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We here unify the field-theoretical approach to neuronal networks with large deviations theory. For a
prototypical random recurrent network model with continuous-valued units, we show that the effective
action is identical to the rate function and derive the latter using field theory. This rate function takes the
form of a Kullback-Leibler divergence which enables data-driven inference of model parameters and
calculation of fluctuations beyond mean-field theory. Lastly, we expose a regime with fluctuation-induced
transitions between mean-field solutions.
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Introduction.—Biological neuronal networks are systems
withmany degrees of freedom and intriguing properties: their
units are coupled in a directed, nonsymmetric manner, so that
they typically operate outside thermodynamic equilibrium
[1,2]. The primary analytical method to study neuronal
networks has been mean-field theory [3–8]. Its field-theo-
retical basis has been exposed only recently [9,10]. However,
to understand the parallel and distributed information
processing performed by neuronal networks, the study of
the forward problem—from the microscopic parameters of
themodel to its dynamics—is not sufficient. One additionally
faces the inverseproblemofdetermining theparameters of the
model given a desired dynamics and thus function. Formally,
one needs to link statistical physics with concepts from
information theory and statistical inference.
We here expose a tight relation between statistical field

theory of neuronal networks, large deviations theory,
information theory, and inference. To this end, we general-
ize the probabilistic view of large deviations theory, which
yields rigorous results for the leading-order behavior in the
network size N [11,12], to arbitrary single unit dynamics,
transfer functions, and multiple populations. We further-
more show that the central quantity of large deviations
theory, the rate function, is identical to the effective action
in statistical field theory. This link exposes a second

relation: Bayesian inference and prediction are naturally
formulated within this framework, spanning the arc to
information processing. Concretely, we develop a method
for parameter inference from transient data for single- and
multi-population networks. Lastly, we overcome the inher-
ent limit of mean-field theory—its neglect of fluctuations.
We develop a theory for fluctuations of the order parameter
when the intrinsic timescale is large and discover a regime
with fluctuation-induced transitions between two coexist-
ing mean-field solutions.
First, we introduce the model in its most general form.

Then, we develop the theory for a single population.
Last, we generalize it to multiple populations.
Model.—We consider block-structured random networks

ofN ¼ P
α Nα nonlinearly interacting units xαi ðtÞ driven by

an external input ξαi ðtÞ. The dynamics of the ith unit in the
αth population is governed by the stochastic differential
equation

τα _xαi ðtÞ¼−U0
α(xαi ðtÞ)þ

X
β

XNβ

j¼1

Jαβij ϕ(x
β
j ðtÞ)þξαi ðtÞ: ð1Þ

In the absence of recurrent and external inputs, the units
undergo an overdamped motion with time constant τα in a
potential UαðxÞ. The Jαβij are independent and identically
Gaussian-distributed random coupling weights with zero
mean and population-specific variance hðJαβij Þ2i ¼ g2αβ=Nβ

where the coupling strength gαβ controls the heterogeneity
of the weights. The time-varying external inputs ξαi ðtÞ
are independent Gaussian white-noise processes with
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zero mean and correlation functions hξαi ðt1Þξβj ðt2Þi¼
2Dαδijδαβδðt1− t2Þ. The single-population model corre-
sponds to the one studied in Ref. [4] if the external input
vanishes, D ¼ 0, the potential is quadratic, UðxÞ ¼ 1

2
x2,

and the transfer function is sigmoidal, ϕðxÞ ¼ tanhðxÞ; for
D ¼ 1

2
, UðxÞ ¼ − logðA2 − x2Þ, and ϕðxÞ ¼ x it corre-

sponds to the one in Ref. [11], which is inspired by the
dynamical spin glass model of Ref. [13].
Field theory.—The field-theoretical treatment of Eq. (1)

employs the Martin-Siggia-Rose-de Dominicis-Janssen
path integral formalism [14–17]. We denote the expectation
over paths across different realizations of the noise ξ
as [[18], Section A.1]

h·ixjJ ≡ hh·ixjJ;ξiξ ¼
Z

Dx
Z

Dx̃ · eS0ðx;x̃Þ−x̃TJϕðxÞ;

where h·ixjJ;ξ integrates over the unique solution of
Eq. (1) given one realization ξ of the noise. Here,
S0ðx; x̃Þ ¼ x̃T½_xþU0ðxÞ� þDx̃Tx̃ is the action of the
uncoupled neurons. We use the shorthand notation
aTb ¼ P

N
i¼1

R
T
0 dtaiðtÞbiðtÞ.

For large N, the system becomes self-averaging, a
property known from many disordered systems with large
numbers of degrees of freedom: the collective behavior is
stereotypical, independent of the realization Jij. A self-
averaging observable has a sharply peaked distribution over
realizations of J—the observable always attains the same
value, close to its average. This, however, only holds for
observables averaged over all units, reminiscent of the
central limit theorem. These are generally of the formP

N
i¼1 lðxiÞ, where l is an arbitrary functional of a single

unit’s trajectory. It is therefore convenient to introduce the
scaled cumulant-generating functional

WNðlÞ ≔
1

N
ln hhe

P
N
i¼1

lðxiÞixjJiJ; ð2Þ

where the prefactor 1=N makes sure thatWN is an intensive
quantity, reminiscent of the bulk free energy [24]. In fact,
we will show that the N dependence vanishes in the limit
N → ∞ because the system decouples.
Performing the average over J, i.e., evaluating

he−x̃TJϕðxÞiJ, and introducing the auxiliary field

Cðt1; t2Þ ≔
1

N

XN
i¼1

ϕ(xiðt1Þ)ϕ(xiðt2Þ) ð3Þ

as well as the conjugate field C̃, we can writeWN as [ [18],
Section A.1]

WNðlÞ ¼
1

N
ln
Z

DC
Z

DC̃e−NCTC̃þNΩlðC;C̃Þ;

ΩlðC; C̃Þ ≔ ln
Z

Dx
Z

Dx̃eS0ðx;x̃Þþ
g2

2
x̃TCx̃þϕTC̃ϕþlðxÞ: ð4Þ

The effective action is defined as the Legendre transform
of WNðlÞ,

ΓNðμÞ ≔
Z

DxμðxÞlμðxÞ −WNðlμÞ; ð5Þ

where lμ is determined implicitly by the condition
μ ¼ W0

NðlμÞ and the derivative W0
NðlÞ has to be under-

stood as a generalized derivative, the coefficient of the
linearization akin to a Fréchet derivative [25].
Note that WN and ΓN are, respectively, generalizations

of a cumulant-generating functional and of the effective
action [26] because both map a functional (l or μ) to the
reals. For the choice lðxÞ ¼ jTx, where jðtÞ is an arbitrary
function, we recover the usual cumulant-generating func-
tional of the single unit’s trajectory [ [18], Section A.4] and
the corresponding effective action.
Rate function.—Any network-averaged observable, for

which we may expect self-averaging to hold, can likewise
be obtained from the empirical measure

μðyÞ ≔ 1

N

XN
i¼1

δðxi − yÞ; ð6Þ

since ð1=NÞPN
i¼1 lðxiÞ ¼

R
DyμðyÞlðyÞ. Of particular

interest is the leading-order exponential behavior of the
distribution of empirical measures PðμÞ ¼ hhPðμjxÞixjJiJ
across realizations of J and ξ. This behavior in the large N
limit is described by what is known as the rate function

HðμÞ ≔ − lim
N→∞

1

N
lnPðμÞ ð7Þ

in large deviations theory [see, e.g., [27] ];HðμÞ captures the
leading exponential probability PðμÞ ≃N≫1

exp½ − NHðμÞ�.
For large N, the probability of an empirical measure that
does not correspond to the minimum H0ðμ̄Þ ¼ 0 is thus
exponentially suppressed. Put differently, the system is self-
averaging and the statistics of any network-averaged observ-
able can be obtained using μ̄.
Similar as in field theory, it is convenient to introduce

the scaled cumulant-generating functional of the empirical
measure. Because ð1=NÞPN

i¼1lðxiÞ¼
R
DyμðyÞlðyÞ holds

for an arbitrary functional lðxiÞ of the single unit’s
trajectory xi, Eq. (2) has the form of the scaled cumu-
lant-generating functional for μ at finite N.
Using a saddle-point approximation for the integrals

over C and C̃ in Eq. (4) [ [18], Section A.1], we get

W∞ðlÞ ¼ −CT
lC̃l þΩlðCl; C̃lÞ: ð8Þ

Both Cl and C̃l are determined self-consistently by
the saddle-point equations Cl ¼ ∂C̃ΩlðC; C̃ÞjCl;C̃l

and
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C̃l ¼ ∂CΩlðC; C̃ÞjCl;C̃l
where ∂C denotes a partial func-

tional derivative.
From the scaled cumulant-generating functional, Eq. (8),

we obtain the rate function via a Legendre transformation
[28]: HðμÞ ¼ R

DxμðxÞlμðxÞ −W∞ðlÞ with lμ implicitly
defined by μ ¼ W0

∞ðlμÞ. Note that HðμÞ is still convex
even if μ itself is multimodal. Comparing with Eq. (5), we
observe that the rate function is equivalent to the effective
action: HðμÞ ¼ limN→∞ΓNðμÞ. The equation μ ¼ W0

∞ðlμÞ
can be solved for lμ to obtain a closed expression for the
rate function viz. effective action [ [18], Section A.2], one
main result of our work,

HðμÞ ¼
Z

DxμðxÞ ln μðxÞ
hδð_xþ U0ðxÞ − ηÞiη

; ð9Þ

where η is a zero–mean Gaussian process with a correlation
function that is determined by μðxÞ,

Cηðt1;t2Þ¼2Dδðt1− t2Þþg2
Z

DxμðxÞϕ(xðt1Þ)ϕ(xðt2Þ):

ð10Þ

For D ¼ 1
2
, UðxÞ ¼ − logðA2 − x2Þ, and ϕðxÞ ¼ x, Eq. (9)

can be shown to be equivalent to the mathematically
rigorous result obtained in the seminal work by Ben
Arous and Guionnet [ [18], Section A.3].
The rate function Eq. (9) takes the form of a Kullback-

Leibler divergence. Thus, it possesses a minimum at

μ̄ðxÞ ¼ hδ(_xþU0ðxÞ − η)iη: ð11Þ

This most likely measure corresponds to the well-known
self-consistent stochastic dynamics that is obtained in field
theory [4,9,10,29]. Note that the correlation function of the
effective stochastic input η at the minimum depends self-
consistently on μ̄ðxÞ through Eq. (10). However, the rate
function HðμÞ contains more information. It quantifies
the suppression of departures μ − μ̄ from the most likely
measure and therefore allows the assessment of fluctuations
that are beyond the scope of the classical mean-field result.
Parameter inference.—The rate function opens the way

to address the inverse problem: given the network–
averaged activity statistics, encoded in the corresponding
empirical measure μ, what are the statistics of the con-
nectivity and the external input, i.e., g and D?
We determine the parameters using maximum likelihood

estimation. Using Eq. (7) and Eq. (9), the likelihood of the
parameters is given by

lnPðμjg;DÞ ≃ −NHðμjg;DÞ;

where ≃ denotes equality in the limit N → ∞ and we made
the dependence on g and D explicit. The maximum

likelihood estimate of the parameters g and D corresponds
to the minimum of the Kullback-Leibler divergence H,
Eq. (9), on the right-hand side. Evaluating the derivative of
Hðμjg;DÞ yields [ [18], Section B.1]

∂a lnPðμjg;DÞ ≃ −
N
2
tr

�
ðC0 − CηÞ

∂C−1
η

∂a
�
;

where we abbreviated a ∈ fg;Dg and defined C0ðt1;t2Þ≡R
DxμðxÞð_xðt1ÞþU0(xðt1Þ)Þð_xðt2ÞþU0(xðt2Þ)Þ. The deri-

vative vanishes for C0 ¼ Cη. Assuming stationarity, in the
Fourier domain this condition reads

S _xþU0ðxÞðfÞ ¼ 2Dþ g2SϕðxÞðfÞ; ð12Þ

where SXðfÞ denotes the network-averaged power spec-
trum of the observable X. Using non-negative least squares
[30], Eq. (12) allows a straightforward inference of g andD
(Fig. 1). To determine the transfer function ϕ and the
potential U, one can use model comparison techniques
[[18], Section B.2]. Using the inferred parameters, we can
also predict the future activity of a unit from the knowledge
of its recent past [ [18], Section B.3].

(a)

(c)

(e) (f)

(d)

(b)

FIG. 1. Maximum likelihood parameter estimation for
ϕðxÞ ¼ erfð ffiffiffi

π
p

x=2Þ, potential UðxÞ ¼ 1
2
x2 þ s ln cosh x, and

external noise D. (a) Color-coded sketch of potential and
noise. (b)–(d) Activity of three randomly chosen units for
coupling strengths g indicated in title. (e) Parameter estimation
via non-negative least squares regression (black lines) based on
Eq. (12). (f) Power spectra on the left- (dark, solid curves) and
right-hand sides (light, dotted curves) of Eq. (12) for the
inferred parameters. Further parameters: τ ¼ 1, N ¼ 10 000,
temporal discretization dt ¼ 10−2, simulation time T ¼ 1000,
time span discarded to reach steady state T0 ¼ 100.
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Fluctuations.—The rate function allows us to go beyond
mean-field theory and examine fluctuations of the order
parameter. Here, we use the network-averaged variance
qðtÞ ¼ Cðt; tÞ from Eq. (3) as an order parameter and
restrict the discussion to the case UðxÞ ¼ 1

2
x2.

Figure 2(a) shows the distribution of qðtÞ across time and
across realizations of the connectivity. The fluctuations
across realizations of the connectivity can be computed
from the curvature of the rate function IðCÞ that is obtained
from (9) by the contraction principle [ [18], Section C.1]. In
a stationary state and considering only the fluctuations
across realizations of the connectivity, for slow recurrent
dynamics τc ≫ 1 we obtain the approximation for the
fluctuations of q

hðq − hqiJÞ2iJ ¼
hðϕϕ − hϕϕi0Þ2i0

N½1 − g2ðhϕ00ϕi0 þ hϕ0ϕ0i0Þ�2
: ð13Þ

Here, hfgi0 ≡ hf(xðtÞ)g(xðtÞ)i0 denotes an expectation
with respect to the self-consistent measure (11). For
vanishing noise, D ¼ 0, and g > 1, the dynamics are
slow and the theory matches the empirical fluctuations
very well [Figs. 2(a) and 2(b)]. Deviations in Fig. 2(b)
are caused by two effects: For g↘1, periodic solutions
appear as a finite-size effect; for growing g, the timescale τc
decreases, eventually violating the assumption τc ≫ 1
entering Eq. (13). Rate functions like IðCÞ in general also
allow one to estimate the tail probability Pðq > θÞ≈
exp½−NIðθÞ�, which here shows a quadratic decline for
large departures [Fig. 2(a)].

When the denominator in Eq. (13) vanishes, fluctuations
grow large, indicative of a continuous phase transition. For
ϕ000ð0Þ < 0 the denominator vanishes for g ≥ 1 [Fig. 2(b)],
in line with the established theory, the breakdown of linear
stability of the fixed point x ¼ 0 [4]. For ϕ000ð0Þ > 0,
however, Eq. (13) predicts qualitatively different behavior:
the denominator vanishes at g < 1, in the linearly stable
regime. In fact, we find that this regime features the
coexistence of two stable mean-field solutions (Fig. 2(c),
[[18], Section C.2]) and fluctuation-driven first-order tran-
sitions between them [Fig. 2(d)]. The solution with larger
q corresponds to self-sustained activity; the solution
with smaller q corresponds to the fixed point x ¼ 0 and
is stable [ [18], Section C.2], in contrast to the case of a
threshold-power-law transfer function [6].
Multiple populations.—For multiple populations, any

population-averaged observable can be obtained from the
empirical measure μαðyÞ ¼ ð1=NαÞ

PNα
i¼1 δðxαi − yÞ. The

joint distribution of all population-specific empirical mea-
sures fμ°g is determined by the rate function [ [18],
Section D]

Hðfμ°gÞ ¼
X
α

γα

Z
DxμαðxÞ ln μαðxÞ

hδðτα _xþU0
αðxÞ − ηαÞiηα

;

ð14Þ

where γα ¼ Nα=N and ηα is a zero-mean Gaussian process
with

Cα
ηðt1; t2Þ ¼ 2Dαδðt1 − t2Þ

þ
X
β

g2αβ

Z
DxμβðxÞϕ(xðt1Þ)ϕ(xðt2Þ): ð15Þ

Again, the rate function can be interpreted as a log-
likelihood; its derivative leads to [ [18], Section E.1]

Sα
τα _xþU0

αðxÞðfÞ ¼ 2Dα þ
X
β

g2αβS
β
ϕðxÞðfÞ; ð16Þ

which generalizes Eq. (12) to multiple populations.
Using Eq. (16), the inferred connectivity gαβ matches the

ground truth well; accordingly, two unconnected popula-
tions [Figs. 3(a) and 3(b)] can be clearly distinguished from
a more involved network where one population (α ¼ 1)
is only active due to the recurrent input from the other
population [α ¼ 2, Figs. 3(c) and 3(d)]. The method can
thus distinguish intrinsically generated activity from a
case where activity is driven from outside the network.
However, inference of a unique set of parameters is only
possible if the output spectra Sα

ϕðxÞðfÞ differ sufficiently

across α. If the output spectra match closely, Eq. (16) leads
to a degenerate set of solutions that satisfy

P
β g

2
αβ ¼ const

and are all equally likely given the data [ [18], Section E.2].

(a) (b)

(d)(c)

FIG. 2. Order parameter fluctuations for ϕðxÞ ¼ erfð ffiffiffi
π

p
x=2Þ

[(a),(b)] and metastability for ϕðxÞ ¼ clip½tanðxÞ;−1; 1� [(c),(d)].
(a) Temporal order parameter statistics across ten simulations
(bars) and theory (solid curve) from Eq. (13). (b) Order parameter
variance for 10 realizations of the connectivity with standard error
of the mean (symbols) and theory (solid curve) from Eq. (13).
(c) Mean order parameter for different initial values q0 from
simulations (symbols) and self-consistent theory (solid curves).
(d) Fluctuation-induced bistability of the order parameter for
N ¼ 750, g ¼ 0.95. Further parameters: T ¼ 5000 in (a),(d);
UðxÞ ¼ 1

2
x2 in (a)–(d); other parameters as in Fig. 1.
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Discussion.—In this Letter, we found a tight link
between the field-theoretical approach to neuronal net-
works and its counterpart based on large deviations theory.
We obtained the rate function of the empirical measure for
the widely used and analytically solvable model of a
recurrent neuronal network [4] by field-theoretical meth-
ods. This rate function generalizes the seminal result by
Ben Arous and Guionnet [11,12] to arbitrary potentials,
transfer functions, and multiple populations. Intriguingly,
our derivation elucidates that the rate function is identical to
the effective action and takes the form of a Kullback-
Leibler divergence, akin to Sanov’s theorem for sums of
i.i.d. random variables [27,28]. The rate function can thus
be interpreted as a distance between an empirical measure,
for example given by data, and the activity statistics of the
network model. This result allows us to address the inverse
problem of inferring the parameters of the connectivity and
external input from a set of trajectories and to determine the
potential and the transfer function.
We here restricted the analysis to networks with inde-

pendently drawn random weights with zero mean. Since
correlated weights have a profound impact on the dynamics
that can be captured using both field theory [31] and large
deviations theory [32,33], it is an interesting challenge to
extend the analysis in this direction. Likewise, synaptic
weights with nonvanishing mean, as they appear in sparsely
connected networks, present an interesting extension,
because they promote fluctuation-driven states when feed-
back is sufficiently positive. Motifs are another important
deviation from independent weights in biological neural
networks are motifs [34], which pose a significant

challenge already for the field-theoretical approach [35].
Beyond the weight statistics, we assumed that the dynamics
are governed by the first-order differential equation (1).
Indeed, the field-theoretical approach can be generalized to a
much broader class of dynamics that do not necessarily
possess an action [36]; hence, it seems possible to also derive
large deviations results for more general dynamics. In this
regard, the extension to spiking networks is a particularly
interesting but also challenging future direction. Whether the
model, Eq. (1), with its current limitations—the independent
weights and the first-order dynamics—allows accurate
inference of network parameters from cortical recordings
is an intriguing question for further research.
The unified description of random networks by statistical

field theory and large deviations theory opens the door to
established techniques from either domain to capture
beyond mean-field behavior. Such corrections are impor-
tant for small or sparse networks with nonvanishing mean
connectivity, to explain correlated neuronal activity, and to
study information processing in finite-size networks with
realistically limited resources. We here make a first step by
computing fluctuation corrections from the rate function.
The quantitative theory explains near-critical fluctuations
for g ∈ ½1; 1þ δðNÞ� and we discover that expansive gain
functions, as found in biology [37], lead to qualitatively
different collective behavior than the well-studied contrac-
tive sigmoidal ones: The former feature metastable network
states with noise-induced first order transitions between
them; the latter allow for only a single solution and show
second order phase transitions.
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helpful discussions on LDT of neuronal networks, to Anno
Kurth for pointing us to the Fréchet derivative, and to
Alexandre René, David Dahmen, Kirsten Fischer, and
Christian Keup for feedback on an earlier version of the
manuscript. This work was partly supported by the
Helmholtz young investigator’s group VH-NG-1028,
European Union Horizon 2020 Grant No. 785907
(Human Brain Project SGA2), the Human Frontier
Science Program RGP0057/2016 grant, BMBF Grant
“Renormalized Flows” (01IS19077A), and the
Excellence Initiative of the German federal and state
governments (G:(DE-82)EXS-PF-JARASDS005).

*Corresponding author.
avm@physik.huberlin.de

[1] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I.
Abarbanel, Rev. Mod. Phys. 78, 1213 (2006).

[2] H. Sompolinsky, Phys. Today 41, No. 12, 70 (1988).
[3] S.-I. Amari, IEEE Trans. SMC-2, 643 (1972).
[4] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Phys. Rev.

Lett. 61, 259 (1988).
[5] M. Stern, H. Sompolinsky, and L. F. Abbott, Phys. Rev. E

90, 062710 (2014).

(a)

(c)

(b)

(d)

FIG. 3. Maximum likelihood parameter estimation for two
populations with different time constants τ1 ¼ 5, τ2 ¼ 1. (a) Out-
put power spectra Sα

ϕðxÞðfÞ of two unconnected populations g212 ¼
g221 ¼ 0 with g211 ¼ 4 and g222 ¼ 6. (b) Estimated (blue) and true
(black) parameters corresponding to (a). (c) Output power spectra
of two connected populations with g211 ¼ 0.5, g212 ¼ 1.5,
g221 ¼ 2.5, and g222 ¼ 3.5. (d) Estimated (blue) and true (black)
parameters corresponding to (c). Further parameters: N1 ¼
N2 ¼ 5000, ϕðxÞ ¼ erfð ffiffiffi

π
p

x=2Þ, UðxÞ ¼ 1
2
x2, and D ¼ 0; sim-

ulation parameters as in Fig. 1.

PHYSICAL REVIEW LETTERS 127, 158302 (2021)

158302-5

https://doi.org/10.1103/RevModPhys.78.1213
https://doi.org/10.1063/1.881142
https://doi.org/10.1109/TSMC.1972.4309193
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1103/PhysRevE.90.062710
https://doi.org/10.1103/PhysRevE.90.062710


[6] J. Kadmon and H. Sompolinsky, Phys. Rev. X 5, 041030
(2015).

[7] J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114,
088101 (2015).

[8] A. van Meegen and B. Lindner, Phys. Rev. Lett. 121,
258302 (2018).

[9] A. Crisanti and H. Sompolinsky, Phys. Rev. E 98, 062120
(2018).

[10] J. Schuecker, S. Goedeke, and M. Helias, Phys. Rev. X 8,
041029 (2018).

[11] G. B. Arous and A. Guionnet, Probab. Theory Relat. Fields
102, 455 (1995).

[12] A. Guionnet, Probab. Theory Relat. Fields 109, 183 (1997).
[13] H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 47, 359

(1981).
[14] P. Martin, E. Siggia, and H. Rose, Phys. Rev. A 8, 423

(1973).
[15] H.-K. Janssen, Z. Phys. B 23, 377 (1976).
[16] C. Chow and M. Buice, J. Math. Neurosci. 5, 8 (2015).
[17] J. A. Hertz, Y. Roudi, and P. Sollich, J. Phys. A 50, 033001

(2017).
[18] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.127.158302 for de-
tailed derivations and further information, which includes
Refs. [19–23].

[19] J. Stapmanns, T. Kühn, D. Dahmen, T. Luu, C. Honerkamp,
and M. Helias, Phys. Rev. E 101, 042124 (2020).

[20] D. J. MacKay, Information Theory, Inference and Learning
Algorithms (Cambridge University Press, Cambridge,
England, 2003).

[21] G. Matheron, Econ. Geol. 58, 1246 (1963).
[22] C. K. Williams, Neural Comput. 10, 1203 (1998).

[23] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, J. Bright et al., Nat. Methods 17, 261 (2020).

[24] N. Goldenfeld, Lectures on Phase Transitions and the
Renormalization Group (Perseus Books, Reading,
Massachusetts, 1992).

[25] M. S. Berger, Nonlinearity and Functional Analysis, 1st ed.
(Elsevier, New York, 1977), ISBN 9780120903504.

[26] J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena (Clarendon Press, Oxford, 1996).

[27] M. Mezard and A. Montanari, Information, Physics
and Computation (Oxford University Press, New York,
2009).

[28] H. Touchette, Phys. Rep. 478, 1 (2009).
[29] M. Helias and D. Dahmen, Statistical Field Theory for

Neural Networks, vol. 970 (Springer International Publish-
ing, Cham, 2020).

[30] C. L. Lawson and R. J. Hanson, Solving Least Squares
Problems (SIAM, Philadelphia, 1995).

[31] D. Martí, N. Brunel, and S. Ostojic, Phys. Rev. E 97, 062314
(2018).

[32] O. Faugeras and J. MacLaurin, Entropy 17, 4701 (2015).
[33] O. Faugeras, J. MacLaurin, and E. Tanré, arXiv:1901
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