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LGN-CNN: a biologically inspired CNN

architecture

Federico Bertoni · Giovanna Citti · Alessandro Sarti

Abstract

In this paper we introduce a biologically

inspired Convolutional Neural Network (CNN)

architecture called LGN-CNN that has a first

convolutional layer composed by a single fil-

ter that mimics the role of the Lateral Genic-

ulate Nucleus (LGN). The first layer of the

neural network shows a rotational symmet-

ric pattern justified by the structure of the
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net itself that turns up to be an approxima-

tion of a Laplacian of Gaussian (LoG). The

latter function is in turn a good approxi-

mation of the receptive field profiles (RFPs)

of the cells in the LGN. The analogy with

the visual system is established, emerging

directly from the architecture of the neural

network. A proof of rotation invariance of

the first layer is given on a fixed LGN-CNN

architecture and the computational results

are shown. Thus, contrast invariance capa-

bility of the LGN-CNN is investigated and

a comparison between the Retinex effects of

the first layer of LGN-CNN and the Retinex

effects of a LoG is provided on different im-

ages. A statistical study is done on the fil-

ters of the second convolutional layer with

respect to biological data. In conclusion, the

model we have introduced approximates well

the RFPs of both LGN and V1 attaining

similar behavior as regards long range con-

nections of LGN cells that show Retinex ef-

fects.

Keywords CNN · LGN · Visual system ·
Retinex theory · Minimal functional

symmetry properties
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1 Introduction

1.1 Architecture of the visual system and

CNNs

The visual system is composed by many

cortices that elaborate the visual signal re-

ceived from the retina via the optical nerve.

Each cortex receives information from other

cortices, processes it through horizontal con-

nectivity, forward it to higher areas and send

feedback to previous ones. The structure is

very complex and not totally ordered as phys-

iologically described for example in (Hubel

1988). Geometrical model of the first visual

cortex, we refer to (Ferraro and Caelli 1994),

(Petitot 2009), (Citti and Sarti 2006).

The first neural nets have been inspired

by a simplification of this structure, and present

a hierarchical structure, where each layer re-

ceives input from the previous one and pro-

vides output to the next one. Despite this

simplification, they reached optimal perfor-

mances in processes typical of the natural vi-

sual system, as for example object-detection

(Redmon et al. 2016), (Ren et al. 2015) or

image classification (He et al. 2016), (Si-

monyan and Zisserman 2014).

More recently relations between CNNs

and human visual system have been widely

studied, with the ultimate scope of making

the CNN even more efficient in specific tasks.

A model of the first cortical layers described

as layers of a CNN has been studied in

(Serre et al. 2007). In (Yamins and DiCarlo

2016) and in (Yamins et al. 2013) the au-

thors were able to study higher areas by fo-

cusing on the encoding and decoding ability

of the visual system. Recurrent Neural net-

works have been introduced to implement

the horizontal connectivity (as for example

in (Sherstinsky 2018)), or feedback terms

(for example in (Liang and Hu 2015)). A

modification of these nets, more geometric

and more similar to the structure of the brain,

have been recently proposed in (Montobbio

et al. 2019).

It is well known that both V1 RFPs and

the first convolutional layer of a CNN are

mainly composed by Gabor filters. We refer

to (Daugman 1985), (Jones and Palmer

1987), (Lee 1996), (Petitot 2009) for the

visual system and to (Yamins and DiCarlo

2016), (Yamins et al. 2013), (Girosi et al.

1995) for properties of CNNs.

Biological based models of V1 in terms

of Gabor filters have been made in (Zhang

et al. 2019) and (Serre et al. 2007) and the

statistic of the RFPs of a macaque’s V1 was

studied in (Ringach 2002), but a compari-

son between these results and the statistics

of learned filters is still missing.

1.2 Invariance properties in CNNs

Gabor invariance properties are mainly

invariance with respect to translation and

rotations. CNNs are translation equivariant

since they are defined in terms of convo-

lutional kernels (see (Cohen and Welling

2016), (Cohen et al. 2018)). Rotation in-

variance properties can be imposed either

obtaining the whole bank of filters from a

learned one (Marcos et al. 2016) and (Wu et

al. 2015), or rotating any test image (Fasel

and Gatica-Perez 2006), (Dieleman et al.

2015), (Dieleman et al. 2016). A different

kind of pooling or kernel procedure are used

in (Laptev et al. 2016) and (Gens and

Domingos 2014), while (Barnard and Casasent
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1991) studied invariances with respect to other

feature spaces.

1.3 LGN, Retinex and contrast perception

In the human visual system, the process

in V1 operated by Gabor filters, is preceded

by a preprocessing operated by radially sym-

metric families of cells, both in the retina

and in the LGN (see (Hubel 1988)). The

RFPs of cells can be approximated by a LoG

which is rotational symmetric (for a review

see for example (Petitot 2009)). It does not

seem that an analogous layer is present in

classical CNN, but it is known that it is cru-

cial for human contrast perception. It has

been investigated in Retinex theory formu-

lated in 1964 by E. H. Land in (Land 1964)

and further developed by E. H. Land and J.

McCann in (Land and McCann 1971). Sev-

eral developments are due to (Brainard and

Wandell 1986), (Provenzi et al. 2005) and

(Lei et al. 2007) among others. An analy-

sis of retinal and cortical components of the

Retinex theory has been performed by sev-

eral research teams in the past years (for a

review see e.g. (Yeonan-Kim and Bertalmı́o

2017), (Valberg and Seim 2013)) and it has

been shown that the Magnocellular cells are

the ones involved in contrast perception (see

e.g. (Enroth-Cugell and Robson 1966),

(Solomon et al. 2006)). Variational approaches

have been proposed by (Kimmel et al. 2003),

(Morel et al. 2010) and (Limare et al. 2011).

A geometrical model which makes a first step

in relating the architecture of the visual sys-

tem and invariance of RFPs has been pre-

sented in (Citti and Sarti 2015). The action

of radially symmetric RFP is interpreted as

a LoG, while the horizontal connectivity is

modeled as an inverse of the Laplacian oper-

ator, and allows to recover the given image

up to a contrast shift.

1.4 Our contribution

In the present paper, we introduce a new

neural architecture inspired by the structure

of visual cortices and study the properties of

the filters of the first and second layers. The

first layer contains a single filter and mod-

els the LGN. We show that it has the same

radially symmetric shape, as LGN receptive

profiles and is able to reproduce a Retinex

effect. Then we show that the statistics of

filters of the second layer much better fits

the observed distributions, comparing with

the esperimental results of (Ringach 2002).

The paper is organized as following.

In Section 2 we recall the structure of

LGN and V1 and the RFPs of their cells. We

described an interpretation of the Retinex

model given by Morel (Morel et al. 2010)

and a statistical study on the RFPs of the

distributions of V1 cells in a macaque by

Ringach (Ringach 2002).

In Section 3 we introduce our LGN-CNN

architecture and describe it in detail. The

new architecture is implemented in Section

4. It provides classification performances com-

parable to the classical one, but it enforces

the development of rotation symmetric fil-

ter during the training phase. As a result,

the filter is a good approximation of RFP of

LGN.

In Section 5 we test our filter on con-

trast perception phenomena. Indeed, we use

the learned kernel to repeat and justify the

Retinex model. We test the model on a num-



4

Federico Bertoni, Giovanna Citti, Alessandro Sarti

ber of classical Retinex illusion, comparing

with the results of (Morel et al. 2010).

Thus, in Section 4.3 we show that the

filters in the second layer of the net mimics

the shape of Gabor filters of V1 RFPs. We

have already recalled that this happens also

in standard CNN. We compare the statistics

of the filters with the results obtained on the

RFPs of a macaque’s V1 from the work of

Ringach (Ringach 2002). By construction

both in our net and in the visual system the

second layer do not exhibit LoG, which are

collected in the first layer. Also, other sta-

tistical properties of the filters are present

in our LGN-CNN.

The proof of the symmetry of the filter of

the first layer is collected in appendix A. It

is provided in the simplified case of a neural

network composed by only a layer composed

by a single filter.

2 The visual system

The visual system is one of the most stud-

ied part of the brain. We describe here the

aspects important for our study and refer

the reader for a more general description to

(Sundsten and Nolte 2001), (Jessell et al.

2000).

The retina is a light-sensitive layer of tis-

sue which receives the visual stimulus and

translates it into electrical impulses. These

impulses first reach the LGN whose cells pre-

process the visual stimulus. Then the im-

pulse is processed by the cells of V1, whose

output is taken in input to all the other lay-

ers of the visual system.

We are mainly interested in the cells of

the LGN and in the simple cells of V1. Each

cell receives the electrical impulse from a

Fig. 1: On the left: RFP of an LGN cell

where the excitatory area is in white and

the inhibitory one is in gray. On the right:

Its approximation by a LoG. From: (DeAn-

gelis et al. 1995).

Fig. 2: First row: RFPs of two simple cells

of V1 where the excitatory area is in white

and the inhibitory one is in black. Second

row: their approximations by Gabor func-

tions. From: (Sarti and Citti 2011).

portion of the retina Ω called receptive field

(RF). The RF of each cell is divided in ex-

citatory and inhibitory areas which are acti-

vated by the light and that can be modeled

as a function Ψ : Ω ⊂ R2 → R called re-

ceptive field profile (RFP). Thus, if the ex-

citatory areas are activated the firing rate

of the cell increases whereas it decreases in

case of inhibitory areas activation. Figure 1

shows the RFP of an LGN cell that can be

modeled by a LoG.
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2.1 LGN RFP: neural interpretation of

Retinex model

The Retinex algorithm, introduced in

(Land and McCann 1971), mimics the con-

trast invariant process performed by our vi-

sual system and associates to an image I :

Ξ ⊂ R2 → R the perceived image Ĩ.

In (Morel et al. 2010) and (Limare et

al. 2011) the authors have formalized the

Retinex theory as the solution of the follow-

ing discrete Poisson PDE

−∆dĨ = M(I) (1)

where ∆d is the classical discrete Lapla-

cian and M is a modified version of the dis-

crete Laplacian.

In (Citti and Sarti 2015) a neural inter-

pretation of the model has been introduced.

The RFP of the LGN cell which takes in in-

put the visual signal acting by convolution

on it, modeled as a modified discrete LoG,

M(Gσ) ≈ ∆Gσ, where Gσ is a Gaussian bell

Hence the action on an input image is the

following:

OutLGN (I) = ∆(Gσ ∗ I) ≈ ∆I

The horizontal connectivity in this layer is

radially symmetric and modeled as the fun-

damental solution log(
√
x2 + y2) whose as-

sociated operator is the inverse of the Lapla-

cian ∆−1 and allows to recover the function

Ĩ:

Ĩ = ∆−1 ∗OutLGN (I).

As a result

∆Ĩ = OutLGN (I) ≈ ∆I,

is the Retinex equation. In general, Ĩ will not

coincide with I, but will differ by a harmonic

function.

Our aim is to replace the action of the

RFP with the filter learned by the LGN-

CNN. If it is a good approximation of the

associated ∆Gσ, then its inverse will allow

to recover the perceived image Ĩ in problems

of contrast perception. In Section 5 we will

describe in detail the process.

2.2 Statistics of V1 RFPs

As first discovered by Daugmann, RFPs

of the primary cortex V1 can be approxi-

mated by Gabor functions defined as follows:

h(x′, y′) =Ae(−(x
′/
√
2σx)

2−(y′/
√
2σy)

2)

cos(2πfx′ + φ)
(2)

where (x′, y′) is translated and rotated from

the original coordinate system (x0, y0)

x′ =(x− x0) cos θ + (y − y0) sin θ

y′ =− (x− x0) sin θ + (y − y0) cos θ.

as shown in Figure 2.

Recently, Ringach in (Ringach 2002) has

proved that RFPs are not uniformly distributed

with respect to all the Gabor parameters,

but they have a very particular statistic. Ringach

defines two coefficients nx and ny which es-

timate the elongation in x and y directions

respectively

(nx, ny) = (σx · f, σy · f).

In particular, if f = 0 the function h in (2)

simplifies to a Gaussian since the cosine be-

comes a constant. Otherwise it is elongated:

– Fitting a Gabor function defined in equa-

tion (2) to the RFPs;

– Comparing the results on (nx, ny) = (σx·
f, σy · f) plane.



6

Federico Bertoni, Giovanna Citti, Alessandro Sarti

Figure 10c shows the statistical distri-

bution of RFPs of V1 cells in monkeys in

(nx, ny) plane obtained by Ringach in (Ringach

2002). In (Barbieri et al. 2014) the authors

have studied the same statistical distribu-

tion with respect to the Uncertainty Prin-

ciple associated to the task of detection of

position and orientation.

3 Introducing LGN-CNN architecture

In this section we introduce one of the

main novelty of this paper, a CNN architec-

ture inspired by the structure of the visual

system and, in particular, takes into account

LGN cells.

The retinal action in a CNN has been

implemented in (Lindsey et al. 2019), where

the authors have proposed a bottleneck model

for the retinal output. In our model we pro-

pose a single filter layer at the beginning

of the CNN that should mimic the action

of the LGN. As we have already discussed

in Section 2 the RFP of an LGN cell can

be modeled by a LoG that acts directly on

the visual stimulus. Since the LGN prepro-

cesses the visual stimulus before it reaches

V1, we should add a first layer at the begin-

ning of the CNN that reproduces the role of

the LGN.

In particular, if we consider a classical

CNN we can add before the other convo-

lutional layers, a layer `0 composed by only

one filter Ψ0 of size s0×s0 and a ReLU func-

tion. Note that after the first layer `0 we will

not apply any pooling. In this way taking a

classical CNN and adding `0 will not modify

the structure of the neural network and the

number of parameters will only increase by

s0 × s0. Furthermore, Ψ0 will prefilter the

Fig. 3: Scheme of the LGN and V1 in parallel

with the first two layers `0 and `1 of the

LGN-CNN architecture.

input image without modifying its dimen-

sions; this behavior mimics the behavior of

the LGN which let the neural network to be

closer to the visual system structure. Figure

3 shows a scheme of the first steps of the

visual pathway (i.e., LGN and V1) in paral-

lel with the first two layers `0 and `1 of the

LGN-CNN architecture.

The theoretical idea behind this struc-

ture can be found in a simple result on rota-

tional symmetric convex functionals. In par-

ticular, we recall that a rotational symmet-

ric convex functional F has a unique min-

imum ω. Since F is rotational symmetric,

F (ω◦g) = F (ω) for a rotation g. Thus, since

the minimum is unique, ω = ω ◦ g, implying

the rotational symmetry of ω. There are sev-

eral results on symmetries of minimum for

functionals as for example in (Lopes 1996),
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(Gidas et al. 1981). Our aim is to extend

these results in the case of CNNs in particu-

lar on our architecture that we name as Lat-

eral Geniculate Nucleus Convolutional Neu-

ral Network (LGN-CNN).

We will also show that the Gabor-like fil-

ters in the second convolution layer, repro-

jected in the (nx, ny) plane introduced by

Ringach and recalled above, satisfy the same

properties of elongation which characterizes

the RFPs of simple cells in V1. This analy-

sis should enforce the link between our ar-

chitecture and the visual system structure,

at least as regards simple cells in V1.

4 Applications of LGN-CNN

4.1 Settings

In this Section we describe the settings

for testing our architecture. We use Mat-

Lab2019b for academic use.

We train our LGN-CNN architecture on

a dataset of natural images called STL-10

(see (Coates et al. 2011)) that contains 5000

training images divided in 10 different classes.

We have modified the training set in the fol-

lowing way:

– Changing the images from RGB color to

grayscale color using the built-in func-

tion rgb2gray of MatLab;

– Applying a circular mask to each image,

leaving unchanged the image in the circle

and putting the external value to zero;

– Rotating each image by 5 random angles

augmenting the dataset to 25000 images;

thanks to the previous step no boundary

effects are present;

– Cropping the 64×64 centered square that

does not contain the black boundaries;

– Subtraction of the mean value in order

to have zero mean input images.

Thus, after these steps we have obtained

a rotation invariant training set composed

by 25000 64 × 64 images. We have applied

the same steps to the test set but we have

rotated each image to just one random an-

gle. Since the images are 64 × 64 we have

decided to use quite large filters in the first

and second layer (7× 7 and 11× 11 respec-

tively) in order to obtain more information

about their shapes.

Figure 4 shows the architecture of our

CNN. Let us note that between each convo-

lutional layer and its ReLU function there is

a batch normalization layer b with the same

size of the number of filters of the corre-

sponding convolutional layer. The input is

an image of size 64 × 64 × 1. Then there is

the first convolutional layer `0 composed by

only Ψ0 of size 7 × 7 followed by a ReLU

R. After `0 the batch normalization layer

performs a normalization similar to the one

that the retina performs as described in

(Carandini and Heeger 2012). Indeed, one

of the main difference is the subtraction of

the mean value µ performed by the batch

normalization layer defined as follows

x̂i =
xi − µ√
σ2 + ε

,

where xi is the element to normalize, µ

is the mean value of the batch, σ is the stan-

dard deviation of the batch and ε is a small

value that prevents bad normalizations in

case of really small standard deviations. How-

ever, since the input images have zero mean

then the convolution with Ψ0 have still zero

mean. Thus, the batch normalization layer

between `0 and `1 has similar characteris-

tics as the biological one. On the other hand,
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Fig. 4: Architecture of LGN-CNN.

the two approaches differ since in the batch

normalization layer the statistical parame-

ters (µ, σ) are calculated channel-wise over

all input of the batch, while in the normal-

ization described in (Carandini and Heeger

2012) the σ value is calculated from a sin-

gle input instance over a restricted spatial

neighborhood. However, we expect that the

final result will not differ heavily applying

the batch normalization layer.

Then, the second layer `1 composed by

64 filters of size 11 × 11 receives as input a

matrix of the same size of the image. Note

that the stride is 2 and that the spatial di-

mensions half. After that we apply a ReLU

and a max POOLING p2m with squares of

size 2 × 2. The third convolutional layer `2

is composed by 32 filters of size 5 × 5 × 64

and it is followed by a ReLU and a max

POOLING. Then, we apply a convolutional

layer `3 composed by 32 filters of size 3×3×
32 followed by a ReLU and a max POOL-

ING. The last convolutional layer `4 has the

same filters as `3 followed by a ReLU and

a max POOLING. Eventually three fully-

connected (FC) layers of size 1000, 500 and

10 respectively are applied giving as output

a vector of length 10. Finally, we apply a

softmax σ, σ(x)z = exz∑
k e

xk
where x is the

output of FC3, in order to obtain a prob-

ability distribution over the 10 classes. The

functional that models this neural network

is the following

F (I) :=(σ ◦ FC3 ◦ FC2 ◦ FC1◦

p2m ◦R ◦ b ◦ `4 ◦ p2m ◦R◦

b ◦ `3 ◦ p2m ◦R ◦ b ◦ `2◦

p2m ◦R ◦ b ◦ `1 ◦R ◦ b ◦ `0)(I)

(3)

A cross-entropy loss for softmax function

defined as in equation (4) is applied to the

functional (3) where z̃ is the label selected

by the neural network and y(I) is the true

label.

L(F (I), y(I)) = log(
∑
z

e(Fz(I)−Fz̃(I)))+

Fz̃(I)− Fy(I)
(4)

We have trained the neural network for

30 epochs with an initial learning rate of

0.01, a learning rate drop factor of 0.97 and

a piecewise learning rate schedule with a

learning rate drop period of 1. The mini batch

size is 128 with an every-epoch shuffle, the

L2 regularization term is 0.02 and the mo-

mentum is 0.9.

In Table 1 there are summarized the mean

performances over 10 different trainings of
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LGN + 4CL LGN + 8CL LGN + 12CL

70.41% 72.73 % 73.61 %

Table 1: Mean performances of several ar-

chitectures over 10 different trainings with

LGN layer plus 4, 8 and 12 other convolu-

tional layers (CL).

three CNN architectures with the LGN layer

`0 plus several convolutional layers (4, 8 and

12 respectively). As expected, the perfor-

mance increases when the architecture is deeper.

We stress out that the results obtained on

the LGN layer and the first convolutional

layer are not affected from the rest of the

neural network. Indeed, it is possible to add

more layers and build more deeper architec-

tures to obtain better results on the classi-

fication task without losing the properties

of the first layers of the LGN-CNN. Since

our focus was to analyze the structures that

arises in the first two layers, we have not

further investigated the performance of the

CNN.

4.2 The first layer of LGN-CNN

After the training phase we analyze the

neural network focusing on the first layer in

this Section. Figure 5 shows the filter Ψ0

and 5b shows its approximation with minus

the LoG.The two have a high correlation of

95.21% computed using the built-in function

of MatLab corr2.

Moreover, Figure 6a shows the 2D im-

age of Ψ0 obtained after the training phase.

Then, in Figures 6b and 6c we plot a 2D

approximation of Ψ0 as a 280 × 280 filter

and minus the LoG in which the rotational

symmetric pattern is clearer.

We would like to point out that in the

LGN there exists both cells with on-center/off-

surround as well as off-center/on-surround

RFPs. In order to model these kinds of cells

we have modified the current architecture

by adding a second filter in the layer `0.

Since the STL10 dataset contains natural

images with many contours we should ex-

pect to have oriented filters. This is not the

case and Figure 7 shows the on-center/off-

surround and off-center/on-surround obtained

after the training phase. For simplicity, we

have considered the model with a single fil-

ter.

In order to quantify the rotational prop-

erties of the filter, we compute the correla-

tion between the filter obtained in the first

layer of the CNN and a new one, obtained

via a rotation invariance symmetrization. We

will test the behavior of the first layer of

LGN-CNN for different values of the L2 reg-

ularization term and adding more convolu-

tional layers. In particular, we added to the

previous architecture described in Section

4.1 two convolutional layers composed by 32

filters of size 3 × 3 × 32 (each one followed

by a batch normalization layer b and ReLU

R ) after the third layer `3. We have added

other two convolutional layers with the same

characteristics after the layer `4 .

The normalized rotational invariant fil-

ter is obtained by the following procedure:

– Using the function imresize with scale 3

and bilinear method to enlarge the filter;

– Rotating the filter with imrotate by 360

discrete angles between 1 and 360 de-

grees and summing them up;

– Applying again the function imresize with

scale 1/3 and nearest method to recover

a filter with the same size of Ψ0;
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(a) Filter Ψ0 of first layer of LGN-CNN. (b) Minus the Laplacian of Gaussian (LoG).

Fig. 5: Comparison between the filter Ψ0 and minus the LoG. The two have a high correlation

of 95.21% computed using the built-in function of MatLab corr2.

(a) Filter Ψ0 of first layer of

LGN-CNN.

(b) Approximation of the filter

Ψ0 of first layer of LGN-CNN.

(c) Minus the Laplacian of

Gaussian (LoG).

Fig. 6: The first figure shows the 7 × 7 filter Ψ0 of the neural network. To better visualize

the filter Ψ0, we provide an approximating 280× 280 filter and minus the LoG.

Fig. 7: On-center/off-surround and off-

center/on-surround filters of `0 with 2 filters.

– Normalizing the filter by subtracting the

mean and dividing it by L2 norm.

We call the filter obtained in this way Ψ0
S

and we estimate the correlation between Ψ0

and Ψ0
S using the Matlab function corr2.

In Table 2 we have reported the correla-

tions with different values of L2 regulariza-

tion term and for two LGN-CNN architec-

tures, the one we have introduced in Section

4.1 which is indicated by ’LGN + 4 layers’

and the deeper one described in this Section

indicated by ’LGN + 8 layers’. All the other

training parameters are provided in Section

4.1. As we can see for ’LGN + 4 layers’ ar-
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L2 term LGN + 4 layers LGN + 8 layers

0.01 88.3 % 85.40 %

0.02 97.15 % 90.79 %

0.03 93.06 % 91.41 %

0.04 95.61% 92.58 %

0.045 93.55 % 94.79 %

0.05 95.44 % 94.11 %

Table 2: Correlation between Ψ0 and Ψ0
S

varying the L2 regularization term and the

number of layers of the LGN-CNN architec-

ture. Best rotational symmetric filters are

selected in cyan for both architectures.

chitecture the L2 regularization term that

let Ψ0 to be the closest rotational symmetric

filter is 0.02. This is the filter we have shown

in Figures 5 and 6 and we have used through

the paper. The Table 2 shows that the rota-

tional symmetry of Ψ0 is stable with respect

to variations of L2 regularization term and

adding convolutional layers.

Furthermore, we have studied the prop-

erties of Ψ0 varying the data augmentation

(DA) applied to the dataset. Table 3 shows

the correlation of Ψ0 with the LoG and the

correlation of Ψ0 with Ψ0
S with three differ-

ent DA applied to the dataset. In the first

one we have not applied any DA (No DA);

in the second one we have randomly rotated

the images of an angle of 0, π2 , π, 3π
2 radiant

(Mild DA); in the third one we have applied

the DA described in Section 4.1 (Hard DA).

From Table 3 it emerges that the introduc-

tion of rotation invariances in the dataset by

rotating the images lightly affects the corre-

lation with the LoG but gives stability to Ψ0

allowing it to be more rotational symmetric.

In conclusion, thanks to the analysis per-

formed on the properties of Ψ0, we can argue

that the structure of the architecture itself

No DA Mild DA Hard DA

LoG corr 93.77 % 93.68 % 95.21 %

Ψ0
S corr 93.92 % 94.16 % 97.15 %

Table 3: Correlation between Ψ0 and its LoG

approximation and between Ψ0 and Ψ0
S vary-

ing the data augmentation (DA) applied to

the dataset.

influences the shape of the filters and that

the introduction of `0 with a single filter Ψ0

is a good model of the LGN.

4.3 The second layer of LGN-CNN

To enforce the link between our archi-

tecture and the structure of the visual sys-

tem, we have studied the filters in the second

layer comparing them with some real data

obtained on monkey in (Ringach 2002). There-

fore, we have trained two different CNNs, an

LGN-CNN defined by the functional (5)

F (I) :=(σ ◦ FC1 ◦R ◦ `3 ◦ p4a ◦R ◦ `2

◦ p4m ◦R ◦ `1 ◦R ◦ `0)(I)
(5)

and a classical CNN defined by the func-

tional (6) in which we have eliminated the

first convolutional layer `0 and its following

ReLU R, characteristic of our architecture.

F (I) :=(σ ◦ FC1 ◦R ◦ `3 ◦ p4a ◦R ◦ `2

◦ p4m ◦R ◦ `1)(I)
(6)

Let us note that in both architectures

`1 contains filters with Gabor shapes after

training. This is a well-known result on the

filters of the first convolutional layer of CNNs

as for example in (Serre et al. 2007), (Yamins

and DiCarlo 2016); however, the introduc-

tion of a first layer composed by a single

filter does not change this behavior. Indeed,

we have studied the statistical distribution
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Fig. 8: On the left: filters from LGN-CNN. On the right: their approximation with the

function (2).

Fig. 9: On the left: filters from classical CNN. On the right: their approximation with the

function (2).

of these banks of filters confronting the re-

sults with the real data of Ringach.

In the case of LGN-CNN we have not

approximated the filters in `1 directly but

the filters obtained by the convolution with

Ψ0.

We have approximated the filters in the

banks using the function (2); Figure 8 shows

some of the filters of LGN-CNN and their

approximation and the same occurs in Fig-

ure 9 in the case of classical CNN. Let us

note that the mean correlation estimated with

the built-in MatLab function corr2 increases

from classical CNN to LGN-CNN from just

71.62% to 93.50%. This suggests that intro-

ducing the layer `0 with a single filter better

regularize the filters in the following convo-

lutional layer `1.

We follow the same step as Ringach in

(Ringach 2002) by plotting in the (nx, ny)

plane. In order to compare the plots, we

looked for the distribution that best fits the
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(a) Distribution of filters in `1

of classical CNN defined by

functional (6).

(b) Distribution of filters in `1

of LGN-CNN defined by

functional (5).

(c) Distribution of RFPs of

simple cells from (Ringach 2002).

Fig. 10: Comparison between the statistical distribution on (nx, ny) plane of filters of a

classical CNN, of our architecture and of RFPs of real data.

neural data. In particular, it approximates

the points closer to the origin with a line

y = αx and then it approximates the rest of

the points with a line starting from the end

of the previous one.

Figure 10 shows the three plots. Let us

note that introducing `0 modifies the elon-

gation of Gabor filters in `1. In particular,

in classical CNN the filters are often more

elongated in the x direction as we can see

from the slope of the interpolating line in

Figure 10a. In Figure 10b we can see that

the slope changes greatly and that the filters

become much more elongated in the y direc-

tion. This behavior is the same in the case of

RFPs (Figure 10c) in which the distribution

has a similar slope of LGN-CNN. This en-

forces more the link of LGN-CNN with the

structure of the visual system motivating us

to pursue in this direction.

5 Retinex algorithm via learned

kernels

In this section we test the rotational sym-

metric filter on Retinex effect and contrast-

based illusions. We described in Section 2

how the model of (Morel et al. 2010) have

been neurally interpreted in (Citti and Sarti

2015) and applied to LoG. Our approach

aims to find the reconstructed image Ĩ for

a general operator

M : Ξ ⊂ R2 → R, (7)

solving the following problem

M ∗ Ĩ = M ∗ I. (8)

by finding the inverse operator of M

M̃ : Ξ ⊂ R2 → R. (9)

By definition the inverse M̃ of the oper-

ator M satisfies

M ∗ M̃ = δ. (10)
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Applying the steepest descent method,

we obtain an iterative process, which can be

formally expressed as

M̃t+1 = M̃t + dt · (M ∗ M̃t − δ). (11)

The algorithm will stop at time T when
||M̃T+1−M̃T ||L1

dt < ε, for a fixed error ε > 0.

Thus, ||M ∗ M̃T − δ||L1 < ε and indeed M̃T

would be a good approximation of M̃ . Fi-

nally, we can compare the image I with the

reconstructed one Ĩ and see if any Retinex

effects occur. Let us note that one difference

between our approach and the one proposed

by Morel is that he imposed the Neumann

boundary conditions to the Poisson equation

whereas, in our model, the Neumann bound-

ary conditions imposed to the filter are in-

herited from the inverse operator itself. Fur-

thermore, we have faced the problem for a

Laplacian operator to see if the results are

similar to the Morel ones. Indeed, in our

Retinex algorithm we convolve a given vi-

sual stimulus I with a fundamental solution

M and we reconstruct the perceived image

Ĩ using the inverse operator M̃ .

5.1 Study of the inverse operators

Firstly, we show the inverse operators ob-

tained through the algorithm described by

equation (11). We start from the classical

discrete Laplacian operator and then we will

move to convolutional operators, in partic-

ular a discrete LoG and the filter Ψ0 of an

LGN-CNN. In order to compare the inverse

operators, we will show the 2D plots ob-

tained by selecting a slice of the 3D inverse

operator itself.

We start by comparing the inverse of the

discrete Laplacian with respect to its ex-

act inverse operator given by the function

log(
√
x2 + y2). Figure 11b shows the approx-

imation of the inverse of the Laplacian and

11a shows the exact inverse in the interval

[−5, 5]. We can note that the approximation

is close to the exact one.

In the second row of Figure 11 we have

compared the inverse operators of a LoG and

Ψ0 where Figure 11c shows the LoG inverse

operator and Figure 11d shows the Ψ0 in-

verse operator. Since their inverse operators

are close we expect similar Retinex effects in

the next Section.

5.2 Application of the algorithm

In this Section, we aim to test our al-

gorithm and our different operators to see

if Retinex effects occur. Let us note that

Retinex is an algorithm that mimics our color

perception and does not try to improve the

image quality. Indeed, the grayscale values

should modify towards our color perception

intensity values.

5.2.1 Circles on a gradient background

We start with a simple grayscale image

(see Figure 12a) in order to see how the

different operators work. We are using the

same image as in (Morel et al. 2010) and

(Limare et al. 2011) in which they obtain

remarkable Retinex effects. It has a back-

ground that shifts from white (value 1) to

black (value -1) maintaining the gradient con-

stant from left to right. There are also two

gray dots (same value 0), the left one with

a brighter background, the right one with

a darker one. Because of the different back-

grounds, our visual system perceives the two
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(a) Exact inverse of a Laplacian log(
√
x2 + y2)

in the interval [−5, 5].

(b) Inverse of discrete Laplacian.

(c) Inverse of LoG. (d) Inverse of the first layer of an LGN-CNN.

Fig. 11: Comparison between inverse operators. First row: inverse of the discrete Laplacian

and its exact inverse operator. Second row: inverse operators of a discrete LoG and the first

filter Ψ0 of an LGN-CNN.

dots differently: the left one is perceived as

darker with respect to its true color; the

right one is perceived as brighter.

We first consider the discrete Laplacian

operator since we expect to obtain the same

Retinex effects as in (Morel et al. 2010).

Figure 12c shows the result obtained with

our method. It is clearly the same result of

the experiments performed by Morel and the

values obtained in the position of the dots

are close to -0.9 and 0.9 (indeed really close

to completely black and white dots) whereas

the entire background is gray with 0 values.

Thus, we have considered the exact in-

verse of the Laplacian operator log(
√
x2 + y2).

From Figure 12b it is clear that the Retinex

effects occur to the gray dots. Furthermore

we can note that the contours of the two dots

are more defined w.r.t. the discrete Lapla-

cian. Also in this case the values in the po-

sition of the dots are close to -0.9 and 0.9.

Then, we have performed our experiment

with the inverse of a LoG. We can note from

Figure 12d that the Retinex effects occur

also in this case (with values close to -0.9 and

0.9), similarly to the Retinex effects of the
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(a) Starting image with two gray dots on

a gradient background.

(b) Retinex effects of exact inverse of

Laplacian.

(c) Retinex effects of discrete Laplacian.

(d) Retinex effects of LoG. (e) Retinex effects of Ψ0 of LGN-CNN.

Fig. 12: Retinex effects of some inverse operators on starting image 12a.

discrete Laplacian. Also in this case the con-

tours of the dots are not completely clear.

Finally, we have tested the inverse of the

convolutional operator Ψ0 of an LGN-CNN

introduced in Section 4. In Figure 12e we can

see that this operator shows Retinex effects

where the values of the dots are close to -0.9

and 0.9. In this case the contours of the dots

are even clearer than the ones obtained with

the LoG and the discrete Laplacian.

To summarize, we have shown that our

method reproduces the same results of (Morel

et al. 2010) in the case of the Laplacian op-

erator. Furthermore, we have tested it on

other operators obtaining remarkable results.

It is particularly interested the case of the

convolutional operator Ψ0 since it is able to

show Retinex effects even if it is a learned

filter with no a-priori structure, enforcing

the link between the LGN-CNN architecture

and the visual system.

5.2.2 Adelson’s checker

We have also tested our algorithm on

the Adelson’s checker shadow illusion as in

(Morel et al. 2010) and (Limare et al. 2011).

Since we are more interested in the Retinex

effects of LoG and Ψ0 operators we have an-

alyzed their abilities on the grayscale image

(see Figure 13a). It shows a checkerboard
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with light gray and dark gray square with

a cylinder on it that shadows a part of the

squares. In particular, the square labeled ’A’

and the square labeled ’B’ have the same

grayscale value (in our case, since -1 is black

and 1 is white, they have -0,4953 value). The

illusion is built in such a way that, even if

they have the same value, they are perceived

in a completely different way. Indeed square

’A’, which is outside the shadow and sur-

rounded by light gray squares, is perceived

as a dark gray square. On the other hand,

square ’B’, which is inside the shadow and

is surrounded by dark gray squares, is per-

ceived as lighter.

We expect that the two operators should

reproduce the same behavior of our percep-

tion, in particular square ’A’ should have a

smaller value whereas square ’B’ should have

a bigger value. Figure 13c shows the Retinex

effects obtained with the LoG operator. In

particular, the value of square ’A’ changes

to -0,6553 whereas the value of square ’B’

changes to 0,02351. Thus, we have studied

the behavior of Ψ0 operator whose results

are shown in Figure 13e. Even in this case

Retinex effects occur where the value of square

’A’ changes to -0,6035 and the value of ’B’

changes to 0,2348.

Figures 13d, 13d and 13f highlight the

two squares ’A’ and ’B’ in the starting image

and in the recovered images using the LoG

and Ψ0. In this way it is clearer that the

Retinex effects occur in both cases.

To summarize, we have shown that the

filter Ψ0 considered as a convolution oper-

ator shows Retinex effects really closed to

Retinex effects of LoG. This enforces again

the link between the structure of our archi-

tecture and the structure of LGN.

5.3 Information transmission efficiency

We are now interested to see if the layer

`0 have similar properties as regards the in-

formation transmission efficiency of the LGN.

Indeed, it is well established (see e.g. (Reinagel

and Reid 2000), (Zaghloul et al. 2003),

(Uglesich et al. 2009), (Im and Fried 2015),

(Pregowska et al. 2019)) that the average

firing rate of the retinal neurons that drive

information to the LGN is much bigger than

that of the LGN. In particular, LGN is able

to delete spikes preserving the more infor-

mative ones leading to a loss of information.

Thus, we have studied the information

loss on the 8000 images of STL10 test set

by convolving each image with Ψ0 and com-

puting the entropy from the histogram of

gray scale values via the built-in MatLab

function entropy. It turns out that on aver-

age the entropy decreases from 7.04 to 5.97

with a loss of 15.27 % of the information.

Thus, we have reconstructed the images us-

ing the Retinex algorithm described in Sec-

tion 5. The average entropy increases to 6.92

leading to a loss of 1.83% of the informa-

tion w.r.t. the original dataset. This suggests

that almost the entire information contained

in the visual stimulus can be reconstructed

via some feedback or horizontal connections,

where the reconstructed stimulus becomes

invariant w.r.t. lightness constancy. Figure

14 shows an example of the convolution and

the reconstruction performed on an image of

the dataset with the corresponding gray val-

ues histogram with respect to the entropy is

calculated.
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(a) Grayscale Adelson’s checker

shadow illusion.

(b) Grayscale Adelson’s checker

shadow illusion: the two squares.

(c) Retinex effects of LoG. (d) Retinex effects of LoG: the two squares.

(e) Retinex effects of Ψ0 of LGN-CNN. (f) Retinex effects of Ψ0 of LGN-CNN: the

two squares.

Fig. 13: Comparison between the Retinex effects of some operators on grayscale Adelson’s

checker shadow illusion.
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Fig. 14: In order on the left: a grayscale

image I, the convolved image Ĩ and the

reconstructed image Ĩ via eq. (8). On the

right: the corresponding histograms of the

grayscale values.

6 Conclusions

The study of the role of the LGN in the

visual system and the rotation invariance

properties of the RFPs of its cells has leaded

our research to the introduction of a CNN

architecture that mimics this structure. In

particular, we have added to a CNN a first

convolutional layer composed by a single fil-

ter which attains a rotational symmetric pat-

tern. The filter Ψ0 has inherited this prop-

erty from the modified architecture of the

neural network.

We have also shown that it is not only

rotational symmetric but it also obtains a

LoG shape that approximates the RFPs of

the LGN cells. In order to study these simi-

larities, we have shown that the Retinex ef-

fects of the LoG and Ψ0 are really closed to

each other. These behaviors enforce the link

between the visual system structure and the

architecture of CNNs.

Furthermore, we have analyzed the sta-

tistical distribution of the filters of the sec-

ond convolutional layer that attain a Ga-

bor shape even with the introduction of the

first layer. We have shown that the statisti-

cal distribution becomes closer to the real

data of RFPs of simple cells in V1 from

(Ringach 2002) enriching the connections

with the neural structure.

Then, we have faced the theoretical prob-

lem regarding the rotation symmetry of the

first convolutional layer. We have studied

the solution of a convex functional composed

by a convolution and a ReLU. Thanks to

uniqueness of such functional, we have shown

that the solution Ψ0 has to be rotational in-

variant. Then, we have built an architecture

composed by a single filter Ψ0 and a ReLU in

which Ψ0 has attained a rotational invariant

pattern close to a Gaussian.

In the future we will face the theoreti-

cal problem regarding the rotation symme-

try of the first convolutional layer for a gen-

eral LGN-CNN. Furthermore, we will ana-

lyze the modifications that in an LGN-CNN

occur to the bank of filters of other convo-

lutional layers of deeper architecture, com-

paring them with neural data. We will also

introduce an autoencoder associated to this

architecture, which can reconstruct perceived

images with the Retinex effect.

A Appendix

A.1 Rotation symmetry of Ψ0

In this section we define the setting in which

we study the rotation symmetry of Ψ0.

Let us consider the architecture of an LGN-

CNN in which we can split the first convolutional

layer composed by only one filter from the rest of
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the neural network which will be fixed. Thus, this

first layer can be approximated by a function Ψ0 :

R2 → R, assuming Ψ0 ∈ L1
loc(R2). A general

image can be defined as a function I : R2 → R
where we assume I ∈ L1

loc(R2). We can consider

a subset Γ ⊂ L1
loc(R2) of all the images where

for each image I is defined a labelling y : Γ → R,

where y(I) is the corresponding label to image I.

We require some rotational invariant proper-

ties on this set Γ . In particular, if we consider

a rotation Rθ of an angle θ on R2 plane around

its center then the composition Iθ = Rθ(I) =

I(R−θ(x)) is still an image and we can also as-

sume that Iθ ∈ Γ (i.e., that the subset Γ is close

under rotation). Furthermore, the rotated image

should maintain the same label, i.e., y(Iθ) = y(I).

Since the images we will consider in this problem

are grayscale ones (thus with values between 0

and 1) we can also assume that the images are

normalized with ||I||L1
loc
≤ 1. Summarizing all

these properties we can assume that Γ is a com-

pact set on L1
loc, Γ = {I ∈ L1

loc; ||I||L1
loc
≤ 1}

Thus, the rest of the neural network will be

defined by a nonlinear functional

C : L1
loc(R2)→ L1

loc(R2)

C(f(x)) = max(0, f(x))
(12)

which is one of the more frequently nonlinear

function used in CNN, called ReLU. And then

we can define

F : L1
loc(R2)× L1

loc(R2)→ R

F (I, Ψ0) :=

∫
R2

C
(
(I ∗ Ψ0)(z)

)
dz.

(13)

Then F (I, Ψ0) is the label that our architecture

associates to the image I and should eventually

approximates y(I).

Thus, our aim is to find a function Ψ0 in such

a way that F approximates well the known func-

tional y(I). In particular we would like to mini-

mize the following functional

min
Ψ0∈L1

loc
(R2)

∫
Γ

|F (I, Ψ0)− y(I)|dµ(I) (14)

where the integral done over the set Γ is a

Bochner’s integral (see e.g., Section 5 of chapter

V of (Yosida 1995) and (Mikusinski 1978)).

Our aim is to find a function Ψ0 that attains

the minimum of (14) where F is defined in (13)

and C is defined in (12). We would like to find

out if there exist some rotational invariant prop-

erties on the function Ψ0. Let us note that the

functional defined in (14) is convex thanks to the

convexity of the function C defined in (12) and

continuous. Then the existence and uniqueness

of a solution is guaranteed (see e.g., Section 1.4

of (Brezis 2011)).

Remark 1 Let us consider two function f, g ∈
L1(R2) and a rotation Rθ of an angle θ. Then

f ∗Rθ(g)(x) = (R−θ(f) ∗ g)(R−θ(x))

Proof

f ∗Rθ(g)(x) =

∫
R2

f(x− y)Rθ(g(y))dy

=

∫
R2

f(x− y)g(R−θ(y))dy =

then we substitute y′ = R−θ(y) whose Jacobian

has determinant equal to 1

=

∫
R2

f(x−Rθ(y′))g(y′)dy′

=

∫
R2

f(Rθ(R−θ(x))−Rθ(y′))g(y′)dy′

=

∫
R2

f(Rθ(R−θ(x)− y′))g(y′)dy′

=

∫
R2

R−θ(f(R−θ(x)− y′))g(y′)dy′ =

then we substitute y′′ = R−θ(x)− y′ whose Ja-

cobian has determinant equal to 1

=

∫
R2

R−θ(f(y′′))g(R−θ(x)− y′′)dy′′

=(R−θ(f) ∗ g)(R−θ(x))

and this conclude the proof.

Now we can demonstrate the rotational in-

variance of Ψ0.

Theorem A1 Let Ψ0 be a solution to the prob-

lem (14) where F is defined in (13) and C is

defined in (12). Then Ψ0 is rotational invariant.

Proof Let us consider the rotated solutionRθ(Ψ0)

of an angle θ ∈ [0, 2π].

∫
Γ

|
∫
R2

C
(
(I ∗Rθ(Ψ0))(z)

)
dz − y(I)|dµ(I) =

and because of remark 1

=

∫
Γ

|
∫
R2

C
(
(R−θ(I) ∗ Ψ0)(R−θ(z))

)
dz−y(I)|dµ(I)
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Since for a general f ∈ L1(R2) it holds∫
R2

f(Rθ(x))dx =

∫
R2

f(x)dx,

then

=

∫
Γ

|
∫
R2

C
(
(R−θ(I) ∗ Ψ0)(z)

)
dz−y(I)|dµ(I) =

Finally, since Γ is close under rotation and y(I) =

y(R−θ(I)) by hypothesis

=

∫
Γ

|
∫
R2

C
(
((I) ∗ Ψ0)(z)

)
dz − y(I)|dµ(I)

Thus, Rθ(Ψ0) attains the same value of Ψ0 for

every choice of θ. But thanks to the uniqueness

of the solution of this problem because of the

compactness of Γ and convexity of the functional

(14), Ψ0 = Rθ(Ψ0) ∀θ ∈ [0, 2π] and this con-

cludes the proof.

Remark 2 Let us note that the first part of the

proof of theorem A1 is valid for a general LGN-

CNN architecture. In particular, if we have a so-

lution Ψ0 to the minimization problem (14), then

every rotation Rθ(Ψ0) of an angle θ ∈ [0, 2π]

is still a solution. The uniqueness of solution

in theorem A1 guarantees that Ψ0 is rotational

invariant whereas for a general LGN-CNN this

does not hold.

A.2 Testing the theorem on the same

architecture

Fig. 15: Filter Ψ0 of LGN-CNN obtains after

training.

In this Section we face the same problem of

the proof in Section A to see if `0 becomes rota-

tional invariant. Since we are going to use a sim-

ple architecture composed by a single convolu-

tional layer `0 with a single filter Ψ0 and a ReLU

we do not expect to obtain a LoG shape filter as

in Section 4. Indeed, in the previous case the ar-

chitecture of LGN-CNN has other convolutional

layers whose aim was to further analyze the im-

age and in particular the contours of the objects.

For this reason we expected in that case that the

LGN-CNN behaved similarly to the LGN and the

V1, i.e., Ψ0 had a LoG shape. On the other hand,

in the test we are performing now we can only

expect a rotational invariant filter as stated in

theorem A1.

To perform this test we have built a new

dataset of images starting from the dataset MNIST

(a set of digits images, see (LeCun and Cortes

2010)) and the dataset Fashion-MNIST (a set of

cloths images, see (Xiao et al. 2017)). They are

two similar datasets, composed by grayscale im-

ages of size 28×28. The aim of our LGN-CNN is

to classify the input as a digit or a cloth, indeed if

the image belongs to MNIST or Fashion-MNIST

dataset. The new training set has been built by

taking the first half of MNIST dataset (30000 im-

ages) and the first half of Fashion-MNIST dataset

(30000 images), for a total of 60000 images. We

have followed the same steps for the test set (for

a total of 10000 images) and we have randomly

sorted the training and test sets. Then each im-

age has been labeled by 0 if it is a digit and by 1

if it is a cloth.

We have built a really simple LGN-CNN ar-

chitecture that contains only a first layer with a

single filter Ψ0 of size 13×13 followed by a ReLU

and by a fully connected layer. We have trained

this neural network for a total of 25 epochs ob-

taining an accuracy of 98.55 % on the classifica-

tion task. Figure 15 shows Ψ0 of this LGN-CNN

architecture. We can observe that it has a rota-

tional invariant shape as we expected from theo-

rem A1. Then we have tried to approximate the

filter Ψ0 with a Gaussian with the following for-

mula G(x, y) = αe
−x2−y2

2σ2 . Figure 16 shows Ψ0

and its approximation by a Gaussian. The rota-

tion invariance of Ψ0 is now enforced thanks to

the approximation obtained with a rotational in-

variant function as the Gaussian.
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(a) Filter Ψ0 of first layer of LGN-CNN. (b) Gaussian function.

Fig. 16: Comparison between the filter Ψ0 and a Gaussian. We can see that Ψ0 is really close

to a discrete approximation of a Gaussian fitted to the data.
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