assembly expressions, relying

on the compiler to preserve the local variables listed in the assembly expression. These expressions

are declared as volatile I/O side-effecting to maintain their position in control flow relative to other

code. This mechanism can be used to observe values and preserve them, but cannot be used to

preserve security protections due to the lack of opacification and chaining of observations.

Another safety-minded approach encodes flow facts using IR extensions and external transforma-

tions to update loop trip counts [Li et al. 2014]. It incurs significant changes to optimization passes,

as it requires a set of transformation-specific rules to update flow facts along the compilation flow.

As introduced earlier, our main motivations and applications are related to application security.

The reader may refer to Vu et al. [2020] for an extensive discussion of security-related applications.
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3 CHALLENGES WITH SECURE OPTIMIZING COMPILATION
Let us now review typical software protections, some of the associated pitfalls with their correct

optimizing compilation, as well as the remedies enabled by opaque observations.

3.1 From Security Properties to Opaque Observations
At this point, it is natural to ask about the general form of software protections, and about the

process to derive opaque observations from higher level security properties. Vu et al. [2020]

informally tackled this issue, translating the so-called non-functional behavior of the machine

(physical effects such as side-channels and faults) in terms of functional properties of source-level

variables and memory, when considering a program equipped with security countermeasures. We

realize that the issue is actually twofold. First, one needs to determine what to observe (i.e. which

values have to be preserved by the compiler), then how to observe it (in this paper, we propose to

create an opaque chain to prevent the elimination of observations and force a partial ordering).

Solving the first problem requires a deep understanding of the attack models and the associated

software/hardware protections. For example, duplicate variables and computations involving these

variables have to be preserved in order for a redundancy-based protection to be effective (as

shown in the motivating example). Once the observed values are identified, our main theorem

(Theorem 6.3) provides security engineers with a clear path: observations will be preserved if they

are implemented through opaque chains leading to a downstream instruction that is guaranteed

to be preserved by compiler optimizations. Unfortunately, the process of creating such opaque

chains may involve an abstraction of data and control flow beyond the reach of static analyses.

And especially so if one ought to limit the impact of ordering constraints, to take full advantage

of compiler optimizations. Also, we do not believe it is currently realistic to propose a logic of

the physical machine that captures a wide range of side-channels and fault models. This makes it

difficult to imagine an automated, multi-leak, multi-fault translation of security properties into

opaque observations. While this may be a long-term goal shared among physical attack experts,

it is not achievable in the short term. As a pragmatic step forward, we assume that a security

expert is willing to identify sufficient conditions for the prevention of side channels and faults

according to a given leakage and fault model, and we propose a contract with the compiler to

express such sufficient conditions in terms of security protections/countermeasures leveraging

opaque observations and ordering constraints. By design, any program transformation preserving

I/O events and ordering will implement this contract.

3.2 Security Patterns
The selection of a suite of standard secure applications happens to be an immediate concern. While

numerous benchmark suites provide a common ground to compare metrics such as code size or

run-time performance (SPEC, EEMBC, etc.), there does not exist well-established benchmarks

dedicated to security; instead, researchers study representative coding patterns associated with

typical vulnerabilities and attack scenarios [Dureuil et al. 2016; Witteman 2018]. Also, while code

size or performance are also important for secure applications, the correctness of the implementation

w.r.t. an actual security property comes first (privacy, confidentiality, authentication, etc.). We thus

selected a range of security patterns from widely-used libraries (openSSL, mbedTLS, etc.) and from

the literature. Let us now present these patterns to illustrate our approach (we will again refer to

those in the correctness validation and performance evaluation sections (Section 7 and Section 8)).

3.2.1 Control Flow Integrity. Our first security pattern illustrates fault attacks, a growing threat for

secure devices such as smart cards. Such attacks can alter the system’s correct behavior by means

of physical injection [Yuce et al. 2018]. For example, it has been shown that fault attacks can induce
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jumps to arbitrary locations in the program [Berthomé et al. 2012; Moro et al. 2013]. One natural

solution to enhance the resilience against such fault attacks consists in embedding counters into

secure code, stepping them after every program statement of the source code and regularly checking

against their expected (usually constant) values [Lalande et al. 2014]. This technique is used in the

FISSC benchmark suite dedicated to fault injection analysis [Dureuil et al. 2016]. We refer to it as

Step Counter Incrementation (SCI) in the following; it may be seen as a very fine-grained form

of Control Flow Integrity (CFI) [Abadi et al. 2005; Burow et al. 2017]. However optimizations are

free to transform the program even when it does not preserve the security protections. And this

is what we observe in practice: counter checks are removed, being trivially true in a “fault-free”

semantics of the program. This is one typical scenario where practitioners have to disable compiler

optimization when implementing security protections.

Preserving the SCI protection boils down to (1) protecting counter stepping and counter checks,

while (2) guaranteeing the proper interleaving of functional and counter-checking statements.

The former can be achieved by opaquely observing every counter-stepping expression, so that

counter checks can no longer be simplified at compilation time. As for the latter, we introduce

additional dependences between values defined by the functional code and counter values. For

example, consider the original code in Listing 4 and its transformation into Listing 5.

1 unsigned short cnt = 0;
2 a = b + c;
3 cnt ++;

Listing 4. Fragile step counters

1 unsigned short cnt = 0;
2 a = observe(b, cnt) + observe(c, cnt);
3 cnt = observe(cnt , a) + 1;

Listing 5. Opaque step counter observations

We opaquely observe non-constant operands of both functional code (e.g. b and c in the definition
of a from line 2) and counter incrementations (line 3). We express artificial data dependences

through additional arguments of observe. This creates an opaque chain linking every counter

incrementation to the next use of a counter, and then again to the next incrementation until the

terminating counter check. We also interleave original program statements in the chain through the

bundling of both counter and original variables in opaque observations. In Section 7 and Section 8,

we will validate this approach on two classical smart-card benchmarks protected with SCI: PIN

authentication [Dureuil et al. 2016] and AES encryption [Levin 2007], named sci-pin and sci-aes.

3.2.2 Fault Detection Through Redundancy. As we have seen in the motivating example (Listing 1),

detecting fault attacks often uses some form of redundant computation (time, information, or

space redundancy) [Hillebold 2014; Moro et al. 2013; Proy et al. 2017]. One of the most common

and effective countermeasures involves double-computing every sensitive value. If the results of

redundant computations do not match, a fault is detected and reported by calling a handler. Such

redundant operations do not impact the program observable semantics and are ideal candidates to

be optimized away by optimizations [Hillebold 2014; Proy et al. 2017]. To prevent optimizations

from removing this specific form of redundancies, we opaquely observe every duplicate definition

or assignment so that the compiler can no longer identify the copy with the original. By doing

so, we also create an opaque chain including a control dependence linking to the fault handler. In

Section 7, we will validate this scheme on the core loop of PIN authentication [Dureuil et al. 2016],

hardened with a source-level loop protection scheme based on redundant computations [Proy et al.

2017],
3
named loop-pin.

3
A comprehensive protection scheme for loop control flow in the spirit of the motivating example.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 142. Publication date: October 2021.



Reconciling Optimization with Secure Compilation 142:9

3.2.3 Erasure of Sensitive Data. The leakage of confidential information such as secret keys is a

major threat and has been extensively studied in secure compilation. A common countermeasure

consists in erasing sensitive data frommemory once they are no longer needed [Percival 2014]; such

data include secret keys, seeds of random generators, or temporary encryption or decryption buffers.

However, this may not be as easy as it seems. For example, given a stack-allocated buffer containing

sensitive information, it should be erased before returning from the function, typically via a call

to memset. However, compilers will spot that the buffer goes out of scope, and will consider the

memset as dead store, removing erasure as part of “dead store elimination”. Security engineers resort

to different programming tricks [Yang et al. 2017], including platform-supplied variants of memset
which are guaranteed to be preserved by compilers.

4
These workarounds have multiple drawbacks:

on the one hand, they are not portable due to the poor adoption of some of the memset variants; on

the other hand, even when portability is not an issue, resetting the secret memory with a constant

value is a bad idea in terms of side channel leakage, so one should rather store random values to

effectively erase the memory. In order to solve the root of the dead store (either with memset or
with random values) elimination problem, we insert an opaque observation of values stored in the

buffer, after the erasure of the latter and before the function return, so that the compiler cannot

consider the erasure as “dead store” and remove it anymore. To guarantee that the observation

itself does not get removed, we may use the value it defines in a subsequent I/O instruction, either

immediately after the call or linking it to a longer opaque chain. This simple scheme is illustrated

in Listing 6. In this example, observe has been lifted to arrays, and (conventionally) returns the

address of the array; io stands for a dummy I/O side-effect enforcing the evaluation of p, hence
the evaluation of observe(secret) itself. Note that the observation also enables validating the

effectiveness of the erasure in a debugger. In Section 7 and Section 8, we will validate the approach

on mbedTLS’s RSA encryption and decryption [Paul Bakker, ARM 2019], named era-rsa-enc and

era-rsa-dec.

1 void process_sensitive(void) {
2 uint8_t secret [32];
3 ...
4 memset(secret , 0, sizeof(secret ));
5 uint8_t *p = observe(secret );
6 io(p);
7 }

Listing 6. Erasing a buffer with observation.

1 k ^= m;
2 ...
3 k = observe(observe(k ^ mpt) ^ m);

Listing 7. Secure masking using opacification.

3.2.4 Computation Order in Masking Operation. Respecting the source’s evaluation order of as-

sociative operations may be difficult to achieve with an optimizing compiler. Indeed, as long as

the generated program produces matching observable behaviors w.r.t. the C standard, compilers

have the right to reorder associative operations, even with proper parenthesizing, and doing so

independently of the optimization level. This can be problematic when it comes to using associative

operations such as exclusive-or for masking purposes, a common countermeasure to protect block

ciphers against side-channel attacks [Ishai et al. 2003]. Consider the masking scheme k=(kˆmpt)ˆm.
Assuming the secret k is already masked with m, it is now remasked with mpt, so that the old

mask m can safely be removed. It has been reported that this statement has been compiled as

k ˆ(mpt ˆm), which altogether defeats the countermeasure [Eldib and Wang 2014]. To preserve

the correct masking order, we opaquely observe the result of the re-masking operation, making it

4
In fact, the C library recently introduced a memset_s call that specifically provides such a guarantee, yet its implementation

remains platform-specific and such a case-by-case approach is not scalable.
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unknown to the compiler. The opaque value is used in the removal of the old mask m. In order to

form an opaque chain, we also opaquely observe the result of the unmasking operation, making

the definition of k the tail opaque instruction of the chain. The resulting implementation is shown

in Listing 7. There is no need for a terminal I/O instruction since we already know that k is the
value of interest in downstream computation, and the computation of k will thus be preserved by

transformations. The opaque chain enforces the ordering constraint that the observed value will

be computed after the first ^ operation and before the second one. In Section 7 and Section 8, we

will validate the approach on a masked implementation of AES encryption [Herbst et al. 2006],

named mask-aes. We also derive a synthetic benchmark from mask-aes, to facilitate performance

comparisons across property preservation approaches: mask-rotate is a simple loop over masking

operations with the same security property as mask-aes.

3.2.5 Constant-Time Selection. Another well-known, yet hard to achieve example of security

property is selecting between two values, based on a secret boolean value, in constant time. This

means the generated code for the selection operation must not contain any branch conditioned by

the secret selection boolean value, otherwise the execution time of the operation would depend on

whether the first or the second value is selected, thus leaking the secret. Cryptography libraries

resort to data-flow encoding of control flow, bitwise arithmetic at source level to avoid conditional

branches, but this encoding may be altered by an optimizing compiler.

1 uint32_t ct_select_vals(
2 uint32_t x, uint32_t y, bool b) {
3 signed m = 0 - b;
4 return (x & m) | (y & ~m);
5 }

Listing 8. Fragile constant-time selection

1 uint32_t ct_select_vals(
2 uint32_t x, uint32_t y, bool b) {
3 signed m = observe (0 - b);
4 return (x & m) | (y & ~m);
5 }

Listing 9. Robust version using opaque observations

Listing 8 implements constant-time selection between x and y based on a secret boolean value

b. Special care is taken to avoid any branch conditioned by b: instead, one derives a selection

bitmask m from the secret using boolean arithmetic, then use it to select the appropriate value

(line 3). Nevertheless, it has been reported that the code generated by LLVM is not guaranteed to be

constant-time. For instance, on IA-32, the compiler recognizes the selection idiom and transforms

it into branch conditional on the secret value [Simon et al. 2018]. The currently available solution

is to extend the compiler with a specially-crafted builtin that will be ultimately compiled into a

conditional move instruction (if available on the target architecture) [Simon et al. 2018]. However, it

is rather specific to constant-time selection between two values and is not sufficient to implement,

for example, the constant-time memory lookup operation [Sprenkels 2020]. We propose a more

general alternative, relying on opaque observations, shown in Listing 9. Hiding the correlation

between the bitmask m and the secret boolean value b prevents the compiler from recognizing

the selection idiom and turning it into a conditional branch. We thus embed the bitwise logic

into an opaque chain linking the constant-time selection to the function return value. This is

a case of conditional transformation preservation: individual selection operations may or may

not execute depending on (non-sensitive) program input, but as soon as one of these execute,

its enclosed constant-time expressions will be transformation-preserved thanks to the opaque

chain forcing the compiler to evaluate the bitmask. Our formalization will provide a definition and

preservation theorem for such conditional preservation cases. In Section 7 and Section 8, we will

validate this solution on mbedTLS’s RSA decryption [Paul Bakker, ARM 2019] and a version of

RSA exponentiation using the Montgomery ladder [Simon et al. 2018], respectively named ct-rsa
and ct-mgmr.
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4 PUTTING IT TOWORK
Let us now investigate the practicality of opaque observation concepts by describing how these

can be implemented in a real-world compiler. This is also historically how we came up with the

formalization, building and refining it from experience.

Our framework is built upon the LLVM infrastructure. Compilation traverses multiple levels of

program representation: the Clang front-end lowering C to LLVM IR, the middle-end optimizers

on LLVM IR in SSA form, and the back-end lowering the IR to a machine-specific register-level

LLVM MIR.

4.1 C Language Extensions
We extend Clang with opaque observation syntax, introducing token values and 3 variadic builtins:

• A token is a value of an abstract type, opaque to the compiler, only used for building opaque

chains. It is implemented as an integer of unknown value in LLVM, andmeant to be eliminated

in the back-end when its role in building opaque chains is over.

• __blt_obs_var implements observe on C variables and constants. It returns the same scalar

value as its first argument made opaque to the compiler; this opaque value may replace the

original one in subsequent code. Arguments may be tokens. The builtin also observes its

arguments, allowing to validate the integrity of the partial observation state at every stage of

the compilation flow. Additional (optional) arguments link with upstream opaque chains.

• __blt_obs_mem implements observe on the region of memory pointed to by its first argu-

ment and returns a token. Additional (optional) arguments link with upstream opaque chains

and may be tokens.

• __blt_io implements an unordered I/O effect. The function returns a token. All (optional)

arguments link with upstream opaque chains.

The tokens produced by the last two builtins serve to initiate downstream opaque chains. Remember

tokens are opaque to the compiler: LLVM is not able to equate token values resulting from distinct

calls, and distinct calls to these builtins initiate distinct downstream opaque chains.

4.2 LLVM Extensions
Wemay nowdescribe the lowering of our language extensions to two different compiler intermediate

representations: the IR on which the optimizers operate and the MIR which represents the final

code to be emitted by the compiler.

LLVM IR supports intrinsic (a.k.a. builtin) functions with compiler-specific semantics. Intrinsics

require the compiler to follow additional rules while transforming the program. These rules are

communicated to the compiler via the function attributes which specify the intrinsic function’s

behavior w.r.t. the program mutable state (memory, control registers, etc.). Intrinsics provide an

extension mechanism without having to change all compiler passes. We thus introduce three IR

intrinsics llvm.obs.var, llvm.obs.mem and llvm.io, corresponding to the Clang builtins above;

llvm.io is defined as I/O-effecting, llvm.obs.mem’s attributes let it read argument-pointedmemory

(this is actually an optimization feature as it avoids having to generate instructions loading from

these memory locations), and llvm.obs.var is pure (it does not have any memory or I/O-effect).

To track observations effectively across compilation passes, and to let security engineers validate

program properties using binary utilities (debuggers, monitors, model checkers of machine code,

etc.), we need to embed so-called observation metadata into the IR, and preserve it all the way down
to machine code. Observation metadata is formed of the observed variable/memory-address at a

given program point (source code location). Interestingly, tracking such metadata is precisely what

is happening with debug information. Unfortunately, tracking debug information is a best-effort
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process in presence of optimizations, and experience with the validity of debug metadata in machine

code can be chaotic. Fortunately, we do not need to burden the compiler with keeping track of

renaming, combination, duplication, relocation effects, etc. for general instructions. Instead, we only
need such a tracking mechanism for opaque observations. This can be implemented as a modular

aspect of SSA variable renaming, and does not require instrumenting each and every pass of the

compiler. Practically, we attach observation metadata to observation intrinsics via LLVM metadata

[LLVM 2019], and we modify the utility functions replaceAllUsesWith (resp. combineMetadata)
to handle the combination (resp. duplication) of observation intrinsics; the modified functions

update (resp. maintain) the attached metadata throughout the compilation flow.

To preserve observations down to machine code generation, we lower the llvm.obs.var, llvm
.obs.mem and llvm.io intrinsics into the MIR pseudo-instructions OBS_VAR, OBS_MEM and IO,
respectively, with the same semantics. This is necessary since MIR is subject to a few late machine

code optimizations before emitting assembly code. The three pseudo-instructions are eliminated

before emitting assembly code. To facilitate this elimination, OBS_VAR holds the opaque value in
the same register as its first operand; this includes opaque tokens implemented as integer variables,

allowing for a zero-cost implementation for tokens.

Carrying observation metadata down to machine code is more challenging as LLVM does not

support attaching metadata to the MIR. We choose to encode observation metadata into an operand

of OBS_VAR and OBS_MEM pseudo-instructions. In theory, this could prevent some optimizations,

such as combining pseudo-instructions with the same arguments but different metadata. Yet we

did not observe performance regressions due to missed pseudo-instruction combining on our

benchmark suite and the back-ends considered (see Section 8).

Finally, when eliminating MIR pseudo-instructions, we emit their observation metadata to the

assembly code’s debug section.We extend the DWARF format accordingly [DWARF 2017], capturing

observation variables/addresses and line number with dedicated DWARF entities. The choice of

a custom encoding of metadata differs from the more conventional approach relying on debug

information [Vu et al. 2020] and offers stronger correctness and traceability guarantees.

5 SPECIFYING OBSERVATIONS
This section and the following one formalize the observation, opaque observation and opaque

chain concepts introduced in the previous sections. As a simplifying assumption, we only consider

sequential, deterministic programs with well defined behavior. In particular, we avoid cases where

the compiler may take advantage of undefined behavior to trigger optimizations. This assumption

is consistent with widespread coding standards for secure code. Our formalization also assumes no

exceptions or any form of non-local control flow in the source language.
5

5.1 Operational Semantics
We introduce a simple operational semantics, generic enough to model the side-effects, data and

control flow of a range of imperative languages and intermediate representations (IRs), all the way

down to assembly code. It is not meant to be faithful to a specific language. Instead, it serves as an

abstraction of the essential properties of observations and their preservation. It takes the form of a

state machine where every program instruction defines a transition referred to as an event.
A program state is defined by a tuple σ = (Vals, π ), where Vals denotes a set of (name, value)

pairs; name may be an SSA variable (e.g. an SSA value in LLVM IR or a variable in a functional

language), a constant, a reference name (e.g. a C variable, a reference in a functional language, or a

5
Modeling non-local control flow would involve additional SSA arguments in branch and call instructions. This does not

add interesting behavior to opaque observations and opaque chains but would make the formalization more verbose.
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register in a machine-level representation) or a memory address; the program point π holds the

value of the program counter pointing to the next instruction. A state σ is also interpreted as a

function mapping names (variable, constant, reference, address) to the corresponding values.

An event e , associated with the execution of an instruction i , is a state machine transition from a

state σ into a state σ ′
. It is denoted by e = σ

i
{ σ ′

. Inst(e) denotes the instruction whose execution

yields a given event e , i.e. Inst(σ
i
{ σ ′) = i .

A program execution E is a—potentially infinite—ordered sequence of program states and events:

E = σ0e0σ1e1σ2 . . ., with e0 a special initial event defining all constant values, σ0 the initial state,

and σk
ik
{ σk+1 such that ∀k > 0, ik = Inst(ek ).

Starting from an initial state σ0, the execution proceeds with calling the special main function,
taking no argument and returning no value. Instead the program conducts I/O operations through

dedicated io instructions. Program input (resp. output) is modeled as a list of independent—

potentially infinite—partially ordered sets of values, called input (resp. output) sets. Each set is

identified with a unique descriptor. Every value of a given data type in an I/O set is uniquely tagged

to distinguish it from any other value from the same set. A totally ordered set models streaming

I/O; an unordered set models persistent storage; partial orders model middle-ground scenarios. The

io instruction takes a descriptor and an I/O value as arguments; its execution yields an I/O event.
Given a program P , the sets Inputs (resp. Outputs) represent of all possible inputs (resp. outputs)

of P . The semantics of P is a function from input sets to outputs sets. Given an input I , the semantics

of P applied to I is denoted by IO[[P]](I ), and P produces a unique execution E[[P]](I ).
Any pair of I/O events using the same descriptor are ordered by a so-called I/O ordering relation,

denoted by

io

→. Formally, given an execution E = E[[P]](I ) of P on some input I ,
io

→ is the reflexive

and transitive closure of the following relation:

∀ . . . e1 . . . e2 . . . ∈ E,
(
Inst(e1) = io(desc,v1)

)
∧
(
Inst(e2) = io(desc,v2)

)
=⇒ e1

io

→ e2

This relation on events induces a relation on values in input and output sets, also denoted by

io

→:

∀ . . . e1 . . . e2 . . . ∈ E,
(
Inst(e1) = io(desc,v1)

)
∧
(
Inst(e2) = io(desc,v2)

)
∧ e1

io

→ e2 =⇒ v1
io

→ v2

5.2 Modeling Program Transformations
We are now able to define a very general notion of program transformation. This definition is

meant to cover as many compilation scenarios as possible and this constitutes a major strength of

our proposal. In particular, we make no assumption on the analysis and transformation power of a

compiler. The definitions covers any scalar, loop and inter-procedural optimization, canonicalization,

lowering, etc. as well as dynamic schemes such as control and value speculation.

A transformation τ is valid if it preserves the I/O behavior of a program P on all possible inputs:

∀I ∈ Inputs,IO[[P]](I ) = IO[[τ (P)]](I ).
A transformation τ induces a relation between events before and after transformation; it is called

the event map and denoted by ∝τ . The event map notation e ∝τ e ′ reads as “τ maps e to e ′”. The
mapping is partial and neither injective nor surjective in general (events in P may not have semantic

counterparts in P ′
and vice versa). The event map will serve as a transformation-independent

translator to reason about the existence and ordering of events across program transformations.
Let us immediately illustrate this notion, observing that for any valid transformation τ , one may

construct an event map ∝τ that preserves I/O events.

Lemma 5.1 (Transformation of I/O events). For an execution E = E[[P]](I ) of a program P on
some input I , an event e from E reading or writing a value v from/to an input/output set, and a valid
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program transformation τ , (1) there exists a unique event e ′ ∈ E[[τ (P)]](I ) such that e ′ reads or writes
v ; and (2) τ preserves the partial ordering on all I/O events from E.

Proof. By definition of transformation validity,v also belongs to an input or output set associated

with the transformed program P ′ = τ (P). As a consequence, E ′ = E[[P ′]](I ) also holds an event e ′

reading or writing v . Since v is uniquely tagged among I/O values, semantical equality IO[[P]](I ) =
IO[[P ′]](I ) implies that e ′ is the only event reading or writing v in the execution E ′

. This proves

the unicity of transformed I/O events.

Given two I/O events e1 and e2 in E such that e1
io

→ e2, the unicity of transformed I/O events

guarantees the existence of two events e ′
1
and e ′

2
in E ′

such that e1 ∝τ e ′
1
and e2 ∝τ e ′

2
. By definition

of

io

→ induced by I/O events on input and output sets, any input/output values v1 from e1 and v2

from e2 are such that v1
io

→ v2. Since τ is a valid transformation, events e ′
1
and e ′

2
also have to be

ordered such that v1
io

→ v2, hence e
′
1

io

→ e ′
2
. This proves the preservation of I/O event ordering. □

Beyond I/O events, we will grow in the next section a larger set of events that are always

guaranteed to have a counterpart through ∝τ , for all transformations.

In the following, we will characterize the events that are always related through ∝τ for any valid

transformation τ as transformation-preserved events. Let TP(P, I ) denote the set of transformation-

preserved events for a program P and input I .

5.3 Observation Semantics
Let us now extend the operational semantics with a notion of observation. Vu et al. [2020] defined an
observation trace formed of all observations in a program, as a sequence of sets of (variable, value)
and (address, value) pairs called partial observation states, or partial states for short. Enforcing a

total ordering of partial states and its preservation across program transformations limits the reach

of compiler optimizations. To relax this restriction while still preserving the user’s ability to attach

logical properties to specific values and instructions, we extend the semantics with partially ordered
partial states induced by a specific observe instruction. It takes as arguments an arbitrary number

of values to be observed and returns the value of its first argument. Arguments may be constants,

SSA variables, references or memory addresses. We call observation event any event associated

with the execution of an observe instruction.

Formally, considering a program P and input I , with E = E[[P]](I ), the partial observation states

of E are modeled by the following observation function:

ObsE : Events(E) → States(E)

σ
observe(V )
{ σ ′ 7→

({
(v,σ (v))

}
v ∈V , π

)
σ

i, observe
{ σ ′ 7→

(
∅, π

)
Paraphrasing this definition, ObsE (e) returns the partial state made of {(name, value)} pairs associ-
ated with observation e , such that π is the program point in P of Inst(e), the instruction associated

with e . ObsE (e) yields an empty partial state if e is not an observation event.

In the following, we will consider all I/O events as observations of their input and output values;

this is consistent with the fact I/O yields “externally visible” effects and values.

As described Section 4, we also need to track observation metadata through every level of

IR, down to machine code. To formalize this, we lift the observation function to return partial

states relatively to a program of reference Pref . Consider a program P deriving from Pref through a

series of program transformations and let E = E[[P]](I ). We define ObsE/Pref (e) to return the partial
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state ({(name, value)}, π ) where the values are those of ObsE (e), but the program point (π ) and all

variable names (name) refer to (and so are tracked back to) the ones of Pref .
We are now able to formalize the preservation of program properties, binding them to the

observation of source-level partial states and tracking these observations down to machine code.

5.4 Happens-Before Relation
Beyond the preservation of individual observations, we have seen that security properties can

involve the specification of an ordering among observation events. Such an ordering relation must be

respected by program transformations. We call it the observation-ordering relation. It is derived from
def-use chains, value-based dependences through references and memory, and control dependences.

Formally, we define relations

du

→,

rf

→ and

cd

→ as partial orders on def-use pairs, in-reference/in-

memory data flow and control dependences, respectively. Let the predicate def (v, i) (resp. use(v, i))
determine if instruction i defines (resp. uses) value v , and write(addr,v, i) (resp. read(addr,v, i))
determine if instruction i writes v to (resp. reads v from) the memory address or reference name

addr , and let postdom denote the post-domination binary predicate [Cytron et al. 1991]:

e1
du

→ e2 iff def (v, Inst(e1)) ∧ use(v, Inst(e2))

e1
rf

→ e2 iff write(addr,v, Inst(e1)) ∧ read(addr,v, Inst(e2))

∧ ∀e, E = . . . e1 . . . e . . . e2 . . . ,¬write(addr,v ′, Inst(e))

e1
cd

→ e2 iff ∃e, E = . . . e1 . . . e . . . e2 . . . , postdom(Inst(e2), Inst(e)) ∧ ¬postdom(Inst(e2), Inst(e1))

The dependence relation, denoted by

dep

→, is defined as the reflexive and transitive closure of

union of the def-use, reference-based and in-memory data-flow, and control dependence relations:

dep

→1 =
du

→ ∪
rf

→ ∪
cd

→ and

dep

→ =
( dep

→1
)∗

Given an execution E, one may now define the additional relations involving observation events

that program transformations have to preserve.

Observations induce an observe-from relation, denoted by

of

→, which maps a definition to an

observation event. Formally, e1
of

→ eobs if and only if e1
du

→ eobs ∧ Inst(eobs) = observe.

Symmetrically, observations induce a from-observe relation, denoted by

fo

→, which maps an

observation event to a use. Formally, eobs
fo

→ e2 if and only if eobs
du

→ e2 ∧ Inst(eobs) = observe.
Any pair of observation events in dependence relation are ordered by a so-called observation

ordering relation denoted by

oo

→. Given an execution E of P ,
oo

→ is the restriction of

dep

→ to observation

events. Formally, e1
oo

→ e2 if and only if e1
dep

→ e2 ∧ Inst(e1) = observe ∧ Inst(e2) = observe.
oo

→ only includes data-flow and control-dependences. This is a trade-off between providing

more means to the programmer to constrain program transformations to enforce observation

ordering, and freedom left to the compiler in presence of such observations. Data-flow paths

between observe instructions enable the expression of arbitrary partial orders of observation

events. Conversely, adding more relations into

oo

→ such as write-after-write and write-after-read

dependences would severely restrict compiler optimizations—e.g. the compiler’s ability to hoist

loop-invariant observations like Vu et al.—with no expressiveness benefit.

One may now define a partial order on all observation events, including but not limited to I/O,

called the happens-before relation. It has to be a sub-order of the total order of events in E. We use

the following happens-before relation in the following:

hb

→ =
( io

→ ∪
of

→ ∪
fo

→ ∪
oo

→
)∗
.
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Consider a valid program transformation τ and let E ′ = E[[τ (P)]](I ). τ is said to preserve the

happens-before relation if any events in happens-before relation in E have their counterparts

through ∝τ in happens-before relation in E ′
(if such counterparts exist).

Formally, ∀ei , ej ∈ E,∀e ′i , e
′
j ∈ E ′

, ei
hb

→ ej ∧ ei ∝τ e ′i ∧ ej ∝τ e ′j =⇒ e ′i
hb

→ e ′j .

Unlike I/O ordering enforced by any valid transformation (Lemma 5.1), preserving the happens-

before relation requires additional effort. This is where opacity will come into play; it will be

described in Section 6.

Back to our running example, each observation of an incrementation of i2 happens before the
next incrementation of i2, and before the call to the fault handler which is a control-dependent

I/O (both are modeled in

oo

→). This allows to reason about loop termination in the presence of

faults. Conversely, notice the absence of a happens-before relation linking incrementations of i.
Optimizations are free to replace i with a closed form expressions (analysis of induction variables)

or to reorder the respective arithmetic operations on i and i2. Such optimizations would not be

possible with the I/O-effecting observations proposed by Vu et al. [2020].

5.5 Putting It All Together: Protected Observations
Let us now provide two important definitions to characterize the protection of observations

against interference from program transformations. By protection, we refer to the preservation

of observation events, the preservation of the observed partial states, and the preservation of the

happens-before relation, for all valid transformations.

Definition 5.2 (Protected observation). For a given program P , an observation instruction iobs is
protected if and only if every valid transformation τ satisfies the three following conditions:

(i) τ preserves the existence of observation events:

∀e ∈ E[[P]](I ), iobs = Inst(e) =⇒ ∃e ′ ∈ E[[τ (P)]](I ), e ∝τ e ′

(ii) τ preserves the partial states observed in P :

∀e ∈ E,∀e ′ ∈ E[[τ (P)]](I ), iobs = Inst(e) ∧ e ∝τ e ′ =⇒ ObsE (e) = ObsE[[τ (P )]](I )/P (e ′)

(iii) τ preserves the happens-before relation.

An observation instruction iobs is protected conditionally on instruction ic if and only if every

valid transformation τ satisfies (ii) and (iii) above, as well as the following condition replacing (i):

(ic ) τ preserves the existence of observation events conditionally on the preservation of ic :

∀e ∈ E[[P]](I ), ∃ec ∈ E[[P]](I ), ∃e ′c ∈ E[[τ (P)]](I ),

ic = Inst(ec ) ∧ ec ∝τ e ′c ∧ iobs = Inst(e) =⇒ ∃e ′ ∈ E[[τ (P)]](I ), e ∝τ e ′

Note that both e and e ′ are observation events in (i), (ic ) and (ii). Also, the observation of e ′ in
(ii) is defined with P as a reference: the values observed in e ′ are those of variables in E[[τ (P)]](I )
tracked back to their original (name, value) pairs in E[[P]](I ).

In addition, since composing two valid transformations yields a valid transformation, the charac-

terization of observation protection covers compositions of valid transformations along a compila-

tion pass pipeline. The next section provides a portable method to implement protected observations

in an optimizing compiler.

6 EFFECTIVELY PRESERVING OBSERVATIONS
As noted earlier, valid transformations do not preserve observations and the happens-before relation

in general. This section formalizes opaque observations as a mechanism to achieve this.
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6.1 Opaque Observations
To implement the preservation of observation events and the associated happens-before relation,

we complement the observation semantics by making observation events opaque: in addition to

capturing all arguments into a partial observation state and implementing the identity function

in its first argument, the observe instruction makes the returned value opaque. From now on,

observation events are called opaque observation events, or opaque observations for short. Unlike Vu
et al. [2020] embedding I/O effects into all observation events, observe is a pure function. Since
we consider I/O events as observations, we also consider them as opaque in the following; unlike

observe, io provides an I/O-effecting opaque observation.

As informally introduced, opacity means the compiler sees a statically unknown yet functionally

deterministic value. In particular, it does not know that observe returns its first argument. Given

an input I and valid transformation τ , opacity introduces two validity restrictions supporting more

cases of value and event preservation:

upstream opacity: if τ preserves an event e2 that uses a value defined by an opaque observation
e1, it must also preserve e1 itself (as a transformation has no other means to produce the

opaque value defined by e1):

∀ . . . eobs . . . euse . . . ∈ E[[P]](I ),

eobs
fo

→ euse ∧ ∃e ′use ∈ E[[τ (P)]](I ), euse ∝τ e ′use

=⇒ ∃e ′obs ∈ E[[τ (P)]](I ), eobs ∝τ e ′obs ∧ Inst(e ′obs) = observe ∧ e ′obs
dep

→ e ′use (1)

downstream opacity: τ must preserve any value used by a preserved opaque observation

(otherwise downstream computation would need to guess the opaque observation’s behavior,

which is not allowed):

∀ . . . σeobs . . . ∈ E[[P]](I ),∀ . . . σ ′e ′obs . . . ∈ E[[τ (P)]](I ),

Inst(eobs) = observe ∧ eobs ∝τ e ′obs ∧ use(v, Inst(eobs)) ∧ (v, val) ∈ σ

=⇒ ∃(v ′, val) ∈ σ ′, use(v ′, Inst(e ′obs)) (2)

These restrictions are taken as a definition, formalizing the intuitive expectations about what

the compiler has to enforce in the presence of opaque observations. Notice the transitive depen-

dence relation e ′obs
dep

→ e ′use in the transformed program (rather than e ′obs
dep

→1 e ′use): the immediate

dependence may be transformed into a series of instructions (e.g., spilling a value to the stack).

6.2 Opaque Chains
Let us now build a specific class of dependence chains involving opaque observations. As informally

discussed in the introduction, these are called opaque chains and serve two purposes: (1) preserving
observations by linking them to downstream transformation-preserved events (e.g., I/O events),

and (2) establishing a transformation-preserved happens-before relation. We first need a technical

definition, the opaque chain value set, holding all possible values observed by an instruction

iobserve after traversing a chain of dependences linking an upstream opaque observation iopaque to a

downstream one iobserve. Whether this set is a singleton will tell if the dependent instruction iobserve
is sensitive on the (opaque) value of iopaque. Intuitively, a non-singleton set tells that evaluating the

upstream opaque observation iopaque is the only way to provide the downstream observation with a

correct value, hence that iopaque must be preserved by any valid transformation.

Let Dom(v) denote the set of values that a variable v may take according to its data type. E.g.,

for a value v of boolean type, Dom(v) = {true, false}.
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Given an execution E = E[[P]](i), consider a chain of dependent events e1
dep

→1 . . .
dep

→1 en with

n ≥ 2, two opaque observations i j = Inst(ej ) and ik = Inst(ek ) on the chain with 1 ≤ j < k ≤ n
such that ∀j < l < k, Inst(el ) , observe. Let vj be the variable defined by i j and used along

the chain, and consider the state σj+1 after executing ej . For any value alt ∈ Dom(vj ), we note
Ealt = . . . ejσj+1{vj 7→ alt} . . . the execution continuing after ej on program state σj+1{vj 7→ alt}6.

In the following, opaque observations are considered equivalent if swapping them yields the same

partial state for every input; e.g. observations are considered equivalent up to variable renaming.

We define the opaque chain value set OCVS j ,k from all the values derived from Dom(vj ) according
to one of the two cases below (and only these):

• if there exists an opaque observation event ekalt such that Ealt = . . . ej . . . ekalt . . . and ialt =

Inst(ekalt ) and ik are equivalent with ej
dep

→ ekalt and ∀e, ej
dep

→+ e
dep

→+ ekalt , Inst(e) , observe
then the value used or read by ialt along the ej . . . ekalt sub-chain belongs to OCVS j ,k ;

• if there is no such event ekalt before reaching another (non-equivalent) opaque observation
or the program terminates then ⊥ belongs to OCVS j ,k .

Let us paraphrase this definition. When substituting the value of the opaque observation i j with
alt three situations may occur: (1) theOCVS j ,k set yields the value used or read by ik if the execution
path of the altered execution is not changed; (2) if the execution path is altered and reaches an

equivalent opaque observation ialt = Inst(ekalt ) before encountering any other dependent opaque

observation, it yields the value used or read by ialt ; and (3) if the altered execution does not reach an

equivalent instruction before reaching an opaque observation (or the program terminates), OCVS j ,k
holds the “undefined” value ⊥. Note that the execution path may be altered when the opaque chain

traverses a control dependence on an opaque observation i j : alternate opaque values may exercise

different paths, some of which may not reach the next opaque observation ik anymore.

We may now define an opaque chain as an alternating sequence of opaque observations and

sub-chains of regular instructions, starting with an opaque observation and ending with an opaque

observation (remember I/O events are considered opaque observations).

Definition 6.1 (Opaque chain). Given an execution E = E[[P]](i), consider a chain of dependent

events e1
dep

→1 . . .
dep

→1 en ; e1
dep

→1 . . .
dep

→1 en is an opaque chain linking e1 to en if and only if

(i) i1 = Inst(e1) and in = Inst(en) are opaque observations;
(ii) for any opaque observation ik = Inst(ek ), 2 ≤ k ≤ n, with i j , 1 ≤ j < k , the immediately

preceding opaque observation on the chain, |OCVS j ,k | ≥ 2.

We note e1
opaque

{ en such an opaque chain.

Case (ii) serves as an “information-carrying” guarantee: the compiler lacks information about

the possible paths or computations dependent on an opaque value to break an opaque chain into

distinct dependence chains. Given an instruction/event ik = Inst(ek ), for the immediately upstream

opaque observation i j = Inst(ej ) on the chain, we consider all values it may define according to

its opaque result type. If ik is data-dependent on i j , the set of values ik may use or read must not

be a singleton; unless ik is control-dependent on i j , in which case there must exist an alternate

execution from ej bypassing ik and any equivalent instruction.

6.3 Opaque Chain Examples and Counterexamples
Let us consider examples of dependence chains that are not opaque chains. First of all, shifting an

opaque uint32_t by 32 bits to the right would allow the compiler to reason about the resulting

zero value, transforming the downstream opaque observation into one applied to the constant

6alt may take any value in Dom(vj ). The substitution syntax σj+1 {vj 7→ alt } denotes the set σj+1 \ (vj , orig) ∪ (vj , alt).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 142. Publication date: October 2021.



Reconciling Optimization with Secure Compilation 142:19

zero, hence breaking the chain. The cardinality requirement on data dependences forbids such

information-erasing instructions to occur on opaque chains.

As a more complex example, consider the code snippet in Listing 10 illustrating the subtleties

of dealing with multiple paths. STDOUT is the standard output stream, and val is some statically

unknown value. The program forms two dependence chains from the definition of c (line 1) to the

output I/O instructions (lines 2 and 3) through a control dependence. Now consider its “tail merging”

transformation into Listing 11: there is no dependence anymore in the transformed program. The

dependence chain in the original program is not opaque: due to the equivalent I/O instruction

io(STDOUT, 0) on both paths, OCVS1,2 = OCVS1,3 = {0}, hence |OCVS1,2 | = |OCVS1,3 | = 1.

1 bool c = observe(val);
2 if (c) io(STDOUT , 0);
3 else io(STDOUT , 0);

Listing 10. Control dependence

1 bool c = observe(val);
2 io(STDOUT , 0);

Listing 11. Eliminated by tail merging
1 bool c = observe(val);
2 if (c) v = 42;
3 else v = 100;
4 io(STDOUT , v);

Listing 12. Pdata

1 bool c = observe(val);
2 if (c) io(STDOUT , 42);
3 else io(STDOUT , 100);

Listing 13. Pcontrol

On the contrary, Listing 12 and Listing 13 illustrate the robust back-and-forth conversion of data

and control dependences in opaque chains. Both programs form opaque chains from the definition of

c to the output of the value of v (42 or 100). The transformation from Pdata to Pcontrol and vice-versa
are both valid, preserving the opaque observation (a data dependence is converted into a control

dependence, specializing values into constants, and vice-versa for the reverse transformation).

Whether it is the multiple values of v (Pdata) or the alternative path from the definition of c to an

output I/O instruction (Pcontrol), it is impossible for the compiler to break the dependence. Formally,

on Pdata: OCVS1,4 = {42, 100}; while on Pcontrol : OCVS1,2 = {42,⊥} and OCVS1,3 = {100,⊥}; in all

cases the cardinal is 2.

Beyond opaque observations, important classes of instructions are always compatible with the

hypotheses of an opaque chain:

• all instructions that only propagate existing values; these include dereference, assignment,

load, store, return instructions;

• the same applies to the traditional C unary operators -, !, ~;
• any binary operator (resp. function call) where the operand (resp. arguments) type or the

value of the other operand (resp. other arguments) makes the operation bijective; e.g., + on
unsigned integers, * with the constant 1;

• any binary operator or function call with non-correlated opaque arguments (feeding the

same opaque value multiple times may degenerate into a singleton OCVS set, such as the

subtraction of an opaque value with itself).

More instructions may belong to an opaque chain provided specific constraints hold on its inputs:

e.g., left-shifting by 1 an unsigned int value if the compiler cannot prove it is always greater than

or equal to UINT_MAX/2, or dividing a value that the compiler cannot statically analyze to be less

than the divisor; in both cases the compiler is forced to consider that the image of the instruction

on all possible inputs is not a singleton.

We may finally illustrate these definitions on the observation-extended running example in List-

ing 3. The dependences linking incrementations of i2 among themselves and with the downstream

fault handler form an opaque chain: all operations on opaque values belong to the above-mentioned
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classes of instructions that are always opaque-chain-compatible. These chains extend to the return
instructions and fault handler through control dependences; the existence of an alternate control

flow path makes these extended chains opaque.

6.4 Application to Observation Protection
Let us now generalize Equation (1) to opaque chains. If a valid transformation preserves the tail

event of an opaque chain, then it must also preserve the event at its head.

Theorem 6.2 (Preservation of opaqe chains). Given a program P and input I , if e1 is linked
through an opaque chain to a transformation-preserved event en , then e1 is transformation-preserved,
and for any valid transformation τ mapping e1 to e ′1 and en to e ′n′ , there is a dependence chain linking
e ′
1
to e ′n′ . Formally, let T(P) denote the set of all valid transformations of P ,

e1
opaque

{ en ∧ en ∈ TP(P, I ) =⇒ ∀τ ∈ T (P), ∃e ′
1
, e ′n′ ∈ E[[τ (P)]](I ), e1 ∝τ e ′

1
∧ en ∝τ e ′n′ ∧ e ′

1

dep

→ e ′n′

Proof. The

opaque

{ relation implies e1 and en are opaque. The case of n = 1 is trivial.

Consider the case of n ≥ 2. Let ik = Inst(ek ) be the immediately upstream opaque observation of

en in the chain. Consider the ek . . . en sub-chain (which is trivially an opaque chain). By definition

of the

opaque

{ relation, |OCVSk ,n | ≥ 2. In other words, the sub-chain (excluding ek and en ) implements

the function mapping Dom(vk ) to OCVSk ,n , and it is sensitive to the value d defined by ek (i.e.,

non-constant along the values d may take). This implies the existence of a slice of events in E[[P]](I ),

spawning backward from en and including an event eu using d . It is trivial that ek
dep

→1 eu . From
Equation (2), en being opaque, the mapping of en to e ′n′ implies that the same value in OCVSk ,n is

used by e ′n′ . As a result, τ (P) also compute a function sensitive to d mapping Dom(vk ) = Dom(vk ′)
to OCVS′k ′,n′ , which is in turn computed by a slice in E[[τ (P)]](I ) spawning backward from e ′n′ . The

sensitivity of this function to d implies that the backward slice holds an event e ′u′ using d , such that

eu ∝τ e ′u′ . We may apply Equation (1) to ek
dep

→1 eu and eu ∝τ e ′u′ , which proves the existence of an

opaque observation event e ′k ′ ∈ E[[τ (P)]](I ) such that ek ∝τ e ′k ′ and e
′
k ′

dep

→ e ′n′ .

An induction on the number of opaque observations of the chain proves the preservation of e1

for all chain lengths, and that transformed events form a dependence chain e ′
1

dep

→ e ′n′ . □

Notice that events associated with non-opaque instructions along the chain are not necessarily

preserved. Furthermore, we did not prove that an opaque chain transforms into an opaque chain in

general: Theorem 6.2 only establishes that the transformed observation events in an opaque chain

are dependent, not that they form another opaque chain. Stronger hypotheses on opaque chains

are likely to be needed if we wished to do so. Fortunately, we do not need to further constrain

(and complicate) the definition of opaque chains. Theorem 6.2 applies to compositions of valid

transformations, which are valid transformations themselves. In practice, it is sufficient to refer to

the source program, modeling a sequence of compilation passes as a single transformation.

We may finally present the formalization’s main result: the protection of opaque observations

through opaque chains for arbitrary valid transformations.

Theorem 6.3 (Protected opaqe observation). Let P be a program implementing observations
through opaque chains enforcing a programmer-specified

hb

→ order, and such that any chain leads to a
downstream protected observation (resp. a downstream opaque observation protected conditionally
on some instruction in a set Ic ). Then all opaque observations in P are protected (resp. protected
conditionally on instructions in Ic ) according to Definition 5.2.
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Proof. Consider any valid transformation τ . We need to prove that τ preserves observations,

according to Definition 5.2. Since opaque chain terminatewith a protected observation (conditionally

on some instruction ic or not), Theorem 6.2 applied to opaque chains linking opaque observation

instructions to a subsequent protected (resp. conditionally protected) observation instruction proves

condition (i) (resp. condition (ic )). From Equation (2), any valid transformation must preserve the

values of opaque observation arguments v1, . . . , vk , along with the definition events producing

these values. This proves condition (ii). Let us now prove condition (iii)—the preservation of

hb

→. The

preservation of

fo

→ is an immediate corrolary of Equation (1). The preservation of

of

→ is analogous

to the proof of condition (ii). The preservation of

oo

→ involves the traversal of opaque chains:

consider a pair of opaque observation events eobs1 , eobs2 , such that eobs1
oo

→ eobs2 . Since eobs1
opaque

{ eobs2 ,
Theorem 6.2 applies to all opaque events on the opaque chain, guaranteeing their mapping to

events in P ′ = τ (P) and that these events form a dependence chain. This proves the existence of

e ′obs1 and e
′
obs2

—the counterparts of eobs1 and eobs2 in P ′
—as well as e ′obs1

oo

→ e ′obs2 . □

7 VALIDATION: FUNCTIONAL CORRECTNESS AND SECURITY
This section analyzes the correctness our approach and implementation.

7.1 Functional Validation by Checking Partial State Integrity and Ordering
Establishing the preservation of an observation event amounts to proving the existence of an

observation point at which all observed values are available, at the proper memory address or

associated with the appropriate variable, and ordered w.r.t. other observations according to the

happens-before relation. To this end, we leverage observation traces, the sequence of partial states
associated with observation events encountered during a given execution [Vu et al. 2020]. Practically,

validation involves comparing, for a given program input, two observation traces:

(1) the reference trace, obtained by executing an instrumented version of the source program

with printfs in place of observations, compiled without any optimization;
7

(2) the optimized trace: obtained by executing the program with opaque observation builtins,

compiled at different optimization levels; we extend a DWARF parser [Eli Bendersky 2011]

to map all observation points to breakpoints in machine code, as reported in the DWARF

section, recording the values and their storage locations at every observation point; we use a

debugger to save these (address, value) pairs during program execution.

To compare the traces, we associate every partial state with a unique identifier—a combination

of line and column numbers at which the event is defined in the program source. We then verify

using an offline validator (a small Python program) that each partial state in the reference trace has

a corresponding counterpart with the same identifier in the optimized trace, and vice versa. The

validator also verifies that all values in a given partial state from the optimized trace match the

expected values reported in its reference counterpart.

We validate functional correctness on a subset of the Frama-C test suite, a static analysis frame-

work for C programs [Cuoq et al. 2012]. The test suite exercises Frama-C analyses on a range of

programs representative of the C language semantics, using program properties written in the

ACSL annotation language [Baudin et al. 2008]. We restrict ourselves to properties assessing the

values of variables at a given program point—easily be expressed as observation events—ignoring

more advanced ACSL constructs. Unlike Vu et al., our approach only enforces a partial ordering on

program observation events: there is no particular constraint for the relative order of observation

7
We assume -O0 preserves the observation events as well as the partial state of the ISO C abstract machine [ISO 2011]

containing the observed values of each event.
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events having no data dependence relation. Furthermore, for the considered programs, there is no

dependence relation between observation events. As a result, we propose a dual validation method-

ology: for every test case in the suite, we derive (i) an unordered version where a distinct token is

produced from every observation event and immediately consumed in a distinct I/O instruction (the

I/O effect being decoupled from the observation, it does not constrain the ordering of observation

events), and (ii) a totally ordered version where all events are chained by reading from and writing

to the same variable. The totally ordered version is used to validate the preservation of observation

events and their ordering, by verifying that reference and optimized traces are identical. As for the
unordered version, we verify the presence of all observation events in the compiled programs by

checking the two-way mapping of partial states in reference and optimized traces.

We compile both versions of every test case at 6 optimization levels -O0, -O1, -O2, -O3, -Os, -Oz.
This results in two sets—undordered (i) and ordered (ii)—of 31 applicable test cases featuring 616

observations. Notice that these test cases are not meant to be evaluated as performance benchmarks:

they are code snippets (a dozen lines of code) and are not provided with validation data sets; we

only use them to validate the correctness of our implementation. We automatically verified that in

both sets, all 616 observations have been correctly propagated to machine code, and for the first set

(ii), the observation trace is identical to the reference trace.

7.2 Security Protection Preservation Validation
Validating the preservation of security protections is more challenging. While verifying partial state

integrity is enough to prove the preservation of observation events, it is only a necessary condition

for preserving security protections. Hence, considering our selection of security applications from

Section 3, we also define additional mechanisms to validate specific security properties.

• Value utilization: beyond the observation of partial states, we also need to make sure that

the observed values are effectively used in downstream security protections. To this end,

we implement a two-phase verification: (1) determine the uses of observed values in the

program, verifying that they are indeed part of the source code protection, (2) for every

observed operand of every C expression of a security protection—e.g. a masked key or SCI

counter check—verify that machine code uses a value defined by an opaque observation.

• Statement ordering: for SCI, we also need to check the proper interleaving of functional and

countermeasure statements.

• Constant-time selection: branching conditionally on a sensitive value is forbidden; as a result,

we verify that none of the conditional branches (indirectly) depend on the secret value,

including the selection bitmask derived from the boolean secret or its observed value.

These validation mechanisms have all been applied manually, by inspecting the source code and

disassembling the generated machine code.

Table 1 summarizes the results of applying the validation schemes to our selected security

benchmarks. For every benchmark we could verify that the schemes appropriate to the benchmark’s

security properties yield the expected results, validating our approach and implementation.

Table 1. ✓ indicates the scheme is validated for the benchmark and n/a that it is not relevant.

era-* mask-* loop-pin sci-* ct-*

Partial state integrity ✓ ✓ ✓ ✓ ✓

Value utilization n/a ✓ ✓ ✓ ✓

Statement ordering n/a n/a n/a ✓ n/a

Constant-time selection n/a n/a n/a n/a ✓
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8 PERFORMANCE EVALUATION
Let us now turn to performance and compilation time experiments.

8.1 Experimental Setup
For every security application presented in Section 7, we first compare our opaque observation ap-

proach against the unoptimized version—which is also a solution to preserving security protections.

We then compare against other preservation mechanisms available, namely compiler-dependent

programming tricks for constant-time selection [Simon et al. 2018], and Vu et al.’s I/O-based ap-

proach for all other applications. For fairness purposes we use the same version of LLVM as Vu

et al. Eventually, we also compare our compiler-based implementation with an alternative inline

assembly approach that does not involve modifications to Clang and LLVM.

We target two different instruction sets: ARMv7-M/Thumb-2, representative of deeply embedded

devices, and Intel x86-64, representative of high-end processors with a complex micro-architecture.

To evaluate our approach when conditional moves may be expanded into branches [Simon et al.

2018], we also consider IA-32 for constant-time applications ct-rsa and ct-mgmr. Performance

evaluation for the ARMv7-M/Thumb-2 ISA takes place on an MPS2+ board with a Cortex-M3

clocked at 25 MHz with 8 MB of SRAM, while the Intel test bench (used for both x86-64 and IA-32

targets) and has a quad-core 2.5 Ghz Core i5-7200U CPU with 16 GB of RAM. We use the Intel

platform to compile for all targets. Switching targets only concerns the back-end, a short part of the

compilation pipeline; as a result, compilation times are very similar and we only report compilation

time for the ARMv7-M/Thumb-2 ISA. Our experiments cover all common optimization levels (-O1,
-O2, -O3, -Os, -Oz). Table 2 collects the number of repetitions of the kernel function, the size and

execution time of all compiled binaries. Sizes are for the unstripped binaries, accounting for all

debug and observation metadata.

8.2 Performance Evaluation
Figure 1 presents the speedup of our approach at different optimization levels over unoptimized

programs. For all benchmarks, speedup ranges from 1.2 to 12.6, with an harmonic mean of 2.8.
Clearly, our opaque observation approach to preserving security protections enables aggressive

optimizations with significant benefits over -O0.
Figure 2 presents the speedup our approach compared to reference preservation mechanisms, at

different optimization levels. For era-rsa-enc, era-rsa-dec, mask-aes, mask-rotate, loop-pin,
sci-pin and sci-aes, we compare our approach against Vu et al. The authors introduced new

intrinsics to implement their property preservation mechanism, relying heavily on I/O effects.

In particular, these intrinsics chain upstream definitions to downstream observations through

I/O-effecting artificial definitions. In order to maintain the consistency of the debug information

for observed values, the authors inserted additional artificial definitions to prevent multiple live

ranges corresponding to the same source variable from overlapping. Furthermore, to ensure the

correct values in memory at observation points, these intrinsics also behave like memory fences,

i.e. can read from and write to memory. Overall, this results in spurious ordering constraints and

missed optimizations due to the high density of I/O-effecting instructions. As a consequence, our

implementation with pure intrinsics (no side effects), enables more optimizations, resulting in faster

code. For example, although rotate-mask contains the masking computation, the data used in the

operation is passed as function arguments instead of being declared as global variables in reference

implementations; this clearly allows more optimizations when the function is inlined (i.e. when

compiled at -O2, -O3 or -Os), and especially when the function call is inside a loop. More generally,

optimizations such as “loop unrolling” and “loop invariant code motion” are the main sources of
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Table 2. Repetitions, execution time and binary size for all benchmarks and targets.

era-rsa-enc era-rsa-dec mask-aes mask-rotate loop-pin sci-pin sci-aes ct-rsa ct-mgmr

Number of repetitions of the security-sensitive function

x86-64 10
5

10
4

10
7

10
10

3 × 10
8

10
8

10
5

10
4

200

ARMv7-M 1 1 1 10 120 2 1 1 1

IA-32 n/a n/a n/a n/a n/a n/a n/a 10
4

200

Execution time (in seconds for x86-64 and IA-32, in kcycles for ARMv7-M)

-O1

x86-64 1.848 4.307 9.237 15.39 2.619 4.971 3.768 4.28 1.374

ARMv7-M 3961 13979 14 0.3 0.2 1.7 448 12396 263963

IA-32 n/a n/a n/a n/a n/a n/a n/a 8.7 5.642

-O2

x86-64 1.848 4.307 8.606 4.236 2.384 4.024 3.895 3.286 1.134

ARMv7-M 3961 13978 13 0.06 0.17 1.6 406 11036 217161

IA-32 n/a n/a n/a n/a n/a n/a n/a 7.634 5.44

-O3

x86-64 1.848 4.307 8.598 4.237 2.11 4.485 3.831 3.244 1.128

ARMv7-M 3961 13978 13 0.06 0.15 1.6 406 10486 217508

IA-32 n/a n/a n/a n/a n/a n/a n/a 7.598 4.84

-Os

x86-64 1.848 4.307 9.636 6.239 2.617 4.9 3.25 4 1.322

ARMv7-M 3961 13978 13 0.14 0.2 1.7 458 12067 280746

IA-32 n/a n/a n/a n/a n/a n/a n/a 8.556 4.788

-Oz

x86-64 1.848 4.307 10.273 17.057 3.769 5.763 3.836 4.298 1.412

ARMv7-M 3961 13978 17 0.4 0.19 1.8 459 12922 291721

IA-32 n/a n/a n/a n/a n/a n/a n/a 9.106 5.93

Binary size (in KB)

-O1

x86-64 489 494 24 11 14 44 62 495 128

ARMv7-M 504 505 66 90 64 100 123 505 192

IA-32 n/a n/a n/a n/a n/a n/a n/a 444 104

-O2

x86-64 618 619 25 13 15 45 74 619 212

ARMv7-M 636 637 68 91 65 103 132 641 278

IA-32 n/a n/a n/a n/a n/a n/a n/a 544 163

-O3

x86-64 661 666 25 13 17 47 83 663 225

ARMv7-M 674 675 68 91 66 104 135 680 287

IA-32 n/a n/a n/a n/a n/a n/a n/a 578 167

-Os

x86-64 485 490 24 11 14 45 57 492 133

ARMv7-M 511 512 67 90 64 102 124 515 198

IA-32 n/a n/a n/a n/a n/a n/a n/a 454 112

-Oz

x86-64 474 475 23 11 14 44 59 476 122

ARMv7-M 486 487 66 90 64 102 123 489 194

IA-32 n/a n/a n/a n/a n/a n/a n/a 436 101

benefits with our approach at these optimization levels. On the contrary, for era-rsa-enc and

era-rsa-dec, the function implementing the protection only contains the erasure of the sensitive

buffer, we thus observe almost no performance difference with Vu et al. Similarly for mask-aes,
data required for mask computations is stored in memory (global variables) and there is almost no

difference between the two versions. As for other applications, we note a clear improvement for

both targets, ranging from 1.04 to 1.79, with an average of 1.3. Overall, compared to our approach,

I/O side-effecting intrinsics restrict compiler optimizations and inevitably degrade performance.

For ct-rsa, we compare our approach against the constant-time selection implementation

of mbedTLS [Paul Bakker, ARM 2019], which is basically the same as Listing 8, but with the

computation of the bitmask (line 3) outlined into a separate function, marked as non-inlinable in an

attempt to prevent the compiler from optimizing it away. For ct-mgmr, we compare our approach

against the specially-crafted implementation of OpenSSL [The OpenSSL Project 2003]. Now, general-

purpose compilers offer no guarantees of preserving constant-timeness: future versions of the

same compiler may spot the trick turn it back to a (probably faster) time-sensitive implementation

[Simon et al. 2018]. Our approach allows constant-time selection functions to be safely inlined; yet

these only take a small fraction of the execution time and we do not notice a clear difference with

other constant-time implementations.
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Fig. 1. Speedup over unoptimized programs—ordered by optimization level -O1,2,3,s,z.
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Fig. 2. Speedup over Vu et al. [2020] (for era-rsa-enc, era-rsa-dec, mask-aes, mask-rotate, loop-pin, sci-pin,
sci-aes) and programming tricks [Simon et al. 2018] (for ct-rsa, ct-mgmr)—ordered by optimization level
-O1,2,3,s,z.

8.3 Compilation Time
Figure 3 shows the compilation time overhead compared to compiling the original programs at the

same optimization level. Note that the optimized original programs are insecure, as protections

have been stripped out or altered by optimizations. We consider the Intel platform since it is used

for both native and cross-compilation for both targets.

In general, the overhead is under 10%, except for sci-aes and sci-pin where it ranges from
13% up to 70%. As discussed in Section 3.2.1, the SCI protection represents a very important fraction

of the code due to the interleaved counter incrementations. As a consequence, code size increases

significantly with fully-preserved countermeasures, which justifies the compilation time overhead.

8.4 Alternative Implementations
Compilers provide an inline assembly syntax to embed target-specific assembly code in a function.

This is used by operating system programmers and for low-level optimizations, and also for sensitive
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Fig. 3. Compilation time overhead over the original (insecure) benchmark.

applications to avoid interference from the compiler [Rigger et al. 2018]. GCC-compatible compilers

implement an inline assembly syntax with explicit inputs, outputs, side-effects and I/O effects

[Stallman and DeveloperCommunity 2009], standing as a contract between opaque assembly code

and the compiler. We may thus leverage this feature to implement opaque observation. More

specifically, the opaque observation of a C variable v is made up of an empty inline assembly region,

with the variable set as input and output of the region, so that v is opaque to the compiler after

evaluation of the inline assembly expression, just as if it was defined by __blt_obs_var.
While this approach does make observations opaque, it complicates the implementation of ob-

servations, and more specifically carrying precise variable names, memory addresses, line numbers

down to machine code. Additional conventions and post-pass on the generated assembly code are

required to produce the appropriate DWARF metadata.

Now, the natural question is to compare the performance of an approach based on inline-assembly

with our compiler-native implementation of opaque observations. To this end, we consider a

subset of the applications presented in Section 3, made of era-rsa-enc, era-rsa-dec, mask-
aes, mask-rotate, loop-pin, ct-rsa and ct-mgmr. We exclude sci-pin and sci-aes as these

applications would require the manual insertion of inline assembly expressions at every statement

of C source programs, which is impractical. Figure 4 presents the speedup of our compiler-native

implementation w.r.t. inline-assembly, at different optimization levels.

In the majority of cases, both implementations generate the same assembly code. For ct-rsa
and ct-mgmr, the slight performance difference is due to discrepancies in register allocation. There

is a significant performance difference for mask-rotate compiled with -O2 and -O3 for x86-64:

our compiler-native implementation is 40% faster than inline assembly. The core loop of the inline-

assembly version happens not to be unrolled, while the compiler-native version is. Interestingly,

this is only the case for x86-64: the same loop is always unrolled when compiling for ARMv7-M.

Indeed, the difference disappears when we force loop unrolling using the -funroll-loops option

together with #pragma unroll. As expected, inline assembly occasionally interferes with compiler

optimizations—despite the precise specification of its side-effects—while compiler intrinsics allow

for carrying more precise semantics to the optimizers. Mitigations exist and make the inline

assembly approach interesting to some multi-compiler development environments. The take away

from this is that both approaches are sound and leverage the same formalization similar secure

development scenarios (monitoring is slightly more difficult with inline assembly). Yet this may
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Fig. 4. Speedup over inline assembly—ordered by optimization level -O1,2,3,s,z.

not always be the case in the future: compilers are not forbidden to analyze inline assembly and

take optimization decisions violating the opacity hypothesis.

9 CONCLUSION
We addressed a fundamental, open issue in security engineering: preserving security protections

through optimizing compilation. We formalized the notion of observation and its preservation

through program transformations. We instantiated this definition and preservation mechanisms

from source code down to machine code. The approach relies on fundamental principles of compiler

correctness: (1) the preservation of I/O effects and (2) the interaction of data dependences with

constructs that are opaque to static analyses. We proved the correctness of the approach, and

validated it within the LLVM framework with virtually no change to existing compilation passes.

There are potential applications beyond secure compilation. Some uses of the volatile key-

word could be replaced with opaque observations, enabling finer grained optimizations on kernel

code. Avenues for further research also include software engineering scenarios such as testing

of production code without instrumentation with runtime checks, and more robust debugging of

optimized code.
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