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We show that ribbed elastic strips under tension present large spontaneous curvature and may
close into tubes. In this single material architectured system, transverse bending results from a
bilayer effect induced by Poisson contraction as the textured ribbon is stretched. Surprisingly, the
induced curvature may reverse if ribs of different orientations are considered. Slender ribbed struc-
tures may also undergo a non-trivial buckling transition. We use analytical calculations to describe
the evolution of the morphology of the ribbon and the transitions between the different experimen-
tal regimes as a function of material properties, geometrical parameters and stretching strain. This
scale-independent phenomenon may help the manufacturing of tubular textured structures or easily
controllable grippers at small scale.

Textures on soft surfaces are ubiquitous in both natu-
ral and man-made systems. They grant enhanced chem-
ical properties to the surfaces, such as wetting [1] and
adhesion [2–4], produce structural colors [5], or provide
control on tribology [6, 7]. Such textures are however
prone to buckle and to crease when the substrate is sub-
mitted to stress [8–10]. Although generally undesired,
such morphological instabilities have been harnessed for
micro-patterning [11], mechanical characterisation [12] or
design of flexible electronics [13]. Here, we show that rib
structures on a strip made of a single material lead to
significant transverse bending upon stretching. The ori-
entation and the magnitude of the induced curvature sur-
prisingly depends on the orientation of the ribs. These
simple structures may thus be viewed as examples of flex-
ible metamaterials [14], i.e. structures in which micro-
architecture induces unconventional properties through
simple traction/compression (e.g. twist [15], textures [16]
or transverse curvature [17]).

Common strategies for programming the bending of a
slender structure rely on combining two layers of different
materials into a bilayer. The layers react with different
expansion or swelling to a given stimulus (e.g. humidity
for pine cones [18] or hygromorph structures [19–21], tem-
perature for thermostats [22], inter-diffusion for silicon
polymers [23]), inducing a length mismatch between both
layers. As the layers are assembled together, a stress gra-
dient is generated across the thickness and the structure
spontaneously bends, the longer layer being at the outer
part of the structure. Bilayer effects have been inten-
sively studied since the pioneering works of Stoney [24]
and Timoshenko [22]. They are for instance essential
in recently developed technologies such as soft robotics
grippers [25–28].

Here, we introduce a simple strategy to produce con-
trollable curvature by stretching soft textured ribbons.
Rubber ribbons are patterned with transverse walls of
the same material (Fig. 1). The key point is that upon
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FIG. 1. Stretching of textured ribbons. (a) Sketch of
a portion of the ribbon of width l (top). Cross section of
the corrugated ribbed strip with membrane thickness t, walls
height h and width w separated by a distance d. (b) Exper-
imental setup: a laser sheet intercepts the ribbon (stretched
along the ey direction) in order to measure its curvature. (c)
Ribbon with increasing imposed strain ε0: the ribbon pro-
gressively bends along its transverse direction and eventually
rolls itself into a tube.

traction, the width of the ribbon decreases by Poisson
effect, whereas the walls, oriented perpendicularly to the
traction direction, are barely affected by the stretching of
the membrane on which they sit. The resulting mismatch
in width induces an effective bilayer effect and the ribbon
rolls itself into a tubular shape whose curvature increases
with the imposed strain ε0 (Fig. 1(c) and Supplemental
Movie 1).
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We first focus on walls oriented normal to the traction
direction. Adapting Timoshenko’s reasoning, we obtain
an analytical prediction in the linear regime and compare
it with our experiments over a wide range of geometrical
parameters. We deduce the optimal size and density of
the walls on a ribbon of a given thickness, providing the
maximum curvature-over-stretch ratio. We then extend
the theory to tilted walls, and predict the surprising in-
version of the induced curvature for a critical inclination
angle. We finally observe that walls may buckle as the
ribbon is stretched; we describe compressive stresses in
the texture and derive analytically the onset of buckling
of the ribs.
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FIG. 2. Stretch-induced curvature. (a) Curvature κ as a
function of the imposed strain ε0 for various strip geometries.
Green dots: t = 2 mm; wall density φ = 1/2; w = 0.75 mm;
0.5 mm ≤ h < 3 mm; 0 ≤ ε0 ≤ 0.6. Yellow to blue dots:
t = 0.5 mm; wall density φ = 1/2; 0.5 mm ≤ w ≤ 1 mm;
1 mm ≤ h ≤ 5 mm; 0 ≤ ε0 ≤ 0.9. The ribbons are made
indifferently of two different silicone elastomers (Elite Dou-
ble 8 and 22 from Zhermack) of respective Young’s modulus
E = 250 kPa and E = 650 kPa, and Poisson ratio ν = 0.5.
(b) Experimental versus theoretical dimensionless curvature
κ̃ = κt. (c) Curvature-over-strain ratio κ̃/ε0 (color with scale
given by the ordinate axis in plot (d).) as a function of the

relative wall height h̃ = h/t and wall density φ = w/(d+ w).

The full line corresponds to the optimal value of h̃ as a func-
tion of φ. (d) Curvature-over-strain ratio as a function of h̃
for φ = 0.5 (dashed line in (c)). Triangles are obtained by a
linear fit of the experimental curves κ = f(ε0) and the black
line is the theory (Eq. 1).

The textured strips are made of silicone elastomers
(Elite Double 8 or 22 from Zhermack, Dragonskin 10
from Smooth-On) by mixing equal quantities of catalyst
and base liquids. The mixture is then poured into a 3D
printed mould with the desired geometric parameters.
After curing, the ribbon has a rest length L, a width l
and a base thickness t with L� l� t. It is textured with

walls of height h and thickness w. The walls are regularly
spaced by a distance d and are oriented perpendicularly
to the ribbon direction (Fig. 1(a)). We define the den-
sity of textures as φ = w/(d+w). The ribbon is clamped
into a traction test machine and stretched to a strain
ε0 = ∆L/L (Fig. 1(b)). The curvature of the ribbon is
measured far from the fixed ends of the ribbon, shining
a laser sheet with an oblique incidence. The deflections
of the laser line are proportional to the local out-of-plane
displacements of the ribbon (see Supplemental Material).

To rationalize the transverse bending observed upon
stretching (Fig. 1(c) and Supplemental Movie 1), we
make the following simplifying assumptions: (i) the
boundary layer over which the base of the walls is
stretched by the substrate is small compared to the height
of the walls and can thus be neglected (i.e. h � w); (ii)
the base of the ribbon is stretched homogeneously with
a strain ε0 despite the local reinforcements induced by
the presence of the walls (this assumption is valid when
t� w); (iii) the walls are sufficiently close to one another
to avoid any significant curvature difference between the
portions of the ribbon covered or not by a wall. We con-
sider a homogenized version of the membrane composed
of a first layer (the base of the ribbon) stretched with
a strain ε0 and a second layer (the walls) that is un-
stretched. Stretching the first layer induces a transverse
contraction which compresses the second layer in the di-
rection normal to the applied traction. The curvature
and the position of the neutral plane can be derived by
minimizing the elastic energy in this textured ribbon with
respect to these two unknowns (see Supplemental Mate-
rial). Within the linear framework of Hookean elasticity,
we obtain the following expressions for the normalized
curvature κ̃ = κt and the transverse strain ξ = εxx(z = 0)
at the membrane mid-surface:

κ̃ =
6h̃(h̃+ 1)φ

1 + 4h̃φ+ 6h̃2φ+ 4h̃3φ+ h̃4φ2
νε0 (1)

ξ = − 1 + 3h̃φ+ 6h̃2φ+ 4h̃3φ

1 + 4h̃φ+ 6h̃2φ+ 4h̃3φ+ h̃4φ2
νε0 (2)

where ν is the Poisson ratio of the elastomer (ν = 1/2
throughout this article) and h̃ = h/t is the dimensionless
wall height. The equation for the curvature is equiva-
lent to Timoshenko’s formula for bilayers [22], where the
wall density φ replaces the ratio of Young moduli in both
layers. The exact same equations may be derived using
classical laminate theory [29], considering the membrane
as an isotropic layer and the walls as another orthotropic
layer transmitting stresses and loads only in the direc-
tion of the walls (see Supplemental Material). Figure 2a
shows that the measured curvature varies linearly with
the applied strain ε0, in agreement with the model. The
curvature of the ribbon may thus be easily controlled by
adjusting the amount of stretching. Our theoretical pre-
diction matches quantitatively the measured curvatures,
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as shown in Fig. 2(b), even for large strains, beyond the
limit of validity of the theory. In Fig. 2(c), κ̃/ε0 is plotted
as a function of the two relevant geometrical parameters
φ and h̃. Maximizing this ratio, we obtain the optimal
geometry of the textures (h̃ → 1/2, φ → 1), which cor-
responds to a ribbon of thickness h + t with regularly
spaced cuts of depth h. Such an ideal configuration is
however more challenging to manufacture and may be
prone to rupture due to stress singularities at the tip of
the slits (see a near optimal design (h̃ = 1/2, φ = 0.88)
in supplemental Fig. S3). For a more moderate wall den-
sity of φ = 1/2, experimental measurements of stretch-
induced curvature match quantitatively the theoretical
prediction [Fig. 2(d)]. We interpret the small overestima-
tion of the curvature as a consequence of the stretching
of the base of the walls, which has been neglected in our
idealized model. This effect is more pronounced when the
aspect ratio of the walls h/w is small (light green dots in
Fig. 2(a)-(b)). More generally, the optimal dimensionless
height h̃ for a given density φ reads

φ(h̃) = 1/[h̃2(2h̃+ 3)] (3)

represented by the solid black line in Fig. 2(c).

When the walls are not oriented along the width of the
ribbon but tilted by an increasing angle χ0 (Fig. 3 and
Supplemental Movie 2), we observe that the curvature-
over-stretch ratio decreases and eventually reverses above
a critical tilting angle χc ≈ 35◦. This surprising feature
commands an extended analytical treatment. Qualita-
tively, stretching a smooth ribbon with a strain ε0 in-
duces a transverse contraction −νε0. Hence, a tilted
material line making an initial angle χ0 with the width
direction has a length `0 = l/ cosχ0 before stretching

and ` = `0

√
cos2 χ0(1− νε0)2 + sin2 χ0(1 + ε0)2 after

stretching. The strain experienced by this material line
thus reads ε` = cos2 χ0(tan2 χ0 − ν)ε0 to the first order
in ε0. This strain vanishes for a specific orientation of
the line χc = arctan

√
ν ≈ 35◦. When χ0 < χc (respec-

tively χ0 > χc) the line contracts (respectively expands).
Considering now a wall on this tilted line, contraction
(χ0 < χc) induces a curvature with the walls on the out-
side, whereas elongation (χ0 > χc) leads to the curvature
of the structure with the walls on the inside, as observed
experimentally (Fig. 3 and Supplemental Movie 2).
Quantitatively, bending of the ribbon not only induces
bending of the wall but also twist. For the sake of simplic-
ity, we neglect the corresponding twisting energy since
the torsion constant J ∼ hw3 of the wall is much smaller
than the bending constant I ∼ h3w in the regime of
interest (h � w). A derivation taking into account the
twisting of the wall is presented in the Supplemental Ma-
terial. More importantly, the membrane may also expe-
rience a global shear strain due to the presence of the
tilted walls. This additional effect is tackled in the Sup-
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FIG. 3. Varying the wall orientation. (a) Ribbon with
walls tilted by an angle χ0. (b) Stretched ribbons with walls
of various orientations χ0 and thus different transverse curva-
ture directions. (c) Dimensionless curvature κ̃ as a function
of the applied strain ε0 for various angles χ0 (colors accord-
ing to the angle χ0 with the colorbar presented in (d); h = 1
mm; t = 1 mm; d = w = 0.28 mm). Solid lines correspond
to the theoretical model with shear (Eq. 5). (d) Curvature-
over-strain ratio at small strain as a function of χ0. Triangles
are obtained by a linear fit of the first 6 experimental points
in graph (c). The dashed line is the theoretical prediction
(Eq. 4) of the simplified model neglecting shear. The solid
black line corresponds to the full model accounting for shear
(see Supplemental material). A quantitative agreement is ob-
tained for all angles, without any fitting parameter.

plemental Material. Neglecting shear and assuming a
cylindrical configuration, the total elastic energy may be
computed both in the membrane and in the walls and
then minimized with respect to the curvature κ and the
transverse strain ξ of the membrane mid-surface in the
limit of small strain (see Supplemental Material). The
normalized curvature finally reads:

κ̃ =
6h̃(h̃+ 1)φ cos4 χ0

(
ν − tan2 χ0

)
1 + φ cos4 χ0(4h̃+ 6h̃2 + 4h̃3) + φ2 cos8 χ0h̃4︸ ︷︷ ︸

f(χ0, h̃, φ, ν)

ε0

(4)
When χ0 = 0, we retrieve Eq. 1. As observed in the
experiments (Fig. 3(d)), the curvature-over-stretch ratio
at small strains vanishes and changes its sign at the spe-
cific orientation of the walls χc. Our simplified model
(dashed line in Fig. 3(d)) shows good agreement with
the experimental data, except for χ0 ≈ 60◦. The agree-
ment may be further improved by taking into account a
global shear strain in the membrane (solid line). Clas-
sical laminate theory, associated with a rotation of the
coarse-grained plane-stress stiffness matrix of the walls,
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leads to the same result (see Supplemental Material). Be-
yond the linear behavior described in Eq. 4, the full non-
linear curvature vs. strain curve may be retrieved by
updating the actual angle χ in the deformed state. Ne-
glecting the shear, this actual angle approximately reads
χ(ε0, χ0) = arctan ( 1+ε0

1−νε0 tanχ0). The curvature-strain
curve finally reads

κ̃ =

∫ ε0

0

f(χ(ε, χ0), h̃, φ, ν)dε (5)

where the function f is the linear coefficient relating the
dimensionless curvature κ̃ and the strain ε0 in Eq. 4. This
expression is plotted in Fig. 3(c) and shows good agree-
ment with the experimental data, even at large strains.
For walls oriented with an angle χ0 = 30◦, the curva-
ture changes its signs above the predicted critical strain
(Fig. 3(c) and Supplemental Movie 3).

Our theory however fails to accurately predict the re-
sponse of the strips outside the asymptotic regime de-
scribed above, especially when t is not large compared
to w (Fig. S5 in Supplemental Material). Indeed, the
physical bond between the membrane and the walls is
overlooked in the model, which induces significant local
changes in the strain distribution in the membrane. Tak-
ing this subtle effect into account would require a numer-
ical analysis, which is beyond the scope of the present
work.
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FIG. 4. Wall buckling. (a) Walls for different geometries
and stretching ε0 in a non-buckling (a) and a buckling (b, c, d)
regime. The lettering corresponds to the lettered symbols in
the diagram. (b) Diagram with the rescaled applied strain

ε0/εc as a function of the dimensionless height h̃ = h/t for
φ = 1/2. The black lines correspond to the expected buckling
threshold (Eq. 6). Symbols represent the geometry of the
walls: triangles (h = 3 mm; w = 0.75 mm); squares (h =
5 mm; w = 1 mm); circles (h = 1 mm; w = 0.5 mm).

Beyond the global transverse bending of the strips, the
textures may undergo a buckling transition for certain
geometries above a critical strain (Fig. 4 and Supple-
mental Movie 3) [30]. We focus here on transverse ribs
parallel to the ex direction (i.e., χ0 = 0). Because of

the presence of the stretched membrane, the ribs are un-
der compression, and not in a pure bending mode. The
transverse strain inside the ribs may be inferred from the
combination of Eqs. 1 and 2 and is geometrically given
by εxx(z) = ξ + κz. The buckling of a thin wall on
a compressed foundation - or equivalently, the swelling
of a wall on a passive foundation - has been studied in
the context of swelling bilayers of gels [31]. Buckling is
expected to occur when the compressive strain reaches
εc = −0.87w2/h2, and the wavelength λ at the onset of
instability is found proportional to h. In the present case
however, the walls are additionally bent, which increases
the compression close to their base but reduces the com-
pression on the upper part of the walls. We assume that
the wall buckles when the top of the wall reaches the
critical compressive strain εc, i.e, when:

εtopxx = νε0
−1 + 3h̃2φ+ 2h̃3φ

1 + 4h̃φ+ 6h̃2φ+ 4h̃3φ+ h̃4φ2
= εc (6)

Remarkably, this strain vanishes when the height is op-
timal for a given density (Eq.3). If the height is larger
than the optimum value, the top of the walls is under
tension and the structure does not buckle. In the op-
posite case, the top of the walls is under compression
and the compressive strain εtopxx increases linearly with ε0
until it reaches the critical buckling strain εc. Figure 4
shows the configuration diagram with the rescaled strain
ε0/εc as a function of h̃ for φ = 1/2. Our theory predicts
quantitatively the transition to buckling for various walls
sizes and aspect ratios (Fig. 4). The wavelength of the
instability classically scales as h [31]. When the mem-
brane is infinitely thick (i.e when h̃� 1) we retrieve the
classical buckling threshold −νε0 = εc. As a consequence
of buckling, the compressive stresses in the ribs are par-
tially relaxed and the induced bending is less pronounced
than predicted in our linear theory (Eq. 1).
We have demonstrated how spontaneous curvature can
be induced by stretching a textured ribbon. This curva-
ture results from the difference in Poisson contraction be-
tween the ribbon and the textures, and is well described
by a simple analytical model. Contrary to standard bi-
layers, this effect is not caused by a contrast of material
properties but by geometry. A natural extension of this
work would be to program complex shapes by varying
the orientation χ0 of the walls along the ribbon. Nev-
ertheless, the gradient of curvature will be limited by a
longitudinal persistence length observed when the trans-
verse curvature of a tubular structure is modified [32–
34]. Although we focused on macroscale structures, the
mechanism is scale invariant. Many techniques, includ-
ing soft lithography, two-photons laser writing or laser
etching, are readily available to manufacture textured
ribbons at microscales. For micrometer thin structures
of 1 mm width for instance, a typical strain of a few
percent is sufficient to close the ribbon into a cylinder.
At small scales, surface stresses should be additionally
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taken into account [35]. Depending on the orientation
of the walls, the obtained tubes may have textures ei-
ther on the inside or the outside. Such structures could
be used for flow control in microfluidic devices or as soft
grippers. We therefore envision that the programmable
self-curving structures based on surface textures could
become a very simple tool to manufacture tubular struc-
tures at small scale.
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