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ABSTRACT

While chemotherapy and radiotherapy remain the first-line approaches for the management of most
unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treat-
ment, notably with the clinical success of immune checkpoint inhibitors. Inmunotherapies aim at (re)
activating anticancer immune responses which occur in two main steps: (1) the activation and expansion
of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells
(priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lympho-
cytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic
cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radio-
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therapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer
immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to
promote superior antitumor immune activity in the context of limited systemic toxicity.

Introduction
Brief history of anticancer immunity

In 1890, William B. Coley injected dying bacterial cultures
(called Coley toxins) as a treatment for various cancers, includ-
ing soft tissue sarcoma." In spite of mixed success, this bacterial
immunotherapy inspired the application of Bacillus Calmette-
Guérin (BCG), an attenuated form of the tuberculosis-causing
bacteria, for malignant indications. In 1990, BCG became
among the first antitumoral immunotherapy approved by the
Food and Drug Administration (FDA) as an adjuvant treat-
ment of superficial bladder carcinoma for which it remains a
standard of care to date.” In 1994, it was shown that the
immune system not only recognizes tumor antigens but also
danger signals emitted by cells undergoing stress or abnormal
differentiation.” Despite these elements, the role of the
immune system against cancer has long been debated, in part
due to the evidence that tumor cells could benefit from a
proinflammatory environment, including proliferative and
proangiogenic signaling.®” In the early 2000s, the group of
Robert Schreiber demonstrated that interferon gamma
(IFNG, best known as IFNy) plays a crucial role in cancer
immunosurveillance and that tumors coming from

immunodeficient mice are more immunogenic than tumors
arising on immunocompetent ones, giving birth to the concept
of immunoediting.®'° These two fundamental findings led to a
regain of interest for cancer immunotherapy, which aims at
(re)activating an anticancer immune response.' !> At the same
time, the evidence came up that some conventional treatments,
like anthracycline-based chemotherapy or radiotherapy,'*'*
which were initially used to impair cancer cell proliferation,
were also able to induce the release of damage-associated
molecular patterns (DAMPs) and antigens, leading to the acti-
vation of an adaptive anticancer immune response.'” '®
Nowadays, several immunotherapies are being investigated in
oncology: vaccines,'”** adjuvants,”"*> monoclonal antibodies
(mAbs),>>** virotherapy,” cytokines,® and adoptive cell
transfer.?”?® Immune checkpoint inhibitors (ICIs) are a sub-
class of mAbs neutralizing inhibitory immune signals such as
programmed cell death 1 (PDCDI1, best known as PDI),
CD174 (best known as PDL1), or cytotoxic T lymphocyte-
associated protein 4 (CTLA4).>>*° Eight ICIs are currently on
the market after demonstrating remarkable antineoplastic effi-
cacy first in melanoma, then in a still growing number of
cancer histotypes (Table 1).31-33
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Mechanisms of anticancer immunity

During tumorigenesis, tumor cells require sustained blood
influx and stromal reorganization to support their
expansion.”® This environment promotes proinflammatory
cytokine release by malignant and stromal cells.*>® Such cyto-
kines include tumor necrosis factor (TNF), transforming
growth factor beta 1 (TGFBI1, best known as TGFp), interleu-
kin 1 beta (IL1B, best known as IL1p), IL6 and IL10, altogether
leading to the recruitment of natural killer (NK) cells, NKT
cells, macrophages and dendritic cells (DCs) at the tumor
site.>*” ™ In turn, recruited immune cells secrete proinflam-
matory cytokines, like IL12 and IFNY.** Tumor-infiltrating NK
cells mediate cytotoxic effect on neoplastic cells promoting the
release of tumor antigens.*'** Dying cancer cells and released
antigens are ingested by DCs, which undergo activation upon
sensing of DAMPs via their pattern recognition receptors
(PRRs).*>*¢ Ultimately, these signals promote the maturation
of DCs, in particular the XCR1"CLEC9a" conventional DC
subtype 1 (cDC1),* which is characterized by the cross-
presentation of tumor antigens as well as the expression of co-
stimulatory molecules and the secretion of proinflammatory
cytokines including IL12, IL6, TNF, and type I IFNs (IFN-I).*%
> Activated DCs migrate to the draining lymph node where
they drive naive CD4™ T cells into the type 1 helper T (Ty1) cell
lineage.”" > DCs also prime naive CD8" T cells and promote
their differentiation into cytotoxic T lymphocytes
(CTLs).>**%>* Similar to NK cells, expanded CTLs can reach
the tumor bed via the bloodstream.*’ There, they elicit cyto-
toxicity against the cancer cells which harbor their cognate
antigen, mostly through secretion of perforins, granzymes,
and granulysins, as well as via the expression of pro-apoptotic
receptors like TNF-related apoptosis inducing ligand (TRAIL)
or Fas ligand (FASLG).>>>8

When tumors have undergone immunoediting and escaped
from these anticancer immune mechanisms, a clinically detect-
able neoplastic mass arises.”” At this stage, the composition of
the tumor immune infiltrate influences the outcome of the
disease, with the presence of CTLs, among others, as good
prognostic factors.®’”® Importantly, the nature and/or density
of the tumor-infiltrating populations of leukocytes can be
modified by immunotherapy. Immunotherapeutic approaches
aim at (re)activating an anticancer immune response, either by
enhancing cancer adjuvanticity and/or antigenicity, or by pro-
viding some immune cells which harbor cytotoxic functions.
Immunotherapeutic interventions that have been approved or
which are under clinical evaluation for oncological indications
include: [i] some agonists of PRRs like Toll-like receptors
(TLRs),**** or of their adapters like stimulator of interferon
response cCGAMP interactor 1 (STING1),*>"*” [ii] some agents
inducing cancer immunogenic cell death (ICD) like oncolytic
viruses (OVs) and some chemotherapeutic agen‘[s,68"70 [iii] a
plethora of mAbs which targets surface tumor antigens and
mediates cytotoxicity,”" [iv] other mAbs belong to the subclass
of immune checkpoint modulators and support CTL activation
either by blocking co-inhibitory immune signals, or by stimu-
lating co-stimulatory ones at the surface of malignant and/or
stromal entities,”* [v] vaccines which aim at feeding DCs with
enlarged amounts of tumor antigens to further stimulate T cell

priming,”* [vi] adoptive transfer of lymphocytes with tumor
killing activity (e.g. NK cells, CTLs),”* and finally [vii] cyto-
kines which can promote an inflammatory environment and
participate in immune cell recruitment and activation (Figure
1; Table 1).7>7¢

Intratumoral versus systemic injection

Systemic immunotherapies have demonstrated their efficacy
to induce durable antitumor immune responses and to
increase overall survival (OS) in several solid cancers.””
Yet, a majority of patients experience adverse events
which can lead to treatment disruption. Moreover, the
immunosuppressive tumor microenvironment efficiently
shields off infiltration by cellular mediators of cancer
immunosurveillance, thus frequently resulting in the ineffi-
ciency of systemic immunotherapies. Preclinical studies
have demonstrated that local delivery of immunostimula-
tory products, such as OVs, cytokines, and PRR agonists
could overcome the resistance to systemic immune check-
point blockade therapies.”*™®" These observations have pre-
cipitated  the evaluation of intratumoral  (i.t.)
immunotherapy in the clinic.**®> This dynamic has been
supported in 2015 by the FDA approval of talimogene
laherparepvec (T-VEC) for i.t. oncolytic virotherapy of
melanoma.®*%°

The intralesional route offers several advantages over sys-
temic infusion. First, local administration translates into an
immediate effect of the drugs on targeted cancer cells.
Consequently, lower dosages could be applied without impair-
ing therapeutic efficacy.*® Meanwhile, it reduces treatment cost
and opens some opportunities for combinations of drugs.
Furthermore, by limiting systemic exposure, off-target toxicity
is attenuated, especially inflammation and autoimmunity
which are often observed after i.v. injection of immunothera-
pies. Additionally, in the case of ICD-inducing agents, their
topical delivery favors enhanced cytotoxicity and potent release
of the tumor antigen repertoire. In this scenario, tumor cells
stressed/dying upon treatment work as vaccines and induce a
polyclonal immune response. This both diminishes the prob-
ability to observe resistance and leverages long-term and sys-
temic protection (responsible for the so-called “abscopal
effect”).¥°° Moreover, tumors which show a low immune
infiltration (e.g. bone and ovary cancers), and do not receive
a sufficient dose of drugs after systemic injection, could benefit
from a topical administration.”"

For the purpose of this review, we focused on clinical trials
involving intratumoral immunotherapy that were initiated
during the past 3 y (January 2018-June 2021). Of note, com-
plementary review articles have been published on the topic
recently.””™* Out of 153 clinical trials matching our query on
clinicaltrials.gov, 64 are investigating virotherapies, 36 PRR
agonists, 17 monoclonal antibodies, 7 cytokines, 5 ICD-
inducing synthetic agents, 4 adoptive transfer of lymphocytes,
4 therapeutic vaccines, 2 semi-synthetic adjuvants, 1 attenuated
bacterial strain, and 14 a combination of different immu-
notherapeutic strategies (Figure 2, Table 2). In the following
sections, clinical investigations have been reported according
to the immunotherapic strategy involved.
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Figure 1. Types of immunotherapies and their targets in the cancer-immunity cycle. Upon immunogenic cell death of cancer cells, dendritic cells (DCs) are recruited to
the lesion where they uptake and present tumor antigens to naive CD8* T cells, triggering their differentiation into cytotoxic CD8™ T cells which, together with natural
killer (NK) cells, eliminate cancer cells. Memory T cells are also generated during this process. Cancer cells may express immune checkpoint ligands contributing to T cell
exhaustion. Immunotherapeutics (in red) can act at different levels of the (re)establishment of this anticancer immune response. DAMP, damage-associated molecular
pattern; DC, dendritic cell; ICD, immunogenic cell death; ICl, immune checkpoint inhibitor; IFN, interferon; IFN-I, type 1 interferons; IL, interleukin; mAb, monoclonal

antibody; TNF, tumor necrosis factor.

Adoptive transfer of lymphocytes
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Cytokines
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Figure 2. Types of intratumoral immunotherapy across recently initiated clinical trials. Pie chart depicting the proportion of each type of immunotherapeutic
interventions in recently initiated clinical investigations. ICD, immunogenic cell death.

Antibodies

Therapeutic mAbs can either (a) directly bind to surface
markers on malignant cells or on their stromal accomplices
(e.g. HER2 in some breast cancers), (b) target receptors on
leukocytes (e.g. PD1 on T lymphocytes),” or (c) neutralize
some trophic factors which support tumor growth (e.g. vas-
cular endothelial growth factor [VEGF]), in order to preci-
pitate the elimination of the targeted tumor or tumor-
supporting cells, to sustain anticancer immunity, and/or to
inhibit protumor pathways. Therapeutic mAbs can be sorted
into three main categories, namely naked, conjugated and
bispecific antibodies.

[i] Naked antibodies. Some naked mAbs act by promoting
antibody-dependent cellular phagocytosis (ADCP), antibody-
dependent cell-mediated cytotoxicity (ADCC), or comple-
ment-dependent cytotoxicity (CDC).”*® For instance,

rituximab which binds to CD20 mediates the killing of B
lymphoma cells through such mechanisms.”” Other naked
mAbs contribute to cancer cell elimination by exerting either
an agonistic or an antagonistic activity on the targeted recep-
tor. For instance, binding of agonistic anti-CD40 to CD40 at
the surface of antigen-presenting cells triggers a co-stimulatory
signal which promotes maturation of dendritic cells and sup-
ports the priming of tumor-specific T cells."”*"'%* By contrast,
binding of antagonistic anti-PD1 to PD1 at the surface of T
lymphocytes blocks its interaction with the co-inhibitory
immune checkpoint PDL1 at the tumor cell membrane, and
thus allows sustained effector T cell activity.'””'** Each ICI aims
to interfere with signals associated with cancer immune eva-
sion, and prevent or revert inactivation/exhaustion of T cells
responsible for antitumor immunity.17 Yet, in the case of
ipilimumab, binding to its immunoinhibitory target CTLA4
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at the surface of regulatory CD4" T lymphocytes (Tregs),
which are abundant in the tumor microenvironment (TME),
can also trigger Tregs depletion through ADCC, and thus
alleviate cancer-associated immunosuppression,>>'**!%>

Clinically approved therapeutic antibodies, including ICIs,
are administered systemically and at a high dose that is
expected to saturate their target receptors. However, this goal
is hardly achieved in the practice following systemic
delivery.'”® Moreover, intravenous infusion of ICIs like anti-
CTLA4 can trigger dose-dependent (sometimes fatal)
immune-related toxic effects. Collectively, these observations
are arguing in favor of a local administration. As an illustra-
tion, an eight-time reduced dose of anti-CTLA4 injected i.t.
demonstrated similar antitumor efficacy as systemic injection
in mice, but with a leaked dose in the serum 1000 times
lower.'”” Along this line, the toxicity of a CD40 agonistic anti-
body was abolished upon it. injection.'®® Furthermore, an
agonistic antibody binding to glucocorticoid-induced TNF
receptor-related protein (GITR, also known as TNFRSF18)
showed a superior recruitment and activation of T cells in the
TME when injected locally rather than intraperitoneally or i.v.
in mice.'?®'*” Altogether, in addition to efficiently target T cells
infiltrating the malignant lesions, i.t. injection of therapeutic
mAbs may reduce autoimmune and inflammatory side effects,
circumvent the unknowns surrounding tumor tissue penetra-
tion, and ease the combination of antibodies. Such combina-
tions have been evaluated with success in preclinical studies
involving anti-CTLA4 plus anti-OX40, or anti-PD1 plus anti-
CD137.°511%7112 Additionally, some teams are designing a for-
mulation allowing slow i.t. release of mAbs for prolonged and
improved efficacy.'"”

Along with these preclinical incentives, numerous clinical
trials have been launched these recent years to evaluate the
therapeutic index of mAbs when administered locally (Table
2). For instance, the Phase I trial NCT04336098 will assess
SRF617, an antibody which neutralizes the ecto-nucleotidase
CD39 (a catalyzer of the degradation of ATP into immunosup-
pressive adenosine).''* SRF617 will be administered locally in
patients with advanced solid tumors, either alone or in combi-
nation with i.v. infusions of either gemcitabine plus albumin-
bound paclitaxel, or pembrolizumab. Other antagonistic anti-
bodies which target PD1, PDLI, or CTLA4 are also being tested
following i.t. delivery, either separately or combined.
NCT03889912 will characterize the safety and tolerability of
weekly i.t. injections of cemiplimab for 12 weeks prior to
scheduled surgery in patients with recurrent cutaneous squa-
mous cell carcinoma (CSCC). NCT03316274 will assess i.t.
administration of nivolumab in participants with Kaposi sar-
coma. NCT04090775 will evaluate the efficacy and adverse
events related to cryosurgery combined with i.# immunother-
apy with nivolumab + ipilimumab, together with low-dose
cyclophosphamide (injectable and oral) in metastatic prostatic
adenocarcinoma. In the Phase II/III trial NCT03755739, trans-
artery/i.t. infusion of pembrolizumab and/or ipilimumab will
be tested for the treatment of advanced solid tumors.
Conversely, several antibodies mediating an agonistic effect
on co-stimulatory T lymphocyte receptors have shown promis-
ing results in preclinical or clinical settings and are currently
investigated as if. immunotherapy in clinical trials.

NCT03792724, a Phase I-II study, will assess i.f. urelumab
(an agonistic antibody binding to CD137, also known as
TNFRSF9 or 4-1BB) combined with systemic nivolumab in
patients with advanced solid neoplasms. The trial will recruit
32 participants to measure the incidence of adverse events,
determine the recommended dose, and calculate the response
rate. NCT03892525 was designed to test i.t. selicrelumab (anti-
CD40) in combination with i.v. atezolizumab (anti-PDL1) in
patients with refractory or relapsed B cell lymphoma. However,
the study was terminated because drug development stopped.
NCT03818542 aimed to evaluate ABBV-927 (anti-CD40) as
first-line monotherapy in subjects with locally advanced head
and neck squamous cell carcinoma (HNSCC) eligible for sur-
gical resection. Nevertheless, the trial was terminated for stra-
tegic considerations. NCT04059588 will evaluate the safety and
tolerability of an Fc-engineered anti-CD40 mAb (2141-V11),
administered intratumorally for the treatment of patients with
metastatic skin lesions. At last, NCT03432741 aimed to deter-
mine the feasibility of intralesional microinjections of a broad
range of cancer immunotherapies (daratumumab, nivolumab,
obinutuzumab, pembrolizumab, rituximab, and trastuzumab)
and chemotherapies (belinostat, carfilzomib, gemcitabine, and
romidepsin) in patients with lymphoma, or recurrent/resistant
stage IV breast cancer. Unfortunately, this pilot Phase I trial is
currently suspended for funding reasons (Table 2).

[ii] Conjugated antibodies. Immunoconjugates are most fre-
quently constituted of a tumor antigen-targeting antibody
covalently paired with a cytotoxic compound. The latter can
be a radioactive particle (e.g. isotype yttrium 90 for ibritumo-
mab tiuxetan),'’>'!® a toxin (e.g. Pseudomonas exotoxin for
moxetumomab pasdotox),'’” or a chemotherapeutic agent
such as a topoisomerase inhibitor (e.g. SN-38 for sacituzumab
govitecan) or a microtubule inhibitor (e.g. auristatin for bren-
tuxumab vedotin, mertansine for trastuzumab emtansine)''®
(Table 1).''°7'** By binding to cancer cells, conjugated anti-
bodies concentrate the cytotoxicants into the tumor bed.'** In
addition to triggering cancer cell death, they promote the
release of tumor antigens and danger signals which may elicit
an anticancer immune response.'** For instance, LMB-100 is a
humanized anti-mesothelin antibody that is fused with a trun-
cated Pseudomonas exotoxin A.'”> The Phase 1 trial
NCT04840615 will evaluate the safety and determine the
recommended Phase 2 dose (RP2D) of i.t. injections of LMB-
100 combined with i.v. ipilimumab in patients with pleural or
peritoneal mesothelioma. In the same line, NCT04547777 is a
dose-escalation study aiming to determine the maximum tol-
erated dose (MTD) of a single i.t. infusion of 2141-V11 (anti-
CD40) in combination with the immunotoxin D2C7, delivered
i.t. at a fixed dose, in patients with recurrent malignant glioma
(Table 2). D2C7 is a genetically engineered form of the
Pseudomonas exotoxin conjugated with a single-chain variable
fragment (scFv) harboring a high binding affinity for the epi-
dermal growth factor receptor (EGFR) and its active mutant
EGFRVIII; both being overexpressed on glioblastoma cells.

Yet, some immunoconjugates are non-cytotoxic per se but
promote antitumor immunity. For instance, the Phase I trial
NCT04502888 is recruiting patients with CSCC or HNSCC to
test i.t. delivery of a fusion protein called SL-172154. The latter
consists of human signal-regulatory protein alpha and CD40



ligand linked by a Fc fragment (SIRPa-Fc-CD40L)."*® SL-
172154 shows dual functionality as it concomitantly antago-
nizes CD47 on malignant cells and agonizes CD40 on antigen-
presenting cells. This dose-escalation study will inform the
safety profile of SL-172154, and define the MTD and RP2D
(Table 2). Immunocytokines represent another example of
non-cytotoxic conjugated antibodies. They will be introduced
in the next section of this review.

[iii] Bispecific antibodies. Through double antigen affinity,
bispecific mAbs bring immune cells in close proximity to
tumor cells. For instance, blinatumomab binds to CD19 on
leukemia cells and can engage T cells through binding to their
CD3 (Table 1).'*” To our knowledge, there were no clinical
trials initiated these past 3 y involving intratumoral delivery of
bispecific antibodies.

Cytokines

Cytokines are secreted messengers which orchestrate the
dynamics and functions of leucocytes. Among them, IL12p70,
IFN-I and IFNy are produced by DCs upon activation and
participate in the ignition of Ty 1 responses which are critical in
cancer immunosurveillance."**"** Upon activation, effector
Tyl and Tl cells secrete IL2 and IFNy. Not only these cyto-
kines contribute to sustain the immune response (positive
feedback loop), but IFNs also harbor direct cytostatic and pro-
apoptotic effects on cancer entities which participate to the
overall antineoplastic activity."’"'>* Thus, even though cyto-
kine injection alone is poorly efficient, it enhances adjuvanti-
city. Aldesleukin,'”* an analog of IL2, the first cytokine to reach
the market, showed promising results when injected locally.”®
It is currently the subject of a Phase III clinical trial
(NCT03233828) assessing the benefit of two i.t. injections of
IL2 (as compared to saline in the control group) in suspected or
in situ melanoma. NCT03982004 evaluated the safety and side
effects of intralesional granulocyte-macrophage colony-
stimulating factor (GM-CSF)"** in participants with breast
cancer with cutaneous metastases. The cytokine was combined
with topical imiquimod, i.v. pembrolizumab, and epicutaneous
cryoimmunotherapy. However, the trial was terminated by
decision of the sponsor. Several analogs of IFNa are also tested
for their capacity to activate DCs and NK cells and to slow
down the proliferation of cancer cells. They have successfully
treated cystic craniopharyngioma in a preliminary clinical
study.'>® However, cytokines regulate many biological path-
ways and their i.v. administration provokes important off-
target adverse effects.">®"*” For this reason, IL12 immu-
notherapies have not yet entered Phase III clinical trials due
to toxicity."*®"* Their local administration as such did not
notably increase their adjuvanticity and/or reduce toxicity due
to a rapid leakage in the systemic circulation.'*’ Therefore, to
prolong intratumoral retention, the team of Wittrup proposed
a formulation in which the cytokine is anchored to a collagen-
binding protein, which was successful in mouse models."**'*!
To restrain their expression to targeted tissues, genes encoding
cytokines can be inserted into locally injected DNA plasmids,
mRNA or viruses (see next sections of this review) allowing
cytokines to be recombined in situ. This promising strategy is
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the object of various preclinical and clinical studies (Table 2).
For instance, i.t. injection of DCs overexpressing IL12 stimu-
lated antitumor immunity and proved efficacy in mouse
models."*>!*? Similarly, a Phase 1 trial (NCT03946800) is test-
ing a lipid-encapsulated mRNA encoding IL12 (referred to as
MED1191). It will be delivered intratumorally in combination
with i.v. durvalumab (anti-PDL1) to 87 subjects with advanced
solid tumors. The escalation arm will determine the MTD
while the expansion arm will measure the overall response
rate (ORR). NCT03871348 evaluates i.t. administration of
SAR441000, a mixture of four mRNAs encoding IL12 single
chain, IFNa2b, GM-CSF, and IL15sushi,'** alone or combined
with iv. cemiplimab in advanced solid tumors in a dose-
escalation and dose-expansion study.'*> Three Phase II trials
study i.t. electroporation of tavokinogene telseplasmid (Tavo-
EP), a DNA plasmid encoding the human IL12, together with
PD1 blockade. In NCT04526730, tavo-EP will be tested as a
neoadjuvant treatment combined with systemic infusion of
nivolumab in participants with operable locally advanced mel-
anoma. NCT03567720 will combine i.t. tavo-EP with i.v. pem-
brolizumab alone or in addition of i.v. nab-paclitaxel in triple
negative breast cancer (TNBC) patients with cutaneous/sub-
cutaneous neoplasms. At last, NCT03823131 will determine
whether it. tavo-EP combined with iv. pembrolizumab,
together or not with epacadostat (inhibitor of indoleamine
2,3-dioxygenase-1 [IDO1]), enhances the best ORR in
HNSCC as compared to historical score for pembrolizumab
monotherapy.

In order to enhance their bioavailability and improve their
tissue targeting, cytokines can be fused with immunoglobu-
lins, thus generating so-called immunocytokines.”*'** A
Phase I/II clinical trial (NCT03958383) will evaluate i.t.
administration of the immunocytokine hul4.18-IL2, either
alone or combined with radiation therapy + systemic immune
checkpoint blockade (nivolumab + ipilimumab) in patients
with advanced or surgically incurable melanoma. On one
hand, the hul4.18 moiety binds to the GD2 antigen expressed
at the surface of several tumor histotypes (e.g. melanoma and
neuroblastoma) while its Fc component mediates ADCC. On
the other hand, the IL2 moiety locally stimulates NK and T
cell antitumor immune responses.146 Of note, hul4.18-IL2
has been previously tested clinically (NCT00590824) in
patients with resectable recurrent advanced melanoma. This
study demonstrated prolonged tumor-free survival following
surgery plus 3 courses of hu14.18-1L2."*"'** NCT04362722, a
Phase II trial, investigates the therapeutic potential of single
or multiple i.t. injection(s) of a cocktail of two immunocyto-
kines, L19IL2 and L19TNF, in patients with basal cell carci-
noma or CSCC. These agents consist of a human scFv called
L19 which is directed against the extra-domain B of fibronec-
tin (EDB-FN) and fused to either IL2 or TNF. EDB-FN being
upregulated in tumor area experiencing neoangiogenesis, L19
contributes to concentrate IL2 in the malignant bed.'*
L19IL2/L19TNF will be administered once weekly for up to
4 weeks into all injectable lesions. Of note, this combination
showed promising results in a Phase II clinical trial in patients
with advanced metastatic melanoma who were not candidates
to surgery (Table 2)."**
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PRR agonists

DCs sense the presence of pathogens by means of their PRRs,
such as TLRs located at the plasma membrane or in endo-
somes, as well as some cytosolic adapters like STING1,*® mel-
anoma differentiation-associated protein 5 (MDA-5)"° or
retinoic acid-inducible gene I (RIG-1)."°'"'%° These receptors
are also involved in the recognition of DAMPs released by
stressed or dying cells."”®'>” Therefore, over the past two
decades, their potent immunostimulatory effects have inspired
laboratories in the development of PRR agonists as antineo-

plastic agents in preclinical and clinical settings.**

TLR3 agonists

Upon activation by endogenous (mammalian) as well as exogen-
ous (viral) double-stranded ribonucleic acids (dsRNA) in endo-
somes, TLR3 triggers the secretion of pro-inflammatory cytokines,
such as IFN-I, and contributes to DC cross-priming.m’158 The
critical role of IFNs in the initiation of tumor antigen-specific
immunity has encouraged the clinical investigation of TLR3 ago-
nists as single agents or in combination with other therapeutics.**
These agonists have reported immunostimulatory function as well
as direct anti-proliferative and pro-apoptotic effects in malignant
cells positive for TLR3 (e.g. head and neck carcinoma, lung squa-
mous cell carcinoma and adenocarcinoma).'” The latter property
could extend their application to cancer patients with immunode-
ficiencies. The prototypical TLR3 agonist polyinosinic-
polycytidylic acid (poly-IC) and its derivatives are being evaluated
as intratumor interventions in advanced oncological
indications.'®® For instance, poly-IC complexed with poly-
L-lysine and carboxymethylcellulose (poly-ICLC/Hiltonol) is
under investigation in B-cell lymphoma in association with radio-
therapy and recombinant human FMS-like tyrosine kinase-3
ligand (FIt3L) (NCT01976585), and in mesothelioma in a neoad-
juvant setting (NCT04525859) (Table 2). Already, i.t. poly-ICLC
has proven well tolerated and safe in advanced cancer patients, as a
standalone application as well as in combination therapies, with
signs of immunostimulation and some clinical benefits
witnessed.'®"'%* As another example, BO-112 is a formulation of
polyl:C complexed with polyethylenimine. It promotes tumor cell
apoptosis with ICD features.”® In immunocompetent mice bearing
ectopic colorectal (MC38, 4T1) and melanoma (B16-F10 tumors),
i.t. delivery of BO-112 significantly controlled disease progression.
This therapeutic effect appeared mediated by IFN-I and IFNy.”®
Two Phase I trials involving i.t. BO-112 have been initiated these
past 3 y. NCT04420975 is primarily evaluating the frequency and
severity of adverse events and determining dose-limiting toxicities
(DLT) of BO-112 when combined with i.v. nivolumab plus stan-
dard of care radiotherapy before surgical resection in patients with
soft tissue sarcoma (Table 2). NCT04777708 will assess the clinical
response to local delivery of BO-112 together with i.v. pembroli-
zumab in patients with hepatocellular carcinoma (Table 2).

TLR4 agonists

Despite the numerous TLR4 ligands that have been the subject
of preclinical and clinical investigations, only two have been
approved by the FDA for clinical use as cancer treatment: BCG

and monophosphoryl lipid A (MPL).'*>'** NCT03742804
aimed to test G100 as single agent in lymphoma but has been
withdrawn because the study sponsor sold and the new owner
did not support the study.

TLR7 agonists

TLR7 is an intracellular receptor expressed on endosomal
membranes which recognizes nucleosides and nucleotides
from intracellular pathogens.'®® Upon activation, TLR7 can
induce an inflammatory response and the production of IFN-
I, both beneficial for triggering antitumor immunity.*>'% In
this line, imiquimod received FDA approval as topical standa-
lone application (cream) to activate TLR7 in the environment
of superficial basal cell carcinoma. The Phase I NCT03301896
consists of four dose-escalation and two dose-expansion parts
testing the TLR7 agonist LHC165 given i.t. as monotherapy or
in combination with i.v. PDR001 (anti-PD1) for the treatment
of solid tumors (Table 2). Similarly, NCT04799054 will evalu-
ate the TLR7/8 agonist TransCon as a single agent or combined
with iv. pembrolizumab in dose-escalation and dose-
expansion scenarios for patients with advanced or metastatic
solid tumors (Table 2). At last, NCT03435640 will assess i.t.
delivery of the TLR7/8 agonist NKTR-262 in 3-week treatment
cycles with systemic administration of bempegaldesleukin,
together or not with nivolumab, in patients with locally
advanced or metastatic solid tumors (Table 2). Of note, bem-
pegaldesleukin consists of a pegylated IL2 which binds to the 8
subunit of the IL2 receptor, thus preferentially expanding
CD8" T cells over immunosuppressive regulatory CD4" T
cells, 167:168

TLR8 agonists

Similarly to TLR7, detection of single-stranded (ss)RNA by
TLR8 induces an inflammatory response and IFN-I
secretion.'® NCT03906526 studies the safety and tolerability
profile of i.t. and s.c. delivery of the TLR8 agonist motolimod
(VTX-2337) in combination with i.v. nivolumab in patients
with HNSCC. Meanwhile, tumor immune modulation will be
evaluated by quantitating CD8" T cells infiltrating the neoplas-
tic microenvironment before and after treatment (Table 2).

TRL9 agonists

TLRO is predominantly located intracellularly in immune cells,
such as antigen-presenting cells (e.g. conventional and plasma-
cytoid DCs, macrophages, B cells) or T lymphocytes.'”’ The
main ligands of TLRY are bacterial unmethylated cytidine phos-
phate guanosine (CpG) oligodeoxynucleotides (ODNS).
Stimulation of TLRY triggers the production of pro-
inflammatory cytokines (e.g. IFN-I, IL6, IL12, TNFa) which
activates innate immune actors, including DC and NK cells. In
turn, antigen cross-presentation by mature DCs primes the
adaptive arm of the immune system which culminates in the
destruction of microorganisms or cancer cells.'”''”* For the
purpose of cancer treatment, unmethylated CpG ODNs have
been synthesized to mimic the immunostimulatory activity of
bacterial DNA on TLR9.'”* Intratumoral delivery of the TLR9



agonist cavrotolimod (AST-008) is being evaluated in a Phase Ib/
II trial (NCT03684785) as a standalone or in combination with
infusions of either cemiplimab or pembrolizumab in skin can-
cers and solid tumors with liver metastases (Table 2). CMP-001
is a CpG ODN packaged in virus-like particles. CMP-001 is
being tested following i.t. delivery in combination with infusions
of ICIs targeting CTLA4 (ipilimumab), PD1 (cemiplimab, nivo-
lumab, or pembrolizumab) or PDL1 (atezolizumab), together or
not with radiotherapy or surgery, in multiple oncological indica-
tions (Table 2). NCT03983668 will determine the DLT of i.t.
CMP-001 in combination with i.v. pembrolizumab in patients
with relapsed and refractory lymphomas. The efficacy of this
combination treatment will be evaluated in Phase II trials in
advanced operable melanoma (NCT04708418) and in HNSCC
participants who have not been previously treated with PD1
blockers (NCT04633278). Four Phase II (or II/III) trials will
evaluate i.v. nivolumab associated with intratumor CMP-001
in melanoma. NCT04698187 and NCT03618641 will measure
the response rate to the latter combinatorial therapy as well as
survival of subjects with refractory unresectable/metastatic mel-
anoma or Stage III melanoma with clinically apparent lymph
node involvement, respectively. = NCT04401995 and
NCT04695977 will compare nivolumab monotherapy to nivo-
lumab plus it. CMP-001 in a neoadjuvant setting in patients
with Stage IIT melanoma, or as a first line treatment in partici-
pants with unresectable or metastatic melanoma, respectively.
NCT04916002 will determine the safety, tolerability and efficacy
of i.t. CMP-001 in combination with cemiplimab in patients
with advanced/metastatic CSCC, Merkel cell carcinoma
(MCC), or TNBC. Three clinical trials will investigate CMP-
001 in association with radiotherapy. NCT03507699 aims to
test a combinatorial regimen of s.c. CMP-001, i.v. nivolumab, i.
v. ipilimumab, and 21-gray (Gy) liver radiation therapy in
patients with colorectal cancer (CRC) with liver metastases.
NCT04807192 will assess preoperative stereotactic body radia-
tion therapy (SBRT) alone or combined with s.c. followed by i.t.
administrations of CMP-001 in patients with early stage TNBC.
The completed Phase I study NCT03438318 has evaluated i) the
safety and efficacy of i.t. CMP-001 together with atezolizumab,
and ii) the benefit of radiation therapy to this combination. The
synthetic TLR9 agonist (also known as IMO-2125) in evaluated
in Phase I-III trials in co-treatment with infused immune check-
point antagonists and agonists. More precisely, the Phase I trial
NCT04196283 assesses i.t. tilsotolimod plus i.v. ABBV-368 (anti-
0X40) in combination with i.v. nab-paclitaxel alone or com-
bined with i.v. ABBV-181 (anti-PD1) in patients with recurrent/
metastatic HNSCC. The Phase II study NCT03865082 intends to
test the efficacy of i.t. tilsotolimod with ipilimumab and nivolu-
mab in different solid tumors. The Phase III trial NCT03445533
will study the benefits of i.t. tilsotolimod and i.v. ipilimumab in
advanced melanoma. Of note, a previous Phase I/II trial asses-
sing i.t. tilsotolimod with systemic ipilimumab in patients with
anti-PD1-resistant advanced melanoma showed a rapid induc-
tion of local IFNa gene signature, DC maturation and antigen
presentation, as well as an expansion of specific T cells; all of
which correlated with clinical response.'”> The synthetic CpG
ODN SD-101 is being investigated together with radiotherapy in
various oncological indications. NCT03007732 (Phase II) evalu-
ates it. SD-101 with oral prednisone (corticosteroids) and
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abiraterone acetate (androgen synthesis inhibitor), i.m. leupro-
lide acetate (gonadotropin-releasing hormone receptor
[GnRHR] agonist), SBRT, and i.v. pembrolizumab in patients
with newly diagnosed hormone-naive oligometastatic prostate
cancer. NCT03322384 (Phase I/II) assesses the efficacy of five
intralesional injections of SD101, radiotherapy and oral epaca-
dostat for advanced/refractory solid tumors and lymphoma.
NCT04050085 studies the side effects of i.t. SD-101 when deliv-
ered together with iv. nivolumab and radiation therapy in
patients with chemotherapy-refractory and metastatic pancrea-
tic cancer. At last, NCT04612530 will evaluate the safety and
efficacy of irreversible electroporation (IRE) + nivolumab + i.t.
CpG ODN in pancreatic cancer patients, as compared to IRE +
nivolumab, and nivolumab monotherapy. Of note, IRE is a
recent technique relying on electrical pulses which allows local
ablation of malignant lesions. Its cytoreductive propensity is
accompanied with antigen release and stimulation of a T cell
immune response, thus encouraging its combination with
immunotherapy.'”

STING agonists

In the tumoral context, upon detection of accumulated mito-
chondria- or nucleus-derived dsDNA leaking in the cytosol of
cells treated by chemotherapy or radiotherapy, STING induces
the production of IFN-I which are critical for the initiation of
antitumor immune responses. Therefore, the pharmaceutical
industry has generated direct STING activators for oncological
indications tested either alone or with various chemotherapeutic
and immunotherapeutic combinatorial regimens.®”"””'”® In this
dynamic, several Phase I-II trials have been recently initiated to
investigate i.t. delivery of the STING agonists ADU-S100, BI
1387446, E7766, IMSA101, MK-1454, and SYNB1891 (Table
2). The Phase I trials NCT04144140 aims to assess safety, toler-
ability, and preliminary clinical activity of i.t. E7766 as a stand-
alone agent in patients with advanced solid tumors or lympho-
mas. NCT04167137 will determine single-agent MTD of i.t.
SYNB1891 as monotherapy, and the RP2D in combination
with atezolizumab, in subjects diagnosed with advanced/meta-
static solid tumors and lymphoma. The Phase IT NCT03937141
evaluates the ORR to i.t. ADU-S100 combined with i.v. pem-
brolizumab as first-line treatment of adults with PDL1-positive
recurrent or metastatic HNSCC. Similarly, NCT04220866 stu-
dies it. MK-1454 in combination with iv. pembrolizumab,
compared to pembrolizumab alone, as a first-intention treat-
ment of subjects with metastatic, or unresectable, recurrent
HNSCC. NCT04020185 is a dose-escalation (Phase I) and dose-
expansion (Phase ITA) study of participants receiving i.t.
IMSA101 alone or combined with ICL. The Phase I
NCT04147234 will assess i.t. BI 1387446 in adults with advanced
cancer that failed previous treatment.'”® In addition, some par-
ticipants will receive i.v. infusions of ezabenlimab (formerly BI
754091), a humanized IgG4 anti-PD1 mAb, every 3 weeks.

RIG-I agonists

RIG-I-like receptors are key sensors of virus infection as well as
host-derived RNA. Their detection induces the transcription of
immune genes including IFN-I. As a consequence, synthetic
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RIG-T agonists have been synthesized and evaluated in precli-
nical and clinical studies as vaccine adjuvants, or potentiators
of anticancer immunotherapies.151’180_182 For instance, the
completed Phase I NCT03739138 aimed to assess safety, toler-
ability, pharmacokinetics, and preliminary antitumor activity
of i.t. injections of MK-4621 delivered via a nucleic acid deliv-
ery system, JetPEI", as monotherapy, and in combination with
pembrolizumab in patients with advanced/metastatic solid
tumors with no available results yet (Table 2).

Nonpathogenic bacteria

Since the early approval of BCG in bladder cancer, additional
weakened strains of bacteria are applying to join the armamen-
tarium of cancer treatments. By stimulating multiple PRRs,
such as TLR2 and TLR4, and by providing xenoantigens,
bacteria attract and activate immune sentinels, and can stimu-
late antitumor immune activity with reduced toxicity.'®*~'** In
particular, anaerobic strains, which preferentially replicate
within tumors, are the objects of several clinical trials. For
instance, Clostridium novyi-NTlgG_188 is being tested i.t. in
combination with i.v. pembrolizumab and oral doxycycline in
subjects with advanced solid malignancies (NCT03435952)
(Table 2). While patient enrollment continues, intermediary
results from nine patients demonstrated encouraging signals of
antineoplastic activity and a manageable toxicity profile.'®’

Biopolymers

On top of antibodies, cytokines, and PRR agonists, some bio-
polymers can be endowed with adjuvant properties. Two of
them, copaxone (glatiramer acetate) and IP-001
(N-dihydrogalactochitosan), are evaluated clinically as intratu-
moral cancer immunotherapy (Table 2). As such, copaxone is
being administered prior to standard of care surgery in patients
with percutaneously accessible tumors (NCT03982212). IP-001
is evaluated in a Phase I/II trial following thermal ablation in
advanced solid tumors (NCT03993678).

ICD-inducing synthetic agents

In 2005, it was shown that anthracycline-based chemotherapy
triggers an immunogenic, rather than tolerogenic, cancer cell
apoptosis. Dubbed as immunogenic cell death or ICD, this
phenomenon is characterized by the exposure/release of
DAMPs along with the spread of antigens that are captured
by immature DCs, thus promoting an adaptive immune
response.'>'**'*! Since this first report on ICD, multiple can-
cer treatment modalities have been reported to be endowed
with such propensity.'”>'*> They include additional che-
motherapeutics (e.g. cyclophosphamide and oxaliplatin), cer-
tain physical cues (e.g. radiotherapy and photodynamic
therapy), oncolytic viruses (e.g. T-VEC), and some lytic pep-
tides (e.g. LTX-315).'%%%194-197 A updated list of all confirmed
ICD-inducing agents can be found in the following review:'
Candidates for ICD induction are also indexed such as the
platinum salts cisplatin and carboplatin, gemcitabine, peme-
trexed, vinca-alkaloids, or taxanes, whose cell death can be
accompanied by the release of ICD-related DAMPs, at least

in certain cell lines.'® Of note, with the exception of the onco-
Iytic virus T-VEC, ICD-inducing interventions were not
reported in Table 1 because they were not approved for their
immune stimulating potential and are thus not commonly
classified as immunotherapeutics.

Interestingly, two trials are evaluating i.t. cisplatin, either
as a single agent in non-small-cell lung carcinoma (NSCLC)
(NCT04809103), or in a formulation referred to as INT230-
6 (in which it is combined with vinblastine!®® and the
excipient salcaprozate sodium'®®) in breast cancer
(NCT04781725) (Table 2). NCT04701645 is a pilot study
that will assess the feasibility of implanting in selected
tumor deposits some innovative microdevices which diffuse
up to 20 drugs locally. Patients with resectable lesions of
ovarian, fallopian tube, and peritoneal cancers will be
recruited to this purpose. Clinically relevant drugs delivered
(alone or in combination) will include some confirmed or
potential ICD inducers: carboplatin, cisplatin, cyclopho-
sphamide, doxorubicin, gemcitabine, paclitaxel, pemetrexed,
and/or vinorelbine. Appearance of adverse events and
response to treatments will be measured (Table 2).

Intralesional administration of ICD-inducing peptides like
CyPep-1 and LTX-315 has proven antitumor activity in pre-
clinical studies."”****** These data have motivated their
translation into the clinic with two Phase II trials recently
engaged. First, NCT04796194 aims to assess the ORR of intra-
tumoral LTX-315, a peptide derived from human lactoferrin,
in combination with systemic PD1 blockade in patients with
percutaneously accessible advanced solid tumors. Second,
NCT04260529 is a dose-escalation study that will assess the
safety and tolerability of the synthetic oncolytic peptide CyPep-
1 and determine its RP2D in advanced solid malignancies
(Table 2).

Oncolytic virotherapy

OVs selectively infect and kill tumor cells in an immunogenic
fashion. Indeed, viral oncolysis releases in the extracellular
space both tumor and viral antigens together with danger
signals, thus triggering the recruitment of DCs. Numerous
OVs are administered locally and have the advantage to
prime a polyclonal immune response without requiring
tumor antigen identification and administration as a transgene,
or as a tumor antigen provided either naked or loaded in
DCs.*%?%*2%* A myriad of OVs are genetically engineered to
express immunomodulatory proteins (e.g. cytokines) in order
to boost the activation of the immune system.”***> For more
information on oncolytic viruses, a series of Trial Watch dedi-
cated to the topic has been published.®®****%”

Herpesviruses

Some oncolytic viruses have been armed with a transgene
expressing GM-CSF in order to enhance antitumor immune
responses.””**"*!* This strategy has been applied to the type 1
herpes simplex virus (HSV) T-VEC approved for intratumoral
virotherapy of melanoma (Table 2)./021212 T_VEC is investi-
gated as a single agent in recent trials such as NCT03458117 in
locally advanced non-melanoma skin cancer, NCT03921073 in



cutaneous angiosarcoma, and NCT04065152 in Kaposi sar-
coma. T-VEC is given as a neoadjuvant, either as a standalone
in high-risk early melanoma (NCT04427306), or combined
with  nivolumab in  early metastatic = melanoma
(NCT04330430), or with i.v. pembrolizumab prior to complete
lymph node dissection in resectable Stage 3 cutaneous mela-
noma (NCT03842943). NCT04068181 is a Phase II trial aiming
at testing T-VEC in melanoma in combination with i.v. pem-
brolizumab following disease progression on prior PD1 block-
ade or as an adjuvant to PD1 therapy. Other Phase I trials
combine T-VEC with i.v. atezolizumab: NCT03802604 in
operable early breast cancer with residual disease after neoad-
juvant chemotherapy, and NCT03256344 in triple negative
breast cancer and CRC with liver metastases. NCT04599062
will test T-VEC combined with external beam radiation ther-
apy in soft tissue sarcoma.

Moreover, other oncolytic HSVs equipped with a GM-CSF
transgene are tested i.t. in clinical trials (Table 2): RP12" either
as a single agent (NCT04349436) or with the anti-PD1 cemi-
plimab in advanced CSCC (NCT04050436), OrienX010 in
melanoma patients in association with anti-PD1, either toripa-
limab (NCT04197882) or JSS001 (NCT04206358),%* or else
the HSV-2 OH2 in combination with i.v. LP002 (anti-PD1) in
cancers of the digestive system (NCT04755543).>"

At last, additional strains of HSV-1 are clinically evaluated
following i.t. delivery: i) G207 with radiation therapy in recur-
rent/progressive pediatric high-grade glioma
(NCT04482933),'**" ii) RP3 (which expresses proprietary
stimulatory agents)*'® combined with anti-PD1 in advanced
solid tumors (NCT04735978), iii)) ONCR-177 (which encodes
CCLA4, IL-12, FIt3L, anti-CTLA4, anti-PD1) alone or combined
with pembrolizumab in advanced/metastatic solid tumors
(NCT04348916),”" or iv) VG161 (which expresses IL12, IL15
with its receptor alpha unit, and a PDL1 blocking peptide)*'® as
single agent in solid tumors including liver cancer
(NCT04758897, NCT04806464).

Adenoviruses

With 15 ongoing studies initiated since 2018, adenovirus is the
second most common OV in clinical trials and have been
among the earliest OVs to enter clinical examination.”**>**
Two recent trials are evaluating adenoviruses as single agent
(Table 2). The dose-escalating Phase I/II trial NCT04097002
will test ORCA-010 as first-line therapy against localized pros-
tate adenocarcinoma.”*"*** NCT04673942 is a dose-escalation
study of AdAPT-001, expressing TGFp, in subjects with refrac-
tory solid tumors. Oncolytic adenoviruses are also combined
with other treatments in the clinic (Table 2).*** NCT04714983
evaluates DNX-2440 (expressing OX40L)*** in patients with
resectable multifocal liver metastasis scheduled for curative-
intent liver resection surgery. NCT03225989 studies LOAd703
(encoding a trimerized membrane-bound extracellular CD40L
and 4-1BBL)**® in colorectal, biliary, ovarian, or pancreatic
cancer together with gemcitabine immune-conditioning or
standard of care chemotherapy. The Phase II trial
NCT04685499  evaluates it. telomelysin  with  iv.
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pembrolizumab in either recurrent inoperable or progressive
head and neck squamous cell carcinoma (HNSCC).**’
NCT04391049 studies the side effects of i.t. telomelysin when
given together with i.v. carboplatin, i.v. paclitaxel, and radia-
tion therapy.”*® NCT03514836 aimed to evaluate the combina-
tion of the oncolytic adenovirus ONCOS-102 (armed with
GM-CSF)?* delivered i.t., together with s.c. administration of
the DC-based prostate cancer vaccine stapuldencel T (also
known as DCVac/PCa) and i.v. cyclophosphamide in patients
with castration-resistant advanced metastatic prostate cancer.
Unfortunately, this trial was terminated due to insufficient
accrual. NCT03740256 is a Phase I trial studying the incidence
of DLT in patients receiving i.t. CAdVEC in combination with
adoptively transferred HER2-specific CAR-T cells in partici-
pants with HER2" cancer.*

Poxviruses

In 1796, Edward Jenner pioneered the concept of vaccines by
inoculating attenuated strains of vaccinia virus to vaccinate
humans against variola, the agent causing smallpox.”*” In
1840, it became the world’s first vaccine and soon the more
extensively used for human immunization as well as the more
effective public health intervention in human history.**” Since
the disease eradication in the late 1970s, even though national
vaccination programs ended, continuous research on vaccinia
virus has produced numerous strains with improved safety
profiles, some of them with oncolytic activity.””' Recently
initiated trials are evaluating five oncolytic strains of vaccinia
virus either as single agents or in combination with ICIs (Table
2). The Phase I NCT03954067 aims to evaluate the safety and
tolerability of ASP9801 (which expresses IL7 and IL12) as a
single agent and determine the RP2D in (sub)cutaneous and
visceral tumors. The dose-escalation trial NCT04725331 eval-
uates repeated i.t. injections of BT-001, alone or combined with
i.v. infusions of pembrolizumab, in skin cancers, NSCLC, sar-
coma, or TNBC. Of note, BT-001 is equipped with transgenes
encoding a Treg-depleting anti-CTLA4 and GM-CSF.***
Similarly, NCT04787003 aims to define the MTD of it
OVV-01, and evaluate its efficacy with or without pembrolizu-
mab or atezolizumab in patients with advanced malignancies.
Likewise, NCT04301011 determines the RP2D of i.t Tbio-6517
(which encodes anti-CTLA-4 mAb, FIt3L and IL12), alone and
combined to i.v. infusions of pembrolizumab in patients with
solid tumors. Pexastimogene devacirepvec (Pexa-Vec, pre-
viously known as JX-594)°* is based on the Wyeth strain of
vaccinia virus. Pexa-Vec has been genetically inactivated for
the gene encoding the viral thymidine kinase, and engineered
to express the human GM-CSF and p-galactosidase.
NCT03294083 will determine the safety and efficacy of i.t.
versus i.v. Pexa-Vec combined with i.v. cemiplimab in patients
with advanced renal cell carcinoma. Preliminary results sup-
ported that participants may benefit from i.v. Pexa-Vec +
cemiplimab with an acceptable safety profile while further
investigation is ongoing regarding it Pexa-Vec +
cemiplimab.*** Finally, NCT04849260 will first determine the
RP2D of Pexa-Vec combined with the anti-PDL1 antibody
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ZKABO0O01 in patients with local progression of failed first-line
treatment or metastatic melanoma. In the Phase II of the trial,
ORR and progression-free survival (PFS) will be estimated.

Paramyxoviruses

Attenuated measle viruses (MV) are studied in two clinical
trials (Table 2). MV-s-NAP,>*> which encodes a secretory
form of H. pylori neutrophil-activating protein (s-NAP), is
evaluated as a single agent in invasive metastatic breast cancer
(NCT04521764). Additionally, NCT04195373 aimed to test the
safety and tolerability of TMV-018, an oncolytic measle virus
encoding the prodrug converting enzyme “super cytosine dea-
minase”, in patients with gastrointestinal tumors. The trial was
designed to evaluate TMV-018 either alone and in combina-
tion with either 5-fluorocytosine or an anti-PD1, or both.
However, no subjects could be recruited leading to the assay
withdrawal.

Rhabdoviruses

The Phase I trial NCT03865212 studies an oncolytic vesicular
stomatitis virus engineered to express human IFNf and the
melanocyte lineage-specific antigen tyrosinase-related protein
1 (VSV-IFNbetaTYRP1) (Table 2). The latter transgene
intends to induce an immune response specific to melanoma
cells while the former contributes to further stimulate immune
actors.”>*"** The MTD of VSV-IFNbetaTYRP1 will be deter-
mined following i.t. plus i.v. delivery in patients with advanced
melanoma. By contrast, Voyager V1 (VV1) is a VSV expressing
human IFNp and the human sodium iodide symporter (NIS)
for virus tracking by tomography.**' The Phase II trial
NCT04291105 will measure anti-tumor activity of VV1 given
both i.t. and i.v. in combination with i.v. cemiplimab in mela-
noma (Table 2). In the Phase I NCT03618953, an oncolytic
MGI1 Maraba virus expressing the HPV E6 and E7 antigens
(referred to as MG1-E6E7)*** will be administered i.v. (Arm 1)
as well as i.t. and i.v. (Arm 2) following im. injection of an
adenovirus vaccine expressing the same antigens (Ad-E6E7)
(Table 2). This heterologous prime-boost oncolytic vaccination
will be followed by a systemic infusion of atezolizumab.
Similarly, NCT03773744 was a dose-escalation trial of MG1-
MAGEA3 given in a heterologous prime-boost vaccination
with Ad-MAGEA3** in patients with previously treated meta-
static melanoma or CSCC. Following Ad-MAGEA3 vaccine
priming and pembrolizumab infusion, MG1-MAGEA3 vaccine
booster should have been administered first i.v. then repeatedly
by i.t. injections. Unfortunately, NCT03773744 had to be with-
drawn due to insufficient drug supply (Table 2).

Picornaviruses

Two recent clinical trials aim to assess safety, tolerability, and
efficacy of intratumoral viroimmunotherapy with the coxsack-
ievirus A21, referred to as V937 (formerly CAVATAK®) (Table
2). It will be combined with systemic infusion of pembrolizu-
mab in ICI-naive participants with advanced/metastatic mela-
noma (NCT04152863) or in cohorts of patients with advanced

TNBC, SCC, HCC, gastric cancer, or solid tumors with liver
metastases (NCT04521621). Four clinical trials are evaluating
PVSRIPO, a modified live attenuated non-neurovirulent polio-
virus which ignites an antitumoral immunity following tumor
cell oncolysis (Table 2). Its natural oncotropism relies on the
poliovirus receptor PVR/CD155, an oncofetal antigen over-
expressed on tumor cells and used for cell entry.*****
Preliminary results from the Phase I trial NCT03712358
showed that i.t. administration of PVSRIPO was well tolerated
and demonstrated promising antitumor activity in patients
with advanced melanoma.**® PVSRIPO will also be tested in
combination with i.v. nivolumab in the same oncological indi-
cation in patients that failed responding to prior PD-1 blockade
(NCT04125719, withdrawn with a resubmission planned). The
Phase 2 single-arm trial NCT04479241 will evaluate the safety,
tolerability, and initial efficacy of i.t. PVSRIPO followed by i.v
pembrolizumab in patients with recurrent brain tumors.>*” At
last, the early Phase I trial NCT03564782 is recruiting partici-
pants to study PVSRIPO bioactivity in the tumor bed after i.t.
injection in women with invasive breast cancer scheduled for

surgery.

Other virus-based immunotherapies

Non-oncolytic viruses are also applied for cancer immunother-
apy as they are sufficient to render tumors more immunogenic
by providing both DAMPs and foreign antigens. Moreover,
they can be armed with transgenes which further stimulate
antitumor pathways (e.g. cytokines and tumor antigens), or
inactivate protumor signaling (e.g. tumor suppressors).>****’

Adenoviruses

Three studies evaluate the safety and tolerability of Ad-RTS-
hIL12 in glioblastoma patients (Table 2). This adenoviral vec-
tor allows conditional expression of human IL12 inducible by
administration of the small-molecule veledimex. Ad-RTS-
hIL12 is administered once i.t. upon standard of care craniot-
omy and tumor resection. Patients are given oral veledimex
prior to surgery and for the following 14 d (NCT03679754,
Phase I). Of note, a previous Phase I trial (NCT02026271)
showed that this veledimex-regulated transcriptional switch
safely controls the dose of IL12 delivered and was well tolerated
in glioma patients.””” Ad-RTS-hIL12 plus veledimex is also
tested in combination with infusions of anti-PD1: nivolumab
(NCT03636477, Phase I) or cemiplimab-rwlc (NCT04006119,
Phase II). Other replication-incompetent adenoviruses are
considered for cancer immunotherapy together with ICIs
(Table 2). NCT04013334 will test i.f. injections of the virus
MTG201 in combination with 4 weekly i.v. infusions of nivo-
lumab in patients with relapsed malignant pleural mesothe-
lioma. MTG201 is equipped with a transgene encoding the
tumor suppressor DKK3/REIC (Dickkopf-3/Reduced expres-
sion in immortalized cells) whose expression in cancer cells
leads to apoptosis, while overexpression in stromal cells of the
TME (e.g. fibroblasts) stimulates antitumor immunity.**° In
preclinical studies, a p53-armed adenoviral vector (Ad-p53),
alone or combined with PD1 blockade, showed an enhanced
control of local treated and distant untreated tumors compared



with anti-PD1 alone, suggesting that Ad-p53 immunotherapy
mediates abscopal effects and can reverse resistance to
ICL>*?*°2>? These results encouraged the clinical evaluation
of Ad-p53 in combination with PD1 blockade. Along this line,
the Phase I-II investigation NCT02842125 aimed at evaluating
the safety and efficacy of i.t. Ad-p53 in combination with i.v.
nivolumab in patients with recurrent HNSCC. However, this
trial was terminated as the cohort has been rolled into a parallel
study. In the Phase II trial NCT03544723, i.t. Ad-p53 will be
experimented in participants with recurrent or metastatic solid
tumors together with i.v. infusions of physician’s choice of
approved anti-PD1/anti-PDL1.

Poxvirus

A total of 22 patients with localized prostate cancer were scheduled
to be enrolled in NCT04020094 to receive pre-operative i.t. injec-
tions of MVA-BN-Brachyury. This latter is a modified vaccinia
Ankara-Bavarian Nordic expressing a MHC-I-restricted epitope
of the transcription factor Brachyury and three co-stimulatory
molecules: B7.1, ICAM-1 and LFA-3. MVA-BN-Brachyury was
accompanied with both neoadjuvant and adjuvant combinations
of atezolizumab (infusion) plus PROSTVAC (s.c.); a vaccinia
virus-based vaccine encoding prostate-specific antigen (PSA).**
The study aimed to assess the safety of this combination immu-
notherapy and quantify tumor-infiltrating CTLs.*>* However, it
was stopped due to funding withdrawal (Table 2).

Arenaviruses

For treating human papilloma virus (HPV)-related cancers,
HB-201, an attenuated lymphocytic choriomeningitis virus
(LCMV) encoding an inactivated fusion protein constituted
of the HPV-16 oncoproteins E6 and E7, is being tested i.t. in
HNSCC and cervical cancers.**® HB-201 will be injected once
either as a standalone treatment or combined with chemora-
diation in the Phase I trial NCT04630353. By contrast, HB-201
will be integrated in a prime-boost immunization setting, in
which vaccine recalls are perpetuated with systemic infusions
of either HB-201 or the Pichinde virus-based E6/E7 vaccine
(HB-202) in the Phase I/II study NCT04180215 (Table 2).

Flavivirus

The Phase I NCT03990493 evaluates i.t. injection of the atte-
nuated strain #45AZ5 of dengue virus-1 (referred to as PV-
001-DV), combined with i.v. infusions of autologous mono-
cyte-derived DCs pulsed with tumor lysate (PV-001-DC), in
advanced melanoma (Table 2).2*°

Orthomyxoviruses

Influenza vaccines will be investigated as local therapy of
oncological indications in two recently registered trials (Table
2).2°° The explorative Phase II trial NCT04591379 will deter-
mine the safety and efficacy of i.t. influenza vaccine as an
immune response-enhancing treatment before intended cura-
tive surgery in participants with CRC. NCT04697576
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investigates influenza vaccine delivered first i.m. then i.t., either
prior to surgery in patients with resectable melanoma, or con-
current with standard of care ipilimumab, nivolumab, or pem-
brolizumab in metastatic melanoma.

Therapeutic vaccines

Therapeutic cancer vaccines are designed to prime an adaptive
immunity against neoplastic cells.”*>® They rely on providing
an abundant source of tumor-specific antigens (TSAs) or
tumor-associated antigens (TAAs) in order to favor their cap-
ture and (cross-) presentation to T cells by endogenous DCs.
This strategy has the advantage to stimulate a cellular immune
response that is highly specific to malignant entities. Cancer
vaccines exist in different forms: i) cell lysates, ii) purified
antigens, iii) recombinant DNA, RNA, or viruses encoding
antigenic determinants, or iv) DCs presenting antigens.*>*>*
In this dynamic, some efforts are being made for the design of
bioinformatics algorithms predicting the binding of antigen
epitopes to major histocompatibility complex molecules.”*" A
proteogenomic approach combining mass spectrometry and
RNA sequencing has also been developed for the identification
of tumor antigens, including aberrantly expressed TSAs, which
remained undetected with previous methods.****%*
Intralesional delivery of cancer vaccines is currently the
object of several preclinical’***** as well as clinical investiga-
tions. In this line, two studies are evaluating the safety of intra-
tumor Ifx-Hu2.0 applied for the care of skin cancers. Ifx-Hu2.0 is
a DNA plasmid encoding the highly immunogenic Emm55
streptococcal antigen. It will be administered repeatedly in up
to three lesions of cutaneous, subcutaneous or nodal melanoma
(NCT03655756) or of MCC or SCC (NCT04160065) (Table
2).26%2%7 Recombinant viruses are also tested in patients for the
local production of large amounts of tumor antigens, such as
HB-201 and MGI1-E6E7 in HPV-related cancers, or MVA-BN-
Brachyury in prostate cancer (see previous sections of this
review) (Table 2). Since the approval of sipuleucel-T,***** can-
cer vaccine candidates relying on DCs loaded with tumor anti-
gens are expanding (e.g. the aforementioned DCVac/Pca and
PV-001-DC). To present antigens and/or express immune cell-
activating factors, autologous DCs are extracted from patients,
then either genetically manipulated or co-cultured with a tumor
lysate or antigens.”*>*’° Some DC-based vaccines are being
evaluated clinically following i.t. delivery. First, the Phase I trial
NCT03638765 will take advantage of an intraventricular catheter
system (Ommaya)®”" to deliver activated unloaded autologous
DCs (DCVax-Direct) to brain metastases of breast or lung
primary tumors (Table 2). The main challenge with i.t. injection
of DCs is to overcome the highly immunosuppressive intratu-
moral microenvironment which may impair their function. For
this reason, some groups have genetically manipulated DCs to
overproduce inflammatory cytokines or co-administered them
with adjuvants. For instance, Ad-CCL21-DC is a cancer vaccine
comprised of autologous DCs transduced ex vivo with an ade-
novirus containing the CCL21 gene, a chemokine which drives
DC migration and harbors antineoplastic activities.”’> This latter
approach has been reported to induce efficient anticancer immu-
nity in mouse models of leukemia.”’”> Ad-CCL21-DC is currently
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evaluated following i.t. delivery in combination with i.v. pem-
brolizumab for the treatment of NSCLC (NCT03546361) (Table
2).274

Adoptive transfer of lymphocytes

Adoptive cell transfer consists in taking the patient’s own
immune cells (e.g. T cells, NK cells, and DCs), expanding and
eventually modifying them ex vivo, before reinjecting them to
the patient where they will promote or elicit cytotoxic action on
cancer cells.”>*”> The low count of cells reaching the lesions
after systemic injection may result in suboptimal efficacy. To
circumvent this limitation, i.. injection enables to reach higher
concentration of effector cells in situ, and to raise the chance of
overcoming immunosuppression. On top of the adoptive
transfer of DCs previously evoked, other strategies consist in
expanding ex vivo autologous NK cells or tumor-infiltrating T
lymphocytes in order to deliver a high dose of cytotoxic cells
into the lesion.”’®*””” Two clinical trials are using ex vivo
expanded autologous NK cells as single agent in patients with
high grade (NCT04254419) or recurrent glioma
(NCT04489420) using an intraventricular catheter system
(Table 2).*”" However, not all patients develop tumor-specific
T cells. Chimeric antigen receptor T cell (CAR-T) therapy has
been thought to overcome this burden. It consists of autolo-
gous T cells which are extracted from patients and genetically
modified to harbor a chimeric receptor consisting of an scFv
targeting a surface tumor antigen. Four CD19 CAR-T cell
therapies, namely axicabtagene ciloleucel (Yescarta'™), brexu-
cabtagene autoleucel (Tecartus™™), lisocabtagene maraleucel
(Breyanzi"™), and tisagenlecleucel (Kymriah™) are currently
approved as a systemic intervention in leukemia/lymphoma-
bearing patients.””®*”* A fifth CAR-T cell targeting B cell
maturation antigen (BCMA) also received FDA approval in
multiple myeloma in March 2021 (Table 1).**"** The Phase I
trial NCT03389230 is recruiting patients with recurrent or
refractory Grade II-IV glioma to investigate i.t. delivery of
memory-enriched T cells lentivirally transduced to express a
human epidermal growth factor receptor 2 (HER2)-specific,
hinge-optimized, 41BB-costimulatory chimeric receptor and a
truncated CD19 (HER2(EQ)BB{/CD19t+). The study will mea-
sure the incidence of severe adverse events and determine
RP2D, describe persistence and expansion of the CAR-T
cells, and estimate median OS. NCT03932565 evaluates a
fourth generation CAR-T cells targeting Nectin4 and the fibro-
blast activation protein (FAP) which additionally express the
pro-inflammatory cytokines IL7 and CCL19, or IL12 to over-
come the immunosuppressive environment associated with the
tumor (Table 2).>** Of note, Nectin 4 is a protein which is
highly expressed on the surface of various carcinomas and
which plays a key role in cancer occurrence and metastasis.
Similarly, FAP is highly expressed in tumor stroma.

Combinations of immunotherapeutic strategies

Since cancer immune response involves a coordinate action of
diverse immune cells and pathways (Figure 1), it seems highly
relevant to combine different strategies acting at various levels
of the cancer-immunity cycle to reach superior therapeutic

efficacy.'**7?*® In this line, some clinical investigations are
evaluating i.t. delivery of various immunomodulatory agents
aiming at reshaping the tumor microenvironment in a way that
support the promotion/reinstatement of cancer immunosur-
veillance (Table 2).

Autologous immune cells are infused locally together with
immunostimulatory drugs in three recent trials. NCT04952272
will assess in advanced solid cancers the incidence of side
effects and primary efficacy of local injection of CpG ODNS,
together or not with CAR-T cells releasing anti-OX40. They
will be administered consecutively to either microwave abla-
tion or intratumor injection of beads eluting chemotherapeutic
compounds that aim to induce the release of tumor-specific
antigens. The Phase I trial NCT03707808 will combine i.t.
injection of autologous CD1c" myeloid DCs with i.t. ipilimu-
mab plus avelumab along with systemic nivolumab for the
treatment of solid tumors and metastases to soft tissue. This
completed trial demonstrated that i.f. injection of autologous
CDI1c" myeloid DCs with i.t. co-injection of ipilimumab and
avelumab is safe and induced early signs of antitumoral activity
in pre-treated patients.”®” Similarly, the Phase II clinical trial
NCT04571632 will use SBRT along with i.v. pembrolizumab,
with or without i.t. avelumab plus ipilimumab plus CD1c"/
CD141" myeloid DCs** in NSCLC.

NCT03739931 is a dose-escalation study of i.t. mRNA-2752
in patients with relapsed/refractory solid malignancies or lym-
phoma. mRNA-2752 consists of mRNAs encapsulated in lipid
nanoparticles and which encode the human immune check-
point OX40L, and the cytokines IL23 and IL36y. This cocktail
will be administered alone and in combination with
durvalumab.?®! At all doses studied, the combinatorial treat-
ment was tolerated and associated with tumor shrinkage.
Analyses of tumor and plasma biomarkers suggested a sus-
tained immunomodulatory effect that included an elevation of
IFNy, TNFaq, and PDLI levels. These data comfort the applica-
tion of mMRNA-2752 in association with anti-PDL1.**" Another
mixture of three mRNAs, referred to as TriMix, is studied i.t. in
a Phase I trial prior to surgery or neoadjuvant chemotherapy in
early-stage breast cancer patients (NCT03788083). TriMix
encodes the immune checkpoints CD70 and CD40L, and a
constitutively active TLR4 which promotes DC activation and
support T cell priming.”***?

Other trials are testing i.t. administration of PRR agonists
along with other types of immunotherapies. In NCT03928275,
response to intralesional delivery of the BCG strain TICE*”
and recombinant IL2 aldesleukin will be measured in partici-
pants with cutaneous metastatic melanoma. As another exam-
ple, in order to expand the efficacy of the TLR4 agonist MPL, a
stable emulsion of glucopyranosyl lipid A (GLA-SE) was devel-
oped. The Phase I NCT03982121 aimed to determine the
MTD, RP2D, and toxicity profile of i.t. injection of GLA-SE
and ipilimumab in combination with i.v. administration of
nivolumab and the FOLFOX chemotherapy regimen (i.e. foli-
nic acid, fluorouracil, and oxaliplatin) for the treatment of
colorectal liver metastases. Unfortunately, NCT03982121
never began because of withdrawal of the industrial partner.
Similarly, in the Phase I trial NCT04270864, ipilimumab and
the TLRY agonist tilsotolimod will be administered i.t. in com-
bination with i.v. nivolumab in patients with advanced cancers.



The Phase Ib/II trial NCT04387071 studies the side effects and
best dose of the VLP-encapsulated CMP-001 administered i.t.
along with the agonistic anti-OX40 mAb INCAGN01949 in
participants with advanced pancreatic cancer and other can-
cers except melanoma. NCT03831295 evaluates i.t. plus iv.
BMS-986178 (anti-OX40) along with i.t. SD-101 in treating
patients with solid malignancies that have metastasized. The
Phase I trial NCT03410901 will assess DLT, ORR, and PES of
the same regimen of i.t. immunotherapies in combination with
radiotherapy in patients with low-grade B-cell non-Hodgkin
lymphomas.

Synergistic combinations may also allow to reduce the
dose of drugs injected, which both reduce costs and
potential adverse events. In this line, CIVO (i.e.
Comparative In Vivo Oncology) is an arrayed microinjec-
tion technology implanted in a patient’s tumor that simul-
taneously and locally assess tumor responsiveness to
microdoses of multiple drugs.*****> Three early Phase I
clinical trials are currently using this device. First,
NCT04272333 studies tumor microenvironment changes
following i.t. microdose injection of the TLR8 agonist
motolimod as a single agent or concomitant with i.t.
nivolumab in  patients with HNSCC. Second,
NCT04065555 aims to study the tumor microenvironment
modulations induced by TAK-981, a SUMOylation inhibi-
tor shown to activate IFN signaling,”’® as single agent or
combined with i.f. cetuximab or avelumab in HNSCC.
Finally, in the early Phase I NCT04541108, cancer patients
will receive intratumoral microdoses of BMS-986299
(NLRP3 agonist), relatlimab (anti-LAG3) or ipilimumab,
either as single agents or combined with i.t. nivolumab
(experimental arm 1). CIVO will also be applied to deliver
intralesional microdoses of the STING agonist TAK-676,
carboplatin, 5-fluorouracil, or paclitaxel as single agents or
in combination (experimental arm 2). In the third experi-
mental arm of NCT04541108, local delivery of microdoses
of pembrolizumab will be studied either alone or in asso-
ciation with either MK-0482 or MK-4830, which are
antagonists of the inhibitory immune receptors immuno-
globulin-like transcript (ILT)-3 and ILT-4, respectively.
These treatments will be administered prior to scheduled
surgical biopsy or tumor resection surgery. Outcome mea-
sures of NCT04541108 will consist in detecting cell death
and immune cell biomarkers and determining the rela-
tionship between the drugs injected and the incidence of
adverse events.

Concluding remarks

Intratumoral immunotherapy has an immediate impact on
cancer cells. It locally reshapes the tumor microenvironment
in a way that supports cancer immunosurveillance, allowing to
reinvigorate tumor-specific immunity. Additionally, this deliv-
ery approach offers the advantage to reduce systemic leakage of
the therapeutic agent and thus to prevent off-target toxicity.
Furthermore, this administration route requires a lower dose
to impede tumor progression which opens the gate for drug
combinations. Additionally, several therapeutic associations
have demonstrated superior efficacy such as ICIs combined
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to either PRR agonists or ICD-inducing chemotherapy or
radiotherapy.'”>**”**® Such regimens seem particularly pro-
mising since the anticancer immune response involves the
coordinated recruitment and actions of multiple immune effec-
tors, which each incarnates a druggable target for accessing
optimized efficacy.

However, intratumoral injection suffers from technical
challenges. The targeted tumor must have a sufficient size (>1
cm) to ensure injectability with a needle, especially when the
lesions are poorly accessible.”’ It is therefore mainly used for
subcutaneous and mucosal lesions or superficial lymph nodes,
as highlighted by the numerous clinical trials which are testing
i.t. immunotherapy in melanoma. Conversely, it is technically
more challenging to locally deliver immunotherapies to deeper
tumors, as it requires imaging or endoscopic guidance, with
associated burden such as repeated x-ray exposure and long
procedure. Imaging with ultrasound and/or computed tomo-
graphy enables to guide needle positioning, but also to monitor
tumor size evolution and the effects of the treatment on the
tumor microenvironment. For most intraperitoneal lesions
and tumors of the central nervous system, imaging is not
even sufficient. In this setting, i.t. injection requires surgery,
which inherently limits the repeatability of injections along the
time.”"

Different questions also remain to be addressed before
implementing the technique on a wider scale. Is there a differ-
ent response if the agent is injected in a metastasis rather than
in the primary tumor? Should all metastases be treated to target
a high diversity of tumor antigens and elicit broader polyclonal
antitumor response? The dose of the agents to administer also
remains to be determined; a simple conversion from the sys-
temic dose cannot be applied due to high heterogeneity among
the treatments regarding absorption, distribution, and drug
interactions. Moreover, the repartition of the drug into the
tumors is not uniform and some very dense tumors are difficult
to inject. Depending on the pharmacokinetics of the agent, it
may leak out in the blood stream and cause unexpected sys-
temic adverse effects. Importantly, the local trauma induced by
the needle may have a deleterious impact on the treatment.
Finally, local anesthetic administration is required prior to
intratumoral injection, and their effects on the tumor micro-
environment as well as on the stability and efficacy of the
immunotherapeutics is not well known to date.”’ Ongoing
and future clinical investigations will have to address these
points in order to define the recommendations for intratu-
moral immunotherapy over systemic treatment, and for opti-
mizing the efficacy of such local monotherapies or
combinatorial regimens.
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